1
|
Yuen CA, Zheng M, Saint-Germain MA, Kamson DO. Meningioma: Novel Diagnostic and Therapeutic Approaches. Biomedicines 2025; 13:659. [PMID: 40149634 PMCID: PMC11940373 DOI: 10.3390/biomedicines13030659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 03/03/2025] [Accepted: 03/05/2025] [Indexed: 03/29/2025] Open
Abstract
Background/Objectives: Meningiomas are the most common intracranial tumors. Surgery and radiation therapy are the cornerstones of treatment and no standard of care therapy exists for refractory meningiomas. This manuscript aims to provide a comprehensive review of novel diagnostic and therapeutic approaches against these tumors. Methods: A search for the existing literature on systemic therapies for meningiomas was performed on PubMed and a search for presently accruing clinical trials was performed on ClinicalTrials.gov. Results: Systemic treatments, including chemotherapy, somatostatin analogs, anti-hormone therapy, and anti-angiogenic therapy, have been extensively studied with marginal success. Targeted therapies are actively being studied for the treatment of meningiomas, including focal adhesion kinase (FAK), sonic hedgehog signaling pathway, phosphoinositide-3-kinase (PI3K), and cyclin-dependent kinases (CDK) inhibitors. These driver mutations are present only in a subset of meningiomas. In stark contrast, somatostatin receptor 2 (SSTR2) is ubiquitously expressed in meningiomas and was formerly targeted with somatostatin analogs with modest success. Theranostic SSTR2-targeting via [68Ga]DOTATATE for PET imaging and β-emitting [177Lu]DOTATATE for the treatment of meningiomas are currently under active investigation. Conclusions: A nuanced approach is needed for the treatment of refractory meningiomas. Targeted therapies show promise.
Collapse
Affiliation(s)
- Carlen A. Yuen
- Chao Family Comprehensive Cancer Center, University of California, Irvine, CA 92697, USA
- Division of Neuro-Oncology, Department of Neurology, University of California, Irvine, CA 92697, USA
| | - Michelle Zheng
- Charlie Dunlop School of Biological Sciences, University of California Irvine, Irvine, CA 92697, USA
| | - Max A. Saint-Germain
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD 21231, USA
| | - David O. Kamson
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD 21231, USA
- Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| |
Collapse
|
2
|
Goto H, Shiraishi Y, Okada S. Continuing progress in radioimmunotherapy for hematologic malignancies. Blood Rev 2025; 69:101250. [PMID: 39609167 DOI: 10.1016/j.blre.2024.101250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/23/2024] [Accepted: 11/14/2024] [Indexed: 11/30/2024]
Abstract
Radioimmunotherapy (RIT) involves combining a cytotoxic radionuclide with an antibody (Ab) targeting a tumor antigen. Compared with conventional therapies, RIT improves the therapeutic efficacy of Ab and ameliorates toxicity. This comprehensive review describes the current advancements and future prospects in RIT for treating hematologic malignancies based on recent investigations. Although β-particle RITs targeting CD20 are effective with low toxicity in patients with relapsed/refractory indolent or transformed non-Hodgkin's lymphoma, these treatments have not gained popularity because of the increasing availability of new therapies. RIT using single-domain antibodies is expected to improve tumor penetrance and reduce radiation exposure to non-target organs. To enhance RIT efficacy, α-particle RIT and pretargeted radioimmunotherapy (PRIT) are currently being developed. Alpha-particle RIT demonstrates substantial antitumor activity and reduced bystander effects due to its high linear energy transfer and short particle range. PRIT may increase the tumor-to-whole body dose ratio.
Collapse
Affiliation(s)
- Hiroki Goto
- Division of Radioisotope and Tumor Pathobiology, Institute of Resource Development and Analysis, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan.
| | - Yoshioki Shiraishi
- Radioisotope Center, Institute of Resource Development and Analysis, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan.
| | - Seiji Okada
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan.
| |
Collapse
|
3
|
Esfahani SA, Ma L, Krishna S, Ma H, Raheem SJ, Shuvaev S, Rotile NJ, Weigand-Whittier J, Boice AT, Borges N, Treaba CA, Deffler C, Diyabalanage H, Humblet V, Sosnovik DE, Mahmood U, Heidari P, Shih A, Catana C, Strickland MR, Klempner SJ, Caravan P. Development of a fibrin-targeted theranostic for gastric cancer. Sci Transl Med 2024; 16:eadn7218. [PMID: 39661705 DOI: 10.1126/scitranslmed.adn7218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 08/18/2024] [Accepted: 11/20/2024] [Indexed: 12/13/2024]
Abstract
Patients with advanced gastric cancer (GCa) have limited treatment options, and alternative treatment approaches are necessary to improve their clinical outcomes. Because fibrin is abundant in gastric tumors but not in healthy tissues, we hypothesized that fibrin could be used as a high-concentration depot for a high-energy beta-emitting cytotoxic radiopharmaceutical delivered to tumor cells. We showed that fibrin is present in 64 to 75% of primary gastric tumors and 50 to 100% of metastatic gastric adenocarcinoma cores. First-in-human 64Cu-FBP8 fibrin-targeted positron emission tomography (PET) imaging in seven patients with gastric or gastroesophageal junction cancer showed high probe uptake in all target lesions with tumor-to-background (muscle) uptake ratios of 9.9 ± 6.6 in primary (n = 7) and 11.2 ± 6.6 in metastatic (n = 45) tumors. Using two mouse models of human GCa, one fibrin-high (SNU-16) and one fibrin-low (NCI-N87), we showed that PET imaging with a related fibrin-specific peptide, CM500, labeled with copper-64 (64Cu-CM500) specifically bound to and precisely quantified tumor fibrin in both models. We then labeled the fibrin-specific peptide CM600 with yttrium-90 and showed that 90Y-CM600 effectively decreased tumor growth in these mouse models. Mice carrying fibrin-high SNU-16 tumors experienced tumor growth inhibition and prolonged survival in response to either a single high dosage or fractionated lower dosage of 90Y-CM600, whereas mice carrying fibrin-low NCI-N87 tumors experienced prolonged survival in response to a fractionated lower dosage of 90Y-CM600. These results lay the foundation for a fibrin-targeted theranostic that may expand options for patients with advanced GCa.
Collapse
Affiliation(s)
- Shadi A Esfahani
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Li Ma
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Shriya Krishna
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Hua Ma
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Shvan J Raheem
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Sergey Shuvaev
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Nicholas J Rotile
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Jonah Weigand-Whittier
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Avery T Boice
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Nicholas Borges
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Constantina A Treaba
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Caitlin Deffler
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | | | | | - David E Sosnovik
- Cardiovascular Research Center, Cardiology Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - Umar Mahmood
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Pedram Heidari
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Angela Shih
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Ciprian Catana
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Matthew R Strickland
- Division of Hematology-Oncology, Mass General Cancer Center and Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Samuel J Klempner
- Division of Hematology-Oncology, Mass General Cancer Center and Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Peter Caravan
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
- Institute for Innovation in Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| |
Collapse
|
4
|
Goto H, Shiraishi Y, Okada S. Recent preclinical and clinical advances in radioimmunotherapy for non-Hodgkin's lymphoma. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:208-224. [PMID: 38464386 PMCID: PMC10918239 DOI: 10.37349/etat.2024.00213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 12/28/2023] [Indexed: 03/12/2024] Open
Abstract
Radioimmunotherapy (RIT) is a therapy that combines a radioactive nucleotide with a monoclonal antibody (mAb). RIT enhances the therapeutic effect of mAb and reduces toxicity compared with conventional treatment. The purpose of this review is to summarize the current progress of RIT for treating non-Hodgkin's lymphoma (NHL) based on recent preclinical and clinical studies. The efficacy of RIT targeting the B-lymphocyte antigen cluster of differentiation 20 (CD20) has been demonstrated in clinical trials. Two radioimmunoconjugates targeting CD20, yttrium-90 (90Y)-ibritumomab-tiuxetan (Zevalin) and iodine-131 (131I)-tositumomab (Bexxar), have been approved in the USA Food and Drug Administration (FDA) for treating relapsed/refractory indolent or transformed NHL in 2002 and 2003, respectively. Although these two radioimmunoconjugates are effective and least toxic, they have not achieved popularity due to increasing access to novel therapies and the complexity of their delivery process. RIT is constantly evolving with the identification of novel targets and novel therapeutic strategies using newer radionuclides such as alpha-particle isotopes. Alpha-particles show very short path lengths and high linear energy transfer. These characteristics provide increased tumor cell-killing activities and reduced non-specific bystander responses on normal tissue. This review also discusses reviewed pre-targeted RIT (PRIT) and immuno-positron emission tomography (PET). PRIT potentially increases the dose of radionuclide delivered to tumors while toxicities to normal tissues are limited. Immuno-PET is a molecular imaging tracer that combines the high sensitivity of PET with the specific targeting capability of mAb. Immuno-PET strategies targeting CD20 and other antigens are currently being developed. The theragnostic approach by immuno-PET will be useful in monitoring the treatment response.
Collapse
Affiliation(s)
- Hiroki Goto
- Division of Radioisotope and Tumor Pathobiology, Institute of Resource Development and Analysis, Kumamoto University, Kumamoto 860-0811, Japan
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 860-0811, Japan
| | - Yoshioki Shiraishi
- Radioisotope Center, Institute of Resource Development and Analysis, Kumamoto University, Kumamoto 860-0811, Japan
| | - Seiji Okada
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 860-0811, Japan
| |
Collapse
|
5
|
Meier JP, Zhang HJ, Freifelder R, Bhuiyan M, Selman P, Mendez M, Kankanamalage PHA, Brossard T, Pusateri A, Tsai HM, Leoni L, Penano S, Ghosh K, Broder BA, Markiewicz E, Renne A, Stadler W, Weichselbaum R, Nolen J, Kao CM, Chitneni SK, Rotsch DA, Szmulewitz RZ, Chen CT. Accelerator-Based Production of Scandium Radioisotopes for Applications in Prostate Cancer: Toward Building a Pipeline for Rapid Development of Novel Theranostics. Molecules 2023; 28:6041. [PMID: 37630292 PMCID: PMC10458970 DOI: 10.3390/molecules28166041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 08/27/2023] Open
Abstract
In the field of nuclear medicine, the β+ -emitting 43Sc and β- -emitting 47Sc are promising candidates in cancer diagnosis and targeted radionuclide therapy (TRT) due to their favorable decay schema and shared pharmacokinetics as a true theranostic pair. Additionally, scandium is a group-3 transition metal (like 177Lu) and exhibits affinity for DOTA-based chelators, which have been studied in depth, making the barrier to implementation lower for 43/47Sc than for other proposed true theranostics. Before 43/47Sc can see widespread pre-clinical evaluation, however, an accessible production methodology must be established and each isotope's radiolabeling and animal imaging capabilities studied with a widely utilized tracer. As such, a simple means of converting an 18 MeV biomedical cyclotron to support solid targets and produce 43Sc via the 42Ca(d,n)43Sc reaction has been devised, exhibiting reasonable yields. The NatTi(γ,p)47Sc reaction is also investigated along with the successful implementation of chemical separation and purification methods for 43/47Sc. The conjugation of 43/47Sc with PSMA-617 at specific activities of up to 8.94 MBq/nmol and the subsequent imaging of LNCaP-ENZaR tumor xenografts in mouse models with both 43/47Sc-PSMA-617 are also presented.
Collapse
Affiliation(s)
- Jason P. Meier
- Department of Radiology, The University of Chicago, Chicago, IL 60637, USA; (J.P.M.); (H.J.Z.); (R.F.); (M.B.); (A.P.); (S.P.); (K.G.); (B.A.B.); (A.R.); (C.-M.K.); (S.K.C.)
| | - Hannah J. Zhang
- Department of Radiology, The University of Chicago, Chicago, IL 60637, USA; (J.P.M.); (H.J.Z.); (R.F.); (M.B.); (A.P.); (S.P.); (K.G.); (B.A.B.); (A.R.); (C.-M.K.); (S.K.C.)
- Integrated Small Animal Imaging Research Resource, Office of Shared Research Facilities, The University of Chicago, Chicago, IL 60637, USA; (H.-M.T.); (L.L.); (E.M.)
| | - Richard Freifelder
- Department of Radiology, The University of Chicago, Chicago, IL 60637, USA; (J.P.M.); (H.J.Z.); (R.F.); (M.B.); (A.P.); (S.P.); (K.G.); (B.A.B.); (A.R.); (C.-M.K.); (S.K.C.)
- Cyclotron Facility, The University of Chicago, Chicago, IL 60637, USA
- UChicago/Argonne Joint Radioisotope Initiative (JRI), Chicago, IL 60637, USA; (W.S.); (R.W.); (J.N.)
| | - Mohammed Bhuiyan
- Department of Radiology, The University of Chicago, Chicago, IL 60637, USA; (J.P.M.); (H.J.Z.); (R.F.); (M.B.); (A.P.); (S.P.); (K.G.); (B.A.B.); (A.R.); (C.-M.K.); (S.K.C.)
- Cyclotron Facility, The University of Chicago, Chicago, IL 60637, USA
| | - Phillip Selman
- Department of Medicine, The University of Chicago, Chicago, IL 60637, USA; (P.S.); (M.M.)
| | - Megan Mendez
- Department of Medicine, The University of Chicago, Chicago, IL 60637, USA; (P.S.); (M.M.)
| | - Pavithra H. A. Kankanamalage
- Physics Division, Argonne National Laboratory, Lemont, IL 60439, USA; (P.H.A.K.); (T.B.)
- Collider Accelerator Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Thomas Brossard
- Physics Division, Argonne National Laboratory, Lemont, IL 60439, USA; (P.H.A.K.); (T.B.)
| | - Antonino Pusateri
- Department of Radiology, The University of Chicago, Chicago, IL 60637, USA; (J.P.M.); (H.J.Z.); (R.F.); (M.B.); (A.P.); (S.P.); (K.G.); (B.A.B.); (A.R.); (C.-M.K.); (S.K.C.)
| | - Hsiu-Ming Tsai
- Integrated Small Animal Imaging Research Resource, Office of Shared Research Facilities, The University of Chicago, Chicago, IL 60637, USA; (H.-M.T.); (L.L.); (E.M.)
| | - Lara Leoni
- Integrated Small Animal Imaging Research Resource, Office of Shared Research Facilities, The University of Chicago, Chicago, IL 60637, USA; (H.-M.T.); (L.L.); (E.M.)
| | - Sagada Penano
- Department of Radiology, The University of Chicago, Chicago, IL 60637, USA; (J.P.M.); (H.J.Z.); (R.F.); (M.B.); (A.P.); (S.P.); (K.G.); (B.A.B.); (A.R.); (C.-M.K.); (S.K.C.)
| | - Kaustab Ghosh
- Department of Radiology, The University of Chicago, Chicago, IL 60637, USA; (J.P.M.); (H.J.Z.); (R.F.); (M.B.); (A.P.); (S.P.); (K.G.); (B.A.B.); (A.R.); (C.-M.K.); (S.K.C.)
- Cyclotron Facility, The University of Chicago, Chicago, IL 60637, USA
| | - Brittany A. Broder
- Department of Radiology, The University of Chicago, Chicago, IL 60637, USA; (J.P.M.); (H.J.Z.); (R.F.); (M.B.); (A.P.); (S.P.); (K.G.); (B.A.B.); (A.R.); (C.-M.K.); (S.K.C.)
- National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Erica Markiewicz
- Integrated Small Animal Imaging Research Resource, Office of Shared Research Facilities, The University of Chicago, Chicago, IL 60637, USA; (H.-M.T.); (L.L.); (E.M.)
| | - Amy Renne
- Department of Radiology, The University of Chicago, Chicago, IL 60637, USA; (J.P.M.); (H.J.Z.); (R.F.); (M.B.); (A.P.); (S.P.); (K.G.); (B.A.B.); (A.R.); (C.-M.K.); (S.K.C.)
- Physics Division, Argonne National Laboratory, Lemont, IL 60439, USA; (P.H.A.K.); (T.B.)
| | - Walter Stadler
- UChicago/Argonne Joint Radioisotope Initiative (JRI), Chicago, IL 60637, USA; (W.S.); (R.W.); (J.N.)
- Department of Medicine, The University of Chicago, Chicago, IL 60637, USA; (P.S.); (M.M.)
| | - Ralph Weichselbaum
- UChicago/Argonne Joint Radioisotope Initiative (JRI), Chicago, IL 60637, USA; (W.S.); (R.W.); (J.N.)
- Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, IL 60637, USA
| | - Jerry Nolen
- UChicago/Argonne Joint Radioisotope Initiative (JRI), Chicago, IL 60637, USA; (W.S.); (R.W.); (J.N.)
- Physics Division, Argonne National Laboratory, Lemont, IL 60439, USA; (P.H.A.K.); (T.B.)
| | - Chien-Min Kao
- Department of Radiology, The University of Chicago, Chicago, IL 60637, USA; (J.P.M.); (H.J.Z.); (R.F.); (M.B.); (A.P.); (S.P.); (K.G.); (B.A.B.); (A.R.); (C.-M.K.); (S.K.C.)
- Integrated Small Animal Imaging Research Resource, Office of Shared Research Facilities, The University of Chicago, Chicago, IL 60637, USA; (H.-M.T.); (L.L.); (E.M.)
- UChicago/Argonne Joint Radioisotope Initiative (JRI), Chicago, IL 60637, USA; (W.S.); (R.W.); (J.N.)
| | - Satish K. Chitneni
- Department of Radiology, The University of Chicago, Chicago, IL 60637, USA; (J.P.M.); (H.J.Z.); (R.F.); (M.B.); (A.P.); (S.P.); (K.G.); (B.A.B.); (A.R.); (C.-M.K.); (S.K.C.)
| | - David A. Rotsch
- UChicago/Argonne Joint Radioisotope Initiative (JRI), Chicago, IL 60637, USA; (W.S.); (R.W.); (J.N.)
- Physics Division, Argonne National Laboratory, Lemont, IL 60439, USA; (P.H.A.K.); (T.B.)
- Medical Isotope Development Group, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Russell Z. Szmulewitz
- UChicago/Argonne Joint Radioisotope Initiative (JRI), Chicago, IL 60637, USA; (W.S.); (R.W.); (J.N.)
- Department of Medicine, The University of Chicago, Chicago, IL 60637, USA; (P.S.); (M.M.)
| | - Chin-Tu Chen
- Department of Radiology, The University of Chicago, Chicago, IL 60637, USA; (J.P.M.); (H.J.Z.); (R.F.); (M.B.); (A.P.); (S.P.); (K.G.); (B.A.B.); (A.R.); (C.-M.K.); (S.K.C.)
- Integrated Small Animal Imaging Research Resource, Office of Shared Research Facilities, The University of Chicago, Chicago, IL 60637, USA; (H.-M.T.); (L.L.); (E.M.)
- Cyclotron Facility, The University of Chicago, Chicago, IL 60637, USA
- UChicago/Argonne Joint Radioisotope Initiative (JRI), Chicago, IL 60637, USA; (W.S.); (R.W.); (J.N.)
| |
Collapse
|
6
|
Alì A, Leibowitz D, Bhatt N, Doubrovin M, Spina CS, Bates-Pappas GE, Taub RN, McKiernan JM, Mintz A, Molotkov A. Preliminary efficacy of [ 90Y]DOTA-biotin-avidin radiotherapy against non-muscle invasive bladder cancer. Eur J Nucl Med Mol Imaging 2023; 50:692-700. [PMID: 36350400 DOI: 10.1007/s00259-022-06027-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 10/18/2022] [Indexed: 11/11/2022]
Abstract
PURPOSE Bladder cancer represents 3% of all new cancer diagnoses per year. We propose intravesical radionuclide therapy using the β-emitter 90Y linked to DOTA-biotin-avidin ([90Y]DBA) to deliver short-range radiation against non-muscle invasive bladder cancer (NMIBC). MATERIAL AND METHODS Image-guided biodistribution of intravesical DBA was investigated in an animal model by radiolabeling DBA with the 68Ga and dynamic microPET imaging following intravesical infusion of [68Ga]DBA for up to 4 h and post-necropsy γ-counting of organs. The antitumor activity of [90Y]DBA was investigated using an orthotopic MB49 murine bladder cancer model. Mice were injected with luciferase-expressing MB49 cells and treated via intravesical administration with 9.2 MBq of [90Y]DBA or unlabeled DBA 3 days after the tumor implantation. Bioluminescence imaging was conducted after tumor implantation to monitor the bladder tumor growth. In addition, we investigated the effects of [90Y]DBA radiation on urothelial histology with immunohistochemistry analysis of bladder morphology. RESULTS Our results demonstrated that DBA is contained in the bladder for up to 4 h after intravesical infusion. A single dose of [90Y]DBA radiation treatment significantly reduced growth of MB49 bladder carcinoma. Attaching 90Y-DOTA-biotin to avidin prevents its re-absorption into the blood and distribution throughout the rest of the body. Furthermore, immunohistochemistry demonstrated that [90Y]DBA radiation treatment did not cause short-term damage to urothelium at day 10, which appeared similar to the normal urothelium of healthy mice. CONCLUSION Our data demonstrates the potential of intravesical [90Y]DBA as a treatment for non-muscle invasive bladder cancer.
Collapse
Affiliation(s)
- Alessandra Alì
- Department of Radiology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Dev Leibowitz
- Department of Radiology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Nikunj Bhatt
- Department of Radiology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Mikhail Doubrovin
- Department of Radiology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Catherine S Spina
- Department of Radiation Oncology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Gleneara E Bates-Pappas
- Department of Psychiatry and Behavioral Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, 10021, USA
| | - Robert N Taub
- Department of Medicine (Retired), Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - James M McKiernan
- Department of Urology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Akiva Mintz
- Department of Radiology, Columbia University Irving Medical Center, New York, NY, 10032, USA.
| | - Andrei Molotkov
- Department of Radiology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| |
Collapse
|
7
|
Li WB, Bouvier-Capely C, Saldarriaga Vargas C, Andersson M, Madas B. Heterogeneity of dose distribution in normal tissues in case of radiopharmaceutical therapy with alpha-emitting radionuclides. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2022; 61:579-596. [PMID: 36239799 PMCID: PMC9630198 DOI: 10.1007/s00411-022-01000-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 10/06/2022] [Indexed: 05/10/2023]
Abstract
Heterogeneity of dose distribution has been shown at different spatial scales in diagnostic nuclear medicine. In cancer treatment using new radiopharmaceuticals with alpha-particle emitters, it has shown an extensive degree of dose heterogeneity affecting both tumour control and toxicity of organs at risk. This review aims to provide an overview of generalized internal dosimetry in nuclear medicine and highlight the need of consideration of the dose heterogeneity within organs at risk. The current methods used for patient dosimetry in radiopharmaceutical therapy are summarized. Bio-distribution and dose heterogeneities of alpha-particle emitting pharmaceutical 223Ra (Xofigo) within bone tissues are presented as an example. In line with the strategical research agendas of the Multidisciplinary European Low Dose Initiative (MELODI) and the European Radiation Dosimetry Group (EURADOS), future research direction of pharmacokinetic modelling and dosimetry in patient radiopharmaceutical therapy are recommended.
Collapse
Affiliation(s)
- Wei Bo Li
- Helmholtz Zentrum München-German Research Center for Environmental Health (GmbH), Institute of Radiation Medicine, Neuherberg, Germany.
| | - Céline Bouvier-Capely
- Institut de Radioprotection et Sûreté Nucléaire (IRSN), PSE-SANTE/SESANE/LRSI, Fontenay-aux-Roses, France
| | - Clarita Saldarriaga Vargas
- Radiation Protection Dosimetry and Calibrations, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
- In Vivo Cellular and Molecular Imaging Laboratory, Vrije Universiteit Brussel, Brussels, Belgium
| | - Michelle Andersson
- Radiation Protection Dosimetry and Calibrations, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
- Medical Physics Department, Jules Bordet Institute, Université Libre de Bruxelles, Brussels, Belgium
| | - Balázs Madas
- Environmental Physics Department, Centre for Energy Research, Budapest, Hungary
| |
Collapse
|
8
|
Sun J, Huangfu Z, Yang J, Wang G, Hu K, Gao M, Zhong Z. Imaging-guided targeted radionuclide tumor therapy: From concept to clinical translation. Adv Drug Deliv Rev 2022; 190:114538. [PMID: 36162696 DOI: 10.1016/j.addr.2022.114538] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 09/03/2022] [Accepted: 09/11/2022] [Indexed: 01/24/2023]
Abstract
Since the first introduction of sodium iodide I-131 for use with thyroid patients almost 80 years ago, more than 50 radiopharmaceuticals have reached the markets for a wide range of diseases, especially cancers. The nuclear medicine paradigm also shifts from solely molecular imaging or radionuclide therapy to imaging-guided radionuclide therapy, which is deemed a vital component of precision cancer therapy and an emerging medical modality for personalized medicine. The imaging-guided radionuclide therapy highlights the systematic integration of targeted nuclear diagnostics and radionuclide therapeutics. Regarding this, nuclear imaging serves to "visualize" the lesions and guide the therapeutic strategy, followed by administration of a precise patient specific dose of radiotherapeutics for treatment according to the absorbed dose to different organs and tumors calculated by dosimetry tools, and finally repeated imaging to predict the prognosis. This strategy leads to significantly enhanced therapeutic efficacy, improved patient outcomes, and manageable adverse events. In this review, we provide an overview of imaging-guided targeted radionuclide therapy for different tumors such as advanced prostate cancer and neuroendocrine tumors, with a focus on development of new radioligands and their preclinical and clinical results, and further discuss about challenges and future perspectives.
Collapse
Affiliation(s)
- Juan Sun
- College of Pharmaceutical Sciences, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, People's Republic of China; Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China
| | - Zhenyuan Huangfu
- College of Pharmaceutical Sciences, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, People's Republic of China; Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China
| | - Jiangtao Yang
- College of Pharmaceutical Sciences, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, People's Republic of China; Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China
| | - Guanglin Wang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, People's Republic of China.
| | - Kuan Hu
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Sciences, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan.
| | - Mingyuan Gao
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, People's Republic of China
| | - Zhiyuan Zhong
- College of Pharmaceutical Sciences, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, People's Republic of China; Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China.
| |
Collapse
|
9
|
Cheal SM, Chung SK, Vaughn BA, Cheung NKV, Larson SM. Pretargeting: A Path Forward for Radioimmunotherapy. J Nucl Med 2022; 63:1302-1315. [PMID: 36215514 DOI: 10.2967/jnumed.121.262186] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/07/2022] [Indexed: 12/19/2022] Open
Abstract
Pretargeted radioimmunodiagnosis and radioimmunotherapy aim to efficiently combine antitumor antibodies and medicinal radioisotopes for high-contrast imaging and high-therapeutic-index (TI) tumor targeting, respectively. As opposed to conventional radioimmunoconjugates, pretargeted approaches separate the tumor-targeting step from the payload step, thereby amplifying tumor uptake while reducing normal-tissue exposure. Alongside contrast and TI, critical parameters include antibody immunogenicity and specificity, availability of radioisotopes, and ease of use in the clinic. Each of the steps can be optimized separately; as modular systems, they can find broad applications irrespective of tumor target, tumor type, or radioisotopes. Although this versatility presents enormous opportunity, pretargeting is complex and presents unique challenges for clinical translation and optimal use in patients. The purpose of this article is to provide a brief historical perspective on the origins and development of pretargeting strategies in nuclear medicine, emphasizing 2 protein delivery systems that have been extensively evaluated (i.e., biotin-streptavidin and hapten-bispecific monoclonal antibodies), as well as radiohaptens and radioisotopes. We also highlight recent innovations, including pretargeting with bioorthogonal chemistry and novel protein vectors (such as self-assembling and disassembling proteins and Affibody molecules). We caution the reader that this is by no means a comprehensive review of the past 3 decades of pretargeted radioimmunodiagnosis and pretargeted radioimmunotherapy. But we do aim to highlight major developmental milestones and to identify benchmarks for success with regard to TI and toxicity in preclinical models and clinically. We believe this approach will lead to the identification of key obstacles to clinical success, revive interest in the utility of radiotheranostics applications, and guide development of the next generation of pretargeted theranostics.
Collapse
Affiliation(s)
- Sarah M Cheal
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York;
| | - Sebastian K Chung
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Brett A Vaughn
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Nai-Kong V Cheung
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York; and
| | - Steven M Larson
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
10
|
Somatostatin Receptor Targeted PET-Imaging for Diagnosis, Radiotherapy Planning and Theranostics of Meningiomas: A Systematic Review of the Literature. Diagnostics (Basel) 2022; 12:diagnostics12071666. [PMID: 35885570 PMCID: PMC9321668 DOI: 10.3390/diagnostics12071666] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 11/21/2022] Open
Abstract
The aims of the present systematic review are to: (1) assess the diagnostic performance of somatostatin receptor (SSR)targeted positron emission tomography (PET) with different tracers and devices in patients affected by meningiomas; and (2) to evaluate the theranostic applications of peptide receptor radionuclide therapy (PRRT) in meningiomas. A systematic literature search according to PRISMA criteria was made by using two main databases. Only studies published from 2011 up to March 2022 in the English language with ≥10 enrolled patients were selected. Following our research strategy, 17 studies were included for the assessment. Fourteen studies encompassed 534 patients, harboring 733 meningiomas, submitted to SSR-targeted PET/CT (n = 10) or PET/MRI (n = 4) for de novo diagnosis, recurrence detection, or radiation therapy (RT) planning (endpoint 1), while 3 studies included 69 patients with therapy-refractory meningiomas submitted to PRRT (endpoint 2). A relevant variation in methodology was registered among diagnostic studies, since only a minority of them reported histopathology as a reference standard. PET, especially when performed through PET/MRI, resulted particularly useful for the detection of meningiomas located in the skull base (SB) or next to the falx cerebri, significantly influencing RT planning. As far as it concerns PRRT studies, stable disease was obtained in the 66.6% of the treated patients, being grade 1–2 hematological toxicity the most common side effect. Of note, the wide range of the administered activities, the various utilized radiopharmaceuticals (90Y-DOTATOC and/or 177Lu-DOTATATE), the lack of dosimetric studies hamper a clear definition of PRRT potential on meningiomas’ management.
Collapse
|
11
|
Sudo H, Tsuji AB, Sugyo A, Harada Y, Nagayama S, Katagiri T, Nakamura Y, Higashi T. FZD10-targeted α-radioimmunotherapy with 225 Ac-labeled OTSA101 achieves complete remission in a synovial sarcoma model. Cancer Sci 2021; 113:721-732. [PMID: 34935247 PMCID: PMC8819345 DOI: 10.1111/cas.15235] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/18/2021] [Accepted: 11/27/2021] [Indexed: 12/14/2022] Open
Abstract
Synovial sarcomas are rare tumors arising in adolescents and young adults. The prognosis for advanced disease is poor, with an overall survival of 12‐18 months. Frizzled homolog 10 (FZD10) is overexpressed in most synovial sarcomas, making it a promising therapeutic target. The results of a phase 1 trial of β‐radioimmunotherapy (RIT) with the 90Y‐labeled anti‐FZD10 antibody OTSA101 revealed a need for improved efficacy. The present study evaluated the potential of α‐RIT with OTSA101 labeled with the α‐emitter 225Ac. Competitive inhibition and cell binding assays showed that specific binding of 225Ac‐labeled OTSA101 to SYO‐1 synovial sarcoma cells was comparable to that of the imaging agent 111In‐labeled OTSA101. Biodistribution studies showed high uptake in SYO‐1 tumors and low uptake in normal organs, except for blood. Dosimetric studies showed that the biologically effective dose (BED) of 225Ac‐labeled OTSA101 for tumors was 7.8 Bd higher than that of 90Y‐labeled OTSA101. 90Y‐ and 225Ac‐labeled OTSA101 decreased tumor volume and prolonged survival. 225Ac‐labeled OTSA101 achieved a complete response in 60% of mice, and no recurrence was observed. 225Ac‐labeled OTSA101 induced a larger amount of necrosis and apoptosis than 90Y‐labeled OTSA101, although the cell proliferation decrease was comparable. The BED for normal organs and tissues was tolerable; no treatment‐related mortality or obvious toxicity, except for temporary body weight loss, was observed. 225Ac‐labeled OTSA101 provided a high BED for tumors and achieved a 60% complete response in the synovial sarcoma mouse model SYO‐1. RIT with 225Ac‐labeled OTSA101 is a promising therapeutic option for synovial sarcoma.
Collapse
Affiliation(s)
- Hitomi Sudo
- Department of Molecular Imaging and Theranostics, National Institutes for Quantum and Radiological Science and Technology (QST), Chiba, Japan
| | - Atsushi B Tsuji
- Department of Molecular Imaging and Theranostics, National Institutes for Quantum and Radiological Science and Technology (QST), Chiba, Japan
| | - Aya Sugyo
- Department of Molecular Imaging and Theranostics, National Institutes for Quantum and Radiological Science and Technology (QST), Chiba, Japan
| | | | - Satoshi Nagayama
- Department of Surgery, Uji Tokushukai Medical Center, Kyoto, Japan
| | - Toyomasa Katagiri
- Division of Genome Medicine, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
| | - Yusuke Nakamura
- Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Tatsuya Higashi
- Department of Molecular Imaging and Theranostics, National Institutes for Quantum and Radiological Science and Technology (QST), Chiba, Japan
| |
Collapse
|
12
|
Vinod N, Kim JH, Choi S, Lim I. Combination of 131I-trastuzumab and lanatoside C enhanced therapeutic efficacy in HER2 positive tumor model. Sci Rep 2021; 11:12871. [PMID: 34145369 PMCID: PMC8213814 DOI: 10.1038/s41598-021-92460-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 06/03/2021] [Indexed: 12/03/2022] Open
Abstract
Lanatoside C has a promising anti-tumor activity and is a potential candidate for radiosensitizers. In this study, we have investigated the therapeutic efficacy of the combination of 131I-trastuzumab and lanatoside C for inhibition of human epidermal growth factor receptor 2 (HER2) positive tumor progression in NCI-N87 xenograft model. The combination treatment (131I-trastuzumab and lanatoside C) showed highest cytotoxicity when compared to non-treated control or trastuzumab alone or 131I alone or 131I-trastuzumab alone in vitro. Biodistribution studies using 131I-trastuzumab or combination of 131I-trastuzumab and lanatoside C showed tumor uptake in BALB/c nude mice bearing HER2 positive NCI-N87 tumor xenograft model. The higher tumor uptake was observed in 131I-trastuzumab (19.40 ± 0.04% ID/g) than in the combination of 131I-trastuzumab and lanatoside C (14.02 ± 0.02% ID/g) at 24 h post-injection. Most importantly, an antitumor effect was observed in mice that received the combination of 131I-trastuzumab and lanatoside C (p = 0.009) when compared to control. In addition, mice received lanatoside C alone (p = 0.085) or 131I-trastuzumab alone (p = 0.160) did not significantly inhibit tumor progression compared with control. Taken together, our data suggest that combination of 131I-trastuzumab and lanatoside C might be a potential synergistic treatment for radioimmunotherapy to control the HER2 positive tumor.
Collapse
Affiliation(s)
- Nagarajan Vinod
- Department of Nuclear Medicine, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, (KIRAMS), Seoul, 01812, Republic of Korea
| | - Jae Hyung Kim
- Division of RI-Convergence Research, Korea Institute of Radiological and Medical Sciences, (KIRAMS), Seoul, 01812, Republic of Korea
| | - Seungbum Choi
- Division of RI-Convergence Research, Korea Institute of Radiological and Medical Sciences, (KIRAMS), Seoul, 01812, Republic of Korea
| | - Ilhan Lim
- Department of Nuclear Medicine, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, (KIRAMS), Seoul, 01812, Republic of Korea.
- Division of RI-Convergence Research, Korea Institute of Radiological and Medical Sciences, (KIRAMS), Seoul, 01812, Republic of Korea.
- Department of Radiological & Medico-Oncological Sciences, University of Science and Technology (UST), Seoul, 01812, Republic of Korea.
| |
Collapse
|
13
|
Orozco JJ, Kenoyer AL, Lin Y, O'Steen S, Guel R, Nartea ME, Hernandez AH, Hylarides MD, Fisher DR, Balkin ER, Hamlin DK, Wilbur DS, Orcutt KD, Wittrup KD, Green DJ, Gopal AK, Till BG, Sandmaier B, Press OW, Pagel JM. Therapy of Myeloid Leukemia using Novel Bispecific Fusion Proteins Targeting CD45 and 90Y-DOTA. Mol Cancer Ther 2020; 19:2575-2584. [PMID: 33082277 DOI: 10.1158/1535-7163.mct-20-0306] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 07/13/2020] [Accepted: 09/28/2020] [Indexed: 11/16/2022]
Abstract
Pretargeted radioimmunotherapy (PRIT) has been investigated as a multi-step approach to decrease relapse and toxicity for high-risk acute myeloid leukemia (AML). Relevant factors including endogenous biotin and immunogenicity, however, have limited the use of PRIT with an anti-CD45 antibody streptavidin conjugate and radiolabeled DOTA-biotin. To overcome these limitations we designed anti-murine and anti-human CD45 bispecific antibody constructs using 30F11 and BC8 antibodies, respectively, combined with an anti-yttrium (Y)-DOTA single-chain variable fragment (C825) to capture a radiolabeled ligand. The bispecific construct targeting human CD45 (BC8-Fc-C825) had high uptake in leukemia HEL xenografts [7.8 ± 0.02% percent injected dose/gram of tissue (% ID/g)]. Therapy studies showed that 70% of mice with HEL human xenografts treated with BC8-Fc-C825 followed by 44.4 MBq (1,200 μCi) of 90Y-DOTA-biotin survived at least 170 days after therapy, while all nontreated controls required euthanasia because of tumor progression by day 32. High uptake at sites of leukemia (spleen and bone marrow) was also seen with 30F11-IgG1-C825 in a syngeneic disseminated SJL murine leukemia model (spleen, 9.0 ± 1.5% ID/g and bone marrow, 8.1 ± 1.2% ID/g), with minimal uptake in all other normal organs (<0.5% ID/g) at 24 hours after 90Y-DOTA injections. SJL leukemia mice treated with the bispecific 30F11-IgG1-C825 and 29.6 MBq (800 μCi) of 90Y-DOTA-biotin had a survival advantage compared with untreated leukemic mice (median, 43 vs. 30 days, respectively; P < 0.0001). These data suggest bispecific antibody-mediated PRIT may be highly effective for leukemia therapy and translation to human studies.
Collapse
Affiliation(s)
- Johnnie J Orozco
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington. .,Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, Washington
| | - Aimee L Kenoyer
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Yukang Lin
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Shyril O'Steen
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Rosario Guel
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Margaret E Nartea
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Alexandra H Hernandez
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Mark D Hylarides
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Darrell R Fisher
- Versant Medical Physics and Radiation Dosimetry, Richland, Washington
| | - Ethan R Balkin
- Department of Radiation Oncology, University of Washington, Seattle, Washington
| | - Donald K Hamlin
- Department of Radiation Oncology, University of Washington, Seattle, Washington
| | - D Scott Wilbur
- Department of Radiation Oncology, University of Washington, Seattle, Washington
| | | | - K Dane Wittrup
- Massachusetts Institute of Technology, Boston, Massachusetts
| | - Damian J Green
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington.,Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, Washington
| | - Ajay K Gopal
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington.,Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, Washington
| | - Brian G Till
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington.,Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, Washington
| | - Brenda Sandmaier
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington.,Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, Washington
| | - Oliver W Press
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington.,Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, Washington
| | | |
Collapse
|
14
|
Ferreira CA, Ehlerding EB, Rosenkrans ZT, Jiang D, Sun T, Aluicio-Sarduy E, Engle JW, Ni D, Cai W. 86/90Y-Labeled Monoclonal Antibody Targeting Tissue Factor for Pancreatic Cancer Theranostics. Mol Pharm 2020; 17:1697-1705. [PMID: 32202792 DOI: 10.1021/acs.molpharmaceut.0c00127] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Pancreatic cancer is highly aggressive, with a median survival time of less than 6 months and a 5-year overall survival rate of around 7%. The poor prognosis of PaCa is largely due to its advanced stage at diagnosis and the lack of efficient therapeutic options. Thus, the development of an efficient, multifunctional PaCa theranostic system is urgently needed. Overexpression of tissue factor (TF) has been associated with increased tumor growth, angiogenesis, and metastasis in many malignancies, including pancreatic cancer. Herein, we propose the use of a TF-targeted monoclonal antibody (ALT836) conjugated with the pair 86/90Y as a theranostic agent against pancreatic cancer. For methods, serial PET imaging with 86Y-DTPA-ALT836 was conducted to map the biodistribution the tracer in BXPC-3 tumor-bearing mice. 90Y-DTPA-ALT836 was employed as a therapeutic agent that also allowed tumor burden monitoring through Cherenkov luminescence imaging. The results were that the uptake of 86Y-DTPA-ALT836 in BXPC-3 xenograft tumors was high and increased over time up to 48 h postinjection (p.i.), corroborated through ex vivo biodistribution studies and further confirmed by Cherenkov luminescence Imaging. In therapeutic studies, 90Y-DTPA-ALT836 was found to slow tumor growth relative to the control groups and had significantly smaller (p < 0.05) tumor volumes 1 day p.i. Histological analysis of ex vivo tissues revealed significant damage to the treated tumors. The conclusion is that the use of the 86/90Y theranostic pair allows PET imaging with excellent tumor-to-background contrast and treatment of TF-expressing pancreatic tumors with promising therapeutic outcomes.
Collapse
Affiliation(s)
- Carolina A Ferreira
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Emily B Ehlerding
- Department of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Zachary T Rosenkrans
- Department of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Dawei Jiang
- Department of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Tuanwei Sun
- Department of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Eduardo Aluicio-Sarduy
- Department of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Jonathan W Engle
- Department of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Dalong Ni
- Department of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Weibo Cai
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States.,Department of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States.,Department of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| |
Collapse
|
15
|
Therapeutic Applications of Pretargeting. Pharmaceutics 2019; 11:pharmaceutics11090434. [PMID: 31480515 PMCID: PMC6781323 DOI: 10.3390/pharmaceutics11090434] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/09/2019] [Accepted: 08/10/2019] [Indexed: 02/06/2023] Open
Abstract
Targeted therapies, such as radioimmunotherapy (RIT), present a promising treatment option for the eradication of tumor lesions. RIT has shown promising results especially for hematologic malignancies, but the therapeutic efficacy is limited by unfavorable tumor-to-background ratios resulting in high radiotoxicity. Pretargeting strategies can play an important role in addressing the high toxicity profile of RIT. Key to pretargeting is the concept of decoupling the targeting vehicle from the cytotoxic agent and administrating them separately. Studies have shown that this approach has the ability to enhance the therapeutic index as it can reduce side effects caused by off-target irradiation and thereby increase curative effects due to higher tolerated doses. Pretargeted RIT (PRIT) has been explored for imaging and treatment of different cancer types over the years. This review will give an overview of the various targeted therapies in which pretargeting has been applied, discussing PRIT with alpha- and beta-emitters and as part of combination therapy, plus its use in drug delivery systems.
Collapse
|
16
|
Siwowska K, Guzik P, Domnanich KA, Monné Rodríguez JM, Bernhardt P, Ponsard B, Hasler R, Borgna F, Schibli R, Köster U, van der Meulen NP, Müller C. Therapeutic Potential of 47Sc in Comparison to 177Lu and 90Y: Preclinical Investigations. Pharmaceutics 2019; 11:pharmaceutics11080424. [PMID: 31434360 PMCID: PMC6723926 DOI: 10.3390/pharmaceutics11080424] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 08/13/2019] [Accepted: 08/15/2019] [Indexed: 12/14/2022] Open
Abstract
Targeted radionuclide therapy with 177Lu- and 90Y-labeled radioconjugates is a clinically-established treatment modality for metastasized cancer. 47Sc is a therapeutic radionuclide that decays with a half-life of 3.35 days and emits medium-energy β−-particles. In this study, 47Sc was investigated, in combination with a DOTA-folate conjugate, and compared to the therapeutic properties of 177Lu-folate and 90Y-folate, respectively. In vitro, 47Sc-folate demonstrated effective reduction of folate receptor-positive ovarian tumor cell viability similar to 177Lu-folate, but 90Y-folate was more potent at equal activities due to the higher energy of emitted β−-particles. Comparable tumor growth inhibition was observed in mice that obtained the same estimated absorbed tumor dose (~21 Gy) when treated with 47Sc-folate (12.5 MBq), 177Lu-folate (10 MBq), and 90Y-folate (5 MBq), respectively. The treatment resulted in increased median survival of 39, 43, and 41 days, respectively, as compared to 26 days in untreated controls. There were no statistically significant differences among the therapeutic effects observed in treated groups. Histological assessment revealed no severe side effects two weeks after application of the radiofolates, even at double the activity used for therapy. Based on the decay properties and our results, 47Sc is likely to be comparable to 177Lu when employed for targeted radionuclide therapy. It may, therefore, have potential for clinical translation and be of particular interest in tandem with 44Sc or 43Sc as a diagnostic match, enabling the realization of radiotheragnostics in future.
Collapse
Affiliation(s)
- Klaudia Siwowska
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, 5232 Villigen-PSI, Switzerland
| | - Patrycja Guzik
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, 5232 Villigen-PSI, Switzerland
| | - Katharina A Domnanich
- Laboratory of Radiochemistry, Paul Scherrer Institute, 5232 Villigen-PSI, Switzerland
- Department of Chemistry and Biochemistry University of Bern, 3012 Bern, Switzerland
| | - Josep M Monné Rodríguez
- Laboratory for Animal Model Pathology (LAMP), Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland
| | - Peter Bernhardt
- Department of Radiation Physics, The Sahlgrenska Academy, University of Gothenburg, 41345 Gothenburg, Sweden
- Department of Medical Physics and Medical Bioengineering, Sahlgrenska University Hospital, 41345 Gothenburg, Sweden
| | - Bernard Ponsard
- SCK.CEN, Belgian Nuclear Research Centre, BR2 Reactor, 2400 Mol, Belgium
| | - Roger Hasler
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, 5232 Villigen-PSI, Switzerland
| | - Francesca Borgna
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, 5232 Villigen-PSI, Switzerland
| | - Roger Schibli
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, 5232 Villigen-PSI, Switzerland
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8092 Zurich, Switzerland
| | - Ulli Köster
- Institut Laue Langevin, 38042 Grenoble, France
| | - Nicholas P van der Meulen
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, 5232 Villigen-PSI, Switzerland
- Laboratory of Radiochemistry, Paul Scherrer Institute, 5232 Villigen-PSI, Switzerland
| | - Cristina Müller
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, 5232 Villigen-PSI, Switzerland.
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8092 Zurich, Switzerland.
| |
Collapse
|
17
|
Lau J, Jacobson O, Niu G, Lin KS, Bénard F, Chen X. Bench to Bedside: Albumin Binders for Improved Cancer Radioligand Therapies. Bioconjug Chem 2019; 30:487-502. [PMID: 30616340 DOI: 10.1021/acs.bioconjchem.8b00919] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Radioligand therapy (RLT) relies on the use of pharmacophores to selectively deliver ionization energy to cancers to exert its tumoricidal effects. Cancer cells that are not directly targeted by a radioconjugate remain susceptible to RLT because of the crossfire effect. This is significant given the inter- and intra-heterogeneity of tumors. In recent years, reversible albumin binders have been used as simple "add-ons" for radiopharmaceuticals to modify pharmacokinetics and to enhance therapeutic efficacy. In this Review, we discuss recent advances in albumin binder platforms used in RLT, with an emphasis on 4-( p-iodophenyl)butyric acid and Evans blue derivatives. We focus on four biological systems pertinent to oncology that utilize this class of compounds: folate receptor, integrin αvβ3, somatostatin receptor, and prostate-specific membrane antigen. Finally, we offer our perspectives on albumin binders for RLT, highlighting future areas of research that will help propel the technology further for clinical use.
Collapse
Affiliation(s)
- Joseph Lau
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB) , National Institutes of Health (NIH) , Bethesda , Maryland 20892 , United States
| | - Orit Jacobson
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB) , National Institutes of Health (NIH) , Bethesda , Maryland 20892 , United States
| | - Gang Niu
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB) , National Institutes of Health (NIH) , Bethesda , Maryland 20892 , United States
| | - Kuo-Shyan Lin
- Department of Molecular Oncology , BC Cancer , Vancouver , British Columbia V5Z 1L3 , Canada
| | - François Bénard
- Department of Molecular Oncology , BC Cancer , Vancouver , British Columbia V5Z 1L3 , Canada
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB) , National Institutes of Health (NIH) , Bethesda , Maryland 20892 , United States
| |
Collapse
|
18
|
Liu G. A Revisit to the Pretargeting Concept-A Target Conversion. Front Pharmacol 2018; 9:1476. [PMID: 30618765 PMCID: PMC6304396 DOI: 10.3389/fphar.2018.01476] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 12/03/2018] [Indexed: 01/22/2023] Open
Abstract
Pretargeting is often used as a tumor targeting strategy that provides much higher tumor to non-tumor ratios than direct-targeting using radiolabeled antibody. Due to the multiple injections, pretargeting is investigated less than direct targeting, but the high T/NT ratios have rendered it more useful for therapy. While the progress in using this strategy for tumor therapy has been regularly reviewed in the literature, this review focuses on the nature and quantitative understanding of the pretargeting concept. By doing so, it is the goal of this review to accelerate pretargeting development and translation to the clinic and to prepare the researchers who are not familiar with the pretargeting concept but are interested in applying it. The quantitative understanding is presented in a way understandable to the average researchers in the areas of drug development and clinical translation who have the basic concept of calculus and general chemistry.
Collapse
Affiliation(s)
- Guozheng Liu
- Department of Radiology, University of Massachusetts Medical School Worcester, MA, United States
| |
Collapse
|
19
|
Bokhari TH, Butt MB, Hina S, Iqbal M, Daud M, Imran M. A review on 90Y-labeled compounds and biomolecules. J Radioanal Nucl Chem 2017. [DOI: 10.1007/s10967-017-5622-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
20
|
Lamart S, Miller BW, Van der Meeren A, Tazrart A, Angulo JF, Griffiths NM. Actinide bioimaging in tissues: Comparison of emulsion and solid track autoradiography techniques with the iQID camera. PLoS One 2017; 12:e0186370. [PMID: 29023595 PMCID: PMC5638496 DOI: 10.1371/journal.pone.0186370] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 09/28/2017] [Indexed: 12/28/2022] Open
Abstract
This work presents a comparison of three autoradiography techniques for imaging biological samples contaminated with actinides: emulsion-based, plastic-based autoradiography and a quantitative digital technique, the iQID camera, based on the numerical analysis of light from a scintillator screen. In radiation toxicology it has been important to develop means of imaging actinide distribution in tissues as these radionuclides may be heterogeneously distributed within and between tissues after internal contamination. Actinide distribution determines which cells are exposed to alpha radiation and is thus potentially critical for assessing absorbed dose. The comparison was carried out by generating autoradiographs of the same biological samples contaminated with actinides with the three autoradiography techniques. These samples were cell preparations or tissue sections collected from animals contaminated with different physico-chemical forms of actinides. The autoradiograph characteristics and the performances of the techniques were evaluated and discussed mainly in terms of acquisition process, activity distribution patterns, spatial resolution and feasibility of activity quantification. The obtained autoradiographs presented similar actinide distribution at low magnification. Out of the three techniques, emulsion autoradiography is the only one to provide a highly-resolved image of the actinide distribution inherently superimposed on the biological sample. Emulsion autoradiography is hence best interpreted at higher magnifications. However, this technique is destructive for the biological sample. Both emulsion- and plastic-based autoradiography record alpha tracks and thus enabled the differentiation between ionized forms of actinides and oxide particles. This feature can help in the evaluation of decorporation therapy efficacy. The most recent technique, the iQID camera, presents several additional features: real-time imaging, separate imaging of alpha particles and gamma rays, and alpha activity quantification. The comparison of these three autoradiography techniques showed that they are complementary and the choice of the technique depends on the purpose of the imaging experiment.
Collapse
Affiliation(s)
- Stephanie Lamart
- Laboratoire de RadioToxicologie, CEA, Université Paris-Saclay, Arpajon, France
- * E-mail:
| | - Brian W. Miller
- College of Optical Sciences, The University of Arizona, Tucson, Arizona, United States of America
| | - Anne Van der Meeren
- Laboratoire de RadioToxicologie, CEA, Université Paris-Saclay, Arpajon, France
| | - Anissa Tazrart
- Laboratoire de RadioToxicologie, CEA, Université Paris-Saclay, Arpajon, France
| | - Jaime F. Angulo
- Laboratoire de RadioToxicologie, CEA, Université Paris-Saclay, Arpajon, France
| | - Nina M. Griffiths
- Laboratoire de RadioToxicologie, CEA, Université Paris-Saclay, Arpajon, France
| |
Collapse
|
21
|
Ehlerding EB, Lacognata S, Jiang D, Ferreira CA, Goel S, Hernandez R, Jeffery JJ, Theuer CP, Cai W. Targeting angiogenesis for radioimmunotherapy with a 177Lu-labeled antibody. Eur J Nucl Med Mol Imaging 2017; 45:123-131. [PMID: 28821931 DOI: 10.1007/s00259-017-3793-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 07/25/2017] [Indexed: 12/26/2022]
Abstract
PURPOSE Increased angiogenesis is a marker of aggressiveness in many cancers. Targeted radionuclide therapy of these cancers with angiogenesis-targeting agents may curtail this increased blood vessel formation and slow the growth of tumors, both primary and metastatic. CD105, or endoglin, has a primary role in angiogenesis in a number of cancers, making this a widely applicable target for targeted radioimmunotherapy. METHODS The anti-CD105 antibody, TRC105 (TRACON Pharmaceuticals), was conjugated with DTPA for radiolabeling with 177Lu (t 1/2 6.65 days). Balb/c mice were implanted with 4T1 mammary carcinoma cells, and five study groups were used: 177Lu only, TRC105 only, 177Lu-DTPA-IgG (a nonspecific antibody), 177Lu-DTPA-TRC105 low-dose, and 177Lu-DTPA-TRC105 high-dose. Toxicity of the agent was monitored by body weight measurements and analysis of blood markers. Biodistribution studies of 177Lu-DTPA-TRC105 were also performed at 1 and 7 days after injection. Ex vivo histology studies of various tissues were conducted at 1, 7, and 30 days after injection of high-dose 177Lu-DTPA-TRC105. RESULTS Biodistribution studies indicated steady uptake of 177Lu-DTPA-TRC105 in 4T1 tumors between 1 and 7 days after injection (14.3 ± 2.3%ID/g and 11.6 ± 6.1%ID/g, respectively; n = 3) and gradual clearance from other organs. Significant inhibition of tumor growth was observed in the high-dose group, with a corresponding significant increase in survival (p < 0.001, all groups). In most study groups (all except the nonspecific IgG group), the body weights of the mice did not decrease by more than 10%, indicating the safety of the injected agents. Serum alanine transaminase levels remained nearly constant indicating no damage to the liver (a primary clearance organ of the agent), and this was confirmed by ex vivo histological analyses. CONCLUSION 177Lu-DTPA-TRC105, when administered at a sufficient dose, is able to curtail tumor growth and provide a significant survival benefit without off-target toxicity. Thus, this targeted agent could be used in combination with other treatment options to slow tumor growth allowing the other agents to be more effective.
Collapse
Affiliation(s)
- Emily B Ehlerding
- Department of Medical Physics, University of Wisconsin - Madison, 1111 Highland Avenue, Madison, WI, 53705, USA
| | - Saige Lacognata
- Department of Radiology, University of Wisconsin - Madison, Madison, WI, USA
| | - Dawei Jiang
- Department of Radiology, University of Wisconsin - Madison, Madison, WI, USA
| | - Carolina A Ferreira
- Department of Biomedical Engineering, University of Wisconsin - Madison, Madison, WI, USA
| | - Shreya Goel
- Department of Materials Science and Engineering, University of Wisconsin - Madison, Madison, WI, USA
| | - Reinier Hernandez
- Department of Medical Physics, University of Wisconsin - Madison, 1111 Highland Avenue, Madison, WI, 53705, USA
| | - Justin J Jeffery
- Small Animal Imaging Facility, University of Wisconsin - Madison, Madison, WI, USA
| | | | - Weibo Cai
- Department of Medical Physics, University of Wisconsin - Madison, 1111 Highland Avenue, Madison, WI, 53705, USA. .,Department of Radiology, University of Wisconsin - Madison, Madison, WI, USA. .,Department of Biomedical Engineering, University of Wisconsin - Madison, Madison, WI, USA. .,Department of Materials Science and Engineering, University of Wisconsin - Madison, Madison, WI, USA.
| |
Collapse
|
22
|
O'Steen S, Green DJ, Gopal AK, Orozco JJ, Kenoyer AL, Lin Y, Wilbur DS, Hamlin DK, Fisher DR, Hylarides MD, Gooley TA, Waltman A, Till BG, Press OW. Venetoclax Synergizes with Radiotherapy for Treatment of B-cell Lymphomas. Cancer Res 2017; 77:3885-3893. [PMID: 28566329 DOI: 10.1158/0008-5472.can-17-0082] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 03/30/2017] [Accepted: 05/23/2017] [Indexed: 01/08/2023]
Abstract
Constitutive B-cell receptor signaling leads to overexpression of the antiapoptotic BCL-2 protein and is implicated in the pathogenesis of many types of B-cell non-Hodgkin lymphoma (B-NHL). The BCL-2 small-molecule inhibitor venetoclax shows promising clinical response rates in several lymphomas, but is not curative as monotherapy. Radiotherapy is a rational candidate for combining with BCL-2 inhibition, as DNA damage caused by radiotherapy increases the activity of pro-apoptotic BCL-2 pathway proteins, and lymphomas are exquisitely sensitive to radiation. We tested B-NHL responses to venetoclax combined with either external beam radiotherapy or radioimmunotherapy (RIT), which joins the selectivity of antibody targeting with the effectiveness of irradiation. We first tested cytotoxicity of cesium-137 irradiation plus venetoclax in 14 B-NHL cell lines representing five lymphoma subtypes. Combination treatment synergistically increased cell death in 10 of 14 lines. Lack of synergy was predicted by resistance to single-agent venetoclax and high BCL-XL expression. We then assessed the efficacy of external beam radiotherapy plus venetoclax in murine xenograft models of mantle cell (MCL), germinal-center diffuse large B-cell (GCB-DLBCL), and activated B-cell (ABC-DLBCL) lymphomas. In each model, external beam radiotherapy plus venetoclax synergistically increased mouse survival time, curing up to 10%. We finally combined venetoclax treatment of MCL and ABC-DLBCL xenografts with a pretargeted RIT (PRIT) system directed against the CD20 antigen. Optimal dosing of PRIT plus venetoclax cured 100% of mice with no detectable toxicity. Venetoclax combined with radiotherapy may be a promising treatment for a wide range of lymphomas Cancer Res; 77(14); 3885-93. ©2017 AACR.
Collapse
Affiliation(s)
- Shyril O'Steen
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington.
| | - Damian J Green
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington.,Department of Medicine, University of Washington, Seattle, Washington
| | - Ajay K Gopal
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington.,Department of Medicine, University of Washington, Seattle, Washington
| | - Johnnie J Orozco
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington.,Department of Medicine, University of Washington, Seattle, Washington
| | - Aimee L Kenoyer
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Yukang Lin
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - D Scott Wilbur
- Department of Radiation Oncology, University of Washington, Seattle, Washington
| | - Donald K Hamlin
- Department of Radiation Oncology, University of Washington, Seattle, Washington
| | | | - Mark D Hylarides
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Theodore A Gooley
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | | | - Brian G Till
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington.,Department of Medicine, University of Washington, Seattle, Washington
| | - Oliver W Press
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington.,Department of Medicine, University of Washington, Seattle, Washington.,Department of Bioengineering, University of Washington, Seattle, Washington
| |
Collapse
|
23
|
Timmermand OV, Nilsson J, Strand SE, Elgqvist J. High resolution digital autoradiographic and dosimetric analysis of heterogeneous radioactivity distribution in xenografted prostate tumors. Med Phys 2016; 43:6632. [PMID: 27908170 DOI: 10.1118/1.4967877] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
PURPOSE The first main aim of this study was to illustrate the absorbed dose rate distribution from 177Lu in sections of xenografted prostate cancer (PCa) tumors using high resolution digital autoradiography (DAR) and compare it with hypothetical identical radioactivity distributions of 90Y or 7 MeV alpha-particles. Three dosimetry models based on either dose point kernels or Monte Carlo simulations were used and evaluated. The second and overlapping aim, was to perform DAR imaging and dosimetric analysis of the distribution of radioactivity, and hence the absorbed dose rate, in tumor sections at an early time point after injection during radioimmunotherapy using 177Lu-h11B6, directed against the human kallikrein 2 antigen. METHODS Male immunodeficient BALB/c nude mice, aged 6-8 w, were inoculated by subcutaneous injection of ∼107 LNCaP cells in a 200 μl suspension of a 1:1 mixture of medium and Matrigel. The antibody h11B6 was conjugated with the chelator CHX-A″-DTPA after which conjugated h11B6 was mixed with 177LuCl3. The incubation was performed at room temperature for 2 h, after which the labeling was terminated and the solution was purified on a NAP-5 column. About 20 MBq 177Lu-h11B6 was injected intravenously in the tail vein. At approximately 10 h postinjection (hpi), the mice were sacrificed and one tumor was collected from each of the five animals and cryosectioned into 10 μm thick slices. The tumor slices were measured and imaged using the DAR MicroImager system and the M3Vision software. Then the absorbed dose rate was calculated using a dose point kernel generated with the Monte Carlo code gate v7.0. RESULTS The DAR system produced high resolution images of the radioactivity distribution, close to the resolution of single PCa cells. The DAR images revealed a pronounced heterogeneous radioactivity distribution, i.e., count rate per area, in the tumors, indicated by the normalized intensity variations along cross sections as mean ± SD: 0.15 ± 0.15, 0.20 ± 0.18, 0.12 ± 0.17, 0.15 ± 0.16, and 0.23 ± 0.22, for each tumor section, respectively. The absorbed dose rate distribution for 177Lu at the time of dissection 10 hpi showed a maximum value of 2.9 ± 0.4 Gy/h (mean ± SD), compared to 6.0 ± 0.9 and 159 ± 25 Gy/h for the hypothetical 90Y and 7 MeV alpha-particle cases assuming the same count rate densities. Mean absorbed dose rate values were 0.13, 0.53, and 6.43 Gy/h for 177Lu, 90Y, and alpha-particles, respectively. CONCLUSIONS The initial uptake of 177Lu-h11B6 produces a high absorbed dose rate, which is important for a successful therapeutic outcome. The hypothetical 90Y case indicates a less heterogeneous absorbed dose rate distribution and a higher mean absorbed dose rate compared to 177Lu, although with a potentially increased irradiation of surrounding healthy tissue. The hypothetical alpha-particle case indicates the possibility of a higher maximum absorbed dose rate, although with a more heterogeneous absorbed dose rate distribution.
Collapse
Affiliation(s)
- Oskar V Timmermand
- Faculty of Medicine, Department of Clinical Sciences Lund, Oncology and Pathology, Lund University, Lund 22185, Sweden
| | - Jenny Nilsson
- Sahlgrenska Academy, Institute of Clinical Sciences, Department Radiation Physics, University of Gothenburg, Gothenburg 41345, Sweden
| | - Sven-Erik Strand
- Faculty of Medicine, Department of Clinical Sciences Lund, Oncology and Pathology, Lund University, Lund 22185, Sweden and Faculty of Medicine, Department of Clinical Sciences Lund, Medical Radiation Physics, Lund University, Lund 22185, Sweden
| | - Jörgen Elgqvist
- Faculty of Science, Department of Physics, University of Gothenburg, Gothenburg 41296, Sweden
| |
Collapse
|
24
|
Hindié E, Zanotti-Fregonara P, Quinto MA, Morgat C, Champion C. Dose Deposits from 90Y, 177Lu, 111In, and 161Tb in Micrometastases of Various Sizes: Implications for Radiopharmaceutical Therapy. J Nucl Med 2016; 57:759-64. [PMID: 26912441 DOI: 10.2967/jnumed.115.170423] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 01/26/2016] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED Radiopharmaceutical therapy, traditionally limited to refractory metastatic cancer, is being increasingly used at earlier stages, such as for treating minimal residual disease. The aim of this study was to compare the effectiveness of (90)Y, (177)Lu, (111)In, and (161)Tb at irradiating micrometastases. (90)Y and (177)Lu are widely used β(-)-emitting radionuclides. (161)Tb is a medium-energy β(-) radionuclide that is similar to (177)Lu but emits a higher percentage of conversion and Auger electrons. (111)In emits γ-photons and conversion and Auger electrons. METHODS We used the Monte Carlo code CELLDOSE to assess electron doses from a uniform distribution of (90)Y, (177)Lu, (111)In, or (161)Tb in spheres with diameters ranging from 10 mm to 10 μm. Because these isotopes differ in electron energy per decay, the doses were compared assuming that 1 MeV was released per μm(3), which would result in 160 Gy if totally absorbed. RESULTS In a 10-mm sphere, the doses delivered by (90)Y, (177)Lu, (111)In, and (161)Tb were 96.5, 152, 153, and 152 Gy, respectively. The doses decreased along with the decrease in sphere size, and more abruptly so for (90)Y. In a 100-μm metastasis, the dose delivered by (90)Y was only 1.36 Gy, compared with 24.5 Gy for (177)Lu, 38.9 Gy for (111)In, and 44.5 Gy for (161)Tb. In cell-sized spheres, the dose delivered by (111)In and (161)Tb was higher than that of (177)Lu. For instance, in a 10-μm cell, (177)Lu delivered 3.92 Gy, compared with 22.8 Gy for (111)In and 14.1 Gy for (161)Tb. CONCLUSION (177)Lu, (111)In, and (161)Tb might be more appropriate than (90)Y for treating minimal residual disease. (161)Tb is a promising radionuclide because it combines the advantages of a medium-energy β(-) emission with those of Auger electrons and emits fewer photons than (111)In.
Collapse
Affiliation(s)
- Elif Hindié
- CHU de Bordeaux, Service de Médecine Nucléaire, CNRS-UMR 5287, LabEx TRAIL, Université de Bordeaux, Pessac, France; and
| | - Paolo Zanotti-Fregonara
- CHU de Bordeaux, Service de Médecine Nucléaire, CNRS-UMR 5287, LabEx TRAIL, Université de Bordeaux, Pessac, France; and
| | - Michele A Quinto
- Université de Bordeaux, CNRS/IN2P3, Centre d'Etudes Nucléaires de Bordeaux Gradignan (CENBG), Gradignan, France
| | - Clément Morgat
- CHU de Bordeaux, Service de Médecine Nucléaire, CNRS-UMR 5287, LabEx TRAIL, Université de Bordeaux, Pessac, France; and
| | - Christophe Champion
- Université de Bordeaux, CNRS/IN2P3, Centre d'Etudes Nucléaires de Bordeaux Gradignan (CENBG), Gradignan, France
| |
Collapse
|
25
|
Kim JS. Combination Radioimmunotherapy Approaches and Quantification of Immuno-PET. Nucl Med Mol Imaging 2016; 50:104-11. [PMID: 27275358 PMCID: PMC4870465 DOI: 10.1007/s13139-015-0392-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 12/18/2015] [Accepted: 12/23/2015] [Indexed: 11/30/2022] Open
Abstract
Monoclonal antibodies (mAbs), which play a prominent role in cancer therapy, can interact with specific antigens on cancer cells, thereby enhancing the patient's immune response via various mechanisms, or mAbs can act against cell growth factors and, thereby, arrest the proliferation of tumor cells. Radionuclide-labeled mAbs, which are used in radioimmunotherapy (RIT), are effective for cancer treatment because tumor associated-mAbs linked to cytotoxic radionuclides can selectively bind to tumor antigens and release targeted cytotoxic radiation. Immunological positron emission tomography (immuno-PET), which is the combination of PET with mAb, is an attractive option for improving tumor detection and mAb quantification. However, RIT remains a challenge because of the limited delivery of mAb into tumors. The transport and uptake of mAb into tumors is slow and heterogeneous. The tumor microenvironment contributed to the limited delivery of the mAb. During the delivery process of mAb to tumor, mechanical drug resistance such as collagen distribution or physiological drug resistance such as high intestinal pressure or absence of lymphatic vessel would be the limited factor of mAb delivery to the tumor at a potentially lethal mAb concentration. When α-emitter-labeled mAbs were used, deeper penetration of α-emitter-labeled mAb inside tumors was more important because of the short range of the α emitter. Therefore, combination therapy strategies aimed at improving mAb tumor penetration and accumulation would be beneficial for maximizing their therapeutic efficacy against solid tumors.
Collapse
Affiliation(s)
- Jin Su Kim
- />Molecular Imaging Research Center, Korea Institute of Radiological and Medical Sciences, 75 Nowon-Gil, Gongneung-Dong, Nowon-Gu, Seoul, 01812 Korea
- />Korea Drug Development Platform using Radio-Isotope(KDePRI), Seoul, Korea
- />Radiologcial and Medico-Oncological Sciences, University of Science and Technology (UST), Seoul, Korea
| |
Collapse
|