1
|
Elmansi AM, Miller RA. Oxidative phosphorylation and fatty acid oxidation in slow-aging mice. Free Radic Biol Med 2024; 224:246-255. [PMID: 39153667 DOI: 10.1016/j.freeradbiomed.2024.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 08/06/2024] [Accepted: 08/09/2024] [Indexed: 08/19/2024]
Abstract
Oxidative metabolism declines with aging in humans leading to multiple metabolic ailments and subsequent inflammation. In mice, there is evidence of age-related suppression of fatty acid oxidation and oxidative phosphorylation in the liver, heart, and muscles. Many interventions that extend healthy lifespan of mice have been developed, including genetic, pharmacological, and dietary interventions. In this article, we review the literature on oxidative metabolism changes in response to those interventions. We also discuss the molecular pathways that mediate those changes, and their potential as targets for future longevity interventions.
Collapse
Affiliation(s)
- Ahmed M Elmansi
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI, USA; University of Michigan Geriatrics Center, Ann Arbor, MI, USA
| | - Richard A Miller
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI, USA; University of Michigan Geriatrics Center, Ann Arbor, MI, USA.
| |
Collapse
|
2
|
Barcena ML, Christiansen-Mensch C, Aslam M, Haritonow N, Ladilov Y, Regitz-Zagrosek V. Upregulation of Mitochondrial Sirt3 and Alleviation of the Inflammatory Phenotype in Macrophages by Estrogen. Cells 2024; 13:1420. [PMID: 39272992 PMCID: PMC11393879 DOI: 10.3390/cells13171420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/16/2024] [Accepted: 08/24/2024] [Indexed: 09/15/2024] Open
Abstract
BACKGROUND Aging and comorbidities like type 2 diabetes and obesity contribute to the development of chronic systemic inflammation, which impacts the development of heart failure and vascular disease. Increasing evidence suggests a role of pro-inflammatory M1 macrophages in chronic inflammation. A shift of metabolism from mitochondrial oxidation to glycolysis is essential for the activation of the pro-inflammatory M1 phenotype. Thus, reprogramming the macrophage metabolism may alleviate the pro-inflammatory phenotype and protect against cardiovascular diseases. In the present study, we hypothesized that the activation of estrogen receptors leads to the elevation of the mitochondrial deacetylase Sirt3, which supports mitochondrial function and mitigates the pro-inflammatory phenotype in macrophages. MATERIALS AND METHODS Experiments were performed using the mouse macrophage cell line RAW264.7, as well as primary male or female murine bone marrow macrophages (BMMs). Macrophages were treated for 24 h with estradiol (E2) or vehicle (dextrin). The effect of E2 on Sirt3 expression was investigated in pro-inflammatory M1, anti-inflammatory/immunoregulatory M2, and naïve M0 macrophages. Mitochondrial respiration was measured by Seahorse assay, and protein expression and acetylation were determined by western blotting. RESULTS E2 treatment upregulated mitochondrial Sirt3, reduced mitochondrial protein acetylation, and increased basal mitochondrial respiration in naïve RAW264.7 macrophages. Similar effects on Sirt3 expression and mitochondrial protein acetylation were observed in primary female but not in male murine BMMs. Although E2 upregulated Sirt3 in naïve M0, pro-inflammatory M1, and anti-inflammatory/immunoregulatory M2 macrophages, it reduced superoxide dismutase 2 acetylation and suppressed mitochondrial reactive oxygen species formation only in pro-inflammatory M1 macrophages. E2 alleviated the pro-inflammatory phenotype in M1 RAW264.7 cells. CONCLUSIONS The study suggests that E2 treatment upregulates Sirt3 expression in macrophages. In primary BMMs, female-specific Sirt3 upregulation was observed. The Sirt3 upregulation was accompanied by mitochondrial protein deacetylation and the alleviation of the oxidative and pro-inflammatory phenotype in M1 macrophages. Thus, the E2-Sirt3 axis might be used in a therapeutic strategy to fight chronic systemic inflammation and prevent the development of inflammation-linked diseases.
Collapse
Affiliation(s)
- Maria Luisa Barcena
- Department of Urology, Eberhard Karl University of Tuebingen, 72076 Tuebingen, Germany
- German Center for Cardiovascular Research (DZHK), Berlin Partner Site, 10115 Berlin, Germany
| | | | - Muhammad Aslam
- Experimental Cardiology, Department of Internal Medicine I, Justus Liebig University, 35392 Giessen, Germany;
- German Center for Cardiovascular Research (DZHK), RheinMain Partner Site, 61231 Bad Nauheim, Germany
| | - Natalie Haritonow
- Department of Geriatrics and Medical Gerontology, Charité–Universitätsmedizin Berlin, 12203 Berlin, Germany;
| | - Yury Ladilov
- Department of Cardiovascular Surgery, Heart Center Brandenburg, Brandenburg Medical School, Bernau bei Berlin, 16321 Brandenburg, Germany;
| | - Vera Regitz-Zagrosek
- Institute for Gender in Medicine, Charité–Universitätsmedizin Berlin, 10115 Berlin, Germany; (C.C.-M.)
- Department of Cardiology, University Hospital Zürich, University of Zürich, 8091 Zürich, Switzerland
| |
Collapse
|
3
|
Ruiz-De-La-Cruz G, Welsh TH, Randel RD, Sifuentes-Rincón AM. A Comprehensive Systematic Review Coupled with an Interacting Network Analysis Identified Candidate Genes and Biological Pathways Related to Bovine Temperament. Genes (Basel) 2024; 15:981. [PMID: 39202342 PMCID: PMC11354074 DOI: 10.3390/genes15080981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/18/2024] [Accepted: 07/23/2024] [Indexed: 09/03/2024] Open
Abstract
Comprehension of the genetic basis of temperament has been improved by recent advances in the identification of genes and genetic variants. However, due to the complexity of the temperament traits, the elucidation of the genetic architecture of temperament is incomplete. A systematic review was performed following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement to analyze candidate genes related to bovine temperament, using bovine as the population, SNPs and genes as the exposure, and temperament test as the outcome, as principal search terms for population, exposure, and outcome (PEO) categories to define the scope of the search. The search results allowed the selection of 36 articles after removing duplicates and filtering by relevance. One hundred-two candidate genes associated with temperament traits were identified. The genes were further analyzed to construct an interaction network using the STRING database, resulting in 113 nodes and 346 interactions and the identification of 31 new candidate genes for temperament. Notably, the main genes identified were SST and members of the Kelch family. The candidate genes displayed interactions with pathways associated with different functions such as AMPA receptors, hormones, neuronal maintenance, protein signaling, neuronal regulation, serotonin synthesis, splicing, and ubiquitination activities. These new findings demonstrate the complexity of interconnected biological processes that regulate behavior and stress response in mammals. This insight now enables our targeted analysis of these newly identified temperament candidate genes in bovines.
Collapse
Affiliation(s)
- Gilberto Ruiz-De-La-Cruz
- Laboratorio de Biotecnología Animal, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico;
| | - Thomas H. Welsh
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA;
| | | | - Ana María Sifuentes-Rincón
- Laboratorio de Biotecnología Animal, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico;
| |
Collapse
|
4
|
Belužić R, Šimunić E, Podgorski II, Pinterić M, Hadžija MP, Balog T, Sobočanec S. Gene Expression Profiling Reveals Fundamental Sex-Specific Differences in SIRT3-Mediated Redox and Metabolic Signaling in Mouse Embryonic Fibroblasts. Int J Mol Sci 2024; 25:3868. [PMID: 38612678 PMCID: PMC11012119 DOI: 10.3390/ijms25073868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
Sirt-3 is an important regulator of mitochondrial function and cellular energy homeostasis, whose function is associated with aging and various pathologies such as Alzheimer's disease, Parkinson's disease, cardiovascular diseases, and cancers. Many of these conditions show differences in incidence, onset, and progression between the sexes. In search of hormone-independent, sex-specific roles of Sirt-3, we performed mRNA sequencing in male and female Sirt-3 WT and KO mouse embryonic fibroblasts (MEFs). The aim of this study was to investigate the sex-specific cellular responses to the loss of Sirt-3. By comparing WT and KO MEF of both sexes, the differences in global gene expression patterns as well as in metabolic and stress responses associated with the loss of Sirt-3 have been elucidated. Significant differences in the activities of basal metabolic pathways were found both between genotypes and between sexes. In-depth pathway analysis of metabolic pathways revealed several important sex-specific phenomena. Male cells mount an adaptive Hif-1a response, shifting their metabolism toward glycolysis and energy production from fatty acids. Furthermore, the loss of Sirt-3 in male MEFs leads to mitochondrial and endoplasmic reticulum stress. Since Sirt-3 knock-out is permanent, male cells are forced to function in a state of persistent oxidative and metabolic stress. Female MEFs are able to at least partially compensate for the loss of Sirt-3 by a higher expression of antioxidant enzymes. The activation of neither Hif-1a, mitochondrial stress response, nor oxidative stress response was observed in female cells lacking Sirt-3. These findings emphasize the sex-specific role of Sirt-3, which should be considered in future research.
Collapse
|
5
|
Tumbapo S, Strudwick A, Stastna JJ, Harvey SC, Bloemink MJ. Moderate dietary restriction delays the onset of age-associated sarcopenia in Caenorhabditis elegans due to reduced myosin UNC-54 degradation. Mech Ageing Dev 2024; 217:111900. [PMID: 38163472 DOI: 10.1016/j.mad.2023.111900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/15/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
Sarcopenia, a gradual decrease in skeletal muscle mass and strength, is a major component of frailty in the elderly, with age, (lack of) exercise and diet found to be the major risk factors. The nematode Caenorhabditis elegans is an important model of sarcopenia. Although many studies describe loss of muscle function in ageing C. elegans, surprisingly few report on the loss of muscle mass. Here, in order to quantify loss of muscle mass under various dietary restriction (DR) conditions, we used an internal GFP standard to determine levels of the major body wall muscle myosin (UNC-54) in transgenic unc-54::gfp worms over their lifespan. Myosin density linearly increased during the first week of adulthood and there was no significant effect of DR. In contrast, an exponential decrease in myosin density was seen during the second week of adulthood, with reduced rates of myosin loss for mild and medium DR compared to control. UNC-54 turnover rates, previously determined using pulse-labelling methods, correspond well with the t1/2 value found here for UNC-54-GFP using fluorescence (control t1/2 = 12.0 days), independently validating our approach. These data indicate that sarcopenia is delayed in worms under mild and medium DR due to a reduced rate of myosin UNC-54 degradation, thereby maintaining protein homeostasis.
Collapse
Affiliation(s)
- Sobha Tumbapo
- School of Psychology and Life Sciences, Canterbury Christ Church University, Canterbury CT1 1QU, United Kingdom
| | - Adam Strudwick
- School of Psychology and Life Sciences, Canterbury Christ Church University, Canterbury CT1 1QU, United Kingdom
| | - Jana J Stastna
- School of Psychology and Life Sciences, Canterbury Christ Church University, Canterbury CT1 1QU, United Kingdom
| | - Simon C Harvey
- School of Psychology and Life Sciences, Canterbury Christ Church University, Canterbury CT1 1QU, United Kingdom; Faculty of Engineering and Science, University of Greenwich, United Kingdom
| | - Marieke J Bloemink
- School of Psychology and Life Sciences, Canterbury Christ Church University, Canterbury CT1 1QU, United Kingdom.
| |
Collapse
|
6
|
Elmansi AM, Miller RA. Coordinated transcriptional upregulation of oxidative metabolism proteins in long-lived endocrine mutant mice. GeroScience 2023; 45:2967-2981. [PMID: 37273159 PMCID: PMC10643730 DOI: 10.1007/s11357-023-00849-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 05/31/2023] [Indexed: 06/06/2023] Open
Abstract
Caloric restriction (CR), which extends lifespan in rodents, leads to increased hepatic fatty acid β-oxidation and oxidative phosphorylation (OXPHOS), with parallel changes in proteins and their mRNAs. Genetic mutants that extend lifespan, including growth hormone receptor knockout (GHRKO) and Snell dwarf (SD) mice, have lower respiratory quotient, suggesting increased reliance on fatty acid oxidation, but the molecular mechanism(s) of this metabolic shift have not yet been worked out. Here we show that both GHRKO and SD mice have significantly higher mRNA and protein levels of enzymes involved in mitochondrial and peroxisomal fatty acid β-oxidation. In addition, multiple subunits of OXPHOS complexes I-IV are upregulated in GHRKO and SD livers, and Complex V subunit ATP5a is upregulated in liver of GHRKO mice. Expression of these genes is regulated by a group of nuclear receptors and transcription factors including peroxisome proliferator-activated receptors (PPARs) and estrogen-related receptors (ERRs). We found that levels of these nuclear receptors and their co-activator PGC-1α were unchanged or downregulated in liver of GHRKO and SD mice. In contrast, NCOR1, a co-repressor for the same receptors, was significantly downregulated in the two long-lived mouse models, suggesting a plausible mechanism for the changes in FAO and OXPHOS proteins. Hepatic levels of HDAC3, a co-factor for NCOR1 transcriptional repression, were also downregulated. The role of NCOR1 is well established in the contexts of cancer and metabolic disease, but may provide new mechanistic insights into metabolic control in long-lived mouse models.
Collapse
Affiliation(s)
- Ahmed M Elmansi
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Richard A Miller
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI, USA.
- University of Michigan Geriatrics Center, Ann Arbor, MI, USA.
| |
Collapse
|
7
|
Souder DC, McGregor ER, Rhoads TW, Clark JP, Porter TJ, Eliceiri K, Moore DL, Puglielli L, Anderson RM. Mitochondrial regulator PGC-1a in neuronal metabolism and brain aging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.29.559526. [PMID: 37808866 PMCID: PMC10557769 DOI: 10.1101/2023.09.29.559526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
The brain is a high energy tissue, and the cell types of which it is comprised are distinct in function and in metabolic requirements. The transcriptional co-activator PGC-1a is a master regulator of mitochondrial function and is highly expressed in the brain; however, its cell-type specific role in regulating metabolism has not been well established. Here, we show that PGC-1a is responsive to aging and that expression of the neuron specific PGC-1a isoform allows for specialization in metabolic adaptation. Transcriptional profiles of the cortex from male mice show an impact of age on immune, inflammatory, and neuronal functional pathways and a highly integrated metabolic response that is associated with decreased expression of PGC-1a. Proteomic analysis confirms age-related changes in metabolism and further shows changes in ribosomal and RNA splicing pathways. We show that neurons express a specialized PGC-1a isoform that becomes active during differentiation from stem cells and is further induced during the maturation of isolated neurons. Neuronal but not astrocyte PGC-1a responds robustly to inhibition of the growth sensitive kinase GSK3b, where the brain specific promoter driven dominant isoform is repressed. The GSK3b inhibitor lithium broadly reprograms metabolism and growth signaling, including significantly lower expression of mitochondrial and ribosomal pathway genes and suppression of growth signaling, which are linked to changes in mitochondrial function and neuronal outgrowth. In vivo, lithium treatment significantly changes the expression of genes involved in cortical growth, endocrine, and circadian pathways. These data place the GSK3b/PGC-1a axis centrally in a growth and metabolism network that is directly relevant to brain aging.
Collapse
Affiliation(s)
- Dylan C Souder
- Department of Medicine, SMPH, University of Wisconsin Madison, Madison, WI
| | - Eric R McGregor
- Department of Medicine, SMPH, University of Wisconsin Madison, Madison, WI
| | - Timothy W Rhoads
- Department of Nutritional Sciences, University of Wisconsin Madison, Madison, WI
| | - Josef P Clark
- Department of Medicine, SMPH, University of Wisconsin Madison, Madison, WI
| | - Tiaira J Porter
- Department of Neuroscience, University of Wisconsin Madison, Madison, WI
| | - Kevin Eliceiri
- Department of Medical Physics, University of Wisconsin Madison, Madison, WI
| | - Darcie L Moore
- Department of Neuroscience, University of Wisconsin Madison, Madison, WI
| | - Luigi Puglielli
- Department of Medicine, SMPH, University of Wisconsin Madison, Madison, WI
- GRECC William S, Middleton Memorial Veterans Hospital, Madison, WI
| | - Rozalyn M Anderson
- Department of Medicine, SMPH, University of Wisconsin Madison, Madison, WI
- GRECC William S, Middleton Memorial Veterans Hospital, Madison, WI
| |
Collapse
|
8
|
Min HK, Na HS, Jhun J, Lee SY, Choi SS, Park GE, Lee JS, Um IG, Lee SY, Seo H, Shin TS, Kim YK, Lee JJ, Kwok SK, Cho ML, Park SH. Identification of gut dysbiosis in axial spondyloarthritis patients and improvement of experimental ankylosing spondyloarthritis by microbiome-derived butyrate with immune-modulating function. Front Immunol 2023; 14:1096565. [PMID: 37143677 PMCID: PMC10152063 DOI: 10.3389/fimmu.2023.1096565] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 04/03/2023] [Indexed: 05/06/2023] Open
Abstract
Introduction Dysbiosis is an environmental factor that affects the induction of axial spondyloarthritis (axSpA) pathogenesis. In the present study, we investigated differences in the gut microbiota of patients with axSpA and revealed an association between specific gut microbiota and their metabolites, and SpA pathogenesis. Method Using 16S rRNA sequencing data derived from feces samples of 33 axSpA patients and 20 healthy controls (HCs), we examined the compositions of their gut microbiomes. Results As a result, axSpA patients were found to have decreased α-diversity compared to HCs, indicating that axSpA patients have less diverse microbiomes. In particular, at the species level, Bacteroides and Streptococcus were more abundant in axSpA patients than in HCs, whereas Faecalibacterium (F). prausnitzii, a butyrate-producing bacteria, was more abundant in HCs. Thus, we decided to investigate whether F. prausnitzii was associated with health conditions by inoculating F. prausnitzii (0.1, 1, and 10 μg/mL) or by administrating butyrate (0.5 mM) into CD4+ T cells derived from axSpA patients. The levels of IL-17A and IL-10 in the CD4+ T cell culture media were then measured. We also assessed osteoclast formation by administrating butyrate to the axSpA-derived peripheral blood mononuclear cells. The CD4+ IL-17A+ T cell differentiation, IL-17A levels were decreased, whereas IL-10 was increased by F. prausnitzii inoculation. Butyrate reduced CD4+ IL-17A+ T cell differentiation and osteoclastogenesis. Discussion We found that CD4+ IL-17A+ T cell polarization was reduced, when F. prausnitzii or butyrate were introduced into curdlan-induced SpA mice or CD4+ T cells of axSpA patient. Consistently, butyrate treatment was associated with the reduction of arthritis scores and inflammation levels in SpA mice. Taken together, we concluded that the reduced abundance of butyrate-producing microbes, particularly F. prausnitzii, may be associated with axSpA pathogenesis.
Collapse
Affiliation(s)
- Hong Ki Min
- Division of Rheumatology, Department of Internal Medicine, Konkuk University Medical Center, Seoul, Republic of Korea
| | - Hyun Sik Na
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - JooYeon Jhun
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seon-Yeong Lee
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sun Shim Choi
- Division of Biomedical Convergence, College of Biomedical Science, Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, Republic of Korea
| | - Go Eun Park
- Division of Biomedical Convergence, College of Biomedical Science, Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, Republic of Korea
| | - Jeong Su Lee
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - In Gyu Um
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seung Yoon Lee
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hochan Seo
- MD Healthcare Inc., Seoul, Republic of Korea
| | | | | | - Jennifer Jooha Lee
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seung-Ki Kwok
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Mi-La Cho
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sung-Hwan Park
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
9
|
Tyagi A, Pugazhenthi S. A Promising Strategy to Treat Neurodegenerative Diseases by SIRT3 Activation. Int J Mol Sci 2023; 24:ijms24021615. [PMID: 36675125 PMCID: PMC9866791 DOI: 10.3390/ijms24021615] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
SIRT3, the primary mitochondrial deacetylase, regulates the functions of mitochondrial proteins including metabolic enzymes and respiratory chain components. Although SIRT3's functions in peripheral tissues are well established, the significance of its downregulation in neurodegenerative diseases is beginning to emerge. SIRT3 plays a key role in brain energy metabolism and provides substrate flexibility to neurons. It also facilitates metabolic coupling between fuel substrate-producing tissues and fuel-consuming tissues. SIRT3 mediates the health benefits of lifestyle-based modifications such as calorie restriction and exercise. SIRT3 deficiency is associated with metabolic syndrome (MetS), a precondition for diseases including obesity, diabetes, and cardiovascular disease. The pure form of Alzheimer's disease (AD) is rare, and it has been reported to coexist with these diseases in aging populations. SIRT3 downregulation leads to mitochondrial dysfunction, neuroinflammation, and inflammation, potentially triggering factors of AD pathogenesis. Recent studies have also suggested that SIRT3 may act through multiple pathways to reduce plaque formation in the AD brain. In this review, we give an overview of SIRT3's roles in brain physiology and pathology and discuss several activators of SIRT3 that can be considered potential therapeutic agents for the treatment of dementia.
Collapse
Affiliation(s)
- Alpna Tyagi
- Rocky Mountain Regional VA Medical Center, Aurora, CO 80045, USA
- Department of Medicine, University of Colorado-Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Subbiah Pugazhenthi
- Rocky Mountain Regional VA Medical Center, Aurora, CO 80045, USA
- Department of Medicine, University of Colorado-Anschutz Medical Campus, Aurora, CO 80045, USA
- Correspondence: ; Tel.: +1-720-857-5629
| |
Collapse
|
10
|
Li Y, Li J, Wu G, Yang H, Yang X, Wang D, He Y. Role of SIRT3 in neurological diseases and rehabilitation training. Metab Brain Dis 2023; 38:69-89. [PMID: 36374406 PMCID: PMC9834132 DOI: 10.1007/s11011-022-01111-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/17/2022] [Indexed: 11/16/2022]
Abstract
Sirtuin3 (SIRT3) is a deacetylase that plays an important role in normal physiological activities by regulating a variety of substrates. Considerable evidence has shown that the content and activity of SIRT3 are altered in neurological diseases. Furthermore, SIRT3 affects the occurrence and development of neurological diseases. In most cases, SIRT3 can inhibit clinical manifestations of neurological diseases by promoting autophagy, energy production, and stabilization of mitochondrial dynamics, and by inhibiting neuroinflammation, apoptosis, and oxidative stress (OS). However, SIRT3 may sometimes have the opposite effect. SIRT3 can promote the transfer of microglia. Microglia in some cases promote ischemic brain injury, and in some cases inhibit ischemic brain injury. Moreover, SIRT3 can promote the accumulation of ceramide, which can worsen the damage caused by cerebral ischemia-reperfusion (I/R). This review comprehensively summarizes the different roles and related mechanisms of SIRT3 in neurological diseases. Moreover, to provide more ideas for the prognosis of neurological diseases, we summarize several SIRT3-mediated rehabilitation training methods.
Collapse
Affiliation(s)
- Yanlin Li
- Department of Rehabilitation, Jinzhou Central Hospital, 51 Shanghai Road, Guta District, Jinzhou, 121000, Liaoning Province, People's Republic of China
| | - Jing Li
- Department of Rehabilitation, Jinzhou Central Hospital, 51 Shanghai Road, Guta District, Jinzhou, 121000, Liaoning Province, People's Republic of China
| | - Guangbin Wu
- Department of Rehabilitation, Jinzhou Central Hospital, 51 Shanghai Road, Guta District, Jinzhou, 121000, Liaoning Province, People's Republic of China
| | - Hua Yang
- Department of Rehabilitation, Jinzhou Central Hospital, 51 Shanghai Road, Guta District, Jinzhou, 121000, Liaoning Province, People's Republic of China
| | - Xiaosong Yang
- Department of Rehabilitation, Jinzhou Central Hospital, 51 Shanghai Road, Guta District, Jinzhou, 121000, Liaoning Province, People's Republic of China
| | - Dongyu Wang
- Department of Neurology, Jinzhou Central Hospital, 51 Shanghai Road, Guta District, Jinzhou, 121000, Liaoning Province, People's Republic of China
| | - Yanhui He
- Department of Radiology, Jinzhou Central Hospital, 51 Shanghai Road, Guta District, Jinzhou, 121000, Liaoning Province, People's Republic of China.
| |
Collapse
|
11
|
Nutritional reprogramming of mouse liver proteome is dampened by metformin, resveratrol, and rapamycin. Cell Metab 2021; 33:2367-2379.e4. [PMID: 34767745 DOI: 10.1016/j.cmet.2021.10.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/17/2021] [Accepted: 10/26/2021] [Indexed: 12/12/2022]
Abstract
Nutrient sensing pathways influence metabolic health and aging, offering the possibility that diet might be used therapeutically, alone or with drugs targeting these pathways. We used the Geometric Framework for Nutrition to study interactive and comparative effects of diet and drugs on the hepatic proteome in mice across 40 dietary treatments differing in macronutrient ratios, energy density, and drug treatment (metformin, rapamycin, resveratrol). There was a strong negative correlation between dietary energy and the spliceosome and a strong positive correlation between dietary protein and mitochondria, generating oxidative stress at high protein intake. Metformin, rapamycin, and resveratrol had lesser effects than and dampened responses to diet. Rapamycin and metformin reduced mitochondrial responses to dietary protein while the effects of carbohydrates and fat were downregulated by resveratrol. Dietary composition has a powerful impact on the hepatic proteome, not just on metabolic pathways but fundamental processes such as mitochondrial function and RNA splicing.
Collapse
|
12
|
Dilated cardiomyopathy impairs mitochondrial biogenesis and promotes inflammation in an age- and sex-dependent manner. Aging (Albany NY) 2020; 12:24117-24133. [PMID: 33303703 PMCID: PMC7762497 DOI: 10.18632/aging.202283] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 09/29/2020] [Indexed: 12/18/2022]
Abstract
Dilated cardiomyopathy (DCM) belongs to the myocardial diseases associated with a severe impairment of cardiac function, but the question of how sex and age affect this pathology has not been fully explored. Impaired energy homeostasis, mitochondrial dysfunction, and systemic inflammation are well-described phenomena associated with aging. In this study, we investigated if DCM affects these phenomena in a sex- and age-related manner. We analyzed the expression of mitochondrial and antioxidant proteins and the inflammatory state in DCM heart tissue from younger and older women and men. A significant downregulation of Sirt1 expression was detected in older DCM patients. Sex-related differences were observed in the phosphorylation of AMPK that only appeared in older males with DCM, possibly due to an alternative Sirt1 regulation mechanism. Furthermore, reduced expression of several mitochondrial proteins (TOM40, TIM23, Sirt3, and SOD2) and genes (cox1, nd4) was only detected in old DCM patients, suggesting that age has a greater effect than DCM on these alterations. Finally, an increased expression of inflammatory markers in older, failing hearts, with a stronger pro-inflammatory response in men, was observed. Together, these findings indicate that age- and sex-related increased inflammation and disturbance of mitochondrial homeostasis occurs in male individuals with DCM.
Collapse
|
13
|
Mezhnina V, Pearce R, Poe A, Velingkaar N, Astafev A, Ebeigbe OP, Makwana K, Sandlers Y, Kondratov RV. CR reprograms acetyl-CoA metabolism and induces long-chain acyl-CoA dehydrogenase and CrAT expression. Aging Cell 2020; 19:e13266. [PMID: 33105059 PMCID: PMC7681051 DOI: 10.1111/acel.13266] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 08/05/2020] [Accepted: 09/15/2020] [Indexed: 01/02/2023] Open
Abstract
Calorie restriction (CR), an age delaying diet, affects fat oxidation through poorly understood mechanisms. We investigated the effect of CR on fat metabolism gene expression and intermediate metabolites of fatty acid oxidation in the liver. We found that CR changed the liver acylcarnitine profile: acetylcarnitine, short‐chain acylcarnitines, and long‐chain 3‐hydroxy‐acylcarnitines increased, and several long‐chain acylcarnitines decreased. Acetyl‐CoA and short‐chain acyl‐CoAs were also increased in CR. CR did not affect the expression of CPT1 and upregulated the expression of long‐chain and very‐long‐chain Acyl‐CoA dehydrogenases (LCAD and VLCAD, respectively). The expression of downstream enzymes such as mitochondrial trifunctional protein and enzymes in medium‐ and short‐chain acyl‐CoAs oxidation was not affected in CR. CR shifted the balance of fatty acid oxidation enzymes and fatty acid metabolites in the liver. Acetyl‐CoA generated through beta‐oxidation can be used for ketogenesis or energy production. In agreement, blood ketone bodies increased under CR in a time of the day‐dependent manner. Carnitine acetyltransferase (CrAT) is a bidirectional enzyme that interconverts short‐chain acyl‐CoAs and their corresponding acylcarnitines. CrAT expression was induced in CR liver supporting the increased acetylcarnitine and short‐chain acylcarnitine production. Acetylcarnitine can freely travel between cellular sub‐compartments. Supporting this CR increased protein acetylation in the mitochondria, cytoplasm, and nucleus. We hypothesize that changes in acyl‐CoA and acylcarnitine levels help to control energy metabolism and contribute to metabolic flexibility under CR.
Collapse
Affiliation(s)
- Volha Mezhnina
- Center for Gene Regulation in Health and Disease and Department of Biological Geological and Environmental Sciences Cleveland State University Cleveland Ohio USA
| | - Ryan Pearce
- Department of Chemistry Cleveland State University Cleveland Ohio USA
| | - Allan Poe
- Center for Gene Regulation in Health and Disease and Department of Biological Geological and Environmental Sciences Cleveland State University Cleveland Ohio USA
| | - Nikkhil Velingkaar
- Center for Gene Regulation in Health and Disease and Department of Biological Geological and Environmental Sciences Cleveland State University Cleveland Ohio USA
| | - Artem Astafev
- Center for Gene Regulation in Health and Disease and Department of Biological Geological and Environmental Sciences Cleveland State University Cleveland Ohio USA
| | - Oghogho P. Ebeigbe
- Center for Gene Regulation in Health and Disease and Department of Biological Geological and Environmental Sciences Cleveland State University Cleveland Ohio USA
| | - Kuldeep Makwana
- Center for Gene Regulation in Health and Disease and Department of Biological Geological and Environmental Sciences Cleveland State University Cleveland Ohio USA
| | - Yana Sandlers
- Department of Chemistry Cleveland State University Cleveland Ohio USA
| | - Roman V. Kondratov
- Center for Gene Regulation in Health and Disease and Department of Biological Geological and Environmental Sciences Cleveland State University Cleveland Ohio USA
| |
Collapse
|
14
|
Webb M, Sideris DP. Intimate Relations-Mitochondria and Ageing. Int J Mol Sci 2020; 21:ijms21207580. [PMID: 33066461 PMCID: PMC7589147 DOI: 10.3390/ijms21207580] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 12/14/2022] Open
Abstract
Mitochondrial dysfunction is associated with ageing, but the detailed causal relationship between the two is still unclear. We review the major phenomenological manifestations of mitochondrial age-related dysfunction including biochemical, regulatory and energetic features. We conclude that the complexity of these processes and their inter-relationships are still not fully understood and at this point it seems unlikely that a single linear cause and effect relationship between any specific aspect of mitochondrial biology and ageing can be established in either direction.
Collapse
Affiliation(s)
- Michael Webb
- Mitobridge Inc., an Astellas Company, 1030 Massachusetts Ave, Cambridge, MA 02138, USA
| | - Dionisia P Sideris
- Mitobridge Inc., an Astellas Company, 1030 Massachusetts Ave, Cambridge, MA 02138, USA
| |
Collapse
|
15
|
Rhoads TW, Clark JP, Gustafson GE, Miller KN, Conklin MW, DeMuth TM, Berres ME, Eliceiri KW, Vaughan LK, Lary CW, Beasley TM, Colman RJ, Anderson RM. Molecular and Functional Networks Linked to Sarcopenia Prevention by Caloric Restriction in Rhesus Monkeys. Cell Syst 2020; 10:156-168.e5. [PMID: 31982367 PMCID: PMC7047532 DOI: 10.1016/j.cels.2019.12.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 08/03/2019] [Accepted: 12/11/2019] [Indexed: 12/13/2022]
Abstract
Caloric restriction (CR) improves survival in nonhuman primates and delays the onset of age-related morbidities including sarcopenia, which is characterized by the age-related loss of muscle mass and function. A shift in metabolism anticipates the onset of muscle-aging phenotypes in nonhuman primates, suggesting a potential role for metabolism in the protective effects of CR. Here, we show that CR induced profound changes in muscle composition and the cellular metabolic environment. Bioinformatic analysis linked these adaptations to proteostasis, RNA processing, and lipid synthetic pathways. At the tissue level, CR maintained contractile content and attenuated age-related metabolic shifts among individual fiber types with higher mitochondrial activity, altered redox metabolism, and smaller lipid droplet size. Biometric and metabolic rate data confirm preserved metabolic efficiency in CR animals that correlated with the attenuation of age-related muscle mass and physical activity. These data suggest that CR-induced reprogramming of metabolism plays a role in delayed aging of skeletal muscle in rhesus monkeys.
Collapse
Affiliation(s)
- Timothy W Rhoads
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Josef P Clark
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Grace E Gustafson
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Karl N Miller
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Matthew W Conklin
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Tyler M DeMuth
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Mark E Berres
- Biotechnolgoy Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Kevin W Eliceiri
- Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Laura K Vaughan
- Department of Biostatistics, University of Alabama-Birmingham, Birmingham, AL 35294, USA
| | - Christine W Lary
- Department of Biostatistics, University of Alabama-Birmingham, Birmingham, AL 35294, USA
| | - T Mark Beasley
- Department of Biostatistics, University of Alabama-Birmingham, Birmingham, AL 35294, USA; Geriatric Research Education and Clinical Center, Birmingham/Atlanta Veterans Administration Hospital, Birmingham, AL 35297, USA
| | - Ricki J Colman
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA; Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Rozalyn M Anderson
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA.
| |
Collapse
|
16
|
Miller KN, Clark JP, Martin SA, Howell PR, Burhans MS, Haws SA, Johnson NB, Rhoads TW, Pavelec DM, Eliceiri KW, Roopra AS, Ntambi JM, Denu JM, Parks BW, Anderson RM. PGC-1a integrates a metabolism and growth network linked to caloric restriction. Aging Cell 2019; 18:e12999. [PMID: 31267675 PMCID: PMC6718593 DOI: 10.1111/acel.12999] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 06/07/2019] [Accepted: 06/13/2019] [Indexed: 12/25/2022] Open
Abstract
Deleterious changes in energy metabolism have been linked to aging and disease vulnerability, while activation of mitochondrial pathways has been linked to delayed aging by caloric restriction (CR). The basis for these associations is poorly understood, and the scope of impact of mitochondrial activation on cellular function has yet to be defined. Here, we show that mitochondrial regulator PGC-1a is induced by CR in multiple tissues, and at the cellular level, CR-like activation of PGC-1a impacts a network that integrates mitochondrial status with metabolism and growth parameters. Transcriptional profiling reveals that diverse functions, including immune pathways, growth, structure, and macromolecule homeostasis, are responsive to PGC-1a. Mechanistically, these changes in gene expression were linked to chromatin remodeling and RNA processing. Metabolic changes implicated in the transcriptional data were confirmed functionally including shifts in NAD metabolism, lipid metabolism, and membrane lipid composition. Delayed cellular proliferation, altered cytoskeleton, and attenuated growth signaling through post-transcriptional and post-translational mechanisms were also identified as outcomes of PGC-1a-directed mitochondrial activation. Furthermore, in vivo in tissues from a genetically heterogeneous mouse population, endogenous PGC-1a expression was correlated with this same metabolism and growth network. These data show that small changes in metabolism have broad consequences that arguably would profoundly alter cell function. We suggest that this PGC-1a sensitive network may be the basis for the association between mitochondrial function and aging where small deficiencies precipitate loss of function across a spectrum of cellular activities.
Collapse
Affiliation(s)
- Karl N. Miller
- Division of Geriatrics, Department of Medicine SMPH, University of Wisconsin Madison Wisconsin USA
| | - Josef P. Clark
- Division of Geriatrics, Department of Medicine SMPH, University of Wisconsin Madison Wisconsin USA
| | - Stephen A. Martin
- Division of Geriatrics, Department of Medicine SMPH, University of Wisconsin Madison Wisconsin USA
| | - Porsha R. Howell
- Division of Geriatrics, Department of Medicine SMPH, University of Wisconsin Madison Wisconsin USA
| | - Maggie S. Burhans
- Division of Geriatrics, Department of Medicine SMPH, University of Wisconsin Madison Wisconsin USA
| | - Spencer A. Haws
- Department of Biomolecular Chemistry University of Wisconsin Madison Wisconsin USA
- Wisconsin Institute for Discovery University of Wisconsin Madison Wisconsin USA
| | - Nathan B. Johnson
- Division of Geriatrics, Department of Medicine SMPH, University of Wisconsin Madison Wisconsin USA
| | - Timothy W Rhoads
- Division of Geriatrics, Department of Medicine SMPH, University of Wisconsin Madison Wisconsin USA
| | - Derek M. Pavelec
- Biotechnology Center University of Wisconsin Madison Wisconsin USA
| | - Kevin W. Eliceiri
- Laboratory for Optical and Computational Instrumentation University of Wisconsin Madison Wisconsin USA
| | - Avtar S. Roopra
- Department of Neuroscience University of Wisconsin Madison Wisconsin USA
| | - James M. Ntambi
- Department of Biochemistry University of Wisconsin Madison Wisconsin USA
- Department of Nutritional Sciences University of Wisconsin Madison Wisconsin USA
| | - John M. Denu
- Department of Biomolecular Chemistry University of Wisconsin Madison Wisconsin USA
- Wisconsin Institute for Discovery University of Wisconsin Madison Wisconsin USA
- Morgridge Institute for Research Madison Wisconsin USA
| | - Brian W. Parks
- Department of Nutritional Sciences University of Wisconsin Madison Wisconsin USA
| | - Rozalyn M. Anderson
- Division of Geriatrics, Department of Medicine SMPH, University of Wisconsin Madison Wisconsin USA
- Geriatric Research, Education, and Clinical Center William S. Middleton Memorial Veterans Hospital Madison Wisconsin USA
| |
Collapse
|
17
|
An expanding GSK3 network: implications for aging research. GeroScience 2019; 41:369-382. [PMID: 31313216 DOI: 10.1007/s11357-019-00085-z] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 07/02/2019] [Indexed: 10/26/2022] Open
Abstract
The last few decades of longevity research have been very exciting. We now know that longevity and healthspan can be manipulated across species, from unicellular eukaryotes to nonhuman primates, and that while aging itself is inevitable, how we age is malleable. Numerous dietary, genetic, and pharmacological studies now point to links between metabolism and growth regulation as a central aspect in determining longevity and, perhaps more importantly, health with advancing age. Here, we focus on a relatively new player in aging studies GSK3, glycogen synthase kinase, a key factor in growth and metabolism whose name fails to convey the extensive breadth of its role in cellular adaptation. First, we provide a brief overview of GSK3, touching on those aspects that are likely relevant to aging. Then, we outline the role of GSK3 in cellular functions including growth signaling, cell fate, and metabolism. Next, we describe evidence demonstrating a direct role for GSK3 in a range of age-related diseases, despite the fact that they differ considerably in their etiology and pathology. Finally, we discuss the role that GSK3 may play in normative aging and how GSK3 might be a suitable target to oppose age-related disease vulnerability.
Collapse
|
18
|
Morris BJ, Willcox BJ, Donlon TA. Genetic and epigenetic regulation of human aging and longevity. Biochim Biophys Acta Mol Basis Dis 2019; 1865:1718-1744. [PMID: 31109447 PMCID: PMC7295568 DOI: 10.1016/j.bbadis.2018.08.039] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 08/02/2018] [Accepted: 08/28/2018] [Indexed: 02/06/2023]
Abstract
Here we summarize the latest data on genetic and epigenetic contributions to human aging and longevity. Whereas environmental and lifestyle factors are important at younger ages, the contribution of genetics appears more important in reaching extreme old age. Genome-wide studies have implicated ~57 gene loci in lifespan. Epigenomic changes during aging profoundly affect cellular function and stress resistance. Dysregulation of transcriptional and chromatin networks is likely a crucial component of aging. Large-scale bioinformatic analyses have revealed involvement of numerous interaction networks. As the young well-differentiated cell replicates into eventual senescence there is drift in the highly regulated chromatin marks towards an entropic middle-ground between repressed and active, such that genes that were previously inactive "leak". There is a breakdown in chromatin connectivity such that topologically associated domains and their insulators weaken, and well-defined blocks of constitutive heterochromatin give way to generalized, senescence-associated heterochromatin, foci. Together, these phenomena contribute to aging.
Collapse
Affiliation(s)
- Brian J Morris
- Basic & Clinical Genomics Laboratory, School of Medical Sciences and Bosch Institute, University of Sydney, New South Wales 2006, Australia; Honolulu Heart Program (HHP)/Honolulu-Asia Aging Study (HAAS), Department of Research, Kuakini Medical Center, Honolulu, HI 96817, United States; Department of Geriatric Medicine, John A. Burns School of Medicine, University of Hawaii, Kuakini Medical Center Campus, Honolulu, HI 96813, United States.
| | - Bradley J Willcox
- Honolulu Heart Program (HHP)/Honolulu-Asia Aging Study (HAAS), Department of Research, Kuakini Medical Center, Honolulu, HI 96817, United States; Department of Geriatric Medicine, John A. Burns School of Medicine, University of Hawaii, Kuakini Medical Center Campus, Honolulu, HI 96813, United States.
| | - Timothy A Donlon
- Honolulu Heart Program (HHP)/Honolulu-Asia Aging Study (HAAS), Department of Research, Kuakini Medical Center, Honolulu, HI 96817, United States; Departments of Cell & Molecular Biology and Pathology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, United States.
| |
Collapse
|
19
|
Miller KN, Clark JP, Anderson RM. Mitochondrial regulator PGC-1a-Modulating the modulator. ACTA ACUST UNITED AC 2019; 5:37-44. [PMID: 31406949 DOI: 10.1016/j.coemr.2019.02.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1a) is a central regulator of metabolism that is poised at the intersection of myriad intracellular signaling pathways. In this brief update, we discuss regulation of PGC-1a at multiple levels, including transcriptional, post-transcriptional, and post-translational modifications. We discuss recently identified small molecule effectors of PGC-1a that offer translational potential and promise new insight into PGC-1a biology. We highlight novel mechanistic insights relating to PGC-1a's interactions with RNA to enhance transcription and potentially influence transcript processing. Finally, we place these exciting new data in the context of aging biology, offering PGC-1a as a candidate target with terrific potential in anti-aging interventions.
Collapse
Affiliation(s)
- Karl N Miller
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Josef P Clark
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, USA
| | - Rozalyn M Anderson
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, USA.,GRECC, William S. Middleton Memorial Veterans Hospital, Madison WI, USA
| |
Collapse
|
20
|
Makwana K, Gosai N, Poe A, Kondratov RV. Calorie restriction reprograms diurnal rhythms in protein translation to regulate metabolism. FASEB J 2018; 33:4473-4489. [PMID: 30566374 DOI: 10.1096/fj.201802167r] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Calorie restriction (CR) delays aging and affects the circadian clocks by reprogramming circadian rhythms in gene expression. To expand on the circadian mechanisms in CR, we assayed rhythms in the protein translation by analyzing polysome-associated mRNAs in the liver of mice fed ad libitum (AL) and CR diets. Global comparison of the diets revealed that <1% of transcripts were differentially abundant in the polysomes. In contrast, the large differential, up to 10%, was detected when CR and AL diets were compared at individual times throughout the day. Most transcripts that were rhythmic under AL lost their rhythms, and many new transcripts gained rhythms under CR. Only a small fraction of transcripts, including the circadian clock genes, were rhythmic under both diets. Thus, CR strongly reprograms translation. CR affected translation of enzymes regulating long-chain acetyl-coenzyme A (Acyl-CoA) metabolism. The expression of the Acyl-CoA thioesterase (ACOT) family was induced upon CR, leading to the increased transcriptional activity of peroxisome proliferator-activated receptor α, the transcriptional factor regulated by the ACOT products. We propose that the differential translation induced by CR leads to a temporal partition and reprogramming of metabolic processes and provides a link between CR, lipid metabolism, and the circadian clock.-Makwana, K., Gosai, N., Poe, A., Kondratov, R. V. Calorie restriction reprograms diurnal rhythms in protein translation to regulate metabolism.
Collapse
Affiliation(s)
- Kuldeep Makwana
- Department of Biological, Geological, and Environmental Sciences, Center for Gene Regulation in Health and Diseases, Cleveland State University, Cleveland, Ohio, USA
| | - Neha Gosai
- Department of Biological, Geological, and Environmental Sciences, Center for Gene Regulation in Health and Diseases, Cleveland State University, Cleveland, Ohio, USA
| | - Allan Poe
- Department of Biological, Geological, and Environmental Sciences, Center for Gene Regulation in Health and Diseases, Cleveland State University, Cleveland, Ohio, USA
| | - Roman V Kondratov
- Department of Biological, Geological, and Environmental Sciences, Center for Gene Regulation in Health and Diseases, Cleveland State University, Cleveland, Ohio, USA
| |
Collapse
|
21
|
Abstract
Caloric restriction (CR) extends lifespan and delays the onset of age-related disorders in diverse species. Metabolic regulatory pathways have been implicated in the mechanisms of CR, but the molecular details have not been elucidated. Here, we show that CR engages RNA processing of genes associated with a highly integrated reprogramming of hepatic metabolism. We conducted molecular profiling of liver biopsies collected from adult male rhesus monkeys (Macaca mulatta) at baseline and after 2 years on control or CR (30% restricted) diet. Quantitation of over 20,000 molecules from the hepatic transcriptome, proteome, and metabolome indicated that metabolism and RNA processing are major features of the response to CR. Predictive models identified lipid, branched-chain amino acid, and short-chain carbon metabolic pathways, with alternate transcript use for over half of the genes in the CR network. We conclude that RNA-based mechanisms are central to the CR response and integral in metabolic reprogramming.
Collapse
|
22
|
McLeod A, Mosleth EF, Rud I, Branco dos Santos F, Snipen L, Liland KH, Axelsson L. Effects of glucose availability in Lactobacillus sakei; metabolic change and regulation of the proteome and transcriptome. PLoS One 2017; 12:e0187542. [PMID: 29099858 PMCID: PMC5669474 DOI: 10.1371/journal.pone.0187542] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 10/20/2017] [Indexed: 01/08/2023] Open
Abstract
Effects of glucose availability were investigated in Lactobacillus sakei strains 23K and LS25 cultivated in anaerobic, glucose-limited chemostats set at high (D = 0.357 h-1) and low (D = 0.045 h-1) dilution rates. We observed for both strains a shift from homolactic towards more mixed acid fermentation when comparing high to low growth rates. However, this change was more pronounced for LS25 than for 23K, where dominating products were lactate>formate>acetate≥ethanol at both conditions. A multivariate approach was used for analyzing proteome and transcriptome data from the bacterial cultures, where the predictive power of the omics data was used for identifying features that can explain the differences in the end-product profiles. We show that the different degree of response to the same energy restriction revealed interesting strain specific regulation. An elevated formate production level during slow growth, more for LS25 than for 23K, was clearly reflected in correlating pyruvate formate lyase expression. With stronger effect for LS25, differential expression of the Rex transcriptional regulator and NADH oxidase, a target of Rex, indicated that maintainance of the cell redox balance, in terms of the NADH/NAD+ ratio, may be a key process during the metabolic change. The results provide a better understanding of different strategies that cells may deploy in response to changes in substrate availability.
Collapse
Affiliation(s)
- Anette McLeod
- Nofima AS, Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås, Norway
| | - Ellen F. Mosleth
- Nofima AS, Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås, Norway
| | - Ida Rud
- Nofima AS, Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås, Norway
| | - Filipe Branco dos Santos
- Molecular Microbial Physiology Group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - Lars Snipen
- Department of Chemistry, Biotechnology and Food Sciences, Norwegian University of Life Sciences, Ås, Norway
| | - Kristian Hovde Liland
- Nofima AS, Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås, Norway
| | - Lars Axelsson
- Nofima AS, Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås, Norway
| |
Collapse
|
23
|
Schneider A, Dhahbi JM, Atamna H, Clark JP, Colman RJ, Anderson RM. Caloric restriction impacts plasma microRNAs in rhesus monkeys. Aging Cell 2017; 16:1200-1203. [PMID: 28677323 PMCID: PMC5595684 DOI: 10.1111/acel.12636] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2017] [Indexed: 01/20/2023] Open
Abstract
Caloric restriction (CR) is one of the most robust interventions shown to delay aging in diverse species, including rhesus monkeys (Macaca mulatta). Identification of factors involved in CR brings a promise of translatability to human health and aging. Here, we show that CR induced a profound change in abundance of circulating microRNAs (miRNAs) linked to growth and insulin signaling pathway, suggesting that miRNAs are involved in CR's mechanisms of action in primates. Deep sequencing of plasma RNA extracts enriched for short species revealed a total of 243 unique species of miRNAs including 47 novel species. Approximately 70% of the plasma miRNAs detected were conserved between rhesus monkeys and humans. CR induced or repressed 24 known and 10 novel miRNA species. Regression analysis revealed correlations between bodyweight, adiposity, and insulin sensitivity for 10 of the CR-regulated known miRNAs. Sequence alignment and target identification for these 10 miRNAs identify a role in signaling downstream of the insulin receptor. The highly abundant miR-125a-5p correlated positively with adiposity and negatively with insulin sensitivity and was negatively regulated by CR. Putative target pathways of CR-associated miRNAs were highly enriched for growth and insulin signaling that have previously been implicated in delayed aging. Clustering analysis further pointed to CR-induced miRNA regulation of ribosomal, mitochondrial, and spliceosomal pathways. These data are consistent with a model where CR recruits miRNA-based homeostatic mechanisms to coordinate a program of delayed aging.
Collapse
Affiliation(s)
- Augusto Schneider
- Faculdade de NutriçãoUniversidade Federal de PelotasPelotas‐RS96010‐610Brazil
- College of MedicineBurnett School of Biomedical SciencesUniversity of Central FloridaOrlandoFL32827USA
| | - Joseph M. Dhahbi
- College of MedicineCalifornia University of Science and MedicineColtonCA92324USA
| | - Hani Atamna
- College of MedicineCalifornia University of Science and MedicineColtonCA92324USA
| | - Josef P. Clark
- Department of MedicineUniversity of WisconsinMadisonWI53705USA
| | | | - Rozalyn M. Anderson
- Department of MedicineUniversity of WisconsinMadisonWI53705USA
- GRECCWilliam S. Middleton Memorial Veterans HospitalMadisonWI53705USA
| |
Collapse
|
24
|
Barger JL, Vann JM, Cray NL, Pugh TD, Mastaloudis A, Hester SN, Wood SM, Newton MA, Weindruch R, Prolla TA. Identification of tissue-specific transcriptional markers of caloric restriction in the mouse and their use to evaluate caloric restriction mimetics. Aging Cell 2017; 16:750-760. [PMID: 28556428 PMCID: PMC5506434 DOI: 10.1111/acel.12608] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2017] [Indexed: 12/28/2022] Open
Abstract
Caloric restriction (CR) without malnutrition has been shown to retard several aspects of the aging process and to extend lifespan in different species. There is strong interest in the identification of CR mimetics (CRMs), compounds that mimic the beneficial effects of CR on lifespan and healthspan without restriction of energy intake. Identification of CRMs in mammals is currently inefficient due to the lack of screening tools. We have performed whole‐genome transcriptional profiling of CR in seven mouse strains (C3H/HeJ, CBA/J, DBA/2J, B6C3F1/J, 129S1/SvImJ, C57BL/6J, and BALB/cJ) in white adipose tissue (WAT), gastrocnemius muscle, heart, and brain neocortex. This analysis has identified tissue‐specific panels of genes that change in expression in multiple mouse strains with CR. We validated a subset of genes with qPCR and used these to evaluate the potential CRMs bezafibrate, pioglitazone, metformin, resveratrol, quercetin, 2,4‐dinitrophenol, and L‐carnitine when fed to C57BL/6J 2‐month‐old mice for 3 months. Compounds were also evaluated for their ability to modulate previously characterized biomarkers of CR, including mitochondrial enzymes citrate synthase and SIRT3, plasma inflammatory cytokines TNF‐α and IFN‐γ, glycated hemoglobin (HbA1c) levels and adipocyte size. Pioglitazone, a PPAR‐γ agonist, and L‐carnitine, an amino acid involved in lipid metabolism, displayed the strongest effects on both the novel transcriptional markers of CR and the additional CR biomarkers tested. Our findings provide panels of tissue‐specific transcriptional markers of CR that can be used to identify novel CRMs, and also represent the first comparative molecular analysis of several potential CRMs in multiple tissues in mammals.
Collapse
Affiliation(s)
| | | | | | | | | | - Shelly N. Hester
- Center for Anti-Aging Research; NSE Products, Inc.; Provo UT USA
| | - Steven M. Wood
- Center for Anti-Aging Research; NSE Products, Inc.; Provo UT USA
| | - Michael A. Newton
- Departments of Statistics and of Biostatistics and Medical Informatics; University of Wisconsin; Madison WI USA
| | - Richard Weindruch
- LifeGen Technologies LLC; Madison WI USA
- Department of Medicine; SMPH; University of Wisconsin; Madison WI USA
- Geriatric Research, Education and Clinical Center; William S. Middleton Memorial Veterans Hospital; Madison WI USA
| | - Tomas A. Prolla
- LifeGen Technologies LLC; Madison WI USA
- Departments of Genetics and Medical Genetics; University of Wisconsin; Madison WI USA
| |
Collapse
|
25
|
Balasubramanian P, Howell PR, Anderson RM. Aging and Caloric Restriction Research: A Biological Perspective With Translational Potential. EBioMedicine 2017; 21:37-44. [PMID: 28648985 PMCID: PMC5514430 DOI: 10.1016/j.ebiom.2017.06.015] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 06/14/2017] [Accepted: 06/16/2017] [Indexed: 12/14/2022] Open
Abstract
Aging as a research pursuit is fairly new compared with traditional lines of medical research. A growing field of investigators is focused on understanding how changes in tissue biology, physiology, and systemic homeostasis, conspire to create increased vulnerability to disease as a function of age. Aging research as a discipline is necessarily broad; in part because aging itself is multi-faceted and in part because different model systems are employed to define the underlying biology. In this review we outline aspects of aging research that are likely to uncover the pivotal events leading to age-related disease vulnerability. We focus on studies of human aging and discuss the value of research on caloric restriction, an intervention with proven efficacy in delaying aging. We propose that studies such as these will deliver target factors and processes that create vulnerability in human aging, an advance that would potentially be transformative in clinical care.
Collapse
Affiliation(s)
- Priya Balasubramanian
- Department of Medicine, Division of Geriatrics and Gerontology, School of Medicine and Public Health, University of Wisconsin Madison, WI 53792, United States
| | - Porsha R Howell
- Department of Medicine, Division of Geriatrics and Gerontology, School of Medicine and Public Health, University of Wisconsin Madison, WI 53792, United States
| | - Rozalyn M Anderson
- Department of Medicine, Division of Geriatrics and Gerontology, School of Medicine and Public Health, University of Wisconsin Madison, WI 53792, United States; Geriatric Research, Education, and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, United States.
| |
Collapse
|
26
|
Miller KN, Burhans MS, Clark JP, Howell PR, Polewski MA, DeMuth TM, Eliceiri KW, Lindstrom MJ, Ntambi JM, Anderson RM. Aging and caloric restriction impact adipose tissue, adiponectin, and circulating lipids. Aging Cell 2017; 16:497-507. [PMID: 28156058 PMCID: PMC5418198 DOI: 10.1111/acel.12575] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/26/2016] [Indexed: 11/26/2022] Open
Abstract
Adipose tissue expansion has been associated with system-wide metabolic dysfunction and increased vulnerability to diabetes, cancer, and cardiovascular disease. A reduction in adiposity is a hallmark of caloric restriction (CR), an intervention that extends longevity and delays the onset of these same age-related conditions. Despite these parallels, the role of adipose tissue in coordinating the metabolism of aging is poorly defined. Here, we show that adipose tissue metabolism and secretory profiles change with age and are responsive to CR. We conducted a cross-sectional study of CR in adult, late-middle-aged, and advanced-aged mice. Adiposity and the relationship between adiposity and circulating levels of the adipose-derived peptide hormone adiponectin were age-sensitive. CR impacted adiposity but only levels of the high molecular weight isoform of adiponectin responded to CR. Activators of metabolism including PGC-1a, SIRT1, and NAMPT were differentially expressed with CR in adipose tissues. Although age had a significant impact on NAD metabolism, as detected by biochemical assay and multiphoton imaging, the impact of CR was subtle and related to differences in reliance on oxidative metabolism. The impact of age on circulating lipids was limited to composition of circulating phospholipids. In contrast, the impact of CR was detected in all lipid classes regardless of age, suggesting a profound difference in lipid metabolism. These data demonstrate that aspects of adipose tissue metabolism are life phase specific and that CR is associated with a distinct metabolic state, suggesting that adipose tissue signaling presents a suitable target for interventions to delay aging.
Collapse
Affiliation(s)
- Karl N. Miller
- Division of GeriatricsDepartment of MedicineSMPHMadisonWI53706USA
- Department of Nutritional SciencesUniversity of Wisconsin MadisonMadisonWI53706USA
| | - Maggie S. Burhans
- Division of GeriatricsDepartment of MedicineSMPHMadisonWI53706USA
- Present address: Fred Hutchinson Cancer CenterSeattleWAUSA
| | - Josef P. Clark
- Division of GeriatricsDepartment of MedicineSMPHMadisonWI53706USA
| | - Porsha R. Howell
- Division of GeriatricsDepartment of MedicineSMPHMadisonWI53706USA
| | | | - Tyler M. DeMuth
- Division of GeriatricsDepartment of MedicineSMPHMadisonWI53706USA
| | - Kevin W. Eliceiri
- Laboratory for Optical and Computational InstrumentationUniversity of Wisconsin MadisonMadisonWI53706USA
| | - Mary J. Lindstrom
- Department of Biostatistics and Medical InformaticsUniversity of WisconsinMadisonWI53705USA
| | - James M. Ntambi
- Department of Nutritional SciencesUniversity of Wisconsin MadisonMadisonWI53706USA
- Department of BiochemistryUniversity of WisconsinMadisonWI53706USA
| | - Rozalyn M. Anderson
- Division of GeriatricsDepartment of MedicineSMPHMadisonWI53706USA
- Laboratory for Optical and Computational InstrumentationUniversity of Wisconsin MadisonMadisonWI53706USA
- GRECCWilliam S. Middleton Memorial Veterans HospitalMadisonWI53705USA
| |
Collapse
|
27
|
Jęśko H, Wencel P, Strosznajder RP, Strosznajder JB. Sirtuins and Their Roles in Brain Aging and Neurodegenerative Disorders. Neurochem Res 2016; 42:876-890. [PMID: 27882448 PMCID: PMC5357501 DOI: 10.1007/s11064-016-2110-y] [Citation(s) in RCA: 176] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 10/21/2016] [Accepted: 11/14/2016] [Indexed: 02/07/2023]
Abstract
Sirtuins (SIRT1-SIRT7) are unique histone deacetylases (HDACs) whose activity depends on NAD+ levels and thus on the cellular metabolic status. SIRTs regulate energy metabolism and mitochondrial function. They orchestrate the stress response and damage repair. Through these functions sirtuins modulate the course of aging and affect neurodegenerative diseases. SIRTSs interact with multiple signaling proteins, transcription factors (TFs) and poly(ADP-ribose) polymerases (PARPs) another class of NAD+-dependent post-translational protein modifiers. The cross-talk between SIRTs TFs and PARPs is a highly promising research target in a number of brain pathologies. This review describes updated results on sirtuins in brain aging/neurodegeneration. It focuses on SIRT1 but also on the roles of mitochondrial SIRTs (SIRT3, 4, 5) and on SIRT6 and SIRT2 localized in the nucleus and in cytosol, respectively. The involvement of SIRTs in regulation of insulin-like growth factor signaling in the brain during aging and in Alzheimer's disease was also focused. Moreover, we analyze the mechanism(s) and potential significance of interactions between SIRTs and several TFs in the regulation of cell survival and death. A critical view is given on the application of SIRT activators/modulators in therapy of neurodegenerative diseases.
Collapse
Affiliation(s)
- Henryk Jęśko
- Department of Cellular Signalling, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawińskiego st., 02106, Warsaw, Poland
| | - Przemysław Wencel
- Laboratory of Preclinical Research and Environmental Agents, Department of Neurosurgery, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawińskiego st., 02106, Warsaw, Poland
| | - Robert P Strosznajder
- Laboratory of Preclinical Research and Environmental Agents, Department of Neurosurgery, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawińskiego st., 02106, Warsaw, Poland.
| | - Joanna B Strosznajder
- Department of Cellular Signalling, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawińskiego st., 02106, Warsaw, Poland
| |
Collapse
|
28
|
Hernández-Aguilera A, Fernández-Arroyo S, Cuyàs E, Luciano-Mateo F, Cabre N, Camps J, Lopez-Miranda J, Menendez JA, Joven J. Epigenetics and nutrition-related epidemics of metabolic diseases: Current perspectives and challenges. Food Chem Toxicol 2016; 96:191-204. [PMID: 27503834 DOI: 10.1016/j.fct.2016.08.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 08/03/2016] [Accepted: 08/04/2016] [Indexed: 02/07/2023]
Abstract
We live in a world fascinated by the relationship between disease and nutritional disequilibrium. The subtle and slow effects of chronic nutrient toxicity are a major public health concern. Since food is potentially important for the development of "metabolic memory", there is a need for more information on the type of nutrients causing adverse or toxic effects. We now know that metabolic alterations produced by excessive intake of some nutrients, drugs and chemicals directly impact epigenetic regulation. We envision that understanding how metabolic pathways are coordinated by environmental and genetic factors will provide novel insights for the treatment of metabolic diseases. New methods will enable the assembly and analysis of large sets of complex molecular and clinical data for understanding how inflammation and mitochondria affect bioenergetics, epigenetics and health. Collectively, the observations we highlight indicate that energy utilization and disease are intimately connected by epigenetics. The challenge is to incorporate metabolo-epigenetic data in better interpretations of disease, to expedite therapeutic targeting of key pathways linking nutritional toxicity and metabolism. An additional concern is that changes in the parental phenotype are detectable in the methylome of subsequent offspring. The effect might create a menace to future generations and preconceptional considerations.
Collapse
Affiliation(s)
- Anna Hernández-Aguilera
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Salvador Fernández-Arroyo
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Elisabet Cuyàs
- Molecular Oncology Group, Girona Biomedical Research Institute (IDIBGI), Girona, Spain; ProCURE (Program Against Cancer Therapeutic Resistance), Metabolism and Cancer Group, Catalan Institute of Oncology, Girona, Spain
| | - Fedra Luciano-Mateo
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Noemi Cabre
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Jordi Camps
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Jose Lopez-Miranda
- Lipid and Atherosclerosis Unit, IMIBIC, Reina Sofia University Hospital, University of Cordoba, Cordoba, Spain; CIBER Fisiopatologia Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Javier A Menendez
- Molecular Oncology Group, Girona Biomedical Research Institute (IDIBGI), Girona, Spain; ProCURE (Program Against Cancer Therapeutic Resistance), Metabolism and Cancer Group, Catalan Institute of Oncology, Girona, Spain.
| | - Jorge Joven
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain; The Campus of International Excellence Southern Catalonia, Tarragona, Spain.
| |
Collapse
|
29
|
Yin X, Pang S, Huang J, Cui Y, Yan B. Genetic and Functional Sequence Variants of the SIRT3 Gene Promoter in Myocardial Infarction. PLoS One 2016; 11:e0153815. [PMID: 27078640 PMCID: PMC4831762 DOI: 10.1371/journal.pone.0153815] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Accepted: 04/04/2016] [Indexed: 11/18/2022] Open
Abstract
Coronary artery disease (CAD), including myocardial infarction (MI), is a common complex disease that is caused by atherosclerosis. Although a large number of genetic variants have been associated with CAD, only 10% of CAD cases could be explained. It has been proposed that low frequent and rare genetic variants may be main causes for CAD. SIRT3, a mitochondrial deacetylase, plays important roles in mitochondrial function and metabolism. Lack of SIRT3 in experimental animal leads to several age-related diseases, including cardiovascular diseases. Therefore, SIRT3 gene variants may contribute to the MI development. In this study, SIRT3 gene promoter was genetically and functionally analyzed in large cohorts of MI patients (n = 319) and ethnic-matched controls (n = 322). Total twenty-three DNA sequence variants (DSVs) were identified, including 10 single-nucleotide polymorphisms (SNPs). Six novel heterozygous DSVs, g.237307A>G, g.237270G>A, g.237023_25del, g.236653C>A, g.236628G>C, g.236557T>C, and two SNPs g.237030C>T (rs12293349) and g.237022C>G (rs369344513), were identified in nine MI patients, but in none of controls. Three SNPs, g.236473C>T (rs11246029), g.236380_81ins (rs71019893) and g.236370C>G (rs185277566), were more significantly frequent in MI patients than controls (P<0.05). These DSVs and SNPs, except g.236557T>C, significantly decreased the transcriptional activity of the SIRT3 gene promoter in cultured HEK-293 cells and H9c2 cells. Therefore, these DSVs identified in MI patients may change SIRT3 level by affecting the transcriptional activity of SIRT3 gene promoter, contributing to the MI development as a risk factor.
Collapse
Affiliation(s)
- Xiaoyun Yin
- Department of Medicine, Shandong University School of Medicine, Jinan, Shandong, China
| | - Shuchao Pang
- Shandong Provincial Key Laboratory of Cardiac Disease Diagnosis and Treatment, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Jian Huang
- Shandong Provincial Key Laboratory of Cardiac Disease Diagnosis and Treatment, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Yinghua Cui
- Division of Cardiology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Bo Yan
- Shandong Provincial Key Laboratory of Cardiac Disease Diagnosis and Treatment, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
- Shandong Provincial Sino-US Cooperation Research Center for Translational Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
- * E-mail: ;
| |
Collapse
|
30
|
Martin SA, DeMuth TM, Miller KN, Pugh TD, Polewski MA, Colman RJ, Eliceiri KW, Beasley TM, Johnson SC, Anderson RM. Regional metabolic heterogeneity of the hippocampus is nonuniformly impacted by age and caloric restriction. Aging Cell 2016; 15:100-10. [PMID: 26521867 PMCID: PMC4717265 DOI: 10.1111/acel.12418] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2015] [Indexed: 12/03/2022] Open
Abstract
The hippocampus is critical for cognition and memory formation and is vulnerable to age‐related atrophy and loss of function. These phenotypes are attenuated by caloric restriction (CR), a dietary intervention that delays aging. Here, we show significant regional effects in hippocampal energy metabolism that are responsive to age and CR, implicating metabolic pathways in neuronal protection. In situ mitochondrial cytochrome c oxidase activity was region specific and lower in aged mice, and the impact of age was region specific. Multiphoton laser scanning microscopy revealed region‐ and age‐specific differences in nicotinamide adenine dinucleotide (NAD)‐derived metabolic cofactors. Age‐related changes in metabolic parameters were temporally separated, with early and late events in the metabolic response to age. There was a significant regional impact of age to lower levels of PGC‐1α, a master mitochondrial regulator. Rather than reversing the impact of age, CR induced a distinct metabolic state with decreased cytochrome c oxidase activity and increased levels of NAD(P)H. Levels of hippocampal PGC‐1α were lower with CR, as were levels of GSK3β, a key regulator of PGC‐1α turnover and activity. Regional distribution and colocalization of PGC‐1α and GSK3β in mouse hippocampus was similar in monkeys. Furthermore, the impact of CR to lower levels of both PGC‐1α and GSK3β was also conserved. The studies presented here establish the hippocampus as a highly varied metabolic environment, reveal cell‐type and regional specificity in the metabolic response to age and delayed aging by CR, and suggest that PGC‐1α and GSK3β play a role in implementing the neuroprotective program induced by CR.
Collapse
Affiliation(s)
- Stephen A. Martin
- Division of Geriatrics Department of Medicine SMPH University of Wisconsin Madison WI 53705 USA
| | - Tyler M. DeMuth
- Division of Geriatrics Department of Medicine SMPH University of Wisconsin Madison WI 53705 USA
| | - Karl N. Miller
- Division of Geriatrics Department of Medicine SMPH University of Wisconsin Madison WI 53705 USA
| | - Thomas D. Pugh
- Division of Geriatrics Department of Medicine SMPH University of Wisconsin Madison WI 53705 USA
| | - Michael A. Polewski
- Division of Geriatrics Department of Medicine SMPH University of Wisconsin Madison WI 53705 USA
| | - Ricki J. Colman
- Wisconsin National Primate Research Center University of Wisconsin Madison WI 53715 USA
| | - Kevin W. Eliceiri
- Laboratory for Optical and Computational Instrumentation University of Wisconsin Madison WI 53706 USA
| | - Timothy Mark Beasley
- Department of Biostatistics University of Alabama Birmingham AL 35294 USA
- GRECC Birmingham/Atlanta Veterans Administration Hospital Birmingham AL 35294 USA
| | - Sterling C. Johnson
- Division of Geriatrics Department of Medicine SMPH University of Wisconsin Madison WI 53705 USA
- GRECC William S. Middleton Memorial Veterans Hospital Madison WI 53705 USA
| | - Rozalyn M. Anderson
- Division of Geriatrics Department of Medicine SMPH University of Wisconsin Madison WI 53705 USA
- GRECC William S. Middleton Memorial Veterans Hospital Madison WI 53705 USA
| |
Collapse
|
31
|
Albani D, Pupillo E, Bianchi E, Chierchia A, Martines R, Forloni G, Beghi E. The role of single-nucleotide variants of the energy metabolism-linked genes SIRT3, PPARGC1A and APOE in amyotrophic lateral sclerosis risk. Genes Genet Syst 2016; 91:301-309. [DOI: 10.1266/ggs.16-00023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
- Diego Albani
- Laboratory of Biology of Neurodegenerative Disorders, Department of Neuroscience, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri
| | - Elisabetta Pupillo
- Laboratory of Neurological Diseases, Department of Neuroscience, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri
| | - Elisa Bianchi
- Laboratory of Neurological Diseases, Department of Neuroscience, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri
| | - Armando Chierchia
- Laboratory of Biology of Neurodegenerative Disorders, Department of Neuroscience, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri
| | - Rosalba Martines
- Laboratory of Biology of Neurodegenerative Disorders, Department of Neuroscience, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri
| | - Gianluigi Forloni
- Laboratory of Biology of Neurodegenerative Disorders, Department of Neuroscience, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri
| | - Ettore Beghi
- Laboratory of Neurological Diseases, Department of Neuroscience, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri
| |
Collapse
|
32
|
Finkel T. The metabolic regulation of aging. Nat Med 2015; 21:1416-23. [DOI: 10.1038/nm.3998] [Citation(s) in RCA: 230] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 10/26/2015] [Indexed: 12/14/2022]
|