1
|
Cheng C, Zhao Z, Liu G. Expression, Purification, and Crystallization of the Vγ9Vδ2 T-cell Receptor Recognizing Protein/Peptide Antigens. Protein J 2023; 42:778-791. [PMID: 37620608 DOI: 10.1007/s10930-023-10151-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2023] [Indexed: 08/26/2023]
Abstract
γδ T cells, especially Vγ9Vδ2 T cells, play an important role in mycobacterial infection. We have identified some Vγ9Vδ2 T cells that recognize protein/peptide antigens derived from mycobacteria, which may induce protective immune responses to mycobacterial infection. To clarify the structural basis of the molecular recognition mechanism, we tried many methods to express the Vγ9Vδ2 T-cell receptor (TCR). The Vγ9Vδ2 TCR was not expressed well in a prokaryotic expression system or a baculovirus expression system, even after extensive optimization. In a mammalian cell expression system, the Vγ9Vδ2 TCR was expressed in the form of a soluble heterodimer, which was suitable for crystal screening. Reduced-temperature cultivation (cold shock) increased the yield of the recombinant TCR. The recombinant purified TCR was used for crystal trials, and crystals that could be used for X-ray diffraction were obtained. Although we have not yet determined the crystal structure of the Vγ9Vδ2 TCR, we have established a procedure for Vγ9Vδ2 TCR expression and purification, which is useful for basic research and potentially for clinical application.
Collapse
Affiliation(s)
- Chaofei Cheng
- Stem Cell Research Center, Henan Key Laboratory of Stem Cell Differentiation and Modification, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
- People's Hospital of Henan University, Zhengzhou, 450003, China
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Centre for Tuberculosis Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Zhendong Zhao
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Centre for Tuberculosis Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China.
- Clinical Immunology Center, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China.
| | - Guangzhi Liu
- Stem Cell Research Center, Henan Key Laboratory of Stem Cell Differentiation and Modification, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China.
- People's Hospital of Henan University, Zhengzhou, 450003, China.
| |
Collapse
|
2
|
Gerber HP, Presta LG. TCR mimic compounds for pHLA targeting with high potency modalities in oncology. Front Oncol 2022; 12:1027548. [PMID: 36338746 PMCID: PMC9635445 DOI: 10.3389/fonc.2022.1027548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 09/29/2022] [Indexed: 12/02/2022] Open
Abstract
pHLA complexes represent the largest class of cell surface markers on cancer cells, making them attractive for targeted cancer therapies. Adoptive cell therapies expressing TCRs that recognize tumor specific pHLAs take advantage of the unique selectivity and avidity of TCR: pHLA interactions. More recently, additional protein binding domains binding to pHLAs, known as TCR mimics (TCRm), were developed for tumor targeting of high potency therapeutic modalities, including bispecifics, ADCs, CAR T and -NK cells. TCRm compounds take advantage of the exquisite tumor specificity of certain pHLA targets, including cell lineage commitment markers and cancer testis antigens (CTAs). To achieve meaningful anti-tumor responses, it is critical that TCRm compounds integrate both, high target binding affinities and a high degree of target specificity. In this review, we describe the most advanced approaches to achieve both criteria, including affinity- and specificity engineering of TCRs, antibodies and alternative protein scaffolds. We also discuss the status of current TCRm based therapeutics developed in the clinic, key challenges, and emerging trends to improve treatment options for cancer patients treated with TCRm based therapeutics in Oncology.
Collapse
|
3
|
Engineering the T cell receptor for fun and profit: Uncovering complex biology, interrogating the immune system, and targeting disease. Curr Opin Struct Biol 2022; 74:102358. [PMID: 35344834 DOI: 10.1016/j.sbi.2022.102358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/13/2022] [Accepted: 02/21/2022] [Indexed: 11/21/2022]
Abstract
T cell receptors (TCRs) orchestrate cellular immunity by recognizing peptide antigens bound and presented by major histocompatibility complex (MHC) proteins. Due to the TCR's central role in immunity and tight connection with human health, there has been significant interest in modulating TCR properties through protein engineering methods. Complicating these efforts is the complexity and vast diversity of TCR-peptide/MHC interfaces, the interdependency between TCR affinity, specificity, and cross-reactivity, and the sophisticated relationships between TCR binding properties and T cell function, many aspects of which are not well understood. Here we review TCR engineering, starting with a brief historical overview followed by discussions of more recent developments, including new efforts and opportunities to engineer TCR affinity, modulate specificity, and develop novel TCR-based constructs.
Collapse
|
4
|
Saporin as a Commercial Reagent: Its Uses and Unexpected Impacts in the Biological Sciences—Tools from the Plant Kingdom. Toxins (Basel) 2022; 14:toxins14030184. [PMID: 35324681 PMCID: PMC8952126 DOI: 10.3390/toxins14030184] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/23/2022] [Accepted: 02/23/2022] [Indexed: 02/02/2023] Open
Abstract
Saporin is a ribosome-inactivating protein that can cause inhibition of protein synthesis and causes cell death when delivered inside a cell. Development of commercial Saporin results in a technology termed ‘molecular surgery’, with Saporin as the scalpel. Its low toxicity (it has no efficient method of cell entry) and sturdy structure make Saporin a safe and simple molecule for many purposes. The most popular applications use experimental molecules that deliver Saporin via an add-on targeting molecule. These add-ons come in several forms: peptides, protein ligands, antibodies, even DNA fragments that mimic cell-binding ligands. Cells that do not express the targeted cell surface marker will not be affected. This review will highlight some newer efforts and discuss significant and unexpected impacts on science that molecular surgery has yielded over the last almost four decades. There are remarkable changes in fields such as the Neurosciences with models for Alzheimer’s Disease and epilepsy, and game-changing effects in the study of pain and itch. Many other uses are also discussed to record the wide-reaching impact of Saporin in research and drug development.
Collapse
|
5
|
Zhang A, Piechocka-Trocha A, Li X, Walker BD. A Leucine Zipper Dimerization Strategy to Generate Soluble T Cell Receptors Using the Escherichia coli Expression System. Cells 2022; 11:cells11030312. [PMID: 35159122 PMCID: PMC8834513 DOI: 10.3390/cells11030312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 12/10/2022] Open
Abstract
T cell-mediated adaptive immunity plays a key role in immunological surveillance and host control of infectious diseases. A better understanding of T cell receptor (TCR) recognition of pathogen-derived epitopes or cancer-associated neoantigens is the basis for developing T cell-based vaccines and immunotherapies. Studies on the interaction between soluble TCR α:β heterodimers and peptide-bound major histocompatibility complexes (pMHCs) inform underlying mechanisms driving TCR recognition, but not every isolated TCR can be prepared in soluble form for structural and functional studies using conventional methods. Here, taking a challenging HIV-specific TCR as a model, we designed a general leucine zipper (LZ) dimerization strategy for soluble TCR preparation using the Escherichia coli expression system. We report details of TCR construction, inclusion body expression and purification, and protein refolding and purification. Measurements of binding affinity between the TCR and its specific pMHC using surface plasmon resonance (SPR) verify its activity. We conclude that this is a feasible approach to produce challenging TCRs in soluble form, needed for studies related to T cell recognition.
Collapse
Affiliation(s)
- Angela Zhang
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; (A.Z.); (A.P.-T.)
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Alicja Piechocka-Trocha
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; (A.Z.); (A.P.-T.)
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Xiaolong Li
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; (A.Z.); (A.P.-T.)
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Correspondence: (X.L.); (B.D.W.)
| | - Bruce D. Walker
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; (A.Z.); (A.P.-T.)
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Institute for Medical Engineering and Science (IMES) and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Correspondence: (X.L.); (B.D.W.)
| |
Collapse
|
6
|
Ch'ng ACW, Lam P, Alassiri M, Lim TS. Application of phage display for T-cell receptor discovery. Biotechnol Adv 2021; 54:107870. [PMID: 34801662 DOI: 10.1016/j.biotechadv.2021.107870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/23/2021] [Accepted: 11/15/2021] [Indexed: 12/13/2022]
Abstract
The immune system is tasked to keep our body unharmed and healthy. In the immune system, B- and T-lymphocytes are the two main components working together to stop and eliminate invading threats like virus particles, bacteria, fungi and parasite from attacking our healthy cells. The function of antibodies is relatively more direct in target recognition as compared to T-cell receptors (TCR) which recognizes antigenic peptides being presented on the major histocompatibility complex (MHC). Although phage display has been widely applied for antibody presentation, this is the opposite in the case of TCR. The cell surface TCR is a relatively large and complex molecule, making presentation on phage surfaces challenging. Even so, recombinant versions and modifications have been introduced to allow the growing development of TCR in phage display. In addition, the increasing application of TCR for immunotherapy has made it an important binding motif to be developed by phage display. This review will emphasize on the application of phage display for TCR discovery as well as the engineering aspect of TCR for improved characteristics.
Collapse
Affiliation(s)
- Angela Chiew Wen Ch'ng
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Paula Lam
- CellVec Private Limited, 118518, Singapore; National University of Singapore, Department of Physiology, 117597, Singapore; Duke-NUS Graduate Medical School, Cancer and Stem Cells Biology Program, 169857, Singapore
| | - Mohammed Alassiri
- Department of Basic Sciences, College of Science and Health Professions, King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Riyadh, Saudi Arabia; King Abdullah International Medical Research Center (KAIMRC), Riyadh, Saudi Arabia
| | - Theam Soon Lim
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Penang, Malaysia; Analytical Biochemistry Research Centre, Universiti Sains Malaysia, 11800 Penang, Malaysia.
| |
Collapse
|
7
|
Tasker C, Patel J, Jawa V, Maamary J. Competition-Based Cell Assay Employing Soluble T Cell Receptors to Assess MHC Class II Antigen Processing and Presentation. AAPS JOURNAL 2021; 23:26. [PMID: 33459871 PMCID: PMC7812987 DOI: 10.1208/s12248-020-00553-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/22/2020] [Indexed: 12/15/2022]
Abstract
Accurate assessment of antigen-specific immune responses is critical in the development of safe and efficacious biotherapeutics and vaccines. Endosomal processing of a protein antigen followed by presentation on major histocompatibility complex (MHC) class II constitute necessary steps in the induction of CD4+ T cell immune responses. Current preclinical methods for assessing immunogenicity risk consist of in vitro cell-based assays and computational prediction tools. Cell-based assays are time and labor-intensive while in silico methodologies have limitations. Here, we propose a novel cell-based assay capable of investigating an antigen's endosomal processing and MHC class II presentation capabilities. This novel assay relies on competition between epitopes for MHC class II binding and employs labeled soluble T cell receptors (sTCRs) as detectors of epitope presentation.
Collapse
Affiliation(s)
- Carley Tasker
- Predictive and Clinical Immunogenicity, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Jenny Patel
- Predictive and Clinical Immunogenicity, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Vibha Jawa
- Predictive and Clinical Immunogenicity, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Jad Maamary
- Predictive and Clinical Immunogenicity, Merck & Co., Inc., Kenilworth, New Jersey, USA.
| |
Collapse
|
8
|
Jawa V, Terry F, Gokemeijer J, Mitra-Kaushik S, Roberts BJ, Tourdot S, De Groot AS. T-Cell Dependent Immunogenicity of Protein Therapeutics Pre-clinical Assessment and Mitigation-Updated Consensus and Review 2020. Front Immunol 2020; 11:1301. [PMID: 32695107 PMCID: PMC7338774 DOI: 10.3389/fimmu.2020.01301] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 05/22/2020] [Indexed: 01/01/2023] Open
Abstract
Immune responses to protein and peptide drugs can alter or reduce their efficacy and may be associated with adverse effects. While anti-drug antibodies (ADA) are a standard clinical measure of protein therapeutic immunogenicity, T cell epitopes in the primary sequences of these drugs are the key drivers or modulators of ADA response, depending on the type of T cell response that is stimulated (e.g., T helper or Regulatory T cells, respectively). In a previous publication on T cell-dependent immunogenicity of biotherapeutics, we addressed mitigation efforts such as identifying and reducing the presence of T cell epitopes or T cell response to protein therapeutics prior to further development of the protein therapeutic for clinical use. Over the past 5 years, greater insight into the role of regulatory T cell epitopes and the conservation of T cell epitopes with self (beyond germline) has improved the preclinical assessment of immunogenic potential. In addition, impurities contained in therapeutic drug formulations such as host cell proteins have also attracted attention and become the focus of novel risk assessment methods. Target effects have come into focus, given the emergence of protein and peptide drugs that target immune receptors in immuno-oncology applications. Lastly, new modalities are entering the clinic, leading to the need to revise certain aspects of the preclinical immunogenicity assessment pathway. In addition to drugs that have multiple antibody-derived domains or non-antibody scaffolds, therapeutic drugs may now be introduced via viral vectors, cell-based constructs, or nucleic acid based therapeutics that may, in addition to delivering drug, also prime the immune system, driving immune response to the delivery vehicle as well as the encoded therapeutic, adding to the complexity of assessing immunogenicity risk. While it is challenging to keep pace with emerging methods for the preclinical assessment of protein therapeutics and new biologic therapeutic modalities, this collective compendium provides a guide to current best practices and new concepts in the field.
Collapse
Affiliation(s)
- Vibha Jawa
- Predictive and Clinical Immunogenicity, PPDM, Merck & Co., Kenilworth, NJ, United States
| | | | - Jochem Gokemeijer
- Discovery Biotherapeutics, Bristol-Myers Squibb, Cambridge, MA, United States
| | | | | | - Sophie Tourdot
- BioMedicine Design, Pfizer Inc., Andover, MA, United States
| | - Anne S De Groot
- EpiVax, Inc., Providence, RI, United States.,Center for Vaccines and Immunology, University of Georgia, Athens, GA, United States
| |
Collapse
|
9
|
Wong J, Layton D, Wheatley AK, Kent SJ. Improving immunological insights into the ferret model of human viral infectious disease. Influenza Other Respir Viruses 2019; 13:535-546. [PMID: 31583825 PMCID: PMC6800307 DOI: 10.1111/irv.12687] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/18/2019] [Accepted: 09/20/2019] [Indexed: 12/14/2022] Open
Abstract
Ferrets are a well-established model for studying both the pathogenesis and transmission of human respiratory viruses and evaluation of antiviral vaccines. Advanced immunological studies would add substantial value to the ferret models of disease but are hindered by the low number of ferret-reactive reagents available for flow cytometry and immunohistochemistry. Nevertheless, progress has been made to understand immune responses in the ferret model with a limited set of ferret-specific reagents and assays. This review examines current immunological insights gained from the ferret model across relevant human respiratory diseases, with a focus on influenza viruses. We highlight key knowledge gaps that need to be bridged to advance the utility of ferrets for immunological studies.
Collapse
Affiliation(s)
- Julius Wong
- Department of Microbiology and ImmunologyPeter Doherty Institute for Infection and ImmunityUniversity of MelbourneMelbourneVic.Australia
| | - Daniel Layton
- CSIRO Health and BiosecurityAustralian Animal Health LaboratoriesGeelongVic.Australia
| | - Adam K. Wheatley
- Department of Microbiology and ImmunologyPeter Doherty Institute for Infection and ImmunityUniversity of MelbourneMelbourneVic.Australia
| | - Stephen J. Kent
- Department of Microbiology and ImmunologyPeter Doherty Institute for Infection and ImmunityUniversity of MelbourneMelbourneVic.Australia
- Melbourne Sexual Health Centre and Department of Infectious DiseasesAlfred Hospital and Central Clinical SchoolMonash UniversityMelbourneVic.Australia
- ARC Centre for Excellence in Convergent Bio‐Nano Science and TechnologyUniversity of MelbourneParkvilleVic.Australia
| |
Collapse
|
10
|
Sádio F, Stadlmayr G, Stadlbauer K, Gräf M, Scharrer A, Rüker F, Wozniak-Knopp G. Stabilization of soluble high-affinity T-cell receptor with de novo disulfide bonds. FEBS Lett 2019; 594:477-490. [PMID: 31552676 PMCID: PMC7027902 DOI: 10.1002/1873-3468.13616] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 09/04/2019] [Accepted: 09/17/2019] [Indexed: 12/12/2022]
Abstract
Soluble T‐cell receptors (TCRs) have recently gained visibility as target‐recognition units of anticancer immunotherapeutic agents. Here, we improved the thermal stability of the well‐expressed high‐affinity A6 TCR by introducing pairs of cysteines in the invariable parts of the α‐ and β‐chain. A mutant with a novel intradomain disulfide bond in each chain also tested superior to the wild‐type in the accelerated stability assay. Binding of the mutant to the soluble cognate peptide (cp)–MHC and to the peptide‐loaded T2 cell line was equal to the wild‐type A6 TCR. The same stabilization motif worked efficiently in TCRs with different specificities, such as DMF5 and 1G4. Altogether, the biophysical properties of the soluble TCR molecule could be improved, without affecting its expression level and antigen‐binding specificity.
Collapse
Affiliation(s)
- Flávio Sádio
- Christian Doppler Laboratory for Innovative Immunotherapeutics, Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| | - Gerhard Stadlmayr
- Christian Doppler Laboratory for Innovative Immunotherapeutics, Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| | - Katharina Stadlbauer
- Christian Doppler Laboratory for Innovative Immunotherapeutics, Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| | - Maximilian Gräf
- Christian Doppler Laboratory for Innovative Immunotherapeutics, Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| | - Agnes Scharrer
- Christian Doppler Laboratory for Innovative Immunotherapeutics, Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| | - Florian Rüker
- Christian Doppler Laboratory for Innovative Immunotherapeutics, Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| | - Gordana Wozniak-Knopp
- Christian Doppler Laboratory for Innovative Immunotherapeutics, Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| |
Collapse
|
11
|
Wagner EK, Qerqez AN, Stevens CA, Nguyen AW, Delidakis G, Maynard JA. Human cytomegalovirus-specific T-cell receptor engineered for high affinity and soluble expression using mammalian cell display. J Biol Chem 2019; 294:5790-5804. [PMID: 30796163 PMCID: PMC6463697 DOI: 10.1074/jbc.ra118.007187] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 02/07/2019] [Indexed: 01/01/2023] Open
Abstract
T-cell receptors (TCR) have considerable potential as therapeutics and antibody-like reagents to monitor disease progression and vaccine efficacy. Whereas antibodies recognize only secreted and surface-bound proteins, TCRs recognize otherwise inaccessible disease-associated intracellular proteins when they are presented as processed peptides bound to major histocompatibility complexes (pMHC). TCRs have been primarily explored for cancer therapy applications but could also target infectious diseases such as cytomegalovirus (CMV). However, TCRs are more difficult to express and engineer than antibodies, and advanced methods are needed to enable their widespread use. Here, we engineered the human CMV-specific TCR RA14 for high-affinity and robust soluble expression. To achieve this, we adapted our previously reported mammalian display system to present TCR extracellular domains and used this to screen CDR3 libraries for clones with increased pMHC affinity. After three rounds of selection, characterized clones retained peptide specificity and activation when expressed on the surface of human Jurkat T cells. We obtained high yields of soluble, monomeric protein by fusing the TCR extracellular domains to antibody hinge and Fc constant regions, adding a stabilizing disulfide bond between the constant domains and disrupting predicted glycosylation sites. One variant exhibited 50 nm affinity for its cognate pMHC, as measured by surface plasmon resonance, and specifically stained cells presenting this pMHC. Our work has identified a human TCR with high affinity for the immunodominant CMV peptide and offers a new strategy to rapidly engineer soluble TCRs for biomedical applications.
Collapse
Affiliation(s)
- Ellen K Wagner
- From the McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712
| | - Ahlam N Qerqez
- From the McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712
| | - Christopher A Stevens
- From the McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712
| | - Annalee W Nguyen
- From the McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712
| | - George Delidakis
- From the McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712
| | - Jennifer A Maynard
- From the McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712.
| |
Collapse
|
12
|
Mensali N, Grenov A, Pati NB, Dillard P, Myhre MR, Gaudernack G, Kvalheim G, Inderberg EM, Bakke O, Wälchli S. Antigen-delivery through invariant chain (CD74) boosts CD8 and CD4 T cell immunity. Oncoimmunology 2019; 8:1558663. [PMID: 30723591 PMCID: PMC6350688 DOI: 10.1080/2162402x.2018.1558663] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 11/08/2018] [Accepted: 12/03/2018] [Indexed: 12/19/2022] Open
Abstract
Eradication of tumors by the immune system relies on the efficient activation of a T-cell response. For many years, the main focus of cancer immunotherapy has been on cytotoxic CD8 T-cell. However, stimulation of CD4 helper T cells is critical for the promotion and maintenance of immune memory, thus a good vaccine should evoke a two-dimensional T-cell response. The invariant chain (Ii) is required for the MHC class II heterodimer to be correctly guided through the cell, loaded with peptide, and expressed on the surface of antigen presenting cells (APC). We previously showed that by replacing the Ii CLIP peptide by an MHC-I cancer peptide, we could efficiently load MHC-I. This prompted us to test whether longer cancer peptides could be loaded on both MHC classes and whether such peptides could be accommodated in the CLIP region of Ii. We here present data showing that expanding the CLIP replacement size leads to T-cell activation. We demonstrate by using long peptides that APCs can present peptides from the same Ii molecule on both MHC-I and -II. In addition, we present evidence that antigen presentation after Ii-loading was superior to an ER-targeted minigene construct, suggesting that ER-localization was not sufficient to obtain efficient MHC-II loading. Finally, we verified that Ii-expressing dendritic cells could prime CD4+ and CD8+ T cells from a naïve population. Taken together our study demonstrates that CLIP peptide replaced Ii constructs fulfill some of the major requirements for an efficient vector for cancer vaccination.
Collapse
Affiliation(s)
- Nadia Mensali
- Department of Cellular Therapy, Department of Oncology, Oslo University Hospital-Radiumhospitalet, Oslo, Norway.,Department of Molecular Biosciences, University of Oslo, Oslo, Norway
| | - Amalie Grenov
- Department of Molecular Biosciences, University of Oslo, Oslo, Norway.,Centre for Immune Regulation, University of Oslo, Oslo, Norway
| | - Niladri Bhusan Pati
- Department of Molecular Biosciences, University of Oslo, Oslo, Norway.,Centre for Immune Regulation, University of Oslo, Oslo, Norway
| | - Pierre Dillard
- Department of Cellular Therapy, Department of Oncology, Oslo University Hospital-Radiumhospitalet, Oslo, Norway
| | - Marit Renée Myhre
- Department of Cellular Therapy, Department of Oncology, Oslo University Hospital-Radiumhospitalet, Oslo, Norway
| | - Gustav Gaudernack
- Department of Cancer Immunology, Institute for cancer Research, Oslo University Hospital-Radiumhospitalet, Oslo, Norway
| | - Gunnar Kvalheim
- Department of Cellular Therapy, Department of Oncology, Oslo University Hospital-Radiumhospitalet, Oslo, Norway
| | - Else Marit Inderberg
- Department of Cellular Therapy, Department of Oncology, Oslo University Hospital-Radiumhospitalet, Oslo, Norway
| | - Oddmund Bakke
- Department of Molecular Biosciences, University of Oslo, Oslo, Norway.,Centre for Immune Regulation, University of Oslo, Oslo, Norway
| | - Sébastien Wälchli
- Department of Cellular Therapy, Department of Oncology, Oslo University Hospital-Radiumhospitalet, Oslo, Norway
| |
Collapse
|
13
|
Riley TP, Baker BM. The intersection of affinity and specificity in the development and optimization of T cell receptor based therapeutics. Semin Cell Dev Biol 2018; 84:30-41. [DOI: 10.1016/j.semcdb.2017.10.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 10/07/2017] [Accepted: 10/17/2017] [Indexed: 12/29/2022]
|
14
|
Jensen SM, Potts GK, Ready DB, Patterson MJ. Specific MHC-I Peptides Are Induced Using PROTACs. Front Immunol 2018; 9:2697. [PMID: 30524438 PMCID: PMC6262898 DOI: 10.3389/fimmu.2018.02697] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 11/01/2018] [Indexed: 01/10/2023] Open
Abstract
Peptides presented by the class-I major histocompatibility complex (MHC-I) are important targets for immunotherapy. The identification of these peptide targets greatly facilitates the generation of T-cell-based therapeutics. Herein, we report the capability of proteolysis targeting chimera (PROTAC) compounds to induce the presentation of specific MHC class-I peptides derived from endogenous cellular proteins. Using LC-MS/MS, we identified several BET-derived MHC-I peptides induced by treatment with three BET-directed PROTAC compounds. To understand our ability to tune this process, we measured the relative rate of presentation of these peptides under varying treatment conditions using label-free mass spectrometry quantification. We found that the rate of peptide presentation reflected the rate of protein degradation, indicating a direct relationship between PROTAC treatment and peptide presentation. We additionally analyzed the effect of PROTAC treatment on the entire immunopeptidome and found many new peptides that were displayed in a PROTAC-specific fashion: we determined that these identifications map to the BET pathway, as well as, potential off-target or unique-to-PROTAC pathways. This work represents the first evidence of the use of PROTAC compounds to induce the presentation of MHC-I peptides from endogenous cellular proteins, highlighting the capability of PROTAC compounds for the discovery and generation of new targets for immunotherapy.
Collapse
Affiliation(s)
- Stephanie M Jensen
- Discovery Chemistry and Technology, AbbVie North Chicago, IL, United States
| | - Gregory K Potts
- Discovery Chemistry and Technology, AbbVie North Chicago, IL, United States
| | - Damien B Ready
- Discovery Chemistry and Technology, AbbVie North Chicago, IL, United States
| | | |
Collapse
|
15
|
Ohta R, Demachi-Okamura A, Akatsuka Y, Fujiwara H, Kuzushima K. Improving TCR affinity on 293T cells. J Immunol Methods 2018; 466:1-8. [PMID: 30468736 DOI: 10.1016/j.jim.2018.11.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/16/2018] [Accepted: 11/19/2018] [Indexed: 12/17/2022]
Abstract
This study presents an efficient method to improve TCR affinity, comprising 1) CDR-directed saturation mutation of TCR cDNA, 2) transient TCR display on CD3-expressing HEK293T (CD3-293T) cells by simple plasmid transfection, 3) staining with HLA-tetramers, and 4) multi-round sorting of cells with CD8-independent tetramer binding on a flow cytometer. Using these procedures, we successfully identified mutant TCRs with enhanced binding from an HLA-A*24:02-restricted, human telomerase reverse transcriptase (hTERT)-specific TCR. Two such clones, 2A7A and 2D162, harboring mutations in CDR1 and CDR2 of TCRβ, respectively, were isolated with both showing sequential four amino acid substitutions. When expressed on CD3-293T cells along with wild-type TCRα, the TCR molecules of these mutants as well as their combinatory mutation, bound to HLA-A24/hTERT-tetramers more strongly than the wild-type TCRs, without binding to control tetramers. Besides, in order to facilitate a functional study of TCR, we established an artificial T cell line, designated as CD8I-J2, which expresses a human CD8 and IFN-γ producing cassette by modifying Jurkat-derived J.RT3-T3.5 cells. CD8I-J2 cells expressing wild-type or affinity-enhanced hTERT-specific TCRs were analyzed for their recognition of serially diluted cognate peptide on HLA-A*24:02-transduced T2 cells. CD8I-J2 cells expressing each mutant TCR recognized the hTERT peptide at lower concentrations than wild-type TCR. The hierarchy of peptide recognition is concordant with tetramer binding on CD3-293T cells and none of these mutant TCRs were cross-reactive with irrelevant peptides reported to be present on HLA-A*24:02 molecules as far as tested. These methods might thus be useful for obtaining high affinity mutants from other TCRs of interest.
Collapse
Affiliation(s)
- Rieko Ohta
- Division of Immune Response, Aichi, Cancer Center Research Institute, Nagoya 464-8681, Japan
| | - Ayako Demachi-Okamura
- Division of Immune Response, Aichi, Cancer Center Research Institute, Nagoya 464-8681, Japan
| | - Yoshiki Akatsuka
- Division of Immune Response, Aichi, Cancer Center Research Institute, Nagoya 464-8681, Japan; Department of Hematology, Fujita Health University, Aichi 470-1192, Japan
| | - Hiroshi Fujiwara
- Department of Hematology, Clinical Immunology and Infectious Disease, Ehime University Graduate School of Medicine, Ehime, 791-0295, Japan
| | - Kiyotaka Kuzushima
- Division of Immune Response, Aichi, Cancer Center Research Institute, Nagoya 464-8681, Japan; Division of Cellular Oncology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan.
| |
Collapse
|
16
|
Inderberg EM, Mensali N, Oksvold MP, Fallang LE, Fåne A, Skorstad G, Stenvik GE, Progida C, Bakke O, Kvalheim G, Myklebust JH, Wälchli S. Human c-SRC kinase (CSK) overexpression makes T cells dummy. Cancer Immunol Immunother 2018; 67:525-536. [PMID: 29248956 PMCID: PMC11028372 DOI: 10.1007/s00262-017-2105-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 12/09/2017] [Indexed: 12/26/2022]
Abstract
Adoptive cell therapy with T-cell receptor (TCR)-engineered T cells represents a powerful method to redirect the immune system against tumours. However, although TCR recognition is restricted to a specific peptide-MHC (pMHC) complex, increasing numbers of reports have shown cross-reactivity and off-target effects with severe consequences for the patients. This demands further development of strategies to validate TCR safety prior to clinical use. We reasoned that the desired TCR signalling depends on correct pMHC recognition on the outside and a restricted clustering on the inside of the cell. Since the majority of the adverse events are due to TCR recognition of the wrong target, we tested if blocking the signalling would affect the binding. By over-expressing the c-SRC kinase (CSK), a negative regulator of LCK, in redirected T cells, we showed that peripheral blood T cells inhibited anti-CD3/anti-CD28-induced phosphorylation of ERK, whereas TCR proximal signalling was not affected. Similarly, overexpression of CSK together with a therapeutic TCR prevented pMHC-induced ERK phosphorylation. Downstream effector functions were also almost completely blocked, including pMHC-induced IL-2 release, degranulation and, most importantly, target cell killing. The lack of effector functions contrasted with the unaffected TCR expression, pMHC recognition, and membrane exchange activity (trogocytosis). Therefore, co-expression of CSK with a therapeutic TCR did not compromise target recognition and binding, but rendered T cells incapable of executing their effector functions. Consequently, we named these redirected T cells "dummy T cells" and propose to use them for safety validation of new TCRs prior to therapy.
Collapse
Affiliation(s)
- Else Marit Inderberg
- Section for Cellular Therapy, Department for Cancer Treatment, Oslo University Hospital-Radiumhospitalet, PO Box 4953, Nydalen, 0424, Oslo, Norway
| | - Nadia Mensali
- Section for Cellular Therapy, Department for Cancer Treatment, Oslo University Hospital-Radiumhospitalet, PO Box 4953, Nydalen, 0424, Oslo, Norway
- Department of Biosciences, University of Oslo, Oslo, Norway
- Centre for Immune Regulation, University of Oslo, Oslo, Norway
| | - Morten P Oksvold
- Section for Cancer Immunology, Institute for Cancer Research, Oslo University Hospital-Radiumhospitalet, Oslo, Norway
- Centre for Cancer Biomedicine, University of Oslo, Oslo, Norway
| | | | - Anne Fåne
- Section for Cellular Therapy, Department for Cancer Treatment, Oslo University Hospital-Radiumhospitalet, PO Box 4953, Nydalen, 0424, Oslo, Norway
| | - Gjertrud Skorstad
- Section for Cellular Therapy, Department for Cancer Treatment, Oslo University Hospital-Radiumhospitalet, PO Box 4953, Nydalen, 0424, Oslo, Norway
| | | | - Cinzia Progida
- Department of Biosciences, University of Oslo, Oslo, Norway
- Centre for Immune Regulation, University of Oslo, Oslo, Norway
| | - Oddmund Bakke
- Department of Biosciences, University of Oslo, Oslo, Norway
- Centre for Immune Regulation, University of Oslo, Oslo, Norway
| | - Gunnar Kvalheim
- Section for Cellular Therapy, Department for Cancer Treatment, Oslo University Hospital-Radiumhospitalet, PO Box 4953, Nydalen, 0424, Oslo, Norway
| | - June H Myklebust
- Section for Cancer Immunology, Institute for Cancer Research, Oslo University Hospital-Radiumhospitalet, Oslo, Norway
- Centre for Cancer Biomedicine, University of Oslo, Oslo, Norway
| | - Sébastien Wälchli
- Section for Cellular Therapy, Department for Cancer Treatment, Oslo University Hospital-Radiumhospitalet, PO Box 4953, Nydalen, 0424, Oslo, Norway.
- Section for Cancer Immunology, Institute for Cancer Research, Oslo University Hospital-Radiumhospitalet, Oslo, Norway.
- Centre for Cancer Biomedicine, University of Oslo, Oslo, Norway.
| |
Collapse
|
17
|
Abstract
Effector T cells equipped with engineered antigen receptors specific for cancer targets have proven to be very efficient. Two methods have emerged: the Chimeric Antigen Receptors (CARs) and T-cell Receptor (TCR) redirection. Although very potent, CAR recognition is limited to membrane antigens which represent around 1% of the total proteins expressed, whereas TCRs have the advantage of targeting any peptide resulting from cellular protein degradation. However, TCRs depend on heavy signalling machinery only present in T cells which restricts the type of eligible therapeutic cells. Hence, an introduced therapeutic TCR will compete with the endogenous TCR for the signalling proteins and carries the potential risk of mixed dimer formation giving rise to a new TCR with unpredictable specificity. We have fused a soluble TCR construct to a CAR-signalling tail and named the final product TCR-CAR. We here show that, if expressed, the TCR-CAR conserved the specificity and the functionality of the original TCR. In addition, we demonstrate that TCR-CAR redirection was not restricted to T cells. Indeed, after transduction, the NK cell line NK-92 became TCR positive and reacted against pMHC target. This opens therapeutic avenues combing the killing efficiency of NK cells with the diversified target recognition of TCRs.
Collapse
|
18
|
Mensali N, Ying F, Sheng VOY, Yang W, Walseng E, Kumari S, Fallang LE, Kolstad A, Uckert W, Malmberg KJ, Wälchli S, Olweus J. Targeting B-cell neoplasia with T-cell receptors recognizing a CD20-derived peptide on patient-specific HLA. Oncoimmunology 2016; 5:e1138199. [PMID: 27467957 DOI: 10.1080/2162402x.2016.1138199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 12/28/2015] [Accepted: 12/30/2015] [Indexed: 12/22/2022] Open
Abstract
T cells engineered to express chimeric antigen receptors (CARs) targeted to CD19 are effective in treatment of B-lymphoid malignancies. However, CARs recognize all CD19 positive (pos) cells, and durable responses are linked to profound depletion of normal B cells. Here, we designed a strategy to specifically target patient B cells by utilizing the fact that T-cell receptors (TCRs), in contrast to CARs, are restricted by HLA. Two TCRs recognizing a peptide from CD20 (SLFLGILSV) in the context of foreign HLA-A*02:01 (CD20p/HLA-A2) were expressed as 2A-bicistronic constructs. T cells re-directed with the A23 and A94 TCR constructs efficiently recognized malignant HLA-A2(pos) B cells endogenously expressing CD20, including patient-derived follicular lymphoma and chronic lymphocytic leukemia (CLL) cells. In contrast, a wide range of HLA-A2(pos)CD20(neg) cells representing different tissue origins, and HLA-A2(neg)CD20(pos) cells, were not recognized. Cytotoxic T cells re-directed with CD20p/HLA-A2-specific TCRs or CD19 CARs responded with similar potencies to cells endogenously expressing comparable levels of CD20 and CD19. The CD20p/HLA-A2-specific TCRs recognized CD20p bound to HLA-A2 with high functional avidity. The results show that T cells expressing CD20p/HLA-A2-specific TCRs efficiently and specifically target B cells. When used in context of an HLA-haploidentical allogeneic stem cell transplantation where the donor is HLA-A2(neg) and the patient HLA-A2(pos), these T cells would selectively kill patient-derived B cells and allow reconstitution of the B-cell compartment with HLA-A2(neg) donor cells. These results should pave the way for clinical testing of T cells genetically engineered to target malignant B cells without permanent depletion of normal B cells.
Collapse
Affiliation(s)
- Nadia Mensali
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway; K.G Jebsen Center for Cancer Immunotherapy, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Fan Ying
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway; K.G Jebsen Center for Cancer Immunotherapy, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Vincent Oei Yi Sheng
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway; K.G Jebsen Center for Cancer Immunotherapy, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Weiwen Yang
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway; K.G Jebsen Center for Cancer Immunotherapy, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Even Walseng
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet , Oslo, Norway
| | - Shraddha Kumari
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway; K.G Jebsen Center for Cancer Immunotherapy, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Lars-Egil Fallang
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet , Oslo, Norway
| | - Arne Kolstad
- K.G Jebsen Center for Cancer Immunotherapy, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Oncology, Oslo University Hospital Radiumhospitalet, Oslo, Norway
| | - Wolfgang Uckert
- Max Delbrück Center for Molecular Medicine and Institute of Biology, Humboldt University , Berlin, Germany
| | - Karl Johan Malmberg
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway; K.G Jebsen Center for Cancer Immunotherapy, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Sébastien Wälchli
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway; Department of Cell Therapy, Oslo University Hospital, Radiumhospitalet, Oslo, Norway
| | - Johanna Olweus
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway; K.G Jebsen Center for Cancer Immunotherapy, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
19
|
Purcell AW, Croft NP, Tscharke DC. Immunology by numbers: quantitation of antigen presentation completes the quantitative milieu of systems immunology! Curr Opin Immunol 2016; 40:88-95. [PMID: 27060633 DOI: 10.1016/j.coi.2016.03.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 03/15/2016] [Accepted: 03/20/2016] [Indexed: 10/22/2022]
Abstract
We review approaches to quantitate antigen presentation using a variety of biological and biochemical readouts and highlight the emerging role of mass spectrometry (MS) in defining and quantifying MHC-bound peptides presented at the cell surface. The combination of high mass accuracy in the determination of the molecular weight of the intact peptide of interest and its signature pattern of fragmentation during tandem MS provide an unambiguous and definitive identification. This is in contrast to the potential receptor cross-reactivity towards closely related peptides and variable dose responsiveness seen in biological readouts. In addition, we gaze into the not too distant future where big data approaches in MS can be accommodated to quantify whole immunopeptidomes both in vitro and in vivo.
Collapse
Affiliation(s)
- Anthony W Purcell
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia.
| | - Nathan P Croft
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - David C Tscharke
- The John Curtin School of Medical Research, ANU College of Medicine, Biology & Environment, Australian National University, Acton, ACT 2601, Australia.
| |
Collapse
|