1
|
Salazar-Mendoza P, Miyagusuku-Cruzado G, Giusti MM, Rodriguez-Saona C. Genotypic Variation and Potential Mechanisms of Resistance against Multiple Insect Herbivores in Cranberries. J Chem Ecol 2024; 50:751-766. [PMID: 39028464 DOI: 10.1007/s10886-024-01522-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/20/2024] [Accepted: 06/11/2024] [Indexed: 07/20/2024]
Abstract
Plant genotypes often exhibit varying resistance levels to herbivores. However, the impact of this genotypic variation on resistance against multiple herbivores remains poorly understood, especially in crops undergoing recent process of domestication. To address this gap, we studied the magnitude and mechanism of resistance in 12 cranberry (Vaccinium macrocarpon) genotypes to three leaf-chewing herbivores - Sparganothis fruitworm (Sparganothis sulfureana), spotted fireworm (Choristoneura parallela), and spongy moth (Lymantria dispar) - along a domestication gradient (native 'wild' genotypes, 'early hybrid' genotypes, and 'modern hybrid' genotypes). Like cranberries, S. sulfureana and C. parallela are native to the United Sates, while L. dispar is an invasive pest. We measured the survival and growth of larvae on each genotype, as well as variation in plant performance (height and biomass) and leaf defensive chemical traits (C/N ratio, total phenolics, total proanthocyanidins, and flavonols levels) in these genotypes to elucidate potential resistance mechanisms. We found differences in C. parallela and L. dispar larval performance across genotypes, with larvae performing better on the modern hybrid genotypes, while S. sulfureana showed no differences. Morphological and chemical traits varied among genotypes, with total phenolics being the only trait correlated with C. parallela and L. dispar larval performance. Notably, the wild genotypes 'McFarlin' and 'Potter' had higher total phenolics and were more resistant to both herbivores than the modern hybrids 'Demoranville' and 'Mullica Queen.' This research contributes to a comprehensive understanding of the impact of crop domestication on multiple insect herbivores, offering insights for future breeding efforts to enhance host-plant resistance against agricultural pests.
Collapse
Affiliation(s)
- Paolo Salazar-Mendoza
- Department of Entomology and Acarology, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Piracicaba, SP, 13418-900, Brazil.
| | - Gonzalo Miyagusuku-Cruzado
- Department of Food Science and Technology, The Ohio State University, 2015 Fyffe Rd., Columbus, OH, 43210-1007, USA
| | - M Monica Giusti
- Department of Food Science and Technology, The Ohio State University, 2015 Fyffe Rd., Columbus, OH, 43210-1007, USA
| | - Cesar Rodriguez-Saona
- Department of Entomology, Rutgers University P.E Marucci Center, 125A Lake Oswego Rd., Chatsworth, NJ, 08019, USA
| |
Collapse
|
2
|
Hinshaw C, López-Uribe MM, Rosa C. Plant Virus Impacts on Yield and Plant-Pollinator Interactions Are Phylogenetically Modulated Independently of Domestication in Cucurbita spp. PHYTOPATHOLOGY 2024; 114:2182-2191. [PMID: 38842916 DOI: 10.1094/phyto-08-23-0270-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Plant defenses are conserved among closely related species, but domestication can alter host genotypes through artificial selection with potential losses in host defenses. Therefore, both domestication and host phylogenetic structure may influence plant virus infection outcomes. Here, we examined the association of phylogeny and domestication with the fitness of infected plants. We inoculated three pairs of domesticated and wild/noncultivated squash (Cucurbita spp.) with a combination of two viruses commonly found to coinfect cucurbits, zucchini yellow mosaic virus and squash mosaic virus, and recorded fitness traits related to flowers, pollination, fruit, and seed viability in the field over 2 separate years. In an additional field experiment, we recorded the relative abundance of both viruses via RT-qPCR. We found a gradient of susceptibility across the six tested lineages, and phylogenetic structure, but not domestication, contributed to differences in infection outcomes and impacts on several fitness traits, including fruit number, fruit weight, and germination. Plant virus infection also impacted the quantity and quality of floral rewards and visitation rates of specialist bee pollinators. There were no detectable differences in viral load between the six host taxa for either virus individually or the ratio of zucchini yellow mosaic virus to squash mosaic virus. Our results highlight the importance of phylogenetic structure in predicting host susceptibility to disease across wild and domesticated plants and the ability of several hosts to maintain fitness in the field despite infection. Broader consequences of plant pathogens for beneficial insects, such as pollinators, should also be considered in future research.
Collapse
Affiliation(s)
- Chauncy Hinshaw
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, PA
| | | | - Cristina Rosa
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, PA
| |
Collapse
|
3
|
Yuan X, Xu K, Yan F, Liu Z, Spetz C, Zhou H, Wang X, Jin H, Wang X, Liu Y. CRISPR/Cas9-Mediated Resistance to Wheat Dwarf Virus in Hexaploid Wheat ( Triticum aestivum L.). Viruses 2024; 16:1382. [PMID: 39339858 PMCID: PMC11436044 DOI: 10.3390/v16091382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/22/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
Wheat dwarf virus (WDV, genus Mastrevirus, family Geminiviridae) is one of the causal agents of wheat viral disease, which severely impacts wheat production in most wheat-growing regions in the world. Currently, there is little information about natural resistance against WDV in common wheat germplasms. CRISPR/Cas9 technology is being utilized to manufacture transgenic plants resistant to different diseases. In the present study, we used the CRISPR/Cas9 system targeting overlapping regions of coat protein (CP) and movement protein (MP) (referred to as CP/MP) or large intergenic region (LIR) in the wheat variety 'Fielder' to develop resistance against WDV. WDV-inoculated T1 progenies expressing Cas9 and sgRNA for CP/MP and LIR showed complete resistance against WDV and no accumulation of viral DNA compared with control plants. Mutation analysis revealed that the CP/MP and LIR targeting sites have small indels in the corresponding Cas9-positive plants. Additionally, virus inhibition and indel mutations occurred in T2 homozygous lines. Together, our work gives efficient results of the engineering of CRISPR/Cas9-mediated WDV resistance in common wheat plants, and the specific sgRNAs identified in this study can be extended to utilize the CRISPR/Cas9 system to confer resistance to WDV in other cereal crops such as barley, oats, and rye.
Collapse
Affiliation(s)
- Xiaoyu Yuan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.Y.); (K.X.); (F.Y.); (Z.L.); (H.Z.); (H.J.)
| | - Keya Xu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.Y.); (K.X.); (F.Y.); (Z.L.); (H.Z.); (H.J.)
| | - Fang Yan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.Y.); (K.X.); (F.Y.); (Z.L.); (H.Z.); (H.J.)
| | - Zhiyuan Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.Y.); (K.X.); (F.Y.); (Z.L.); (H.Z.); (H.J.)
| | - Carl Spetz
- Norwegian Institute of Bioeconomy Research, Hoegskoleveien 7, 1432 Ås, Norway;
| | - Huanbin Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.Y.); (K.X.); (F.Y.); (Z.L.); (H.Z.); (H.J.)
| | - Xiaojie Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, China;
| | - Huaibing Jin
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.Y.); (K.X.); (F.Y.); (Z.L.); (H.Z.); (H.J.)
| | - Xifeng Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.Y.); (K.X.); (F.Y.); (Z.L.); (H.Z.); (H.J.)
| | - Yan Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.Y.); (K.X.); (F.Y.); (Z.L.); (H.Z.); (H.J.)
| |
Collapse
|
4
|
Pfrieme AK, Will T, Pillen K, Stahl A. The Past, Present, and Future of Wheat Dwarf Virus Management-A Review. PLANTS (BASEL, SWITZERLAND) 2023; 12:3633. [PMID: 37896096 PMCID: PMC10609771 DOI: 10.3390/plants12203633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/29/2023] [Accepted: 10/04/2023] [Indexed: 10/29/2023]
Abstract
Wheat dwarf disease (WDD) is an important disease of monocotyledonous species, including economically important cereals. The causative pathogen, wheat dwarf virus (WDV), is persistently transmitted mainly by the leafhopper Psammotettix alienus and can lead to high yield losses. Due to climate change, the periods of vector activity increased, and the vectors have spread to new habitats, leading to an increased importance of WDV in large parts of Europe. In the light of integrated pest management, cultivation practices and the use of resistant/tolerant host plants are currently the only effective methods to control WDV. However, knowledge of the pathosystem and epidemiology of WDD is limited, and the few known sources of genetic tolerance indicate that further research is needed. Considering the economic importance of WDD and its likely increasing relevance in the coming decades, this study provides a comprehensive compilation of knowledge on the most important aspects with information on the causal virus, its vector, symptoms, host range, and control strategies. In addition, the current status of genetic and breeding efforts to control and manage this disease in wheat will be discussed, as this is crucial to effectively manage the disease under changing environmental conditions and minimize impending yield losses.
Collapse
Affiliation(s)
- Anne-Kathrin Pfrieme
- Institute for Resistance Research and Stress Tolerance, Julius Kühn Institute (JKI)—Federal Research Centre for Cultivated Plants, 06484 Quedlinburg, Germany; (T.W.); (A.S.)
| | - Torsten Will
- Institute for Resistance Research and Stress Tolerance, Julius Kühn Institute (JKI)—Federal Research Centre for Cultivated Plants, 06484 Quedlinburg, Germany; (T.W.); (A.S.)
| | - Klaus Pillen
- Institute of Agricultural and Nutritional Science, Plant Breeding, Martin-Luther-University Halle-Wittenberg, 06108 Halle (Saale), Germany;
| | - Andreas Stahl
- Institute for Resistance Research and Stress Tolerance, Julius Kühn Institute (JKI)—Federal Research Centre for Cultivated Plants, 06484 Quedlinburg, Germany; (T.W.); (A.S.)
| |
Collapse
|
5
|
Soleimani B, Lehnert H, Trebing S, Habekuß A, Ordon F, Stahl A, Will T. Identification of Markers Associated with Wheat Dwarf Virus (WDV) Tolerance/Resistance in Barley ( Hordeum vulgare ssp. vulgare) Using Genome-Wide Association Studies. Viruses 2023; 15:1568. [PMID: 37515254 PMCID: PMC10385604 DOI: 10.3390/v15071568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/05/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Wheat dwarf virus (WDV) causes an important vector transmitted virus disease, which leads to significant yield losses in barley production. Due to the fact that, at the moment, no plant protection products are approved to combat the vector Psammotettix alienus, and this disease cannot be controlled by chemical means, the use of WDV-resistant or -tolerant genotypes is the most efficient method to control and reduce the negative effects of WDV on barley growth and production. In this study, a set of 480 barley genotypes were screened to identify genotypic differences in response to WDV, and five traits were assessed under infected and noninfected conditions. In total, 32 genotypes showed resistance or tolerance to WDV. Subsequently, phenotypic data of 191 out of 480 genotypes combined with 34,408 single-nucleotide polymorphisms (SNPs) were used for a genome-wide association study to identify quantitative trait loci (QTLs) and markers linked to resistance/tolerance to WDV. Genomic regions significantly associated with WDV resistance/tolerance in barley were identified on chromosomes 3H, 4H, 5H, and 7H for traits such as relative virus titer, relative performance of total grain weight, plant height, number of ears per plant, and thousand grain weight.
Collapse
Affiliation(s)
- Behnaz Soleimani
- Institute for Resistance Research and Stress Tolerance, Julius Kühn Institute (JKI)-Federal Research Center for Cultivated Plants, Erwin-Baur-Str. 27, 06484 Quedlinburg, Germany
| | - Heike Lehnert
- Institute for Biosafety in Plant Biotechnology, Julius Kühn Institute (JKI)-Federal Research Center for Cultivated Plants, Erwin-Baur-Str. 27, 06484 Quedlinburg, Germany
| | - Sarah Trebing
- Institute for Resistance Research and Stress Tolerance, Julius Kühn Institute (JKI)-Federal Research Center for Cultivated Plants, Erwin-Baur-Str. 27, 06484 Quedlinburg, Germany
| | - Antje Habekuß
- Institute for Resistance Research and Stress Tolerance, Julius Kühn Institute (JKI)-Federal Research Center for Cultivated Plants, Erwin-Baur-Str. 27, 06484 Quedlinburg, Germany
| | - Frank Ordon
- Institute for Resistance Research and Stress Tolerance, Julius Kühn Institute (JKI)-Federal Research Center for Cultivated Plants, Erwin-Baur-Str. 27, 06484 Quedlinburg, Germany
| | - Andreas Stahl
- Institute for Resistance Research and Stress Tolerance, Julius Kühn Institute (JKI)-Federal Research Center for Cultivated Plants, Erwin-Baur-Str. 27, 06484 Quedlinburg, Germany
| | - Torsten Will
- Institute for Resistance Research and Stress Tolerance, Julius Kühn Institute (JKI)-Federal Research Center for Cultivated Plants, Erwin-Baur-Str. 27, 06484 Quedlinburg, Germany
| |
Collapse
|
6
|
Buerstmayr M, Buerstmayr H. Two major quantitative trait loci control wheat dwarf virus resistance in four related winter wheat populations. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:103. [PMID: 37027048 PMCID: PMC10082126 DOI: 10.1007/s00122-023-04349-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/16/2023] [Indexed: 05/13/2023]
Abstract
KEY MESSAGE Qwdv.ifa-6A on chromosomes 6AL and Qwdv.ifa-1B on chromosome 1B are highly effective against wheat dwarf virus and act additively when combined. Wheat dwarf virus (WDV) is among the most damaging viral pathogens. Its prevalence has increased substantially in recent years, and it is predicted to increase even further due to global warming. There are limited options to control the virus. Growing resistant cultivars would safeguard crops, but most current wheat cultivars are highly susceptible. Thus, the aim of this study was to dissect the genetic architecture of WDV resistance in resistant germplasm and to identify quantitative trait loci (QTL) to support resistance breeding. QTL mapping was conducted using four related populations comprising 168, 105, 99 and 130 recombinant inbred lines. Populations were evaluated under field conditions for three years. Natural infestation was provoked by early autumn sowing. WDV symptom severity was visually assessed at two time points in spring. QTL analysis revealed two highly significant QTL with the major QTL Qwdv.ifa-6A mapping to the long arm of chromosome 6A between markers Tdurum_contig75700_411 (601,412,152 bp) and AX-95197581 (605,868,853 bp). Qwdv.ifa-6A descends from the Dutch experimental line SVP-72017 and was of high effect in all populations, explaining up to 73.9% of the phenotypic variance. The second QTL, Qwdv.ifa-1B, mapped to chromosome 1B and is putatively associated with the 1RS.1BL translocation, which was contributed by the CIMMYT line CM-82036. Qwdv.ifa-1B explained up to 15.8% of the phenotypic variance. Qwdv.ifa-6A and Qwdv.ifa-1B are among the first identified highly effective resistance QTL and represent valuable resources for improving WDV resistance in wheat.
Collapse
Affiliation(s)
- Maria Buerstmayr
- Institute of Biotechnology in Plant Production, University of Natural Resources and Life Sciences, Vienna, Konrad Lorenz Straße 20, 3430, Tulln, Austria
| | - Hermann Buerstmayr
- Institute of Biotechnology in Plant Production, University of Natural Resources and Life Sciences, Vienna, Konrad Lorenz Straße 20, 3430, Tulln, Austria.
| |
Collapse
|
7
|
Sharaf A, Nuc P, Ripl J, Alquicer G, Ibrahim E, Wang X, Maruthi MN, Kundu JK. Transcriptome Dynamics in Triticum aestivum Genotypes Associated with Resistance against the Wheat Dwarf Virus. Viruses 2023; 15:v15030689. [PMID: 36992398 PMCID: PMC10054045 DOI: 10.3390/v15030689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/27/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
Wheat dwarf virus (WDV) is one of the most important pathogens of cereal crops worldwide. To understand the molecular mechanism of resistance, here we investigated the comparative transcriptome of wheat genotypes with different levels of resistance (Svitava and Fengyou 3) and susceptibility (Akteur) to WDV. We found a significantly higher number of differentially expressed transcripts (DETs) in the susceptible genotype than in the resistant one (e.g., Svitava). The number of downregulated transcripts was also higher in the susceptible genotype than in the resistant one (Svitava) and the opposite was true for the upregulated transcripts. Further functional analysis of gene ontology (GO) enrichment identified a total of 114 GO terms for the DETs. Of these, 64 biological processes, 28 cellular components and 22 molecular function GO terms were significantly enriched. A few of these genes appear to have a specific expression pattern related to resistance or susceptibility to WDV infection. Validation of the expression pattern by RT-qPCR showed that glycosyltransferase was significantly downregulated in the susceptible genotype compared to the resistant genotypes after WDV infection, while CYCLIN-T1-3, a regulator of CDK kinases (cyclin-dependent kinase), was upregulated. On the other hand, the expression pattern of the transcription factor (TF) MYB (TraesCS4B02G174600.2; myeloblastosis domain of transcription factor) was downregulated by WDV infection in the resistant genotypes compared to the susceptible genotype, while a large number of TFs belonging to 54 TF families were differentially expressed due to WDV infection. In addition, two transcripts (TraesCS7A02G341400.1 and TraesCS3B02G239900.1) were upregulated with uncharacterised proteins involved in transport and regulation of cell growth, respectively. Altogether, our findings showed a clear gene expression profile associated with resistance or susceptibility of wheat to WDV. In future studies, we will explore the regulatory network within the same experiment context. This knowledge will broaden not only the future for the development of virus-resistant wheat genotypes but also the future of genetic improvement of cereals for resilience and WDV-resistance breeding.
Collapse
Affiliation(s)
- Abdoallah Sharaf
- Plant Virus and Vector Interactions, Centre for Plant Virus Research, Crop Research Institute, 16106 Prague, Czech Republic; (A.S.); (P.N.); (J.R.); (G.A.); (E.I.)
| | - Przemysław Nuc
- Plant Virus and Vector Interactions, Centre for Plant Virus Research, Crop Research Institute, 16106 Prague, Czech Republic; (A.S.); (P.N.); (J.R.); (G.A.); (E.I.)
| | - Jan Ripl
- Plant Virus and Vector Interactions, Centre for Plant Virus Research, Crop Research Institute, 16106 Prague, Czech Republic; (A.S.); (P.N.); (J.R.); (G.A.); (E.I.)
| | - Glenda Alquicer
- Plant Virus and Vector Interactions, Centre for Plant Virus Research, Crop Research Institute, 16106 Prague, Czech Republic; (A.S.); (P.N.); (J.R.); (G.A.); (E.I.)
| | - Emad Ibrahim
- Plant Virus and Vector Interactions, Centre for Plant Virus Research, Crop Research Institute, 16106 Prague, Czech Republic; (A.S.); (P.N.); (J.R.); (G.A.); (E.I.)
| | - Xifeng Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| | - Midatharahally N. Maruthi
- Agriculture, Health and Environment Department, Natural Resources Institute, Medway Campus, University of Greenwich, Chatham, Kent ME4 4TB, UK;
| | - Jiban Kumar Kundu
- Plant Virus and Vector Interactions, Centre for Plant Virus Research, Crop Research Institute, 16106 Prague, Czech Republic; (A.S.); (P.N.); (J.R.); (G.A.); (E.I.)
- Correspondence: ; Tel.: +420-233-022-410
| |
Collapse
|
8
|
Pfrieme AK, Ruckwied B, Habekuß A, Will T, Stahl A, Pillen K, Ordon F. Identification and Validation of Quantitative Trait Loci for Wheat Dwarf Virus Resistance in Wheat ( Triticum spp.). FRONTIERS IN PLANT SCIENCE 2022; 13:828639. [PMID: 35498699 PMCID: PMC9047360 DOI: 10.3389/fpls.2022.828639] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/09/2022] [Indexed: 05/26/2023]
Abstract
Wheat dwarf virus (WDV) is transmitted by the leafhopper Psammotettix alienus. As a major pathogen in wheat and other cereals, WDV causes high yield losses in many European countries. Due to climate change, insect-transmitted viruses will become more important and the restrictions in the use of insecticides efficient against P. alienus renders growing of WDV resistant/tolerant varieties the only effective strategy to control WDV. So far, there is little information about the possible sources of resistance and no known information about the genome regions responsible for the resistance. In a screening for WDV resistance using artificial inoculation in gauze houses, a panel of 500 wheat accessions including cultivars, gene bank accessions, and wild relatives of wheat was phenotyped for virus titer, infection rate, as well as plant height and yield parameters relative to healthy controls of the same genotype. Additionally, 85 T. aestivum-Ae. tauschii intogression lines were tested for WDV resistance in the greenhouse. A subset of 250 hexaploid wheat accessions was genotyped with the 15k iSelect SNP Chip. By genome-wide association study (GWAS), the quantitative trait loci (QTL) for partial WDV resistance were identified. Within these studies, one cultivar was identified showing an average infection rate of only 5.7%. By analyzing single seed descent (SSD) and doubled haploid (DH) populations comprising 153 and 314 individuals for WDV resistance and by genotyping these with the 25k iSelect SNP Chip, QTL for yield per plant, thousand-grain weight, and relative virus titer were validated on chromosomes 1B, 2B, 3B, 4B, 4A, 5A, 6A, and 7A. These results will be the basis for marker-assisted selection for WDV resistance to replacing the laborious, time-consuming, and technically challenging phenotyping with WDV bearing leafhoppers.
Collapse
Affiliation(s)
- Anne-Kathrin Pfrieme
- Julius Kühn Institute (JKI) – Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Quedlinburg, Germany
| | - Britta Ruckwied
- Julius Kühn Institute (JKI) – Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Quedlinburg, Germany
| | - Antje Habekuß
- Julius Kühn Institute (JKI) – Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Quedlinburg, Germany
| | - Torsten Will
- Julius Kühn Institute (JKI) – Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Quedlinburg, Germany
| | - Andreas Stahl
- Julius Kühn Institute (JKI) – Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Quedlinburg, Germany
| | - Klaus Pillen
- Institute for Agricultural and Nutritional Sciences, Plant Breeding, Martin-Luther-University of Halle-Wittenberg, Halle (Saale), Germany
| | - Frank Ordon
- Julius Kühn Institute (JKI) – Federal Research Centre for Cultivated Plants, Quedlinburg, Germany
| |
Collapse
|
9
|
Redila CD, Prakash V, Nouri S. Metagenomics Analysis of the Wheat Virome Identifies Novel Plant and Fungal-Associated Viral Sequences. Viruses 2021; 13:2457. [PMID: 34960726 PMCID: PMC8705367 DOI: 10.3390/v13122457] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/02/2021] [Accepted: 12/04/2021] [Indexed: 01/29/2023] Open
Abstract
Wheat viruses including wheat streak mosaic virus, Triticum mosaic virus, and barley yellow dwarf virus cost substantial losses in crop yields every year. Although there have been extensive studies conducted on these known wheat viruses, currently, there is limited knowledge about all components of the wheat (Triticum aestivum L.) virome. Here, we determined the composition of the wheat virome through total RNA deep sequencing of field-collected leaf samples. Sequences were de novo assembled after removing the host reads, and BLASTx searches were conducted. In addition to the documented wheat viruses, novel plant and fungal-associated viral sequences were identified. We obtained the full genome sequence of the first umbra-like associated RNA virus tentatively named wheat umbra-like virus in cereals. Moreover, a novel bi-segmented putative virus tentatively named wheat-associated vipovirus sharing low but significant similarity with both plant and fungal-associated viruses was identified. Additionally, a new putative fungal-associated tobamo-like virus and novel putative Mitovirus were discovered in wheat samples. The discovery and characterization of novel viral sequences associated with wheat is important to determine if these putative viruses may pose a threat to the wheat industry or have the potential to be used as new biological control agents for wheat pathogens either as wild-type or recombinant viruses.
Collapse
Affiliation(s)
| | | | - Shahideh Nouri
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA; (C.D.R.); (V.P.)
| |
Collapse
|
10
|
Hao X, Wang L, Zhang X, Zhong Q, Hajano JUD, Xu L, Wu Y. A Real-Time Loop-Mediated Isothermal Amplification for Detection of the Wheat Dwarf Virus in Wheat and the Insect Vector Psammotettix alienus. PLANT DISEASE 2021; 105:4113-4120. [PMID: 34003037 DOI: 10.1094/pdis-10-20-2279-re] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Wheat dwarf virus (WDV; genus Mastrevirus, family Geminiviridae) is an economically important and widespread pathogen of cereal crops. It causes huge yield loss in wheat because of the unavailability of resistant varieties and rapid transmission by the vector leafhopper, Psammotettix alienus (Dahlb). To monitor and forecast this viral disease, an early diagnosis method is required for WDV detection in both infected plants and the virus vectors. In this study, we developed a real-time loop-mediated isothermal amplification (LAMP) assay for WDV detection. The positive sample could be detected within 28 to 32 min by following a simple, cost-effective procedure. The real-time LAMP assay showed a sensitivity of 2.7 × 105-6 copies/μl for detection and a high specificity for WDV amplification, with a similar accuracy to quantitative PCR. Furthermore, a closed-tube dye method facilitates the inspection of the LAMP reaction and avoids cross-contamination in the detection of the virus. This valuable detection assay could serve as an important tool for diagnosis and forecasting wheat dwarf disease intensity in the field.
Collapse
Affiliation(s)
- Xingan Hao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Licheng Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Xudong Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Qinrong Zhong
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Jamal-U-Ddin Hajano
- Department of Plant Pathology, Faculty of Crop Protection, Sindh Agriculture University, Tandojam 70060, Pakistan
| | - Liangsheng Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Yunfeng Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
11
|
Chovancek E, Zivcak M, Brestic M, Hussain S, Allakhverdiev SI. The different patterns of post-heat stress responses in wheat genotypes: the role of the transthylakoid proton gradient in efficient recovery of leaf photosynthetic capacity. PHOTOSYNTHESIS RESEARCH 2021; 150:179-193. [PMID: 33393064 DOI: 10.1007/s11120-020-00812-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 12/08/2020] [Indexed: 05/28/2023]
Abstract
The frequency and severity of heat waves are expected to increase in the near future, with a significant impact on physiological functions and yield of crop plants. In this study, we assessed the residual post-heat stress effects on photosynthetic responses of six diverse winter wheat (Triticum sp.) genotypes, differing in country of origin, taxonomy and ploidy (tetraploids vs. hexaploids). After 5 days of elevated temperatures (up to 38 °C), the photosynthetic parameters recorded on the first day of recovery (R1) as well as after the next 4-5 days of the recovery (R2) were compared to those of the control plants (C) grown under moderate temperatures. Based on the values of CO2 assimilation rate (A) and the maximum rates of carboxylation (VCmax) in R1, we identified that the hexaploid (HEX) and tetraploid (TET) species clearly differed in the strength of their response to heat stress. Next, the analyses of gas exchange, simultaneous measurements of PSI and PSII photochemistry and the measurements of electrochromic bandshift (ECS) have consistently shown that photosynthetic and photoprotective functions in leaves of TET genotypes were almost fully recovered in R2, whereas the recovery of photosynthetic and photoprotective functions in the HEX group in R2 was still rather low. A poor recovery was associated with an overly reduced acceptor side of photosystem I as well as high values of the electric membrane potential (Δψ component of the proton motive force, pmf) in the chloroplast. On the other hand, a good recovery of photosynthetic capacity and photoprotective functions was clearly associated with an enhanced ΔpH component of the pmf, thus demonstrating a key role of efficient regulation of proton transport to ensure buildup of the transthylakoid proton gradient needed for photosynthesis restoration after high-temperature episodes.
Collapse
Affiliation(s)
- Erik Chovancek
- Department of Plant Physiology, Slovak University of Agriculture, Nitra, Slovak Republic
| | - Marek Zivcak
- Department of Plant Physiology, Slovak University of Agriculture, Nitra, Slovak Republic.
| | - Marian Brestic
- Department of Plant Physiology, Slovak University of Agriculture, Nitra, Slovak Republic
| | - Sajad Hussain
- College of Agronomy, Sichuan Agricultural University, Chengdu, People's Republic of China
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Sichuan Agricultural University, Chengdu, People's Republic of China
| | | |
Collapse
|
12
|
Hinshaw C, Evans KC, Rosa C, López-Uribe MM. The Role of Pathogen Dynamics and Immune Gene Expression in the Survival of Feral Honey Bees. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2020.594263] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Studies of the ecoimmunology of feral organisms can provide valuable insight into how host–pathogen dynamics change as organisms transition from human-managed conditions back into the wild. Honey bees (Apis mellifera Linnaeus) offer an ideal system to investigate these questions as colonies of these social insects often escape management and establish in the wild. While managed honey bee colonies have low probability of survival in the absence of disease treatments, feral colonies commonly survive in the wild, where pathogen pressures are expected to be higher due to the absence of disease treatments. Here, we investigate the role of pathogen infections [Deformed wing virus (DWV), Black queen cell virus (BQCV), and Nosema ceranae] and immune gene expression (defensin-1, hymenoptaecin, pgrp-lc, pgrp-s2, argonaute-2, vago) in the survival of feral and managed honey bee colonies. We surveyed a total of 25 pairs of feral and managed colonies over a 2-year period (2017–2018), recorded overwintering survival, and measured pathogen levels and immune gene expression using quantitative polymerase chain reaction (qPCR). Our results showed that feral colonies had higher levels of DWV but it was variable over time compared to managed colonies. Higher pathogen levels were associated with increased immune gene expression, with feral colonies showing higher expression in five out of the six examined immune genes for at least one sampling period. Further analysis revealed that differential expression of the genes hymenoptaecin and vago increased the odds of overwintering survival in managed and feral colonies. Our results revealed that feral colonies express immune genes at higher levels in response to high pathogen burdens, providing evidence for the role of feralization in altering pathogen landscapes and host immune responses.
Collapse
|
13
|
Pouramini N, Heydarnejad J, Massumi H, Varsani A. Identification of the wild and cultivated hosts of wheat dwarf virus and oat dwarf virus in Iran. Virusdisease 2019; 30:545-550. [PMID: 31897417 PMCID: PMC6917689 DOI: 10.1007/s13337-019-00557-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 11/15/2019] [Indexed: 11/29/2022] Open
Abstract
In the last decade two mastreviruses, Wheat dwarf virus (WDV) and Oat dwarf virus (ODV) have been reported from cereal farms in Iran. In a survey, wild and cultivated hosts of these mastreviruses were studied during 2015 to 2017. Symptomatic small grain cereal samples and weed species were collected and assayed for WDV and/or ODV infection by PCR. While WDV which was detected in 139/284 (49%) of total symptomatic samples, low incidence (2%) was recorded for ODV which was detected only in slender wild oat (Avena barbata Pott ex Link) and red brome (Bromus rubens L.). In agroinfection studies, the clone of ODV infected common oat (A. sativa) and slender wild oat (A. barbata) with the low efficiency and did not infect wheat or barley. ODV was transmitted by the leafhopper Psammotettix alienus, from agroinfected common oat to healthy seedlings. The results show that, in contrast to WDV, ODV has a low incidence and a narrow host range in gramineous plants.
Collapse
Affiliation(s)
- Najmeh Pouramini
- Department of Plant Protection, College of Agriculture, Shahid Bahonar University of Kerman, Kerman, 7616914111 Iran
| | - Jahangir Heydarnejad
- Department of Plant Protection, College of Agriculture, Shahid Bahonar University of Kerman, Kerman, 7616914111 Iran
| | - Hossain Massumi
- Department of Plant Protection, College of Agriculture, Shahid Bahonar University of Kerman, Kerman, 7616914111 Iran
| | - Arvind Varsani
- The Biodesign Center of Fundamental and Applied Microbiomics, School of Life Sciences, Center for Evolution and Medicine, Arizona State University, 1001 S. McAllister Ave, Tempe, AZ 85287-5001 USA
- Structural Biology Research Unit, Department of Integrative Biomedical Sciences, University of Cape Town, Observatory, Cape Town, South Africa
| |
Collapse
|
14
|
Fülöp D, Szita É, Gerstenbrand R, Tholt G, Samu F. Consuming alternative prey does not influence the DNA detectability half-life of pest prey in spider gut contents. PeerJ 2019; 7:e7680. [PMID: 31660259 PMCID: PMC6814063 DOI: 10.7717/peerj.7680] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 08/15/2019] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Key natural enemy-pest interactions can be mapped in agricultural food webs by analysing predator gut content for the presence of a focal pest species. For this, PCR-based approaches are the most widely used methods providing the incidence of consumption of a focal pest in field sampled predators. To interpret such data the rate of prey DNA decay in the predators' gut, described by DNA detectability half-life (t 1/2), is needed. DNA decay may depend on the presence of alternative prey in the gut of generalist predators, but this effect has not been investigated in one of the major predatory arthropod groups, spiders. METHODS In a laboratory feeding experiment, we determined t 1/2 of the key cereal pest virus vector leafhopper Psammotettix alienus in the digestive tracts of its natural enemy, the spider Tibellus oblongus. We followed the fate of prey DNA in spiders which received only the focal prey as food, or as an alternative prey treatment they also received a meal of fruit flies after leafhopper consumption. After these feeding treatments, spiders were starved for variable time intervals prior to testing for leafhopper DNA in order to establish t 1/2. RESULTS We created a PCR protocol that detects P. alienus DNA in its spider predator. The protocol was further calibrated to the digestion speed of the spider by establishing DNA decay rate. Detectability limit was reached at 14 days, where c. 10% of the animals tested positive. The calculated t 1/2 = 5 days value of P. alienus DNA did not differ statistically between the treatment groups which received only the leafhopper prey or which also received fruit fly. The PCR protocol was validated in a field with known P. alienus infestation. In this applicability trial, we showed that 12.5% of field collected spiders were positive for the leafhopper DNA. We conclude that in our model system the presence of alternative prey did not influence the t 1/2 estimate of a pest species, which makes laboratory protocols more straightforward for the calibration of future field data.
Collapse
Affiliation(s)
- Dávid Fülöp
- Department of Zoology, Plant Protection Institute, Centre for Agricultural Research, Budapest, Hungary
| | - Éva Szita
- Department of Zoology, Plant Protection Institute, Centre for Agricultural Research, Budapest, Hungary
| | - Regina Gerstenbrand
- Department of Zoology, Plant Protection Institute, Centre for Agricultural Research, Budapest, Hungary
| | - Gergely Tholt
- Department of Zoology, Plant Protection Institute, Centre for Agricultural Research, Budapest, Hungary
| | - Ferenc Samu
- Department of Zoology, Plant Protection Institute, Centre for Agricultural Research, Budapest, Hungary
| |
Collapse
|
15
|
Kis A, Hamar É, Tholt G, Bán R, Havelda Z. Creating highly efficient resistance against wheat dwarf virus in barley by employing CRISPR/Cas9 system. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:1004-1006. [PMID: 30633425 PMCID: PMC6523583 DOI: 10.1111/pbi.13077] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 12/04/2018] [Accepted: 12/31/2018] [Indexed: 05/18/2023]
Affiliation(s)
- András Kis
- National Agricultural Research and Innovation CentreAgricultural Biotechnology InstituteGödöllőHungary
| | - Éva Hamar
- National Agricultural Research and Innovation CentreAgricultural Biotechnology InstituteGödöllőHungary
- Georgikon FacultyFestetics Doctoral SchoolUniversity of PannoniaKeszthelyHungary
| | - Gergely Tholt
- Plant Protection InstituteCentre for Agricultural ResearchHungarian Academy of SciencesBudapestHungary
- Department of Systematic Zoology and EcologyFaculty of ScienceInstitute of BiologyEötvös Loránd UniversityBudapestHungary
| | - Rita Bán
- Plant Protection InstituteFaculty of Agricultural and Environmental SciencesSzent István UniversityGödöllőHungary
| | - Zoltán Havelda
- National Agricultural Research and Innovation CentreAgricultural Biotechnology InstituteGödöllőHungary
| |
Collapse
|
16
|
Mao H, Chen M, Su Y, Wu N, Yuan M, Yuan S, Brestic M, Zivcak M, Zhang H, Chen Y. Comparison on Photosynthesis and Antioxidant Defense Systems in Wheat with Different Ploidy Levels and Octoploid Triticale. Int J Mol Sci 2018; 19:E3006. [PMID: 30279334 PMCID: PMC6213355 DOI: 10.3390/ijms19103006] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 09/15/2018] [Accepted: 09/25/2018] [Indexed: 12/26/2022] Open
Abstract
To investigate the evolutionary differences of wheat with different ploidy levels and octoploid Triticale, photosynthetic capacity, and antioxidant defenses system were compared within and between diploid, tetraploid and hexaploid wheat, and octoploid Triticale seedlings. The results showed that seed germination rate, chlorophyll content, and photochemical activity of photosystems, and the activities of antioxidative enzymes in hexaploid wheat and octoploid Triticale were significantly higher than in diploid and tetraploid wheat. Compared to other two wheat species and octoploid Triticale, hexaploid wheat presented lower levels of reactive oxygen species (ROS). Furthermore, we found that the levels of photosystem II reaction center protein D1, light-harvesting complex II b4 (CP29), and D subunit of photosystem I (PsaD) in diploid wheat were significantly lower compared with hexaploid wheat and octoploid Triticale. Taken together, we concluded that hexaploid wheat and octoploid Triticale have higher photosynthetic capacities and better antioxidant systems. These findings indicate that different ploidy levels of chromosome probably play an important regulatory role in photosystems and antioxidative systems of plants.
Collapse
Affiliation(s)
- Haotian Mao
- College of Life Sciences, Sichuan Agricultural University, Ya'an 625014, China.
| | - Mengying Chen
- College of Life Sciences, Sichuan Agricultural University, Ya'an 625014, China.
| | - Yanqiu Su
- College of Life Sciences, Sichuan University, Chengdu 610061, China.
| | - Nan Wu
- College of Life Sciences, Sichuan Agricultural University, Ya'an 625014, China.
| | - Ming Yuan
- College of Life Sciences, Sichuan Agricultural University, Ya'an 625014, China.
| | - Shu Yuan
- College of Resources Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| | - Marian Brestic
- Department of Plant Physiology, Slovak Agricultural University, 94976 Nitra, Slovakia.
| | - Marek Zivcak
- Department of Plant Physiology, Slovak Agricultural University, 94976 Nitra, Slovakia.
| | - Huaiyu Zhang
- College of Life Sciences, Sichuan Agricultural University, Ya'an 625014, China.
| | - Yanger Chen
- College of Life Sciences, Sichuan Agricultural University, Ya'an 625014, China.
| |
Collapse
|
17
|
Rojas MR, Macedo MA, Maliano MR, Soto-Aguilar M, Souza JO, Briddon RW, Kenyon L, Rivera Bustamante RF, Zerbini FM, Adkins S, Legg JP, Kvarnheden A, Wintermantel WM, Sudarshana MR, Peterschmitt M, Lapidot M, Martin DP, Moriones E, Inoue-Nagata AK, Gilbertson RL. World Management of Geminiviruses. ANNUAL REVIEW OF PHYTOPATHOLOGY 2018; 56:637-677. [PMID: 30149794 DOI: 10.1146/annurev-phyto-080615-100327] [Citation(s) in RCA: 146] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Management of geminiviruses is a worldwide challenge because of the widespread distribution of economically important diseases caused by these viruses. Regardless of the type of agriculture, management is most effective with an integrated pest management (IPM) approach that involves measures before, during, and after the growing season. This includes starting with resistant cultivars and virus- and vector-free transplants and propagative plants. For high value vegetables, protected culture (e.g., greenhouses and screenhouses) allows for effective management but is limited owing to high cost. Protection of young plants in open fields is provided by row covers, but other measures are typically required. Measures that are used for crops in open fields include roguing infected plants and insect vector management. Application of insecticide to manage vectors (whiteflies and leafhoppers) is the most widely used measure but can cause undesirable environmental and human health issues. For annual crops, these measures can be more effective when combined with host-free periods of two to three months. Finally, given the great diversity of the viruses, their insect vectors, and the crops affected, IPM approaches need to be based on the biology and ecology of the virus and vector and the crop production system. Here, we present the general measures that can be used in an IPM program for geminivirus diseases, specific case studies, and future challenges.
Collapse
Affiliation(s)
- Maria R Rojas
- Department of Plant Pathology, University of California, Davis, California 95616, USA; , ,
| | - Monica A Macedo
- Department of Plant Pathology, University of California, Davis, California 95616, USA; , ,
| | - Minor R Maliano
- Department of Plant Pathology, University of California, Davis, California 95616, USA; , ,
| | - Maria Soto-Aguilar
- Department of Plant Pathology, University of California, Davis, California 95616, USA; , ,
| | - Juliana O Souza
- Department of Plant Pathology, University of California, Davis, California 95616, USA; , ,
| | - Rob W Briddon
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | | | - Rafael F Rivera Bustamante
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Unidad Irapuato, Irapuato, Guanajuato, Mexico 36821
| | - F Murilo Zerbini
- Departamento de Fitopatologia/Bioagro, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| | - Scott Adkins
- US Department of Agriculture, Agricultural Research Service, Fort Pierce, Florida 34945, USA
| | - James P Legg
- International Institute of Tropical Agriculture, Dar-Es-Salaam, Tanzania
| | - Anders Kvarnheden
- Department of Plant Biology, Swedish University of Agricultural Sciences, Uppsala BioCenter and Linnean Center for Plant Biology in Uppsala, 75007 Uppsala, Sweden
| | - William M Wintermantel
- US Department of Agriculture, Agricultural Research Service, Salinas, California 93905, USA
| | - Mysore R Sudarshana
- US Department of Agriculture, Agricultural Research Service, and Department of Plant Pathology, University of California, Davis, California 95616, USA
| | - Michel Peterschmitt
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement, UMR Biologie et Génétique des Interactions Plante-Parasite, F-34398 Montpellier, France
| | - Moshe Lapidot
- Department of Vegetable Research, Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion 7505101, Israel
| | - Darren P Martin
- Computational Biology Division, Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Enrique Moriones
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora," Universidad de Málaga-Consejo Superior de Investigaciones Cientficas (IHSM-UMA-CSIC), Estación Experimental "La Mayora," Algarrobo-Costa, Málaga 29750, Spain
| | | | - Robert L Gilbertson
- Department of Plant Pathology, University of California, Davis, California 95616, USA; , ,
| |
Collapse
|
18
|
Zhang M, Chen R, Zhou X, Wu J. Monoclonal Antibody-Based Serological Detection Methods for Wheat Dwarf Virus. Virol Sin 2018; 33:173-180. [PMID: 29633082 PMCID: PMC6178110 DOI: 10.1007/s12250-018-0024-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 01/30/2018] [Indexed: 10/17/2022] Open
Abstract
Wheat dwarf disease caused by wheat dwarf virus (WDV) is currently present in wheat growing regions in China and causes serious losses in wheat yield. To develop reliable and effective serological detection methods for WDV, the coat protein (CP) gene of WDV was cloned and expressed in Escherichia coli. The purified recombinant CP protein was immunized to BALB/c mice, and four hybridoma cell lines (i.e. 18G10, 9G4, 23F4 and 22A10) secreting anti-WDV monoclonal antibodies (MAbs) were obtained through the hybridoma technique. Using the prepared MAbs, an antigen-coated-plate enzyme-linked immunosorbent assay (ACP-ELISA) and a dot-ELISA were established for detecting WDV in wheat samples. The most sensitive ACP-ELISA based on MAb 23F4 or 22A10 was able to detect WDV in 1:163,840 (w/v, g/mL) diluted WDV-infected wheat plant crude extracts. The dot-ELISA based on MAb 23F4 was the most sensitive and able to detect the virus in 1:5,120 (w/v, g/mL) diluted wheat plant crude extracts. A total of 128 wheat samples were collected from wheat growing regions in the Shaanxi and Qinghai provinces, China, and were screened for the presence of WDV using two developed serological assays. Results from the survey showed that approximately 62% of the samples were infected with WDV. PCR followed by DNA sequencing and sequence alignment validated the results from the two serological assays. Therefore, we consider that these two serological detection methods can be significantly useful for the control of WDV in China.
Collapse
Affiliation(s)
- Minghao Zhang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Rui Chen
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Xueping Zhou
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China.
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Jianxiang Wu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
19
|
Parizipour MHG, Schubert J, Behjatnia SAA, Afsharifar A, Habekuß A, Wu B. Phylogenetic analysis of Wheat dwarf virus isolates from Iran. Virus Genes 2016; 53:266-274. [PMID: 27900587 DOI: 10.1007/s11262-016-1412-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Accepted: 11/10/2016] [Indexed: 11/28/2022]
Abstract
Wheat dwarf virus (WDV) adversely affects cereal production in Asia, Europe, and North Africa. In this study, sequences of several WDV isolates from Iran which is located in the Fertile Crescent were analyzed. Analysis revealed a new geographic cluster for WDV-Wheat from Iran. Recombination analysis demonstrated the existence of several breakpoints in different regions of the viral genome. Data analysis demonstrated that WDV-Barley has an older history and lower diversity than WDV-Wheat. Sequence analysis identified a rare occasion of a co-infection of wheat with WDV-Wheat and WDV-Barley.
Collapse
Affiliation(s)
| | - Jörg Schubert
- Institute for Biosafety in Plant Biotechnology, Julius Kuehn Institute - Federal Research Institute for Cultivated Plants, Erwin-Baur-Straße 27, 06484, Quedlinburg, Germany
| | | | - Alireza Afsharifar
- Plant Virology Research Center, College of Agriculture, Shiraz University, Shiraz, Iran
| | - Antje Habekuß
- Institute for Resistance Research and Stress Tolerance, Julius Kuehn Institute - Federal Research Institute for Cultivated Plants, Erwin-Baur-Straße 27, 06484, Quedlinburg, Germany
| | - Beilei Wu
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian, Beijing, People's Republic of China.
| |
Collapse
|