1
|
Aspragkathou DD, Spilioti MG, Gkampeta A, Dalpa E, Holeva V, Papadopoulou MT, Serdari A, Dafoulis V, Zafeiriou DI, Evangeliou AE. Branched-chain amino acids as adjunctive-alternative treatment in patients with autism: a pilot study. Br J Nutr 2024; 131:73-81. [PMID: 37424284 DOI: 10.1017/s0007114523001496] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
The branched-chain amino acid (BCAA) is a group of essential amino acids that are involved in maintaining the energy balance of a human being as well as the homoeostasis of GABAergic, glutamatergic, serotonergic and dopaminergic systems. Disruption of these systems has been associated with the pathophysiology of autism while low levels of these amino acids have been discovered in patients with autism. A pilot open-label, prospective, follow-up study of the use of BCAA in children with autistic behaviour was carried out. Fifty-five children between the ages of 6 and 18 participated in the study from May 2015 to May 2018. We used a carbohydrate-free BCAA-powdered mixture containing 45·5 g of leucine, 30 g of isoleucine and 24·5 g of valine in a daily dose of 0·4 g/kg of body weight which was administered every morning. Following the initiation of BCAA administration, children were submitted to a monthly psychological examination. Beyond the 4-week mark, BCAA were given to thirty-two people (58·18 %). Six of them (10·9 %) discontinued after 4-10 weeks owing to lack of improvement. The remaining twenty-six children (47·27 %) who took BCAA for longer than 10 weeks displayed improved social behaviour and interactions, as well as improvements in their speech, cooperation, stereotypy and, principally, their hyperactivity. There were no adverse reactions reported during the course of the treatment. Although these data are preliminary, there is some evidence that BCAA could be used as adjunctive treatment to conventional therapeutic methods for the management of autism.
Collapse
Affiliation(s)
- Despoina D Aspragkathou
- Department of Pediatrics, Aristotle University of Thessaloniki, Medical School, Papageorgiou Hospital, Efkarpia, 56403Thessaloniki, Greece
| | - Martha G Spilioti
- Department of Neurology, Aristotle University of Thessaloniki, Medical School, AHEPA Hospital, Thessaloniki, Greece
| | - Anastasia Gkampeta
- Department of Pediatrics, Aristotle University of Thessaloniki, Medical School, Papageorgiou Hospital, Efkarpia, 56403Thessaloniki, Greece
| | - Efterpi Dalpa
- Department of Pediatrics, Aristotle University of Thessaloniki, Medical School, Papageorgiou Hospital, Efkarpia, 56403Thessaloniki, Greece
| | - Vasiliki Holeva
- Psychiatric Clinic, Papageorgiou Hospital, Aristotle University of Thessaloniki, Medical School, Thessaloniki, Greece
| | - Maria T Papadopoulou
- Department of Pediatrics, Aristotle University of Thessaloniki, Medical School, Papageorgiou Hospital, Efkarpia, 56403Thessaloniki, Greece
| | - Aspasia Serdari
- Psychiatric Clinic, University Hospital of Alexandroupolis, Thrace University, Medical School, Alexandroupolis, Greece
| | - Vaios Dafoulis
- Psychiatric Clinic of the Hippokration Hospital, Thessaloniki, Greece
| | - Dimitrios I Zafeiriou
- Department of Pediatrics, Aristotle University of Thessaloniki, Medical School, Hippokration Hospital, Thessaloniki, Greece
| | - Athanasios E Evangeliou
- Department of Pediatrics, Aristotle University of Thessaloniki, Medical School, Papageorgiou Hospital, Efkarpia, 56403Thessaloniki, Greece
| |
Collapse
|
2
|
Wyatt LE, Hewan PA, Hogeveen J, Spreng RN, Turner GR. Exploration versus exploitation decisions in the human brain: A systematic review of functional neuroimaging and neuropsychological studies. Neuropsychologia 2024; 192:108740. [PMID: 38036246 DOI: 10.1016/j.neuropsychologia.2023.108740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 10/15/2023] [Accepted: 11/21/2023] [Indexed: 12/02/2023]
Abstract
Thoughts and actions are often driven by a decision to either explore new avenues with unknown outcomes, or to exploit known options with predictable outcomes. Yet, the neural mechanisms underlying this exploration-exploitation trade-off in humans remain poorly understood. This is attributable to variability in the operationalization of exploration and exploitation as psychological constructs, as well as the heterogeneity of experimental protocols and paradigms used to study these choice behaviours. To address this gap, here we present a comprehensive review of the literature to investigate the neural basis of explore-exploit decision-making in humans. We first conducted a systematic review of functional magnetic resonance imaging (fMRI) studies of exploration-versus exploitation-based decision-making in healthy adult humans during foraging, reinforcement learning, and information search. Eleven fMRI studies met inclusion criterion for this review. Adopting a network neuroscience framework, synthesis of the findings across these studies revealed that exploration-based choice was associated with the engagement of attentional, control, and salience networks. In contrast, exploitation-based choice was associated with engagement of default network brain regions. We interpret these results in the context of a network architecture that supports the flexible switching between externally and internally directed cognitive processes, necessary for adaptive, goal-directed behaviour. To further investigate potential neural mechanisms underlying the exploration-exploitation trade-off we next surveyed studies involving neurodevelopmental, neuropsychological, and neuropsychiatric disorders, as well as lifespan development, and neurodegenerative diseases. We observed striking differences in patterns of explore-exploit decision-making across these populations, again suggesting that these two decision-making modes are supported by independent neural circuits. Taken together, our review highlights the need for precision-mapping of the neural circuitry and behavioural correlates associated with exploration and exploitation in humans. Characterizing exploration versus exploitation decision-making biases may offer a novel, trans-diagnostic approach to assessment, surveillance, and intervention for cognitive decline and dysfunction in normal development and clinical populations.
Collapse
Affiliation(s)
- Lindsay E Wyatt
- Department of Psychology, York University, Toronto, ON, Canada
| | - Patrick A Hewan
- Department of Psychology, York University, Toronto, ON, Canada
| | - Jeremy Hogeveen
- Department of Psychology, The University of New Mexico, Albuquerque, NM, USA
| | - R Nathan Spreng
- Montréal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montréal, QC, H3A 2B4, Canada; Department of Psychology, McGill University, Montréal, QC, Canada; Department of Psychiatry, McGill University, Montréal, QC, Canada; McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, QC, Canada.
| | - Gary R Turner
- Department of Psychology, York University, Toronto, ON, Canada.
| |
Collapse
|
3
|
Pouretemad HR, Sadeghi S, Badv RS, Brand S. Differentiating Post-Digital Nannying Autism Syndrome from Autism Spectrum Disorders in Young Children: A Comparative Cross-Sectional Study. J Clin Med 2022; 11:jcm11226786. [PMID: 36431264 PMCID: PMC9693544 DOI: 10.3390/jcm11226786] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/04/2022] [Accepted: 11/10/2022] [Indexed: 11/19/2022] Open
Abstract
Excessive exposure of young children to digital devices has increased in recent years. Much research has shown that early excessive screentime is associated with autistic-like symptoms. This study aimed to differentiate children with Post-Digital Nannying Autism Syndrome (PDNAS) from children with autism spectrum disorders (ASD) and typically developing children (TDC), both behaviorally and cognitively. This study is comparative and cross-sectional and included three groups of children. The first group consisted of 15 young children with subthreshold autism symptoms. They had not received a formal diagnosis of ASD and had been exposed to digital devices for more than half of their waking time. The second group consisted of 15 young children with ASD, and the third group consisted of 15 young TDC. A lifestyle checklist, a modified checklist for autism in toddlers (M-CHAT), a behavioral flexibility rating scale-revised (BFRS-R), the Gilliam autism rating scale (GARS-2), and a behavior rating inventory of executive functioning-preschool version (BRIEF-P) were used to compare the three groups. The results showed that executive functions and behavioral flexibility were more impaired in children with ASD than in children with PDNAS and in TDC. Also, we found that there was no significant difference in the severity of autism symptoms between the children with ASD and the children with PDNAS. Early excessive exposure to digital devices may cause autism-like symptoms in children (PDNAS). Children with PDNAS are different from children with ASD in executive functions and behavioral flexibility. Further research is needed in this area.
Collapse
Affiliation(s)
- Hamid Reza Pouretemad
- Institute for Cognitive and Brain Sciences, Shahid Beheshti University, Tehran 19839-69411, Iran
- Center of Excellence in Cognitive Neuropsychology, Shahid Beheshti University, Tehran 19839-69411, Iran
- Correspondence: (H.R.P.); (S.S.); (S.B.)
| | - Saeid Sadeghi
- Institute for Cognitive and Brain Sciences, Shahid Beheshti University, Tehran 19839-69411, Iran
- Center of Excellence in Cognitive Neuropsychology, Shahid Beheshti University, Tehran 19839-69411, Iran
- Department of Pediatrics, Children’s Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran 14166-34793, Iran
- Correspondence: (H.R.P.); (S.S.); (S.B.)
| | - Reza Shervin Badv
- Department of Pediatrics, Children’s Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran 14166-34793, Iran
| | - Serge Brand
- Center of Affective, Stress and Sleep Disorders (ZASS), Psychiatric Clinics (UPK), University of Basel, 4002 Basel, Switzerland
- Division of Sport Science and Psychosocial Health, Department of Sport, Faculty of Medicine, Exercise and Health, University of Basel, 4002 Basel, Switzerland
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah 67158-47141, Iran
- Substance Abuse Prevention Research Center, Kermanshah University of Medical Sciences, Kermanshah 67158-47141, Iran
- Department of Psychiatric, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 14166-34793, Iran
- Correspondence: (H.R.P.); (S.S.); (S.B.)
| |
Collapse
|
4
|
Use of selective serotonin and norepinephrine reuptake inhibitors (SNRIs) in the treatment of autism spectrum disorder (ASD), comorbid psychiatric disorders and ASD-associated symptoms: a clinical review. CNS Spectr 2022; 27:290-297. [PMID: 33280640 DOI: 10.1017/s109285292000214x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
It is challenging to treat symptoms of autism spectrum disorder (ASD), comorbid psychiatric disorders and ASD-associated symptoms. Some of the commonly used medications to treat these can, and frequently do have serious adverse side effects. Therefore, it is important to identify medications that are effective and with fewer side effects and negative outcomes. In this review, we looked at current evidence available for using the serotonin and norepinephrine reuptake inhibitors (SNRIs) class of medications in treating some of these often difficult to treat symptoms and behaviors. An extensive literature search was conducted using EBSCO.host. Our search algorithm identified 130 articles, 6 of which were deemed to meet criteria for the purpose of this review. Each of these six articles was independently reviewed and critically appraised. As a prototype of the SNRIs family, venlafaxine was found to be a useful adjuvant in children and adults with ASD for the treatment of self-injurious behaviors, aggression, and ADHD symptoms when used in doses lower than its antidepressant dosage. However, duloxetine was not found to show any added benefit in treatment of any of the comorbid symptoms and behaviors in ASD when compared to other antidepressants. On the other hand, milnacipran was reported to produce improvements in impulsivity, hyperactivity symptoms, and social functioning through reduction of inattention of ADHD when comorbid with ASD. Overall, SNRIs were shown variable effectiveness in treatment of these comorbid symptoms and behaviors in ASD.
Collapse
|
5
|
Islam KUS, Meli N, Blaess S. The Development of the Mesoprefrontal Dopaminergic System in Health and Disease. Front Neural Circuits 2021; 15:746582. [PMID: 34712123 PMCID: PMC8546303 DOI: 10.3389/fncir.2021.746582] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 09/10/2021] [Indexed: 12/18/2022] Open
Abstract
Midbrain dopaminergic neurons located in the substantia nigra and the ventral tegmental area are the main source of dopamine in the brain. They send out projections to a variety of forebrain structures, including dorsal striatum, nucleus accumbens, and prefrontal cortex (PFC), establishing the nigrostriatal, mesolimbic, and mesoprefrontal pathways, respectively. The dopaminergic input to the PFC is essential for the performance of higher cognitive functions such as working memory, attention, planning, and decision making. The gradual maturation of these cognitive skills during postnatal development correlates with the maturation of PFC local circuits, which undergo a lengthy functional remodeling process during the neonatal and adolescence stage. During this period, the mesoprefrontal dopaminergic innervation also matures: the fibers are rather sparse at prenatal stages and slowly increase in density during postnatal development to finally reach a stable pattern in early adulthood. Despite the prominent role of dopamine in the regulation of PFC function, relatively little is known about how the dopaminergic innervation is established in the PFC, whether and how it influences the maturation of local circuits and how exactly it facilitates cognitive functions in the PFC. In this review, we provide an overview of the development of the mesoprefrontal dopaminergic system in rodents and primates and discuss the role of altered dopaminergic signaling in neuropsychiatric and neurodevelopmental disorders.
Collapse
Affiliation(s)
- K Ushna S Islam
- Neurodevelopmental Genetics, Institute of Reconstructive Neurobiology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Norisa Meli
- Neurodevelopmental Genetics, Institute of Reconstructive Neurobiology, Medical Faculty, University of Bonn, Bonn, Germany.,Institute of Neuropathology, Section for Translational Epilepsy Research, Medical Faculty, University of Bonn, Bonn, Germany
| | - Sandra Blaess
- Neurodevelopmental Genetics, Institute of Reconstructive Neurobiology, Medical Faculty, University of Bonn, Bonn, Germany
| |
Collapse
|
6
|
Crawley D, Zhang L, Jones EJH, Ahmad J, Oakley B, San José Cáceres A, Charman T, Buitelaar JK, Murphy DGM, Chatham C, den Ouden H, Loth E. Modeling flexible behavior in childhood to adulthood shows age-dependent learning mechanisms and less optimal learning in autism in each age group. PLoS Biol 2020; 18:e3000908. [PMID: 33108370 PMCID: PMC7591042 DOI: 10.1371/journal.pbio.3000908] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 09/22/2020] [Indexed: 12/28/2022] Open
Abstract
Flexible behavior is critical for everyday decision-making and has been implicated in restricted, repetitive behaviors (RRB) in autism spectrum disorder (ASD). However, how flexible behavior changes developmentally in ASD remains largely unknown. Here, we used a developmental approach and examined flexible behavior on a probabilistic reversal learning task in 572 children, adolescents, and adults (ASD N = 321; typical development [TD] N = 251). Using computational modeling, we quantified latent variables that index mechanisms underlying perseveration and feedback sensitivity. We then assessed these variables in relation to diagnosis, developmental stage, core autism symptomatology, and associated psychiatric symptoms. Autistic individuals showed on average more perseveration and less feedback sensitivity than TD individuals, and, across cases and controls, older age groups showed more feedback sensitivity than younger age groups. Computational modeling revealed that dominant learning mechanisms underpinning flexible behavior differed across developmental stages and reduced flexible behavior in ASD was driven by less optimal learning on average within each age group. In autistic children, perseverative errors were positively related to anxiety symptoms, and in autistic adults, perseveration (indexed by both task errors and model parameter estimates) was positively related to RRB. These findings provide novel insights into reduced flexible behavior in relation to clinical symptoms in ASD.
Collapse
Affiliation(s)
- Daisy Crawley
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
| | - Lei Zhang
- Institute of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Neuropsychopharmacology and Biopsychology Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Vienna, Austria
- F. Hoffmann La Roche, Innovation Center Basel, Basel, Switzerland
| | - Emily J. H. Jones
- Centre for Brain and Cognitive Development, Birkbeck, University of London, London, United Kingdom
| | - Jumana Ahmad
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
- Department of Psychology, Social Work and Counselling, University of Greenwich, London, United Kingdom
| | - Bethany Oakley
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
| | - Antonia San José Cáceres
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
- Instituto de Investigación Sanitaria Gregorio Marañón, Departamento de Psiquiatría del Niño y del Adolescente, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Tony Charman
- Department of Psychology, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
- South London and Maudsley NHS Foundation Trust (SLaM), London, United Kingdom
| | - Jan K. Buitelaar
- Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, the Netherlands
- Department of Cognitive Neuroscience, Radboud University Nijmegen Medical Center, Nijmegen, the Netherlands
- Karakter Child and Adolescent Psychiatry University Centre, Nijmegen, the Netherlands
| | - Declan G. M. Murphy
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
- South London and Maudsley NHS Foundation Trust (SLaM), London, United Kingdom
- Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
| | | | - Hanneke den Ouden
- Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, the Netherlands
| | - Eva Loth
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
- Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
| | | |
Collapse
|
7
|
Chatterjee M, Singh P, Xu J, Lombroso PJ, Kurup PK. Inhibition of striatal-enriched protein tyrosine phosphatase (STEP) activity reverses behavioral deficits in a rodent model of autism. Behav Brain Res 2020; 391:112713. [PMID: 32461127 PMCID: PMC7346720 DOI: 10.1016/j.bbr.2020.112713] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/09/2020] [Accepted: 05/15/2020] [Indexed: 02/06/2023]
Abstract
Autism spectrum disorders (ASDs) are highly prevalent childhood illnesses characterized by impairments in communication, social behavior, and repetitive behaviors. Studies have found aberrant synaptic plasticity and neuronal connectivity during the early stages of brain development and have suggested that these contribute to an increased risk for ASD. STEP is a protein tyrosine phosphatase that regulates synaptic plasticity and is implicated in several cognitive disorders. Here we test the hypothesis that STEP may contribute to some of the aberrant behaviors present in the VPA-induced mouse model of ASD. In utero VPA exposure of pregnant dams results in autistic-like behavior in the pups, which is associated with a significant increase in the STEP expression in the prefrontal cortex. The elevated STEP protein levels are correlated with increased dephosphorylation of STEP substrates GluN2B, Pyk2 and ERK, suggesting upregulated STEP activity. Moreover, pharmacological inhibition of STEP rescues the sociability, repetitive and abnormal anxiety phenotypes commonly associated with ASD. These data suggest that STEP may play a role in the VPA model of ASD and STEP inhibition may have a potential therapeutic benefit in this model.
Collapse
Affiliation(s)
- Manavi Chatterjee
- Child Study Center, Yale University, 230 South Frontage Rd, New Haven, CT 06520, United States; Department of Pharmacology, Yale University, 333 Cedar Street, New Haven, CT 06520, United States.
| | - Priya Singh
- Child Study Center, Yale University, 230 South Frontage Rd, New Haven, CT 06520, United States
| | - Jian Xu
- Child Study Center, Yale University, 230 South Frontage Rd, New Haven, CT 06520, United States; Department of Psychiatry, Yale University, 333 Cedar Street, New Haven, CT 06520, United States
| | - Paul J Lombroso
- Child Study Center, Yale University, 230 South Frontage Rd, New Haven, CT 06520, United States; Department of Psychiatry, Yale University, 333 Cedar Street, New Haven, CT 06520, United States; Department of Neuroscience, Yale University, 333 Cedar Street, New Haven, CT 06520, United States
| | - Pradeep K Kurup
- Child Study Center, Yale University, 230 South Frontage Rd, New Haven, CT 06520, United States; Department of Surgery, University of Alabama at Birmingham, 1900 University Blvd, Birmingham, AL 35233, United States.
| |
Collapse
|
8
|
Behavioral and Neuropsychological Evaluation of Executive Functions in Children with Autism Spectrum Disorder in the Gulf Region. Brain Sci 2020; 10:brainsci10020120. [PMID: 32098341 PMCID: PMC7071509 DOI: 10.3390/brainsci10020120] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/08/2020] [Accepted: 02/14/2020] [Indexed: 11/21/2022] Open
Abstract
This study examined the executive functioning abilities and development profiles of children with autism spectrum disorder (ASD). The participants were 119 children with ASD and 30 typically developing children (age range: 6–12 years) who were recruited from three Gulf states. The findings revealed executive functioning deficits in the ASD population when compared to the normative data or to those children without ASD. However, not all the forms of executive functioning were found to be impaired. Age-related differences in the patterns of performance on the utilized measures of executive functioning were also identified. The overall findings provide valuable information regarding the different components of the executive functions, which may prove useful in relation to the development of assessment protocols for ASD.
Collapse
|
9
|
No Association between the rs1799836 Polymorphism of the Monoamine Oxidase B Gene and the Risk of Autism Spectrum Disorders in the Kazakhstani Population. DISEASE MARKERS 2019; 2019:2846394. [PMID: 31275445 PMCID: PMC6589232 DOI: 10.1155/2019/2846394] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/29/2019] [Accepted: 05/12/2019] [Indexed: 11/18/2022]
Abstract
Autism spectrum disorders (ASDs) are heterogeneous diseases that are triggered by a number of environmental and genetic factors. The aim of the current study was to investigate an association of the rs1799836 genetic variant of the neurotransmitter-related gene MAOB with ASDs. In total, 262 patients diagnosed with ASDs and their 126 healthy siblings were included in the present study. All individuals represented a Kazakhstani population. The distributions of the rs1799836 genotype were in accordance with the Hardy-Weinberg equilibrium among both cases and controls. No statistically significant differences were found in the allelic distributions of this polymorphism between ASD and control subjects (A/G: for males OR = 1.11, 95% 0.59-2.06, p = 0.75; for females OR = 1.14, 95% 0.70-1.86, p = 0.76). However, the increased score in the overall CARS was significantly associated with the A allele of rs1799836 MAOB for females (OR = 2.31, 95% 1.06-5.04, p = 0.03). The obtained results suggest that the rs1799836 polymorphism of the MAOB gene may have little contribution to the development of ASDs but may be involved in pathways contributing to ASD symptom severity in females. Further large-scale investigations are required to uncover possible relationships between rs1799836 MAOB and ASD progression in a gender-specific manner and their possible application as a therapeutic target.
Collapse
|
10
|
Cortical interneuron function in autism spectrum condition. Pediatr Res 2019; 85:146-154. [PMID: 30367159 DOI: 10.1038/s41390-018-0214-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 10/11/2018] [Accepted: 10/15/2018] [Indexed: 12/28/2022]
Abstract
Cortical interneurons (INs) are a diverse group of neurons that project locally and shape the function of neural networks throughout the brain. Multiple lines of evidence suggest that a proper balance of glutamate and GABA signaling is essential for both the proper function and development of the brain. Dysregulation of this system may lead to neurodevelopmental disorders, including autism spectrum condition (ASC). We evaluate the development and function of INs in rodent and human models and examine how neurodevelopmental dysfunction may produce core symptoms of ASC. Finding common physiological mechanisms that underlie neurodevelopmental disorders may lead to novel pharmacological targets and candidates that could improve the cognitive and emotional symptoms associated with ASC.
Collapse
|
11
|
London EB. Neuromodulation and a Reconceptualization of Autism Spectrum Disorders: Using the Locus Coeruleus Functioning as an Exemplar. Front Neurol 2018; 9:1120. [PMID: 30619071 PMCID: PMC6305710 DOI: 10.3389/fneur.2018.01120] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 12/06/2018] [Indexed: 12/27/2022] Open
Abstract
The Autism Spectrum Disorders (ASD) are a heterogeneous group of developmental disorders. Although, ASD can be reliably diagnosed, the etiology, pathophysiology, and treatment targets remain poorly characterized. While there are many atypical findings in anatomy, genetics, connectivity, and other biologic parameters, there remains no discreet hypothesis to explain the core signs as well as the very frequent comorbidities. Due to this, designing targets for treatments can only be done by assuming each symptom is a result of a discreet abnormality which is likely not the case. Neuronal circuity remains a major focus of research but rarely taking into account the functioning of the brain is highly dependent on various systems, including the neuromodulatory substances originating in the midbrain. A hypothesis is presented which explores the possibility of explaining many of the symptoms found in ASD in terms of inefficient neuromodulation using the functioning of the locus coeruleus and norepinephrine (LC/NE) as exemplars. The basic science of LC/NE is reviewed. Several functions found to be impaired in ASD including learning, attention, sensory processing, emotional regulation, autonomic functioning, adaptive and repetitive behaviors, sleep, language acquisition, initiation, and prompt dependency are examined in terms of the functioning of the LC/NE system. Suggestions about possible treatment directions are explored.
Collapse
Affiliation(s)
- Eric B. London
- Institute for Basic Research in Developmental Disabilities, Staten Island, NY, United States
| |
Collapse
|
12
|
Scott H, Phillips T, Stuart G, Rogers M, Steinkraus B, Grant S, Case C. Preeclamptic placentae release factors that damage neurons: implications for foetal programming of disease. Neuronal Signal 2018; 2:NS20180139. [PMID: 32714596 PMCID: PMC7363326 DOI: 10.1042/ns20180139] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 09/03/2018] [Accepted: 09/18/2018] [Indexed: 12/14/2022] Open
Abstract
Prenatal development is a critical period for programming of neurological disease. Preeclampsia, a pregnancy complication involving oxidative stress in the placenta, has been associated with long-term health implications for the child, including an increased risk of developing schizophrenia and autism spectrum disorders in later life. To investigate if molecules released by the placenta may be important mediators in foetal programming of the brain, we analysed if placental tissue delivered from patients with preeclampsia secreted molecules that could affect cortical cells in culture. Application of culture medium conditioned by preeclamptic placentae to mixed cortical cultures caused changes in neurons and astrocytes that were related to key changes observed in brains of patients with schizophrenia and autism, including effects on dendrite lengths, astrocyte number as well as on levels of glutamate and γ-aminobutyric acid receptors. Treatment of the placental explants with an antioxidant prevented neuronal abnormalities. Furthermore, we identified that bidirectional communication between neurons and astrocytes, potentially via glutamate, is required to produce the effects of preeclamptic placenta medium on cortical cells. Analysis of possible signalling molecules in the placenta-conditioned medium showed that the secretion profile of extracellular microRNAs, small post-transcriptional regulators, was altered in preeclampsia and partially rescued by antioxidant treatment of the placental explants. Predicted targets of these differentially abundant microRNAs were linked to neurodevelopment and the placenta. The present study provides further evidence that the diseased placenta may release factors that damage cortical cells and suggests the possibility of targeted antioxidant treatment of the placenta to prevent neurodevelopmental disorders.
Collapse
Affiliation(s)
- Hannah Scott
- School of Clinical Sciences, University of Bristol, Learning & Research Building, Southmead Hospital, Bristol BS10 5NB, U.K
- UK Dementia Research Institute, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff CF24 4HQ, U.K
| | - Tom J. Phillips
- School of Clinical Sciences, University of Bristol, Learning & Research Building, Southmead Hospital, Bristol BS10 5NB, U.K
- UK Dementia Research Institute, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff CF24 4HQ, U.K
| | - Greer C. Stuart
- Department of Obstetrics, Southmead Hospital, Bristol BS10 5NB, U.K
| | - Mark F. Rogers
- Intelligent Systems Laboratory, University of Bristol, Merchant Venturers Building, Woodland Road, Bristol BS8 1UB, U.K
| | - Bruno R. Steinkraus
- Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, U.K
| | - Simon Grant
- Department of Obstetrics, Southmead Hospital, Bristol BS10 5NB, U.K
| | - C. Patrick Case
- School of Clinical Sciences, University of Bristol, Learning & Research Building, Southmead Hospital, Bristol BS10 5NB, U.K
| |
Collapse
|
13
|
Lombardi VC, De Meirleir KL, Subramanian K, Nourani SM, Dagda RK, Delaney SL, Palotás A. Nutritional modulation of the intestinal microbiota; future opportunities for the prevention and treatment of neuroimmune and neuroinflammatory disease. J Nutr Biochem 2018; 61:1-16. [PMID: 29886183 PMCID: PMC6195483 DOI: 10.1016/j.jnutbio.2018.04.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 04/11/2018] [Accepted: 04/13/2018] [Indexed: 01/09/2023]
Abstract
The gut-brain axis refers to the bidirectional communication between the enteric nervous system and the central nervous system. Mounting evidence supports the premise that the intestinal microbiota plays a pivotal role in its function and has led to the more common and perhaps more accurate term gut-microbiota-brain axis. Numerous studies have identified associations between an altered microbiome and neuroimmune and neuroinflammatory diseases. In most cases, it is unknown if these associations are cause or effect; notwithstanding, maintaining or restoring homeostasis of the microbiota may represent future opportunities when treating or preventing these diseases. In recent years, several studies have identified the diet as a primary contributing factor in shaping the composition of the gut microbiota and, in turn, the mucosal and systemic immune systems. In this review, we will discuss the potential opportunities and challenges with respect to modifying and shaping the microbiota through diet and nutrition in order to treat or prevent neuroimmune and neuroinflammatory disease.
Collapse
Affiliation(s)
- Vincent C Lombardi
- Nevada Center for Biomedical Research, University of Nevada, Reno, 1664 N. Virginia St. MS 0552, Reno, NV, 89557, USA; University of Nevada, Reno, School of Medicine, Department of Pathology, 1664 N. Virginia St. MS 0357, Reno, NV, 89557, USA.
| | - Kenny L De Meirleir
- Nevada Center for Biomedical Research, University of Nevada, Reno, 1664 N. Virginia St. MS 0552, Reno, NV, 89557, USA.
| | - Krishnamurthy Subramanian
- Nevada Center for Biomedical Research, University of Nevada, Reno, 1664 N. Virginia St. MS 0552, Reno, NV, 89557, USA.
| | - Sam M Nourani
- University of Nevada, Reno, School of Medicine, Department of Internal Medicine, 1664 N. Virginia St. MS 0357, Reno, NV, 89557, USA; Advanced Therapeutic, General Gastroenterology & Hepatology Digestive Health Associates, Reno, NV, USA.
| | - Ruben K Dagda
- University of Nevada, Reno, School of Medicine, Department of Pharmacology, 1664 N. Virginia St. MS 0318, Reno, NV, 89557, USA.
| | | | - András Palotás
- Kazan Federal University, Institute of Fundamental Medicine and Biology, (Volga Region) 18 Kremlyovskaya St., Kazan, 420008, Republic of Tatarstan, Russian Federation; Asklepios-Med (private medical practice and research center), Kossuth Lajos sgt. 23, Szeged, H-6722, Hungary.
| |
Collapse
|
14
|
Gliga T, Smith TJ, Likely N, Charman T, Johnson MH. Early Visual Foraging in Relationship to Familial Risk for Autism and Hyperactivity/Inattention. J Atten Disord 2018; 22:839-847. [PMID: 26637842 DOI: 10.1177/1087054715616490] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Information foraging is atypical in both autism spectrum disorders (ASDs) and ADHD; however, while ASD is associated with restricted exploration and preference for sameness, ADHD is characterized by hyperactivity and increased novelty seeking. Here, we ask whether similar biases are present in visual foraging in younger siblings of children with a diagnosis of ASD with or without additional high levels of hyperactivity and inattention. METHOD Fifty-four low-risk controls (LR) and 50 high-risk siblings (HR) took part in an eye-tracking study at 8 and 14 months and at 3 years of age. RESULTS At 8 months, siblings of children with ASD and low levels of hyperactivity/inattention (HR/ASD-HI) were more likely to return to previously visited areas in the visual scene than were LR and siblings of children with ASD and high levels of hyperactivity/inattention (HR/ASD+HI). CONCLUSION We show that visual foraging is atypical in infants at-risk for ASD. We also reveal a paradoxical effect, in that additional family risk for ADHD core symptoms mitigates the effect of ASD risk on visual information foraging.
Collapse
Affiliation(s)
- Teodora Gliga
- 1 Centre for Brain and Cognitive Development, Birkbeck, University of London, UK
| | - Tim J Smith
- 1 Centre for Brain and Cognitive Development, Birkbeck, University of London, UK
| | - Noreen Likely
- 1 Centre for Brain and Cognitive Development, Birkbeck, University of London, UK
| | - Tony Charman
- 2 Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - Mark H Johnson
- 1 Centre for Brain and Cognitive Development, Birkbeck, University of London, UK
| |
Collapse
|
15
|
Scherder R, Kant N, Wolf E, Pijnenburg ACM, Scherder E. Pain and Cognition in Multiple Sclerosis. PAIN MEDICINE 2018; 18:1987-1998. [PMID: 28340237 DOI: 10.1093/pm/pnw290] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Objective The goal of the present study was to examine the relationship between pain and cognition in patients with multiple sclerosis. Design Cross-sectional. Setting Nursing home and personal environment of the investigators. Subjects Two groups of participants were included: 91 patients with multiple sclerosis and 80 matched control participants. Methods The level of pain was measured by the following pain scales: Number of Words Chosen-Affective, Colored Analogue Scale for pain intensity and suffering from pain, and the Faces Pain Scale. Mood was tested by administering the Beck Depression Inventory and the Symptom Check List-90 anxiety and depression subscale. Global cognitive functioning was assessed by the Mini Mental State Examination. Memory and executive functions were assessed by several neuropsychological tests. Results Multiple sclerosis (MS) patients scored significantly lower than control participants on the majority of the neuropsychological tests. The MS patients experienced more pain compared with control participants, despite the fact that they were taking significantly more pain medication. No significant correlation was observed between cognition and pain in MS patients. Verbal working memory explained 10% of pain intensity (trend). Mood appeared to be a significant predictor of pain in patients with multiple sclerosis. Conclusion The lack of a relationship between cognition and pain might be explained by the fact that, compared with control participants, patients with multiple sclerosis activate other non-pain-related areas to perform executive functions and memory tasks.
Collapse
Affiliation(s)
- R Scherder
- Department of Clinical Neuropsychology, VU University, Amsterdam, The Netherlands
| | - N Kant
- Nieuw Unicum, Zandvoort, The Netherlands
| | - E Wolf
- Department of Clinical Neuropsychology, VU University, Amsterdam, The Netherlands
| | - A C M Pijnenburg
- Department of Orthopaedics, Amstelland Hospital, Amstelveen, The Netherlands
| | - E Scherder
- Department of Clinical Neuropsychology, VU University, Amsterdam, The Netherlands
| |
Collapse
|
16
|
Sanctuary MR, Kain JN, Angkustsiri K, German JB. Dietary Considerations in Autism Spectrum Disorders: The Potential Role of Protein Digestion and Microbial Putrefaction in the Gut-Brain Axis. Front Nutr 2018; 5:40. [PMID: 29868601 PMCID: PMC5968124 DOI: 10.3389/fnut.2018.00040] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 04/30/2018] [Indexed: 12/13/2022] Open
Abstract
Children with autism spectrum disorders (ASD), characterized by a range of behavioral abnormalities and social deficits, display high incidence of gastrointestinal (GI) co-morbidities including chronic constipation and diarrhea. Research is now increasingly able to characterize the “fragile gut” in these children and understand the role that impairment of specific GI functions plays in the GI symptoms associated with ASD. This mechanistic understanding is extending to the interactions between diet and ASD, including food structure and protein digestive capacity in exacerbating autistic symptoms. Children with ASD and gut co-morbidities exhibit low digestive enzyme activity, impaired gut barrier integrity and the presence of antibodies specific for dietary proteins in the peripheral circulation. These findings support the hypothesis that entry of dietary peptides from the gut lumen into the vasculature are associated with an aberrant immune response. Furthermore, a subset of children with ASD exhibit high concentrations of metabolites originating from microbial activity on proteinaceous substrates. Taken together, the combination of specific protein intakes poor digestion, gut barrier integrity, microbiota composition and function all on a background of ASD represents a phenotypic pattern. A potential consequence of this pattern of conditions is that the fragile gut of some children with ASD is at risk for GI symptoms that may be amenable to improvement with specific dietary changes. There is growing evidence that shows an association between gut dysfunction and dysbiosis and ASD symptoms. It is therefore urgent to perform more experimental and clinical research on the “fragile gut” in children with ASD in order to move toward advancements in clinical practice. Identifying those factors that are of clinical value will provide an evidence-based path to individual management and targeted solutions; from real time sensing to the design of diets with personalized protein source/processing, all to improve GI function in children with ASD.
Collapse
Affiliation(s)
- Megan R Sanctuary
- Department of Nutrition, University of California, Davis, Davis, CA, United States
| | - Jennifer N Kain
- Department of Neurobiology, Physiology and Behavior Department, University of California, Davis, Davis, CA, United States
| | - Kathleen Angkustsiri
- School of Medicine, Department of Pediatrics, University of California, Davis, Sacramento, CA, United States.,Department of Pediatrics, UC Davis MIND Institute, Sacramento, CA, United States
| | - J Bruce German
- Department of Food Science and Technology, University of California, Davis, Davis, CA, United States.,Foods for Health Institute, University of California, Davis, Davis, CA, United States
| |
Collapse
|
17
|
Abookasis D, Lerman D, Roth H, Tfilin M, Turgeman G. Optically derived metabolic and hemodynamic parameters predict hippocampal neurogenesis in the BTBR mouse model of autism. JOURNAL OF BIOPHOTONICS 2018; 11:e201600322. [PMID: 28800207 DOI: 10.1002/jbio.201600322] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 06/13/2017] [Accepted: 06/13/2017] [Indexed: 06/07/2023]
Abstract
In this study, we made use of dual-wavelength laser speckle imaging (DW-LSI) to assess cerebral blood flow (CBF) in the BTBR-genetic mouse model of autism spectrum disorder, as well as control (C57Bl/6J) mice. Since the deficits in social behavior demonstrated by BTBR mice are attributed to changes in neural tissue structure and function, we postulated that these changes can be detected optically using DW-LSI. BTBR mice demonstrated reductions in both CBF and cerebral oxygen metabolism (CMRO2 ), as suggested by studies using conventional neuroimaging technologies to reflect impaired neuronal activation and cognitive function. To validate the monitoring of CBF by DW-LSI, measurements with laser Doppler flowmetry (LDF) were also performed which confirmed the lowered CBF in the autistic-like group. Furthermore, we found in vivo cortical CBF measurements to predict the rate of hippocampal neurogenesis, measured ex vivo by the number of neurons expressing doublecortin or the cellular proliferation marker Ki-67 in the dentate gyrus, with a strong positive correlation between CBF and neurogenesis markers (Pearson, r = 0.78; 0.9, respectively). These novel findings identifying cortical CBF as a predictive parameter of hippocampal neurogenesis highlight the power and flexibility of the DW-LSI and LDF setups for studying neurogenesis trends under normal and pathological conditions.
Collapse
Affiliation(s)
- David Abookasis
- Department of Electrical and Electronics Engineering, Ariel University, Ariel, Israel
| | - Danit Lerman
- Department of Electrical and Electronics Engineering, Ariel University, Ariel, Israel
- Department of Physics, Ariel University, Ariel, Israel
| | - Hava Roth
- Department of Molecular Biology, Ariel University, Ariel, Israel
| | - Matanel Tfilin
- Department of Molecular Biology, Ariel University, Ariel, Israel
| | - Gadi Turgeman
- Department of Molecular Biology, Ariel University, Ariel, Israel
- The Department of Pre-Medical Studies, Ariel University, Ariel, Israel
| |
Collapse
|
18
|
Smith BL, Reyes TM. Offspring neuroimmune consequences of maternal malnutrition: Potential mechanism for behavioral impairments that underlie metabolic and neurodevelopmental disorders. Front Neuroendocrinol 2017; 47:109-122. [PMID: 28736323 PMCID: PMC8600507 DOI: 10.1016/j.yfrne.2017.07.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 07/19/2017] [Accepted: 07/20/2017] [Indexed: 12/18/2022]
Abstract
Maternal malnutrition significantly increases offspring risk for both metabolic and neurodevelopmental disorders. Animal models of maternal malnutrition have identified behavioral changes in the adult offspring related to executive function and reward processing. Together, these changes in executive and reward-based behaviors likely contribute to the etiology of both metabolic and neurodevelopmental disorders associated with maternal malnutrition. Concomitant with the behavioral effects, maternal malnutrition alters offspring expression of reward-related molecules and inflammatory signals in brain pathways that control executive function and reward. Neuroimmune pathways and microglial interactions in these specific brain circuits, either in early development or later in adulthood, could directly contribute to the maternal malnutrition-induced behavioral phenotypes. Understanding these mechanisms will help advance treatment strategies for metabolic and neurodevelopmental disorders, especially noninvasive dietary supplementation interventions.
Collapse
Affiliation(s)
- B L Smith
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati OH, USA
| | - T M Reyes
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati OH, USA.
| |
Collapse
|
19
|
Carlisi CO, Norman L, Murphy CM, Christakou A, Chantiluke K, Giampietro V, Simmons A, Brammer M, Murphy DG, Mataix-Cols D, Rubia K. Comparison of neural substrates of temporal discounting between youth with autism spectrum disorder and with obsessive-compulsive disorder. Psychol Med 2017; 47:2513-2527. [PMID: 28436342 PMCID: PMC5964452 DOI: 10.1017/s0033291717001088] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 03/10/2017] [Accepted: 03/29/2017] [Indexed: 01/15/2023]
Abstract
BACKGROUND Autism spectrum disorder (ASD) and obsessive-compulsive disorder (OCD) share abnormalities in hot executive functions such as reward-based decision-making, as measured in the temporal discounting task (TD). No studies, however, have directly compared these disorders to investigate common/distinct neural profiles underlying such abnormalities. We wanted to test whether reward-based decision-making is a shared transdiagnostic feature of both disorders with similar neurofunctional substrates or whether it is a shared phenotype with disorder-differential neurofunctional underpinnings. METHODS Age and IQ-matched boys with ASD (N = 20), with OCD (N = 20) and 20 healthy controls, performed an individually-adjusted functional magnetic resonance imaging (fMRI) TD task. Brain activation and performance were compared between groups. RESULTS Boys with ASD showed greater choice-impulsivity than OCD and control boys. Whole-brain between-group comparison revealed shared reductions in ASD and OCD relative to control boys for delayed-immediate choices in right ventromedial/lateral orbitofrontal cortex extending into medial/inferior prefrontal cortex, and in cerebellum, posterior cingulate and precuneus. For immediate-delayed choices, patients relative to controls showed reduced activation in anterior cingulate/ventromedial prefrontal cortex reaching into left caudate, which, at a trend level, was more decreased in ASD than OCD patients, and in bilateral temporal and inferior parietal regions. CONCLUSIONS This first fMRI comparison between youth with ASD and with OCD, using a reward-based decision-making task, shows predominantly shared neurofunctional abnormalities during TD in key ventromedial, orbital- and inferior fronto-striatal, temporo-parietal and cerebellar regions of temporal foresight and reward processing, suggesting trans-diagnostic neurofunctional deficits.
Collapse
Affiliation(s)
- C. O. Carlisi
- Department of Child and Adolescent
Psychiatry, Institute of Psychiatry, Psychology and Neuroscience,
King's College, London, UK
| | - L. Norman
- Department of Child and Adolescent
Psychiatry, Institute of Psychiatry, Psychology and Neuroscience,
King's College, London, UK
| | - C. M. Murphy
- Department of Child and Adolescent
Psychiatry, Institute of Psychiatry, Psychology and Neuroscience,
King's College, London, UK
- Department of Forensic and Neurodevelopmental
Sciences, Sackler Institute for Translational Neurodevelopmental
Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's
College, London, UK
- Behavioural Genetics Clinic, Adult Autism
Service, Behavioural and Developmental Psychiatry Clinical Academic
Group, South London and Maudsley Foundation NHS Trust,
London, UK
| | - A. Christakou
- Centre for Integrative Neuroscience and
Neurodynamics, School of Psychology and Clinical Language Sciences, University of
Reading, Reading, UK
| | - K. Chantiluke
- Department of Child and Adolescent
Psychiatry, Institute of Psychiatry, Psychology and Neuroscience,
King's College, London, UK
| | - V. Giampietro
- Department of Neuroimaging,
Institute of Psychiatry, Psychology and Neuroscience, King's
College, London, UK
| | - A. Simmons
- Department of Neuroimaging,
Institute of Psychiatry, Psychology and Neuroscience, King's
College, London, UK
- National Institute for Health Research (NIHR)
Biomedical Research Centre (BRC) for Mental Health at South London and Maudsley NHS
Foundation Trust and Institute of Psychiatry, Psychology & Neuroscience, King's
College London, London, UK
- Department of Neurobiology, Care Sciences and
Society, Center for Alzheimer Research, Division of Clinical
Geriatrics, Karolinska Institutet, Stockholm,
Sweden
| | - M. Brammer
- Department of Neuroimaging,
Institute of Psychiatry, Psychology and Neuroscience, King's
College, London, UK
| | - D. G. Murphy
- Department of Forensic and Neurodevelopmental
Sciences, Sackler Institute for Translational Neurodevelopmental
Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's
College, London, UK
- Behavioural Genetics Clinic, Adult Autism
Service, Behavioural and Developmental Psychiatry Clinical Academic
Group, South London and Maudsley Foundation NHS Trust,
London, UK
| | | | - D. Mataix-Cols
- Department of Clinical Neuroscience,
Centre for Psychiatry Research, Karolinska Institutet,
Stockholm, Sweden
| | - K. Rubia
- Department of Child and Adolescent
Psychiatry, Institute of Psychiatry, Psychology and Neuroscience,
King's College, London, UK
| |
Collapse
|
20
|
Treating the placenta to prevent adverse effects of gestational hypoxia on fetal brain development. Sci Rep 2017; 7:9079. [PMID: 28831049 PMCID: PMC5567270 DOI: 10.1038/s41598-017-06300-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 06/09/2017] [Indexed: 01/20/2023] Open
Abstract
Some neuropsychiatric disease, including schizophrenia, may originate during prenatal development, following periods of gestational hypoxia and placental oxidative stress. Here we investigated if gestational hypoxia promotes damaging secretions from the placenta that affect fetal development and whether a mitochondria-targeted antioxidant MitoQ might prevent this. Gestational hypoxia caused low birth-weight and changes in young adult offspring brain, mimicking those in human neuropsychiatric disease. Exposure of cultured neurons to fetal plasma or to secretions from the placenta or from model trophoblast barriers that had been exposed to altered oxygenation caused similar morphological changes. The secretions and plasma contained altered microRNAs whose targets were linked with changes in gene expression in the fetal brain and with human schizophrenia loci. Molecular and morphological changes in vivo and in vitro were prevented by a single dose of MitoQ bound to nanoparticles, which were shown to localise and prevent oxidative stress in the placenta but not in the fetus. We suggest the possibility of developing preventative treatments that target the placenta and not the fetus to reduce risk of psychiatric disease in later life.
Collapse
|