1
|
Araújo KS, Alves JL, Pereira OL, de Queiroz MV. Five new species of endophytic Penicillium from rubber trees in the Brazilian Amazon. Braz J Microbiol 2024; 55:3051-3074. [PMID: 39384703 PMCID: PMC11711848 DOI: 10.1007/s42770-024-01478-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 07/28/2024] [Indexed: 10/11/2024] Open
Abstract
The Amazon rainforest is the world's most diverse ecosystem, full of fauna and flora. Among the trees that make up the forest are the rubber trees of the genus Hevea (H. brasiliensis and H. guianensis), which stand out for the industrial use of latex. It was previously shown that endophytic fungi colonize the leaves, stems, and roots of Hevea spp. In this study, 47 Penicillium spp. and three Talaromyces spp. isolates were analyzed using specific DNA barcodes: internal transcribed spacers region (ITS), β-tubulin (BenA), calmodulin (CaM), and the DNA-dependent RNA polymerase II second largest subunit (RPB2) genes and additionally, for species delimitation, the genealogical concordance phylogenetic species recognition (GCPSR) criteria were applied. The phylogenetic analyses placed the Penicillium isolates into four sections Lanata-Divaricata, Sclerotiora, Citrina, and Fasciculata. The morphological and molecular characteristics resulted in the discovery of five new species (P. heveae sp. nov., P. acrean sp. nov., P. aquiri sp. nov., P. amazonense sp. nov., and P. pseudomellis sp. nov.). The five new species were also compared to closely related species, with observations on morphologically distinguishing features and colony appearances. Bayesian inference and maximum likelihood analysis have supported the placement of P. heveae sp. nov. as a sister group to P. globosum; P. acrean sp. nov. and P. aquiri sp. nov. as sister groups to P. sumatrense; P. amazonense sp. nov. closely related to isolates of P. rolfsii, and P. pseudomellis sp. nov. closely related to P. mellis. The study of endophytic Penicillium species of rubber trees and the description of five new taxa of Penicillium sect. Citrina, Lanata-Divaricata, and Sclerotiora as endophytes add to the fungal biodiversity knowledge in native rubber trees. Reports of fungi in native tropical plants may reveal taxonomic novelties, potential pathogen control agents, and producers of molecular bioactive compounds of medical and agronomic interest.
Collapse
Affiliation(s)
- Kaliane Sírio Araújo
- Laboratório de Genética Molecular de Microrganismos, Departamento de Microbiologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Janaina Lana Alves
- Laboratório de Genética Molecular de Microrganismos, Departamento de Microbiologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Olinto Liparini Pereira
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Marisa Vieira de Queiroz
- Laboratório de Genética Molecular de Microrganismos, Departamento de Microbiologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil.
| |
Collapse
|
2
|
Anelli P, Dall'Asta C, Cozzi G, Epifani F, Carella D, Scarpetta D, Brasca M, Moretti A, Susca A. Analysis of composition and molecular characterization of mycobiota occurring on surface of cheese ripened in Dossena's mine. Food Microbiol 2024; 123:104587. [PMID: 39038900 DOI: 10.1016/j.fm.2024.104587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/04/2024] [Accepted: 06/18/2024] [Indexed: 07/24/2024]
Abstract
Accurate identification of the fungal community spontaneously colonizing food products, aged in natural and not controlled environments, provides information about potential mycotoxin risk associated with its consumption. Autochthonous mycobiota colonizing cheese aging in Dossena mines, was investigated and characterized by two approaches: microbial isolations and metabarcoding. Microbial isolations and metabarcoding analysis were conducted on cheese samples, obtained by four batches, produced in four different seasons of the year, aged for 90 and 180 days, by five dairy farms. The two approaches, with different taxonomical resolution power, highlighted Penicillium biforme among filamentous fungi, collected from 58 out of 68 cheeses, and Debaryomyces hansenii among yeasts, as the most abundant species (31 ÷ 65%), none representing a health risk for human cheese consumption. Shannon index showed that the richness of mycobiota increases after 180 days of maturation. Beta diversity analysis highlighted significant differences in composition of mycobiota of cheese produced by different dairy farms and aged for different durations. Weak negative growth interaction between P. biforme and Aspergillus westerdijkiae by in vitro analysis was observed leading to hypothesize that a reciprocal control is possible, also affected by natural environmental conditions, possibly disadvantageous for the last species.
Collapse
Affiliation(s)
- Pamela Anelli
- Institute of Sciences of Food Production, National Research Council (CNR-ISPA), via Amendola 122/0, 70126 Bari, Italy
| | - Chiara Dall'Asta
- Department of Food and Drug, University of Parma, Parco Area delle Scienze, 17/A, 43121 Parma, Italy
| | - Giuseppe Cozzi
- Institute of Sciences of Food Production, National Research Council (CNR-ISPA), via Amendola 122/0, 70126 Bari, Italy
| | - Filomena Epifani
- Institute of Sciences of Food Production, National Research Council (CNR-ISPA), via Amendola 122/0, 70126 Bari, Italy
| | - Daria Carella
- Institute of Sciences of Food Production, National Research Council (CNR-ISPA), via Amendola 122/0, 70126 Bari, Italy
| | - Davide Scarpetta
- Institute of Sciences of Food Production, National Research Council (CNR-ISPA), Via G. Celoria 2, 20133 Milan, Italy
| | - Milena Brasca
- Institute of Sciences of Food Production, National Research Council (CNR-ISPA), Via G. Celoria 2, 20133 Milan, Italy
| | - Antonio Moretti
- Institute of Sciences of Food Production, National Research Council (CNR-ISPA), via Amendola 122/0, 70126 Bari, Italy
| | - Antonia Susca
- Institute of Sciences of Food Production, National Research Council (CNR-ISPA), via Amendola 122/0, 70126 Bari, Italy.
| |
Collapse
|
3
|
Visagie CM, Magistà D, Ferrara M, Balocchi F, Duong TA, Eichmeier A, Gramaje D, Aylward J, Baker SE, Barnes I, Calhoun S, De Angelis M, Frisvad JC, Hakalova E, Hayes RD, Houbraken J, Grigoriev IV, LaButti K, Leal C, Lipzen A, Ng V, Pangilinan J, Pecenka J, Perrone G, Piso A, Savage E, Spetik M, Wingfield MJ, Zhang Y, Wingfield BD. IMA genome-F18 : The re-identification of Penicillium genomes available in NCBI and draft genomes for Penicillium species from dry cured meat, Penicillium biforme, P. brevicompactum, P. solitum, and P. cvjetkovicii, Pewenomyces kutranfy, Pew. lalenivora, Pew. tapulicola, Pew. kalosus, Teratosphaeria carnegiei, and Trichoderma atroviride SC1. IMA Fungus 2023; 14:21. [PMID: 37803441 PMCID: PMC10559472 DOI: 10.1186/s43008-023-00121-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2023] [Indexed: 10/08/2023] Open
Affiliation(s)
- Cobus M Visagie
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Donato Magistà
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), Via G. Amendola 122/O, 70126, Bari, Italy
| | - Massimo Ferrara
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), Via G. Amendola 122/O, 70126, Bari, Italy
| | - Felipe Balocchi
- Department of Plant and Soil Sciences, FABI, University of Pretoria, Pretoria, South Africa
| | - Tuan A Duong
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Ales Eichmeier
- Instituto de Ciencias de la Vid y del Vino (ICVV), Consejo Superior de Investigaciones Científicas - Universidad de la Rioja - Gobierno de La Rioja, Ctra. LO-20 Salida 13, Finca La Grajera, 26071, Logroño, Spain
| | - David Gramaje
- Instituto de Ciencias de la Vid y del Vino (ICVV), Consejo Superior de Investigaciones Científicas - Universidad de la Rioja - Gobierno de La Rioja, Ctra. LO-20 Salida 13, Finca La Grajera, 26071, Logroño, Spain
| | - Janneke Aylward
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
- Department of Conservation Ecology and Entomology, Stellenbosch University, Matieland, Private Bag X1, Stellenbosch, 7602, South Africa
| | - Scott E Baker
- Functional and Systems Biology Group, Environmental Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
- DOE Joint Bioenergy Institute, Emeryville, CA, 94608, USA
| | - Irene Barnes
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Sara Calhoun
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Maria De Angelis
- Department of Soil, Plant and Food Sciences, University of Bari "Aldo Moro", Via G. Amendola 165/a, 70126, Bari, Italy
| | - Jens C Frisvad
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 221, 2800 Kgs, Lyngby, Denmark
| | - Eliska Hakalova
- Mendeleum - Institute of Genetics, Mendel University in Brno, Valticka 334, 691 44, Lednice, Czech Republic
| | - Richard D Hayes
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Jos Houbraken
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - Igor V Grigoriev
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
- Department of Plant and Microbial Biology, University of California Berkeley, 110 Koshland Hall, Berkeley, CA, 94720, USA
| | - Kurt LaButti
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Catarina Leal
- Instituto de Ciencias de la Vid y del Vino (ICVV), Consejo Superior de Investigaciones Científicas - Universidad de la Rioja - Gobierno de La Rioja, Ctra. LO-20 Salida 13, Finca La Grajera, 26071, Logroño, Spain
| | - Anna Lipzen
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Vivian Ng
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Jasmyn Pangilinan
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Jakub Pecenka
- Mendeleum - Institute of Genetics, Mendel University in Brno, Valticka 334, 691 44, Lednice, Czech Republic
| | - Giancarlo Perrone
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), Via G. Amendola 122/O, 70126, Bari, Italy
| | - Anja Piso
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Emily Savage
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Milan Spetik
- Mendeleum - Institute of Genetics, Mendel University in Brno, Valticka 334, 691 44, Lednice, Czech Republic
| | - Michael J Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Yu Zhang
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Brenda D Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa.
| |
Collapse
|
4
|
Sun BD, Visagie CM, Chen AJ, Houbraken J. A taxonomic review of Penicillium section Charlesia. Mycol Prog 2021. [DOI: 10.1007/s11557-021-01735-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
5
|
Christiansen JV, Isbrandt T, Petersen C, Sondergaard TE, Nielsen MR, Pedersen TB, Sørensen JL, Larsen TO, Frisvad JC. Fungal quinones: diversity, producers, and applications of quinones from Aspergillus, Penicillium, Talaromyces, Fusarium, and Arthrinium. Appl Microbiol Biotechnol 2021; 105:8157-8193. [PMID: 34625822 DOI: 10.1007/s00253-021-11597-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/06/2021] [Accepted: 09/11/2021] [Indexed: 12/13/2022]
Abstract
Quinones represent an important group of highly structurally diverse, mainly polyketide-derived secondary metabolites widely distributed among filamentous fungi. Many quinones have been reported to have important biological functions such as inhibition of bacteria or repression of the immune response in insects. Other quinones, such as ubiquinones are known to be essential molecules in cellular respiration, and many quinones are known to protect their producing organisms from exposure to sunlight. Most recently, quinones have also attracted a lot of industrial interest since their electron-donating and -accepting properties make them good candidates as electrolytes in redox flow batteries, like their often highly conjugated double bond systems make them attractive as pigments. On an industrial level, quinones are mainly synthesized from raw components in coal tar. However, the possibility of producing quinones by fungal cultivation has great prospects since fungi can often be grown in industrially scaled bioreactors, producing valuable metabolites on cheap substrates. In order to give a better overview of the secondary metabolite quinones produced by and shared between various fungi, mainly belonging to the genera Aspergillus, Penicillium, Talaromyces, Fusarium, and Arthrinium, this review categorizes quinones into families such as emodins, fumigatins, sorbicillinoids, yanuthones, and xanthomegnins, depending on structural similarities and information about the biosynthetic pathway from which they are derived, whenever applicable. The production of these quinone families is compared between the different genera, based on recently revised taxonomy. KEY POINTS: • Quinones represent an important group of secondary metabolites widely distributed in important fungal genera such as Aspergillus, Penicillium, Talaromyces, Fusarium, and Arthrinium. • Quinones are of industrial interest and can be used in pharmacology, as colorants and pigments, and as electrolytes in redox flow batteries. • Quinones are grouped into families and compared between genera according to the revised taxonomy.
Collapse
Affiliation(s)
- J V Christiansen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - T Isbrandt
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - C Petersen
- Department of Chemistry and Bioscience, Aalborg University, 9220, Aalborg, Denmark
| | - T E Sondergaard
- Department of Chemistry and Bioscience, Aalborg University, 9220, Aalborg, Denmark
| | - M R Nielsen
- Department of Chemistry and Bioscience, Aalborg University, 6700, Esbjerg, Denmark
| | - T B Pedersen
- Department of Chemistry and Bioscience, Aalborg University, 6700, Esbjerg, Denmark
| | - J L Sørensen
- Department of Chemistry and Bioscience, Aalborg University, 6700, Esbjerg, Denmark
| | - T O Larsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - J C Frisvad
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800, Kongens Lyngby, Denmark.
| |
Collapse
|
6
|
Morales-Rodríguez C, Sferrazza I, Aleandri MP, Dalla Valle M, Speranza S, Contarini M, Vannini A. The fungal community associated with the ambrosia beetle Xylosandrus compactus invading the mediterranean maquis in central Italy reveals high biodiversity and suggests environmental acquisitions. Fungal Biol 2020; 125:12-24. [PMID: 33317772 DOI: 10.1016/j.funbio.2020.09.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 11/29/2022]
Abstract
In summer 2016 a severe infestation of the alien ambrosia beetle Xylosandrus compactus was recorded from the Mediterranean maquis in the Circeo National Park in Central Italy. Trees and shrubs were infested and displayed wilting and necrosis of terminal branches caused by the combined impact of the insect and associated pathogenic fungi. A preliminary screening carried out on captured adults resulted in the isolation of a discrete number of fungal taxa with different life strategies, ranging from true mutualist (e.g. Ambrosiella xylebori) to plant pathogens (Fusarium spp.). In the present study, high-throughput sequencing was applied to determine the total diversity and functionality of the fungal community associated with X. compactus adults collected in the galleries of three Mediterranean woody hosts, Quercus ilex, Laurus nobilis, and Ceratonia siliqua. The effect of season and host in determining the composition of the associated fungal community was investigated. A total of 206 OTUs composed the fungal community associated with X. compactus. Eighteen OTUs were shared among the three hosts, including A. xylebori and members of the Fusarium solani complex. All but two were previously associated with beetles. Sixty-nine out of 206 OTUs were resolved to species level, identifying 60 different fungal species, 22 of which already reported in the literature as associated with beetles or other insects. Functional guild assigned most of the fungal species to saprotrophs and plant pathogens. Effects of seasonality and host on fungal community assemblage were highlighted suggesting the acquisition by the insect of new fungal taxa during the invasion process. The consequences of enriched fungal community on the risk of the insurgence of novel threatful insect-fungus association are discussed considering direct and indirect effects on the invaded habitat.
Collapse
Affiliation(s)
- Carmen Morales-Rodríguez
- Department for Innovation in Biological, Agro-food and Forestry Systems (DIBAF) - University of Tuscia, Via S. Camillo de Lellis, 01100, Viterbo, Italy
| | - Ivano Sferrazza
- Department for Innovation in Biological, Agro-food and Forestry Systems (DIBAF) - University of Tuscia, Via S. Camillo de Lellis, 01100, Viterbo, Italy
| | - Maria Pia Aleandri
- Department for Innovation in Biological, Agro-food and Forestry Systems (DIBAF) - University of Tuscia, Via S. Camillo de Lellis, 01100, Viterbo, Italy
| | - Matteo Dalla Valle
- Department for Innovation in Biological, Agro-food and Forestry Systems (DIBAF) - University of Tuscia, Via S. Camillo de Lellis, 01100, Viterbo, Italy
| | - Stefano Speranza
- Department of Agriculture and Forest Science (DAFNE) - University of Tuscia, Via S. Camillo de Lellis, 01100, Viterbo, Italy
| | - Mario Contarini
- Department of Agriculture and Forest Science (DAFNE) - University of Tuscia, Via S. Camillo de Lellis, 01100, Viterbo, Italy
| | - Andrea Vannini
- Department for Innovation in Biological, Agro-food and Forestry Systems (DIBAF) - University of Tuscia, Via S. Camillo de Lellis, 01100, Viterbo, Italy.
| |
Collapse
|
7
|
Houbraken J, Kocsubé S, Visagie C, Yilmaz N, Wang XC, Meijer M, Kraak B, Hubka V, Bensch K, Samson R, Frisvad J. Classification of Aspergillus, Penicillium, Talaromyces and related genera ( Eurotiales): An overview of families, genera, subgenera, sections, series and species. Stud Mycol 2020; 95:5-169. [PMID: 32855739 PMCID: PMC7426331 DOI: 10.1016/j.simyco.2020.05.002] [Citation(s) in RCA: 277] [Impact Index Per Article: 55.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The Eurotiales is a relatively large order of Ascomycetes with members frequently having positive and negative impact on human activities. Species within this order gain attention from various research fields such as food, indoor and medical mycology and biotechnology. In this article we give an overview of families and genera present in the Eurotiales and introduce an updated subgeneric, sectional and series classification for Aspergillus and Penicillium. Finally, a comprehensive list of accepted species in the Eurotiales is given. The classification of the Eurotiales at family and genus level is traditionally based on phenotypic characters, and this classification has since been challenged using sequence-based approaches. Here, we re-evaluated the relationships between families and genera of the Eurotiales using a nine-gene sequence dataset. Based on this analysis, the new family Penicillaginaceae is introduced and four known families are accepted: Aspergillaceae, Elaphomycetaceae, Thermoascaceae and Trichocomaceae. The Eurotiales includes 28 genera: 15 genera are accommodated in the Aspergillaceae (Aspergillago, Aspergillus, Evansstolkia, Hamigera, Leiothecium, Monascus, Penicilliopsis, Penicillium, Phialomyces, Pseudohamigera, Pseudopenicillium, Sclerocleista, Warcupiella, Xerochrysium and Xeromyces), eight in the Trichocomaceae (Acidotalaromyces, Ascospirella, Dendrosphaera, Rasamsonia, Sagenomella, Talaromyces, Thermomyces, Trichocoma), two in the Thermoascaceae (Paecilomyces, Thermoascus) and one in the Penicillaginaceae (Penicillago). The classification of the Elaphomycetaceae was not part of this study, but according to literature two genera are present in this family (Elaphomyces and Pseudotulostoma). The use of an infrageneric classification system has a long tradition in Aspergillus and Penicillium. Most recent taxonomic studies focused on the sectional level, resulting in a well-established sectional classification in these genera. In contrast, a series classification in Aspergillus and Penicillium is often outdated or lacking, but is still relevant, e.g., the allocation of a species to a series can be highly predictive in what functional characters the species might have and might be useful when using a phenotype-based identification. The majority of the series in Aspergillus and Penicillium are invalidly described and here we introduce a new series classification. Using a phylogenetic approach, often supported by phenotypic, physiologic and/or extrolite data, Aspergillus is subdivided in six subgenera, 27 sections (five new) and 75 series (73 new, one new combination), and Penicillium in two subgenera, 32 sections (seven new) and 89 series (57 new, six new combinations). Correct identification of species belonging to the Eurotiales is difficult, but crucial, as the species name is the linking pin to information. Lists of accepted species are a helpful aid for researchers to obtain a correct identification using the current taxonomic schemes. In the most recent list from 2014, 339 Aspergillus, 354 Penicillium and 88 Talaromyces species were accepted. These numbers increased significantly, and the current list includes 446 Aspergillus (32 % increase), 483 Penicillium (36 % increase) and 171 Talaromyces (94 % increase) species, showing the large diversity and high interest in these genera. We expanded this list with all genera and species belonging to the Eurotiales (except those belonging to Elaphomycetaceae). The list includes 1 187 species, distributed over 27 genera, and contains MycoBank numbers, collection numbers of type and ex-type cultures, subgenus, section and series classification data, information on the mode of reproduction, and GenBank accession numbers of ITS, beta-tubulin (BenA), calmodulin (CaM) and RNA polymerase II second largest subunit (RPB2) gene sequences.
Collapse
Key Words
- Acidotalaromyces Houbraken, Frisvad & Samson
- Acidotalaromyces lignorum (Stolk) Houbraken, Frisvad & Samson
- Ascospirella Houbraken, Frisvad & Samson
- Ascospirella lutea (Zukal) Houbraken, Frisvad & Samson
- Aspergillus chaetosartoryae Hubka, Kocsubé & Houbraken
- Classification
- Evansstolkia Houbraken, Frisvad & Samson
- Evansstolkia leycettana (H.C. Evans & Stolk) Houbraken, Frisvad & Samson
- Hamigera brevicompacta (H.Z. Kong) Houbraken, Frisvad & Samson
- Infrageneric classification
- New combinations, series
- New combinations, species
- New genera
- New names
- New sections
- New series
- New taxa
- Nomenclature
- Paecilomyces lagunculariae (C. Ram) Houbraken, Frisvad & Samson
- Penicillaginaceae Houbraken, Frisvad & Samson
- Penicillago kabunica (Baghd.) Houbraken, Frisvad & Samson
- Penicillago mirabilis (Beliakova & Milko) Houbraken, Frisvad & Samson
- Penicillago moldavica (Milko & Beliakova) Houbraken, Frisvad & Samson
- Phialomyces arenicola (Chalab.) Houbraken, Frisvad & Samson
- Phialomyces humicoloides (Bills & Heredia) Houbraken, Frisvad & Samson
- Phylogeny
- Polythetic classes
- Pseudohamigera Houbraken, Frisvad & Samson
- Pseudohamigera striata (Raper & Fennell) Houbraken, Frisvad & Samson
- Talaromyces resinae (Z.T. Qi & H.Z. Kong) Houbraken & X.C. Wang
- Talaromyces striatoconidius Houbraken, Frisvad & Samson
- Taxonomic novelties: New family
- Thermoascus verrucosus (Samson & Tansey) Houbraken, Frisvad & Samson
- Thermoascus yaguchii Houbraken, Frisvad & Samson
- in Aspergillus: sect. Bispori S.W. Peterson, Varga, Frisvad, Samson ex Houbraken
- in Aspergillus: ser. Acidohumorum Houbraken & Frisvad
- in Aspergillus: ser. Inflati (Stolk & Samson) Houbraken & Frisvad
- in Penicillium: sect. Alfrediorum Houbraken & Frisvad
- in Penicillium: ser. Adametziorum Houbraken & Frisvad
- in Penicillium: ser. Alutacea (Pitt) Houbraken & Frisvad
- sect. Crypta Houbraken & Frisvad
- sect. Eremophila Houbraken & Frisvad
- sect. Formosana Houbraken & Frisvad
- sect. Griseola Houbraken & Frisvad
- sect. Inusitata Houbraken & Frisvad
- sect. Lasseniorum Houbraken & Frisvad
- sect. Polypaecilum Houbraken & Frisvad
- sect. Raperorum S.W. Peterson, Varga, Frisvad, Samson ex Houbraken
- sect. Silvatici S.W. Peterson, Varga, Frisvad, Samson ex Houbraken
- sect. Vargarum Houbraken & Frisvad
- ser. Alliacei Houbraken & Frisvad
- ser. Ambigui Houbraken & Frisvad
- ser. Angustiporcata Houbraken & Frisvad
- ser. Arxiorum Houbraken & Frisvad
- ser. Atramentosa Houbraken & Frisvad
- ser. Aurantiobrunnei Houbraken & Frisvad
- ser. Avenacei Houbraken & Frisvad
- ser. Bertholletiarum Houbraken & Frisvad
- ser. Biplani Houbraken & Frisvad
- ser. Brevicompacta Houbraken & Frisvad
- ser. Brevipedes Houbraken & Frisvad
- ser. Brunneouniseriati Houbraken & Frisvad
- ser. Buchwaldiorum Houbraken & Frisvad
- ser. Calidousti Houbraken & Frisvad
- ser. Canini Houbraken & Frisvad
- ser. Carbonarii Houbraken & Frisvad
- ser. Cavernicolarum Houbraken & Frisvad
- ser. Cervini Houbraken & Frisvad
- ser. Chevalierorum Houbraken & Frisvad
- ser. Cinnamopurpurea Houbraken & Frisvad
- ser. Circumdati Houbraken & Frisvad
- ser. Clavigera Houbraken & Frisvad
- ser. Conjuncti Houbraken & Frisvad
- ser. Copticolarum Houbraken & Frisvad
- ser. Coremiiformes Houbraken & Frisvad
- ser. Corylophila Houbraken & Frisvad
- ser. Costaricensia Houbraken & Frisvad
- ser. Cremei Houbraken & Frisvad
- ser. Crustacea (Pitt) Houbraken & Frisvad
- ser. Dalearum Houbraken & Frisvad
- ser. Deflecti Houbraken & Frisvad
- ser. Egyptiaci Houbraken & Frisvad
- ser. Erubescentia (Pitt) Houbraken & Frisvad
- ser. Estinogena Houbraken & Frisvad
- ser. Euglauca Houbraken & Frisvad
- ser. Fennelliarum Houbraken & Frisvad
- ser. Flavi Houbraken & Frisvad
- ser. Flavipedes Houbraken & Frisvad
- ser. Fortuita Houbraken & Frisvad
- ser. Fumigati Houbraken & Frisvad
- ser. Funiculosi Houbraken & Frisvad
- ser. Gallaica Houbraken & Frisvad
- ser. Georgiensia Houbraken & Frisvad
- ser. Goetziorum Houbraken & Frisvad
- ser. Gracilenta Houbraken & Frisvad
- ser. Halophilici Houbraken & Frisvad
- ser. Herqueorum Houbraken & Frisvad
- ser. Heteromorphi Houbraken & Frisvad
- ser. Hoeksiorum Houbraken & Frisvad
- ser. Homomorphi Houbraken & Frisvad
- ser. Idahoensia Houbraken & Frisvad
- ser. Implicati Houbraken & Frisvad
- ser. Improvisa Houbraken & Frisvad
- ser. Indica Houbraken & Frisvad
- ser. Japonici Houbraken & Frisvad
- ser. Jiangxiensia Houbraken & Frisvad
- ser. Kalimarum Houbraken & Frisvad
- ser. Kiamaensia Houbraken & Frisvad
- ser. Kitamyces Houbraken & Frisvad
- ser. Lapidosa (Pitt) Houbraken & Frisvad
- ser. Leporum Houbraken & Frisvad
- ser. Leucocarpi Houbraken & Frisvad
- ser. Livida Houbraken & Frisvad
- ser. Longicatenata Houbraken & Frisvad
- ser. Macrosclerotiorum Houbraken & Frisvad
- ser. Monodiorum Houbraken & Frisvad
- ser. Multicolores Houbraken & Frisvad
- ser. Neoglabri Houbraken & Frisvad
- ser. Neonivei Houbraken & Frisvad
- ser. Nidulantes Houbraken & Frisvad
- ser. Nigri Houbraken & Frisvad
- ser. Nivei Houbraken & Frisvad
- ser. Nodula Houbraken & Frisvad
- ser. Nomiarum Houbraken & Frisvad
- ser. Noonimiarum Houbraken & Frisvad
- ser. Ochraceorosei Houbraken & Frisvad
- ser. Olivimuriarum Houbraken & Frisvad
- ser. Osmophila Houbraken & Frisvad
- ser. Paradoxa Houbraken & Frisvad
- ser. Paxillorum Houbraken & Frisvad
- ser. Penicillioides Houbraken & Frisvad
- ser. Phoenicea Houbraken & Frisvad
- ser. Pinetorum (Pitt) Houbraken & Frisvad
- ser. Polypaecilum Houbraken & Frisvad
- ser. Pulvini Houbraken & Frisvad
- ser. Quercetorum Houbraken & Frisvad
- ser. Raistrickiorum Houbraken & Frisvad
- ser. Ramigena Houbraken & Frisvad
- ser. Restricti Houbraken & Frisvad
- ser. Robsamsonia Houbraken & Frisvad
- ser. Rolfsiorum Houbraken & Frisvad
- ser. Roseopurpurea Houbraken & Frisvad
- ser. Rubri Houbraken & Frisvad
- ser. Salinarum Houbraken & Frisvad
- ser. Samsoniorum Houbraken & Frisvad
- ser. Saturniformia Houbraken & Frisvad
- ser. Scabrosa Houbraken & Frisvad
- ser. Sclerotigena Houbraken & Frisvad
- ser. Sclerotiorum Houbraken & Frisvad
- ser. Sheariorum Houbraken & Frisvad
- ser. Simplicissima Houbraken & Frisvad
- ser. Soppiorum Houbraken & Frisvad
- ser. Sparsi Houbraken & Frisvad
- ser. Spathulati Houbraken & Frisvad
- ser. Spelaei Houbraken & Frisvad
- ser. Speluncei Houbraken & Frisvad
- ser. Spinulosa Houbraken & Frisvad
- ser. Stellati Houbraken & Frisvad
- ser. Steyniorum Houbraken & Frisvad
- ser. Sublectatica Houbraken & Frisvad
- ser. Sumatraensia Houbraken & Frisvad
- ser. Tamarindosolorum Houbraken & Frisvad
- ser. Teporium Houbraken & Frisvad
- ser. Terrei Houbraken & Frisvad
- ser. Thermomutati Houbraken & Frisvad
- ser. Thiersiorum Houbraken & Frisvad
- ser. Thomiorum Houbraken & Frisvad
- ser. Unguium Houbraken & Frisvad
- ser. Unilaterales Houbraken & Frisvad
- ser. Usti Houbraken & Frisvad
- ser. Verhageniorum Houbraken & Frisvad
- ser. Versicolores Houbraken & Frisvad
- ser. Virgata Houbraken & Frisvad
- ser. Viridinutantes Houbraken & Frisvad
- ser. Vitricolarum Houbraken & Frisvad
- ser. Wentiorum Houbraken & Frisvad
- ser. Westlingiorum Houbraken & Frisvad
- ser. Whitfieldiorum Houbraken & Frisvad
- ser. Xerophili Houbraken & Frisvad
- series Tularensia (Pitt) Houbraken & Frisvad
Collapse
Affiliation(s)
- J. Houbraken
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - S. Kocsubé
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - C.M. Visagie
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, P. Bag X20, Hatfield, Pretoria, 0028, South Africa
| | - N. Yilmaz
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, P. Bag X20, Hatfield, Pretoria, 0028, South Africa
| | - X.-C. Wang
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 3, 1st Beichen West Road, Chaoyang District, Beijing, 100101, China
| | - M. Meijer
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - B. Kraak
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - V. Hubka
- Department of Botany, Charles University in Prague, Prague, Czech Republic
| | - K. Bensch
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - R.A. Samson
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - J.C. Frisvad
- Department of Biotechnology and Biomedicine Technical University of Denmark, Søltofts Plads, B. 221, Kongens Lyngby, DK 2800, Denmark
| |
Collapse
|
8
|
Nguyen TTT, Pangging M, Bangash NK, Lee HB. Five New Records of the Family Aspergillaceae in Korea, Aspergillus europaeus, A. pragensis, A. tennesseensis, Penicillium fluviserpens, and P. scabrosum. MYCOBIOLOGY 2020; 48:81-94. [PMID: 32363036 PMCID: PMC7178850 DOI: 10.1080/12298093.2020.1726563] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 01/30/2020] [Accepted: 02/02/2020] [Indexed: 05/15/2023]
Abstract
During an investigation of the fungi from the Aspergillaceae family obtained from different environmental sources in Korea, we isolated six strains, including CNUFC WJC9-1, CNUFC BPM36-33, CNUFC MSW6, CNUFC ESW1, CNUFC TM6-2, and CNUFC WD17-1. The morphology and phylogeny of these isolates were analyzed based on their partial β-tubulin (BenA) and calmodulin (CaM) gene sequences. Based on the morphological characteristics and sequence analyses, the isolates CNUFC WJC9-1, CNUFC BPM36-33, CNUFC TM6-2, and CNUFC WD17-1 were identified as A. europaeus, A. pragensis, Penicillium fluviserpens, and P. scabrosum, respectively, and isolates CNUFC MSW6 and CNUFC ESW1 were identified as A. tennesseensis. To the best of our knowledge, the species A. europaeus, A. pragensis, A. tennesseensis, P. fluviserpens, and P. scabrosum have not been previously reported in Korea.
Collapse
Affiliation(s)
- Thuong T. T. Nguyen
- Environmental Microbiology Lab, Department of Agricultural Biological Chemistry, College of Agriculture & Life Sciences, Chonnam National University, Gwangju, Korea
| | - Monmi Pangging
- Environmental Microbiology Lab, Department of Agricultural Biological Chemistry, College of Agriculture & Life Sciences, Chonnam National University, Gwangju, Korea
| | - Naila Khan Bangash
- Environmental Microbiology Lab, Department of Agricultural Biological Chemistry, College of Agriculture & Life Sciences, Chonnam National University, Gwangju, Korea
| | - Hyang Burm Lee
- Environmental Microbiology Lab, Department of Agricultural Biological Chemistry, College of Agriculture & Life Sciences, Chonnam National University, Gwangju, Korea
| |
Collapse
|
9
|
Maragos CM, Uchiyama Y, Kobayashi N, Kominato F, Sugita-Konishi Y. Development and Characterization of Monoclonal Antibodies for the Mycotoxin Citreoviridin. Toxins (Basel) 2019; 11:toxins11110630. [PMID: 31671523 PMCID: PMC6891493 DOI: 10.3390/toxins11110630] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 10/24/2019] [Accepted: 10/28/2019] [Indexed: 02/06/2023] Open
Abstract
Citreoviridin (CTV) in an inhibitor of mitochondrial ATPase that has been isolated from molded yellow rice and linked to the human disease Shoshin-kakke (acute cardiac beriberi). The disease results from a deficiency of thiamine, however, purified CTV can reproduce the symptoms in experimental animals. The link between CTV and Shoshin-kakke has been difficult to resolve, in part because cases of the disease are rare. In addition to rice, CTV has been found in maize, pecan nuts, and wheat products. A method to screen for CTV and its geometric isomer, iso-CTV, in commodities was developed, based upon the isolation of two novel monoclonal antibodies (mAb). In an antigen-immobilized competitive enzyme-linked immunosorbent assay format (CI-ELISA), the observed IC50s for CTV were 11 ng/mL and 18 ng/mL (mAbs 2-2 and 2-4, respectively). The assays were relatively tolerant to methanol and acetonitrile, which allowed their application to the detection of CTV in spiked polished white rice. For quantification, a standard mixture of CTV and iso-CTV was used, along with matrix matched calibration. The dynamic range of the ELISA using mAb 2-4 was equivalent to 0.23 to 2.22 mg/kg in rice. Recoveries over the range of 0.36 to 7.23 mg/kg averaged 97 ± 10%. The results suggest that the mAb 2-4-based immunoassay can be applied to the screening of white rice for CTV. Both mAbs were also observed to significantly enhance the fluorescence of the toxin.
Collapse
Affiliation(s)
- Chris M Maragos
- Mycotoxin Prevention and Applied Microbiology Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Peoria, IL 61604, USA.
| | - Yosuke Uchiyama
- Department of Food and Life Science, Graduate School of Life and Environmental Sciences, Azabu University, Sagamihara, Kanagawa 252-5201, Japan.
| | - Naoki Kobayashi
- Department of Food and Life Science, Graduate School of Life and Environmental Sciences, Azabu University, Sagamihara, Kanagawa 252-5201, Japan.
| | | | - Yoshiko Sugita-Konishi
- Department of Food and Life Science, Graduate School of Life and Environmental Sciences, Azabu University, Sagamihara, Kanagawa 252-5201, Japan.
| |
Collapse
|
10
|
Peterson SW, Jurjević Ž. The Talaromyces pinophilus species complex. Fungal Biol 2019; 123:745-762. [DOI: 10.1016/j.funbio.2019.06.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 04/16/2019] [Accepted: 06/19/2019] [Indexed: 01/26/2023]
|
11
|
Guevara-Suarez M, García D, Cano-Lira JF, Guarro J, Gené J. Species diversity in Penicillium and Talaromyces from herbivore dung, and the proposal of two new genera of penicillium-like fungi in Aspergillaceae. Fungal Syst Evol 2019; 5:39-75. [PMID: 32467914 PMCID: PMC7250020 DOI: 10.3114/fuse.2020.05.03] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Coprophilous fungi are saprotrophic organisms that show great diversity, mainly on herbivore dung. The physico-chemical characteristics of this peculiar substrate combined with the high level of fungal adaptation to different environmental conditions offer the perfect setting for discovering new taxa. This study focused on the species diversity of penicillium-like fungi isolated mainly from herbivore dung collected at different Spanish locations. From 130 samples, a total of 104 isolates were obtained, and 48 species were identified. Preliminary identifications were based on morphology and partial β-tubulin (tub2) gene sequences. Putative new taxa were characterized by a multi-gene sequencing analysis testing the tub2, the internal transcribed spacer rDNA (ITS), calmodulin (cmdA), and RNA polymerase II second largest subunit (rpb2) genes, and a detailed phenotypic study. Using this polyphasic approach and following the genealogical concordance phylogenetic species recognition (GCPSR) method, we propose the new genera Penicillago (for Penicillium nodositatum) and Pseudopenicillium (for Penicillium megasporum and P. giganteum) in the family Aspergillaceae, and 11 new species, including seven Penicillium, three Talaromyces and one Pseudopenicillium. A lectotype and epitype are designed for Penicillium nodositatum. Our results show that the species diversity of penicillium-like fungi on herbivore dung has not been widely studied and that this substrate seems to be a good reservoir of interesting Eurotialean fungi.
Collapse
Affiliation(s)
- M Guevara-Suarez
- Unitat de Micologia, Facultat de Medicina i Ciències de la Salut and IISPV, Universitat Rovira i Virgili, Reus, Spain.,Laboratorio de Micología y Fitopatología (LAMFU), Vicerrectoría de Investigaciones, Universidad de los Andes, Bogotá, Colombia
| | - D García
- Unitat de Micologia, Facultat de Medicina i Ciències de la Salut and IISPV, Universitat Rovira i Virgili, Reus, Spain
| | - J F Cano-Lira
- Unitat de Micologia, Facultat de Medicina i Ciències de la Salut and IISPV, Universitat Rovira i Virgili, Reus, Spain
| | - J Guarro
- Unitat de Micologia, Facultat de Medicina i Ciències de la Salut and IISPV, Universitat Rovira i Virgili, Reus, Spain
| | - J Gené
- Unitat de Micologia, Facultat de Medicina i Ciències de la Salut and IISPV, Universitat Rovira i Virgili, Reus, Spain
| |
Collapse
|
12
|
Ramos-Pereira J, Mareze J, Patrinou E, Santos JA, López-Díaz TM. Polyphasic identification of Penicillium spp. isolated from Spanish semi-hard ripened cheeses. Food Microbiol 2019; 84:103253. [PMID: 31421787 DOI: 10.1016/j.fm.2019.103253] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 06/19/2019] [Accepted: 06/27/2019] [Indexed: 11/17/2022]
Abstract
Fifteen samples of semi-hard ripened cheeses, both spoiled (10) and unspoiled (5), and obtained from cheese factories located in Northwest of Spain, were analysed by a dilution plating technique and direct sampling. A total of 32 isolates were identified at species level by a polyphasic approach (phenotypic characterization, partial extrolite analysis and molecular identification). Most isolates (65.6%) belonged to the species P. commune; other species found were P. solitum, P. chrysogenum, P. nordicum, P. expansum and P. cvjetkovicii. All of the P. commune isolates were able to produce cyclopiazonic acid, while the P. nordicum and the P. expansum isolates were producers of ochratoxin A and patulin respectively. Despite this, the role of P. commune as beneficial fungi in cheese ripening should be investigated. Molecular identification based on BenA sequence analysis was able to identify the majority of isolates. The three mycotoxins investigated can be considered key for identification. The polyphasic approach seems to be a very valuable tool for identification of isolates of this complex genus.
Collapse
Affiliation(s)
- Juliana Ramos-Pereira
- Department of Food Hygiene and Food Technology, Veterinary Faculty, Universidad de León, Campus de Vegazana s/n, 24071, León, Spain.
| | - Juliana Mareze
- Department of Veterinary and Preventive Medicine, University of Londrina, Brazil.
| | - Eleni Patrinou
- Department of Food Hygiene and Food Technology, Veterinary Faculty, Universidad de León, Campus de Vegazana s/n, 24071, León, Spain.
| | - Jesús A Santos
- Department of Food Hygiene and Food Technology, Veterinary Faculty, Universidad de León, Campus de Vegazana s/n, 24071, León, Spain.
| | - Teresa-María López-Díaz
- Department of Food Hygiene and Food Technology, Veterinary Faculty, Universidad de León, Campus de Vegazana s/n, 24071, León, Spain.
| |
Collapse
|
13
|
Crous P, Carnegie A, Wingfield M, Sharma R, Mughini G, Noordeloos M, Santini A, Shouche Y, Bezerra J, Dima B, Guarnaccia V, Imrefi I, Jurjević Ž, Knapp D, Kovács G, Magistà D, Perrone G, Rämä T, Rebriev Y, Shivas R, Singh S, Souza-Motta C, Thangavel R, Adhapure N, Alexandrova A, Alfenas A, Alfenas R, Alvarado P, Alves A, Andrade D, Andrade J, Barbosa R, Barili A, Barnes C, Baseia I, Bellanger JM, Berlanas C, Bessette A, Bessette A, Biketova A, Bomfim F, Brandrud T, Bransgrove K, Brito A, Cano-Lira J, Cantillo T, Cavalcanti A, Cheewangkoon R, Chikowski R, Conforto C, Cordeiro T, Craine J, Cruz R, Damm U, de Oliveira R, de Souza J, de Souza H, Dearnaley J, Dimitrov R, Dovana F, Erhard A, Esteve-Raventós F, Félix C, Ferisin G, Fernandes R, Ferreira R, Ferro L, Figueiredo C, Frank J, Freire K, García D, Gené J, Gêsiorska A, Gibertoni T, Gondra R, Gouliamova D, Gramaje D, Guard F, Gusmão L, Haitook S, Hirooka Y, Houbraken J, Hubka V, Inamdar A, Iturriaga T, Iturrieta-González I, Jadan M, Jiang N, Justo A, Kachalkin A, Kapitonov V, Karadelev M, Karakehian J, Kasuya T, Kautmanová I, Kruse J, Kušan I, Kuznetsova T, Landell M, Larsson KH, Lee H, Lima D, Lira C, Machado A, Madrid H, Magalhães O, Majerova H, Malysheva E, Mapperson R, Marbach P, Martín M, Martín-Sanz A, Matočec N, McTaggart A, Mello J, Melo R, Mešić A, Michereff S, Miller A, Minoshima A, Molinero-Ruiz L, Morozova O, Mosoh D, Nabe M, Naik R, Nara K, Nascimento S, Neves R, Olariaga I, Oliveira R, Oliveira T, Ono T, Ordoñez M, Ottoni ADM, Paiva L, Pancorbo F, Pant B, Pawłowska J, Peterson S, Raudabaugh D, Rodríguez-Andrade E, Rubio E, Rusevska K, Santiago A, Santos A, Santos C, Sazanova N, Shah S, Sharma J, Silva B, Siquier J, Sonawane M, Stchigel A, Svetasheva T, Tamakeaw N, Telleria M, Tiago P, Tian C, Tkalčec Z, Tomashevskaya M, Truong H, Vecherskii M, Visagie C, Vizzini A, Yilmaz N, Zmitrovich I, Zvyagina E, Boekhout T, Kehlet T, Læssøe T, Groenewald J. Fungal Planet description sheets: 868-950. PERSOONIA 2019; 42:291-473. [PMID: 31551622 PMCID: PMC6712538 DOI: 10.3767/persoonia.2019.42.11] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 05/10/2019] [Indexed: 12/11/2022]
Abstract
Novel species of fungi described in this study include those from various countries as follows: Australia, Chaetomella pseudocircinoseta and Coniella pseudodiospyri on Eucalyptus microcorys leaves, Cladophialophora eucalypti, Teratosphaeria dunnii and Vermiculariopsiella dunnii on Eucalyptus dunnii leaves, Cylindrium grande and Hypsotheca eucalyptorum on Eucalyptus grandis leaves, Elsinoe salignae on Eucalyptus saligna leaves, Marasmius lebeliae on litter of regenerating subtropical rainforest, Phialoseptomonium eucalypti (incl. Phialoseptomonium gen. nov.) on Eucalyptus grandis × camaldulensis leaves, Phlogicylindrium pawpawense on Eucalyptus tereticornis leaves, Phyllosticta longicauda as an endophyte from healthy Eustrephus latifolius leaves, Pseudosydowia eucalyptorum on Eucalyptus sp. leaves, Saitozyma wallum on Banksia aemula leaves, Teratosphaeria henryi on Corymbia henryi leaves. Brazil, Aspergillus bezerrae, Backusella azygospora, Mariannaea terricola and Talaromyces pernambucoensis from soil, Calonectria matogrossensis on Eucalyptus urophylla leaves, Calvatia brasiliensis on soil, Carcinomyces nordestinensis on Bromelia antiacantha leaves, Dendryphiella stromaticola on small branches of an unidentified plant, Nigrospora brasiliensis on Nopalea cochenillifera leaves, Penicillium alagoense as a leaf endophyte on a Miconia sp., Podosordaria nigrobrunnea on dung, Spegazzinia bromeliacearum as a leaf endophyte on Tilandsia catimbauensis, Xylobolus brasiliensis on decaying wood. Bulgaria, Kazachstania molopis from the gut of the beetle Molops piceus. Croatia, Mollisia endocrystallina from a fallen decorticated Picea abies tree trunk. Ecuador, Hygrocybe rodomaculata on soil. Hungary, Alfoldia vorosii (incl. Alfoldia gen. nov.) from Juniperus communis roots, Kiskunsagia ubrizsyi (incl. Kiskunsagia gen. nov.) from Fumana procumbens roots. India, Aureobasidium tremulum as laboratory contaminant, Leucosporidium himalayensis and Naganishia indica from windblown dust on glaciers. Italy, Neodevriesia cycadicola on Cycas sp. leaves, Pseudocercospora pseudomyrticola on Myrtus communis leaves, Ramularia pistaciae on Pistacia lentiscus leaves, Neognomoniopsis quercina (incl. Neognomoniopsis gen. nov.) on Quercus ilex leaves. Japan, Diaporthe fructicola on Passiflora edulis × P. edulis f. flavicarpa fruit, Entoloma nipponicum on leaf litter in a mixed Cryptomeria japonica and Acer spp. forest. Macedonia, Astraeus macedonicus on soil. Malaysia, Fusicladium eucalyptigenum on Eucalyptus sp. twigs, Neoacrodontiella eucalypti (incl. Neoacrodontiella gen. nov.) on Eucalyptus urophylla leaves. Mozambique, Meliola gorongosensis on dead Philenoptera violacea leaflets. Nepal, Coniochaeta dendrobiicola from Dendriobium lognicornu roots. New Zealand, Neodevriesia sexualis and Thozetella neonivea on Archontophoenix cunninghamiana leaves. Norway, Calophoma sandfjordenica from a piece of board on a rocky shoreline, Clavaria parvispora on soil, Didymella finnmarkica from a piece of Pinus sylvestris driftwood. Poland, Sugiyamaella trypani from soil. Portugal, Colletotrichum feijoicola from Acca sellowiana. Russia, Crepidotus tobolensis on Populus tremula debris, Entoloma ekaterinae, Entoloma erhardii and Suillus gastroflavus on soil, Nakazawaea ambrosiae from the galleries of Ips typographus under the bark of Picea abies. Slovenia, Pluteus ludwigii on twigs of broadleaved trees. South Africa, Anungitiomyces stellenboschiensis (incl. Anungitiomyces gen. nov.) and Niesslia stellenboschiana on Eucalyptus sp. leaves, Beltraniella pseudoportoricensis on Podocarpus falcatus leaf litter, Corynespora encephalarti on Encephalartos sp. leaves, Cytospora pavettae on Pavetta revoluta leaves, Helminthosporium erythrinicola on Erythrina humeana leaves, Helminthosporium syzygii on a Syzygium sp. bark canker, Libertasomyces aloeticus on Aloe sp. leaves, Penicillium lunae from Musa sp. fruit, Phyllosticta lauridiae on Lauridia tetragona leaves, Pseudotruncatella bolusanthi (incl. Pseudotruncatellaceae fam. nov.) and Dactylella bolusanthi on Bolusanthus speciosus leaves. Spain, Apenidiella foetida on submerged plant debris, Inocybe grammatoides on Quercus ilex subsp. ilex forest humus, Ossicaulis salomii on soil, Phialemonium guarroi from soil. Thailand, Pantospora chromolaenae on Chromolaena odorata leaves. Ukraine, Cadophora helianthi from Helianthus annuus stems. USA, Boletus pseudopinophilus on soil under slash pine, Botryotrichum foricae, Penicillium americanum and Penicillium minnesotense from air. Vietnam, Lycoperdon vietnamense on soil. Morphological and culture characteristics are supported by DNA barcodes.
Collapse
Affiliation(s)
- P.W. Crous
- Westerdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Faculty of Natural and Agricultural Sciences, University of Pretoria, Private Bag X20, Hatfield 0028, Pretoria, South Africa
| | - A.J. Carnegie
- Forest Health & Biosecurity, NSW Department of Primary Industries, Forestry, Level 12, 10 Valentine Ave, Parramatta NSW 2150, Australia
| | - M.J. Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Faculty of Natural and Agricultural Sciences, University of Pretoria, Private Bag X20, Hatfield 0028, Pretoria, South Africa
| | - R. Sharma
- National Centre for Microbial Resource (NCMR), National Centre for Cell Science, S.P. Pune University, Ganeshkhind, Pune 411 007, Maharashtra, India
| | - G. Mughini
- Research Center for Forestry and Wood - C.R.E.A., Via Valle della Quistione 27, 00166 Rome, Italy
| | - M.E. Noordeloos
- Naturalis Biodiversity Center, section Botany, P.O. Box 9517, 2300 RA Leiden, The Netherlands
| | - A. Santini
- Institute for Sustainable Plant Protection - C.N.R., Via Madonna del Piano 10, 50019 Sesto fiorentino (FI), Italy
| | - Y.S. Shouche
- National Centre for Microbial Resource (NCMR), National Centre for Cell Science, S.P. Pune University, Ganeshkhind, Pune 411 007, Maharashtra, India
| | - J.D.P. Bezerra
- Departamento de Micologia, Universidade Federal de Pernambuco, Recife, Brazil
| | - B. Dima
- Department of Plant Anatomy, Institute of Biology, Eötvös Loránd University, 1117 Budapest, Pázmány Péter sétány 1/C, Hungary
| | - V. Guarnaccia
- DiSAFA, University of Torino, Largo Paolo Braccini, 2, 10095 Grugliasco, TO, Italy
| | - I. Imrefi
- Department of Plant Anatomy, Institute of Biology, Eötvös Loránd University, 1117 Budapest, Pázmány Péter sétány 1/C, Hungary
| | - Ž. Jurjević
- EMSL Analytical, Inc., 200 Route 130 North, Cinnaminson, NJ 08077, USA
| | - D.G. Knapp
- Department of Plant Anatomy, Institute of Biology, Eötvös Loránd University, 1117 Budapest, Pázmány Péter sétány 1/C, Hungary
| | - G.M. Kovács
- Department of Plant Anatomy, Institute of Biology, Eötvös Loránd University, 1117 Budapest, Pázmány Péter sétány 1/C, Hungary
| | - D. Magistà
- Institute of Sciences of Food Production, CNR, Via Amendola 122/O, 70126 Bari, Italy
| | - G. Perrone
- Institute of Sciences of Food Production, CNR, Via Amendola 122/O, 70126 Bari, Italy
| | - T. Rämä
- Marbio, Norwegian College of Fishery Science, University of Tromsø - The Arctic University of Norway
| | - Y.A. Rebriev
- South Scientific Center of the Russian Academy of Sciences, Rostov-on-Don, Russia
| | - R.G. Shivas
- Centre for Crop Health, University of Southern Queensland, Toowoomba 4350, Australia
| | - S.M. Singh
- National Centre for Antarctic and Ocean Research, Headland Sada, Vasco-da-Gama-403 804, Goa, India
- Banaras Hindu University (BHU), Uttar Pradesh, India
| | - C.M. Souza-Motta
- Departamento de Micologia, Universidade Federal de Pernambuco, Recife, Brazil
| | - R. Thangavel
- Plant Health and Environment Laboratory, Ministry for Primary Industries, P.O. Box 2095, Auckland 1140, New Zealand
| | - N.N. Adhapure
- Department of Biotechnology and Microbiology, Vivekanand Arts, Sardar Dalipsingh Commerce and Science College, Aurangabad 431001, Maharashtra, India
| | - A.V. Alexandrova
- Lomonosov Moscow State University (MSU), Faculty of Biology, 119234, 1, 12 Leninskie Gory Str., Moscow, Russia
- Joint Russian-Vietnamese Tropical Research and Technological Center, Hanoi, Vietnam
| | - A.C. Alfenas
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa, Brazil
| | - R.F. Alfenas
- Departamento de Engenharia Florestal, Universidade Federal de Mato Grosso, Cuiabá, Brazil
| | - P. Alvarado
- ALVALAB, Avda. de Bruselas 2-3B, 33011 Oviedo, Spain
| | - A.L. Alves
- Departamento de Micologia, Universidade Federal de Pernambuco, Recife, Brazil
| | - D.A. Andrade
- Instituto de Ciências Biológicas e da Saúde – ICBS, Universidade Federal de Alagoas, Maceió, Brazil
| | - J.P. Andrade
- Universidade Estadual de Feira de Santana, Av. Transnordestina, S/N – Novo Horizonte, 44036-900 Feira de Santana, BA, Brazil
| | - R.N. Barbosa
- Departamento de Micologia, Universidade Federal de Pernambuco, Recife, Brazil
| | - A. Barili
- Escuela de Ciencias Biológicas, Pontificia Universidad Católica del Ecuador, Av. 12 de octubre 1076 y Roca, Quito, Ecuador
| | - C.W. Barnes
- Escuela de Ciencias Biológicas, Pontificia Universidad Católica del Ecuador, Av. 12 de octubre 1076 y Roca, Quito, Ecuador
| | - I.G. Baseia
- Departamento Botânica e Zoologia, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Campus Universitário, 59072-970, Natal, RN, Brazil
| | - J.-M. Bellanger
- CEFE – CNRS – Université de Montpellier – Université Paul-Valéry Montpellier – EPHE – IRD – INSERM, Campus CNRS, 1919 Route de Mende, 34293 Montpellier, France
| | - C. Berlanas
- Instituto de Ciencias de la Vid y del Vino (Gobierno de La Rioja-CSIC-Universidad de La Rioja), Ctra. LO-20, Salida 13, 26007 Logroño, La Rioja, Spain
| | | | | | - A.Yu. Biketova
- Synthetic and Systems Biology Unit, Biological Research Centre, Hungarian Academy of Sciences, H-6726 Szeged, Hungary
| | - F.S. Bomfim
- Departamento de Micologia, Universidade Federal de Pernambuco, Recife, Brazil
| | - T.E. Brandrud
- Norwegian Institute for Nature Research, Gaustadalléen 21, NO-0349 Oslo, Norway
| | - K. Bransgrove
- Plant Pathology Herbarium, Department of Agriculture and Fisheries, Dutton Park 4102, Queensland, Australia
| | - A.C.Q. Brito
- Departamento de Micologia, Universidade Federal de Pernambuco, Recife, Brazil
| | - J.F. Cano-Lira
- Mycology Unit, Medical School and IISPV, Universitat Rovira i Virgili (URV), Sant Llorenç 21, 43201 Reus, Tarragona, Spain
| | - T. Cantillo
- Departamento de Ciências Biológicas, Universidade Estadual de Feira de Santana, Av. Transnordestina, S/N – Novo Horizonte, 44036-900 Feira de Santana, BA, Brazil
| | - A.D. Cavalcanti
- Departamento de Micologia, Universidade Federal de Pernambuco, Recife, Brazil
| | - R. Cheewangkoon
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| | - R.S. Chikowski
- Departamento de Micologia, Universidade Federal de Pernambuco, Recife, Brazil
| | - C. Conforto
- Instituto de Patología Vegetal, Instituto Nacional de Tecnología Agropecuaria, Córdoba, Argentina
| | - T.R.L. Cordeiro
- Departamento de Micologia, Universidade Federal de Pernambuco, Recife, Brazil
| | - J.D. Craine
- 5320 N. Peachtree Road, Dunwoody, GA 30338, USA
| | - R. Cruz
- Departamento de Micologia, Universidade Federal de Pernambuco, Recife, Brazil
| | - U. Damm
- Senckenberg Museum of Natural History Görlitz, PF 300 154, 02806 Görlitz, Germany
| | - R.J.V. de Oliveira
- Comissão Executiva do Plano da Lavoura Cacaueira (CEPLAC)/CEPEC, Itabuna, Bahia, Brazil
| | | | - H.G. de Souza
- Recôncavo da Bahia Federal University, Bahia, Brazil
| | - J.D.W. Dearnaley
- Centre for Crop Health, University of Southern Queensland, Toowoomba 4350, Australia
| | - R.A. Dimitrov
- National Center of Infectious and Parasitic Diseases, 26 Yanko Sakazov blvd, Sofia 1504, Bulgaria
| | - F. Dovana
- Department of Life Sciences and Systems Biology, University of Turin, Viale P.A. Mattioli 25, 10125, Torino, Italy
| | - A. Erhard
- EMSL Analytical, Inc., 200 Route 130 North, Cinnaminson, NJ 08077, USA
| | - F. Esteve-Raventós
- Departamento de Ciencias de la Vida (Area de Botánica), Universidad de Alcalá, 28805 Alcalá de Henares, Madrid, Spain
| | - C.R. Félix
- Instituto de Ciências Biológicas e da Saúde – ICBS, Universidade Federal de Alagoas, Maceió, Brazil
| | - G. Ferisin
- Via A. Vespucci 7, 1537, 33052 Cervignano del Friuli (UD), Italy
| | - R.A. Fernandes
- Departamento de Fitopatologia, Universidade Federal de Brasilia, Brasilia, Brazil
| | - R.J. Ferreira
- Departamento de Micologia, Universidade Federal de Pernambuco, Recife, Brazil
| | - L.O. Ferro
- Departamento de Micologia, Universidade Federal de Pernambuco, Recife, Brazil
| | | | - J.L. Frank
- Department of Biology, Southern Oregon University, Ashland OR 97520, USA
| | - K.T.L.S. Freire
- Departamento de Micologia, Universidade Federal de Pernambuco, Recife, Brazil
| | - D. García
- Mycology Unit, Medical School and IISPV, Universitat Rovira i Virgili (URV), Sant Llorenç 21, 43201 Reus, Tarragona, Spain
| | - J. Gené
- Mycology Unit, Medical School and IISPV, Universitat Rovira i Virgili (URV), Sant Llorenç 21, 43201 Reus, Tarragona, Spain
| | - A. Gêsiorska
- Department of Molecular Phylogenetics and Evolution, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, ul. Zwirki i Wigury 101, 02-089 Warsaw, Poland
| | - T.B. Gibertoni
- Departamento de Micologia, Universidade Federal de Pernambuco, Recife, Brazil
| | - R.A.G. Gondra
- University Utrecht, P.O. Box 80125, 3508 TC Utrecht, The Netherlands
| | - D.E. Gouliamova
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26 Acad. Georgi Bonchev, Sofia 1113, Bulgaria
| | - D. Gramaje
- Instituto de Ciencias de la Vid y del Vino (Gobierno de La Rioja-CSIC-Universidad de La Rioja), Ctra. LO-20, Salida 13, 26007 Logroño, La Rioja, Spain
| | | | - L.F.P. Gusmão
- Departamento de Ciências Biológicas, Universidade Estadual de Feira de Santana, Av. Transnordestina, S/N – Novo Horizonte, 44036-900 Feira de Santana, BA, Brazil
| | - S. Haitook
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Y. Hirooka
- Department of Clinical Plant Science, Faculty of Bioscience, Hosei University, 3-7-2 Kajino-cho, Koganei, Tokyo, Japan
| | - J. Houbraken
- Westerdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands
| | - V. Hubka
- Department of Botany, Faculty of Science, Charles University, Benátská 2, 128 01 Prague 2, Czech Republic
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology of the CAS, v.v.i, Vídeòská 1083, 142 20 Prague 4, Czech Republic
| | - A. Inamdar
- Department of Biotechnology and Microbiology, Vivekanand Arts, Sardar Dalipsingh Commerce and Science College, Aurangabad 431001, Maharashtra, India
| | - T. Iturriaga
- University of Illinois Urbana-Champaign, Illinois Natural History Survey, 1816 South Oak Street, Champaign, Illinois, 61820, USA
- Plant Pathology Herbarium, 334 Plant Science Building, Cornell University, Ithaca, NY 14853 USA
| | - I. Iturrieta-González
- Mycology Unit, Medical School and IISPV, Universitat Rovira i Virgili (URV), Sant Llorenç 21, 43201 Reus, Tarragona, Spain
| | - M. Jadan
- Ruđer Bošković Institute, Bijenička cesta 54, HR-10000 Zagreb, Croatia
| | - N. Jiang
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - A. Justo
- Department of Biology, Clark University, 950 Main St, Worcester, 01610, MA, USA
| | - A.V. Kachalkin
- Lomonosov Moscow State University, Moscow, Russia
- All-Russian Collection of Microorganisms, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms RAS, Pushchino, Russia
| | - V.I. Kapitonov
- Tobolsk Complex Scientific Station of the Ural Branch of the Russian Academy of Sciences, 626152 Tobolsk, Russia
| | - M. Karadelev
- Institute of Biology, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, Skopje, Republic of Macedonia
| | - J. Karakehian
- Farlow Herbarium, Harvard University, 22 Divinity Avenue, Cambridge, MA 02138, USA
| | - T. Kasuya
- Department of Biology, Keio University, 4-1-1, Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8521, Japan
| | - I. Kautmanová
- Slovak National Museum-Natural History Museum, vjanaskeho nab. 2, P.O. Box 13, 81006 Bratislava, Slovakia
| | - J. Kruse
- Centre for Crop Health, University of Southern Queensland, Toowoomba 4350, Australia
| | - I. Kušan
- Ruđer Bošković Institute, Bijenička cesta 54, HR-10000 Zagreb, Croatia
| | - T.A. Kuznetsova
- A.N. Severtsov Institute of Ecology and Evolution RAS, Moscow, Russia
| | - M.F. Landell
- Instituto de Ciências Biológicas e da Saúde – ICBS, Universidade Federal de Alagoas, Maceió, Brazil
| | - K.-H. Larsson
- Natural History Museum, P.O. Box 1172 Blindern 0318, University of Oslo, Norway
| | - H.B. Lee
- Environmental Microbiology Lab, Division of Food Technology, Biotechnology & Agrochemistry, College of Agriculture and Life Sciences, Chonnam National University, Korea
| | - D.X. Lima
- Departamento de Micologia, Universidade Federal de Pernambuco, Recife, Brazil
| | - C.R.S. Lira
- Departamento de Micologia, Universidade Federal de Pernambuco, Recife, Brazil
| | - A.R. Machado
- Departamento de Micologia, Universidade Federal de Pernambuco, Recife, Brazil
| | - H. Madrid
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor, Camino La Pirámide 5750, Huechuraba, Santiago, Chile
| | - O.M.C. Magalhães
- Departamento de Micologia, Universidade Federal de Pernambuco, Recife, Brazil
| | - H. Majerova
- Faculty of Chemical and Food Technology, Biochemistry and Microbiology Department, Slovak University of Technology, Radlinského 9, 81237 Bratislava, Slovakia
| | - E.F. Malysheva
- Komarov Botanical Institute of the Russian Academy of Sciences, Saint Petersburg, Russia
| | - R.R. Mapperson
- Centre for Crop Health, University of Southern Queensland, Toowoomba 4350, Australia
| | | | - M.P. Martín
- Departamento de Micología, Real Jardín Botánico, RJB-CSIC, Plaza de Murillo 2, 28014 Madrid, Spain
| | - A. Martín-Sanz
- Pioneer Hi-Bred International, Inc., Campus Dupont – Pioneer, Ctra. Sevilla-Cazalla km 4.6, 41309 La Rinconada, Spain
| | - N. Matočec
- Ruđer Bošković Institute, Bijenička cesta 54, HR-10000 Zagreb, Croatia
| | - A.R. McTaggart
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, St Lucia 4069, Australia
| | - J.F. Mello
- Departamento de Micologia, Universidade Federal de Pernambuco, Recife, Brazil
| | - R.F.R. Melo
- Departamento de Micologia, Universidade Federal de Pernambuco, Recife, Brazil
| | - A. Mešić
- Ruđer Bošković Institute, Bijenička cesta 54, HR-10000 Zagreb, Croatia
| | - S.J. Michereff
- Centro de Ciências Agrárias e da Biodiversidade, Universidade Federal do Cariri, Ceará, Brazil
| | - A.N. Miller
- University of Illinois Urbana-Champaign, Illinois Natural History Survey, 1816 South Oak Street, Champaign, Illinois, 61820, USA
| | - A. Minoshima
- Department of Clinical Plant Science, Faculty of Bioscience, Hosei University, 3-7-2 Kajino-cho, Koganei, Tokyo, Japan
| | - L. Molinero-Ruiz
- Department of Crop Protection, Institute for Sustainable Agriculture, CSIC, 14004 Córdoba, Spain
| | - O.V. Morozova
- Komarov Botanical Institute of the Russian Academy of Sciences, Saint Petersburg, Russia
| | - D. Mosoh
- National Centre for Microbial Resource (NCMR), National Centre for Cell Science, S.P. Pune University, Ganeshkhind, Pune 411 007, Maharashtra, India
| | - M. Nabe
- 2-2-1, Sakuragaoka-nakamachi, Nishi-ku, Kobe, Hyogo 651-2226, Japan
| | - R. Naik
- National Centre for Antarctic and Ocean Research, Headland Sada, Vasco-da-Gama-403 804, Goa, India
| | - K. Nara
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwanoha, Kashiwa, Chiba 277-8563, Japan
| | - S.S. Nascimento
- Departamento de Micologia, Universidade Federal de Pernambuco, Recife, Brazil
| | - R.P. Neves
- Departamento de Micologia, Universidade Federal de Pernambuco, Recife, Brazil
| | - I. Olariaga
- Biology, Geology and Inorganic Chemistry department, Universidad Rey Juan Carlos, C/ Tulipán s/n, 28933 Móstoles, Madrid, Spain
| | - R.L. Oliveira
- Programa de Pós-Graduação em Sistemática e Evolução, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Av. Senador Salgado Filho, 3000, 59072-970, Natal, RN, Brazil
| | - T.G.L. Oliveira
- Departamento de Micologia, Universidade Federal de Pernambuco, Recife, Brazil
| | - T. Ono
- Ogasawara Subtropical Branch of Tokyo Metropolitan Agriculture and Forestry Research Center, Komagari, Chichijima, Ogasawara, Tokyo, Japan
| | - M.E. Ordoñez
- Escuela de Ciencias Biológicas, Pontificia Universidad Católica del Ecuador, Av. 12 de octubre 1076 y Roca, Quito, Ecuador
| | - A. de M. Ottoni
- Departamento de Micologia, Universidade Federal de Pernambuco, Recife, Brazil
| | - L.M. Paiva
- Departamento de Micologia, Universidade Federal de Pernambuco, Recife, Brazil
| | - F. Pancorbo
- Pintores de El Paular 25, 28740 Rascafría, Madrid, Spain
| | - B. Pant
- Central Department of Botany, Tribhuvan University, Nepal
| | - J. Pawłowska
- Department of Molecular Phylogenetics and Evolution, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, ul. Zwirki i Wigury 101, 02-089 Warsaw, Poland
| | - S.W. Peterson
- Mycotoxin Prevention and Applied Microbiology Research Unit, Agricultural Research Service, U.S. Department of Agriculture, 1815 North University Street, Peoria, IL 61604, USA
| | - D.B. Raudabaugh
- University of Illinois Urbana-Champaign, Illinois Natural History Survey, 1816 South Oak Street, Champaign, Illinois, 61820, USA
| | - E. Rodríguez-Andrade
- Mycology Unit, Medical School and IISPV, Universitat Rovira i Virgili (URV), Sant Llorenç 21, 43201 Reus, Tarragona, Spain
| | - E. Rubio
- C/ José Cueto 3 – 5ºB, 33401 Avilés, Asturias, Spain
| | - K. Rusevska
- Institute of Biology, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, Skopje, Republic of Macedonia
| | - A.L.C.M.A. Santiago
- Departamento de Micologia, Universidade Federal de Pernambuco, Recife, Brazil
| | - A.C.S. Santos
- Departamento de Micologia, Universidade Federal de Pernambuco, Recife, Brazil
| | - C. Santos
- Departamento de Ciencias Químicas y Recursos Naturales, BIOREN-UFRO, Universidad de La Frontera, Temuco, Chile
| | - N.A. Sazanova
- Institute of Biological Problems of the North, Far East Branch of the Russian Academy of Sciences, Magadan, Russia
| | - S. Shah
- Central Department of Botany, Tribhuvan University, Nepal
| | - J. Sharma
- Department of Plant and Soil Science, Texas Tech. University, USA
| | - B.D.B. Silva
- Universidade Federal da Bahia, Instituto de Biologia, Departamento de Botânica, 40170115 Ondina, Salvador, BA, Brazil
| | - J.L. Siquier
- Carrer Major, 19, E-07300 Inca (Islas Baleares), Spain
| | - M.S. Sonawane
- National Centre for Microbial Resource (NCMR), National Centre for Cell Science, S.P. Pune University, Ganeshkhind, Pune 411 007, Maharashtra, India
| | - A.M. Stchigel
- Mycology Unit, Medical School and IISPV, Universitat Rovira i Virgili (URV), Sant Llorenç 21, 43201 Reus, Tarragona, Spain
| | - T. Svetasheva
- Biology and Technologies of Living Systems Department, Tula State Lev Tolstoy Pedagogical University, 125 Lenin av., 300026 Tula, Russia
| | - N. Tamakeaw
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| | - M.T. Telleria
- Departamento de Micología, Real Jardín Botánico, RJB-CSIC, Plaza de Murillo 2, 28014 Madrid, Spain
| | - P.V. Tiago
- Departamento de Micologia, Universidade Federal de Pernambuco, Recife, Brazil
| | - C.M. Tian
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - Z. Tkalčec
- Ruđer Bošković Institute, Bijenička cesta 54, HR-10000 Zagreb, Croatia
| | - M.A. Tomashevskaya
- All-Russian Collection of Microorganisms, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms RAS, Pushchino, Russia
| | - H.H. Truong
- Department of Clinical Plant Science, Faculty of Bioscience, Hosei University, 3-7-2 Kajino-cho, Koganei, Tokyo, Japan
| | - M.V. Vecherskii
- A.N. Severtsov Institute of Ecology and Evolution RAS, Moscow, Russia
| | - C.M. Visagie
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Faculty of Natural and Agricultural Sciences, University of Pretoria, Private Bag X20, Hatfield 0028, Pretoria, South Africa
- Biosystematics Division, Agricultural Research Council – Plant Health and Protection, P. Bag X134, Queenswood, Pretoria 0121, South Africa
| | - A. Vizzini
- Department of Life Sciences and Systems Biology, University of Turin, Viale P.A. Mattioli 25, 10125, Torino, Italy
| | - N. Yilmaz
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Faculty of Natural and Agricultural Sciences, University of Pretoria, Private Bag X20, Hatfield 0028, Pretoria, South Africa
| | - I.V. Zmitrovich
- Komarov Botanical Institute of the Russian Academy of Sciences, Saint Petersburg, Russia
| | | | - T. Boekhout
- Westerdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands
- Institute of Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, The Netherlands
| | - T. Kehlet
- Natural History Museum of Denmark, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen E, Denmark
| | - T. Læssøe
- Natural History Museum of Denmark, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen E, Denmark
| | - J.Z. Groenewald
- Westerdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands
| |
Collapse
|
14
|
George TK, Houbraken J, Mathew L, Jisha MS. Penicillium setosum, a new species from Withania somnifera (L.) Dunal. Mycology 2019; 10:49-60. [PMID: 30834152 PMCID: PMC6394320 DOI: 10.1080/21501203.2018.1555868] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 11/29/2018] [Indexed: 01/09/2023] Open
Abstract
Medicinal plants are considered as sources of novel and unexplored groups of endophytic microorganisms. A study on endophytic fungal species from the medicinal plant Withania somnifera (L.) Dunal resulted in the isolation of a Penicillium isolate (WSR 62) with antibiotic activity. Phylogenetic analysis showed that the isolate belongs to section Lanata-divaricata, and it is most closely related to P. javanicum. Subsequent detailed phylogenetic analyses using partial β-tubulin (BenA), calmodulin (CaM) and DNA-dependent RNA polymerase II (RPB2) gene sequences of a larger number of related strains revealed the distinctiveness of the isolate in the P. javanicum-clade. The isolate grows fast on Czapek yeast autolysate agar (CYA) and malt extract agar (MEA) incubated at 25°C, 30°C and 37°C. The obverse colony colour is dominated by the conspicuous production of cleistothecia and is greyish yellow on CYA and yellowish brown on MEA. Production of cleistothecia containing prominent spinose ascospores was present on all tested agar media. Based on the phylogenetic analysis and the phenotypic characterisation, strain WSR 62 from Withania is described here as a novel species named Penicillium setosum.
Collapse
Affiliation(s)
- Tijith K. George
- School of Biosciences, Mahatma Gandhi University, Kottayam, India
| | - Jos Houbraken
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - Linu Mathew
- School of Biosciences, Mahatma Gandhi University, Kottayam, India
| | - M. S. Jisha
- School of Biosciences, Mahatma Gandhi University, Kottayam, India
| |
Collapse
|
15
|
Hubka V, Barrs V, Dudová Z, Sklenář F, Kubátová A, Matsuzawa T, Yaguchi T, Horie Y, Nováková A, Frisvad J, Talbot J, Kolařík M. Unravelling species boundaries in the Aspergillus viridinutans complex (section Fumigati): opportunistic human and animal pathogens capable of interspecific hybridization. PERSOONIA 2018; 41:142-174. [PMID: 30728603 PMCID: PMC6344812 DOI: 10.3767/persoonia.2018.41.08] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 03/14/2018] [Indexed: 12/13/2022]
Abstract
Although Aspergillus fumigatus is the major agent of invasive aspergillosis, an increasing number of infections are caused by its cryptic species, especially A. lentulus and the A. viridinutans species complex (AVSC). Their identification is clinically relevant because of antifungal drug resistance and refractory infections. Species boundaries in the AVSC are unresolved since most species have uniform morphology and produce interspecific hybrids in vitro. Clinical and environmental strains from six continents (n = 110) were characterized by DNA sequencing of four to six loci. Biological compatibilities were tested within and between major phylogenetic clades, and ascospore morphology was characterised. Species delimitation methods based on the multispecies coalescent model (MSC) supported recognition of ten species including one new species. Four species are confirmed opportunistic pathogens; A. udagawae followed by A. felis and A. pseudoviridinutans are known from opportunistic human infections, while A. felis followed by A. udagawae and A. wyomingensis are agents of feline sino-orbital aspergillosis. Recently described human-pathogenic species A. parafelis and A. pseudofelis are synonymized with A. felis and an epitype is designated for A. udagawae. Intraspecific mating assay showed that only a few of the heterothallic species can readily generate sexual morphs in vitro. Interspecific mating assays revealed that five different species combinations were biologically compatible. Hybrid ascospores had atypical surface ornamentation and significantly different dimensions compared to parental species. This suggests that species limits in the AVSC are maintained by both pre- and post-zygotic barriers and these species display a great potential for rapid adaptation and modulation of virulence. This study highlights that a sufficient number of strains representing genetic diversity within a species is essential for meaningful species boundaries delimitation in cryptic species complexes. MSC-based delimitation methods are robust and suitable tools for evaluation of boundaries between these species.
Collapse
Affiliation(s)
- V. Hubka
- Department of Botany, Faculty of Science, Charles University, Benátská 2, 128 01 Prague 2, Czech Republic
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology of the CAS, v.v.i, Vídeňská 1083, 142 20 Prague 4, Czech Republic
- First Faculty of Medicine, Charles University, Kateřinská 32, 121 08 Prague 2, Czech Republic
| | - V. Barrs
- Sydney School of Veterinary Science, Faculty of Science, and Marie Bashir Institute of Infectious Diseases & Biosecurity, University of Sydney, Camperdown, NSW, Australia
| | - Z. Dudová
- Department of Botany, Faculty of Science, Charles University, Benátská 2, 128 01 Prague 2, Czech Republic
- First Faculty of Medicine, Charles University, Kateřinská 32, 121 08 Prague 2, Czech Republic
| | - F. Sklenář
- Department of Botany, Faculty of Science, Charles University, Benátská 2, 128 01 Prague 2, Czech Republic
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology of the CAS, v.v.i, Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - A. Kubátová
- Department of Botany, Faculty of Science, Charles University, Benátská 2, 128 01 Prague 2, Czech Republic
| | - T. Matsuzawa
- University of Nagasaki, 1-1-1 Manabino, Nagayo-cho, Nishi-Sonogi-gun, Nagasaki 851-2195, Japan
| | - T. Yaguchi
- Medical Mycology Research Center, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8673, Japan
| | - Y. Horie
- Medical Mycology Research Center, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8673, Japan
| | - A. Nováková
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology of the CAS, v.v.i, Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - J.C. Frisvad
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - J.J. Talbot
- Sydney School of Veterinary Science, Faculty of Science, and Marie Bashir Institute of Infectious Diseases & Biosecurity, University of Sydney, Camperdown, NSW, Australia
| | - M. Kolařík
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology of the CAS, v.v.i, Vídeňská 1083, 142 20 Prague 4, Czech Republic
| |
Collapse
|
16
|
Barbosa RN, Bezerra JDP, Souza-Motta CM, Frisvad JC, Samson RA, Oliveira NT, Houbraken J. New Penicillium and Talaromyces species from honey, pollen and nests of stingless bees. Antonie Van Leeuwenhoek 2018; 111:1883-1912. [PMID: 29654567 PMCID: PMC6153986 DOI: 10.1007/s10482-018-1081-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 03/31/2018] [Indexed: 01/05/2023]
Abstract
Penicillium and Talaromyces species have a worldwide distribution and are isolated from various materials and hosts, including insects and their substrates. The aim of this study was to characterize the Penicillium and Talaromyces species obtained during a survey of honey, pollen and the inside of nests of Melipona scutellaris. A total of 100 isolates were obtained during the survey and 82% of those strains belonged to Penicillium and 18% to Talaromyces. Identification of these isolates was performed based on phenotypic characters and β-tubulin and ITS sequencing. Twenty-one species were identified in Penicillium and six in Talaromyces, including seven new species. These new species were studied in detail using a polyphasic approach combining phenotypic, molecular and extrolite data. The four new Penicillium species belong to sections Sclerotiora (Penicillium fernandesiae sp. nov., Penicillium mellis sp. nov., Penicillium meliponae sp. nov.) and Gracilenta (Penicillium apimei sp. nov.) and the three new Talaromyces species to sections Helici (Talaromyces pigmentosus sp. nov.), Talaromyces (Talaromyces mycothecae sp. nov.) and Trachyspermi (Talaromyces brasiliensis sp. nov.). The invalidly described species Penicillium echinulonalgiovense sp. nov. was also isolated during the survey and this species is validated here.
Collapse
Affiliation(s)
- Renan N Barbosa
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
- Departamento de Micologia Prof. Chaves Batista, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, s/n, Centro de Biociências, Cidade Universitária, CEP: 50670-901, Recife, PE, Brazil
| | - Jadson D P Bezerra
- Departamento de Micologia Prof. Chaves Batista, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, s/n, Centro de Biociências, Cidade Universitária, CEP: 50670-901, Recife, PE, Brazil
| | - Cristina M Souza-Motta
- Departamento de Micologia Prof. Chaves Batista, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, s/n, Centro de Biociências, Cidade Universitária, CEP: 50670-901, Recife, PE, Brazil
| | - Jens C Frisvad
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Robert A Samson
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - Neiva T Oliveira
- Departamento de Micologia Prof. Chaves Batista, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, s/n, Centro de Biociências, Cidade Universitária, CEP: 50670-901, Recife, PE, Brazil
| | - Jos Houbraken
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands.
| |
Collapse
|
17
|
Anelli P, Peterson SW, Haidukowski M, Logrieco AF, Moretti A, Epifani F, Susca A. Penicillium gravinicasei, a new species isolated from cave cheese in Apulia, Italy. Int J Food Microbiol 2018; 282:66-70. [PMID: 29929177 DOI: 10.1016/j.ijfoodmicro.2018.06.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 05/30/2018] [Accepted: 06/08/2018] [Indexed: 12/01/2022]
Abstract
Several species of the genus Penicillium were isolated during a survey of the mycobiota of Apulian cave cheeses ripened in a cave in Gravina di Puglia, Italy. A novel species, Penicillium gravinicasei, is described in Penicillium section Cinnamopurpurea. Its taxonomic novelty was determined using a polyphasic approach, combining phenotypic, molecular (β-tubulin, calmodulin, ITS and DNA dependent RNA polymerase) DNA sequences and mycotoxin production data. Phylogenetic analyses of the RPB2 data showed that isolates of the novel species form a clade most closely related to Penicillium cinnamopurpureum and P. parvulum with high bootstrap support. The fungus did not produce ochratoxin A, citrinin, patulin, sterigmatocystin or aflatoxin B1 on standard agar media. The novel species had a high growth rate on agar media supplemented with 5% NaCl, and could be distinguished from other Penicillium section Cinnamopurpurea species by phenotypic and molecular characteristics.
Collapse
Affiliation(s)
- Pamela Anelli
- Institute of Sciences of Food Production, National Research Council (CNR), Via Amendola 122/O, 70126 Bari, Italy
| | - Steve W Peterson
- Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, U.S. Department of Agriculture, 1815 North University Street, Peoria, IL 61604, USA
| | - Miriam Haidukowski
- Institute of Sciences of Food Production, National Research Council (CNR), Via Amendola 122/O, 70126 Bari, Italy
| | - Antonio F Logrieco
- Institute of Sciences of Food Production, National Research Council (CNR), Via Amendola 122/O, 70126 Bari, Italy
| | - Antonio Moretti
- Institute of Sciences of Food Production, National Research Council (CNR), Via Amendola 122/O, 70126 Bari, Italy
| | - Filomena Epifani
- Institute of Sciences of Food Production, National Research Council (CNR), Via Amendola 122/O, 70126 Bari, Italy
| | - Antonia Susca
- Institute of Sciences of Food Production, National Research Council (CNR), Via Amendola 122/O, 70126 Bari, Italy.
| |
Collapse
|
18
|
Hagen F, Lumbsch HT, Arsic Arsenijevic V, Badali H, Bertout S, Billmyre RB, Bragulat MR, Cabañes FJ, Carbia M, Chakrabarti A, Chaturvedi S, Chaturvedi V, Chen M, Chowdhary A, Colom MF, Cornely OA, Crous PW, Cuétara MS, Diaz MR, Espinel-Ingroff A, Fakhim H, Falk R, Fang W, Herkert PF, Ferrer Rodríguez C, Fraser JA, Gené J, Guarro J, Idnurm A, Illnait-Zaragozi MT, Khan Z, Khayhan K, Kolecka A, Kurtzman CP, Lagrou K, Liao W, Linares C, Meis JF, Nielsen K, Nyazika TK, Pan W, Pekmezovic M, Polacheck I, Posteraro B, de Queiroz Telles F, Romeo O, Sánchez M, Sampaio A, Sanguinetti M, Sriburee P, Sugita T, Taj-Aldeen SJ, Takashima M, Taylor JW, Theelen B, Tomazin R, Verweij PE, Wahyuningsih R, Wang P, Boekhout T. Importance of Resolving Fungal Nomenclature: the Case of Multiple Pathogenic Species in the Cryptococcus Genus. mSphere 2017; 2:e00238-17. [PMID: 28875175 PMCID: PMC5577652 DOI: 10.1128/msphere.00238-17] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Cryptococcosis is a major fungal disease caused by members of the Cryptococcus gattii and Cryptococcus neoformans species complexes. After more than 15 years of molecular genetic and phenotypic studies and much debate, a proposal for a taxonomic revision was made. The two varieties within C. neoformans were raised to species level, and the same was done for five genotypes within C. gattii. In a recent perspective (K. J. Kwon-Chung et al., mSphere 2:e00357-16, 2017, https://doi.org/10.1128/mSphere.00357-16), it was argued that this taxonomic proposal was premature and without consensus in the community. Although the authors of the perspective recognized the existence of genetic diversity, they preferred the use of the informal nomenclature "C. neoformans species complex" and "C. gattii species complex." Here we highlight the advantage of recognizing these seven species, as ignoring these species will impede deciphering further biologically and clinically relevant differences between them, which may in turn delay future clinical advances.
Collapse
Affiliation(s)
- Ferry Hagen
- Department of Medical Microbiology and Infectious Diseases, Canisius-Wilhelmina Hospital, Nijmegen, The Netherlands
- Centre of Expertise in Mycology Radboudumc/CWZ, Nijmegen, The Netherlands
| | | | | | - Hamid Badali
- Department of Medical Mycology and Parasitology/Invasive Fungi Research Center (IFRC), Mazandaran University of Medical Sciences, Sari, Iran
| | - Sebastien Bertout
- Unité Mixte Internationale Recherches Translationnelles sur l’Infection à VIH et les Maladies Infectieuses, Laboratoire de Parasitologie et Mycologie Médicale, UFR Pharmacie, Université Montpellier, Montpellier, France
| | - R. Blake Billmyre
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - M. Rosa Bragulat
- Veterinary Mycology Group, Department of Animal Health and Anatomy, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - F. Javier Cabañes
- Veterinary Mycology Group, Department of Animal Health and Anatomy, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Mauricio Carbia
- Departamento de Parasitología y Micología, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Arunaloke Chakrabarti
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Sudha Chaturvedi
- Mycology Laboratory, Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Vishnu Chaturvedi
- Mycology Laboratory, Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Min Chen
- Shanghai Key Laboratory of Molecular Medical Mycology, Shanghai Institute of Medical Mycology, Second Military Medical University, Shanghai, China
- Department of Dermatology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Anuradha Chowdhary
- Department of Medical Mycology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | | | - Oliver A. Cornely
- CECAD Cluster of Excellence, University of Cologne, Cologne, Germany
- Department I for Internal Medicine, University Hospital of Cologne, Cologne, Germany
- Center for Clinical Trials, University Hospital Cologne, Cologne, Germany
| | - Pedro W. Crous
- Phytopathology Research, Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
- Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Maria S. Cuétara
- Department of Microbiology, Hospital Severo Ochoa, Madrid, Spain
| | - Mara R. Diaz
- University of Miami, NSF NIEHS Oceans and Human Health Center, Miami, Florida, USA
- Rosentiel School of Marine and Atmospheric Science, Division of Marine Biology and Fisheries, University of Miami, Miami, Florida, USA
| | | | - Hamed Fakhim
- Department of Medical Parasitology and Mycology/Cellular and Molecular Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Rama Falk
- Department of Clinical Microbiology and Infectious Diseases, Hadassah-Hebrew University Medical Center, Ein Kerem, Jerusalem, Israel
- Department of Fisheries and Aquaculture, Ministry of Agriculture and Rural Development, Nir-David, Israel
| | - Wenjie Fang
- Shanghai Key Laboratory of Molecular Medical Mycology, Shanghai Institute of Medical Mycology, Second Military Medical University, Shanghai, China
- Department of Dermatology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Patricia F. Herkert
- Department of Medical Microbiology and Infectious Diseases, Canisius-Wilhelmina Hospital, Nijmegen, The Netherlands
- Postgraduate Program in Microbiology, Parasitology and Pathology, Biological Sciences, Department of Basic Pathology, Federal University of Parana, Curitiba, Brazil
| | | | - James A. Fraser
- Australian Infectious Diseases Research Centre, School of Chemistry & Molecular Biosciences, University of Queensland, Brisbane, Australia
| | - Josepa Gené
- Unitat de Micologia, Facultat de Medicina i Ciències de la Salut, IISPV, Universitat Rovira i Virgili, Reus, Spain
| | - Josep Guarro
- Unitat de Micologia, Facultat de Medicina i Ciències de la Salut, IISPV, Universitat Rovira i Virgili, Reus, Spain
| | - Alexander Idnurm
- School of BioSciences, BioSciences 2, University of Melbourne, Melbourne, Australia
| | | | - Ziauddin Khan
- Department of Microbiology, Faculty of Medicine, Kuwait University, Safat, Kuwait
| | - Kantarawee Khayhan
- Department of Microbiology and Parasitology, Faculty of Medical Sciences, University of Phayao, Phayao, Thailand
- Yeast Research, Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - Anna Kolecka
- Yeast Research, Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - Cletus P. Kurtzman
- Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, USDA-ARS, Peoria, Illinois, USA
| | - Katrien Lagrou
- Department of Laboratory Medicine, University Hospitals Leuven, Leuven, Belgium
- Department of Microbiology and Immunology, KU Leuven - University of Leuven, Leuven, Belgium
| | - Wanqing Liao
- Shanghai Key Laboratory of Molecular Medical Mycology, Shanghai Institute of Medical Mycology, Second Military Medical University, Shanghai, China
- Department of Dermatology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Carlos Linares
- Medical School, Universidad Miguel Hernández, Alicante, Spain
| | - Jacques F. Meis
- Department of Medical Microbiology and Infectious Diseases, Canisius-Wilhelmina Hospital, Nijmegen, The Netherlands
- Centre of Expertise in Mycology Radboudumc/CWZ, Nijmegen, The Netherlands
| | - Kirsten Nielsen
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Tinashe K. Nyazika
- Department of Medical Microbiology, College of Health Sciences, University of Zimbabwe, Harare, Zimbabwe
- Malawi-Liverpool-Wellcome Trust, College of Medicine, University of Malawi, Blantyre, Malawi
- School of Tropical Medicine, Liverpool, United Kingdom
| | - Weihua Pan
- Shanghai Key Laboratory of Molecular Medical Mycology, Shanghai Institute of Medical Mycology, Second Military Medical University, Shanghai, China
- Department of Dermatology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | | | - Itzhack Polacheck
- Department of Clinical Microbiology and Infectious Diseases, Hadassah-Hebrew University Medical Center, Ein Kerem, Jerusalem, Israel
| | - Brunella Posteraro
- Institute of Public Health (Section of Hygiene), Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy
| | - Flavio de Queiroz Telles
- Department of Communitarian Health, Hospital de Clínicas, Federal University of Parana, Curitiba, Brazil
| | - Orazio Romeo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
- IRCCS Centro Neurolesi Bonino-Pulejo, Messina, Italy
| | - Manuel Sánchez
- Medical School, Universidad Miguel Hernández, Alicante, Spain
| | - Ana Sampaio
- Centro de Investigação e de Tecnologias Agro-ambientais e Biológicas (CITAB), Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta dos Prados, Vila Real, Portugal
| | - Maurizio Sanguinetti
- Institute of Microbiology, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy
| | - Pojana Sriburee
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Takashi Sugita
- Department of Microbiology, Meiji Pharmaceutical University, Noshio, Kiyose, Tokyo, Japan
| | - Saad J. Taj-Aldeen
- Mycology Unit, Microbiology Division, Department of Laboratory Medicine and Pathology, Hamad Medical Corporation, Doha, Qatar
| | - Masako Takashima
- Japan Collection of Microorganisms, RIKEN BioResource Center, Koyadai, Tsukuba, Ibaraki, Japan
| | - John W. Taylor
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, California, USA
| | - Bart Theelen
- Yeast Research, Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - Rok Tomazin
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Paul E. Verweij
- Centre of Expertise in Mycology Radboudumc/CWZ, Nijmegen, The Netherlands
- Department of Medical Microbiology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Retno Wahyuningsih
- Department of Parasitology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Department of Parasitology, School of Medicine, Universitas Kristen Indonesia, Jakarta, Indonesia
| | - Ping Wang
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
- Department of Pediatrics, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Teun Boekhout
- Institute of Biodiversity and Ecosystems Dynamics (IBED), University of Amsterdam, Amsterdam, The Netherlands
- Yeast Research, Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| |
Collapse
|
19
|
Jurjevic Z, Peterson SW. Aspergillus asper sp. nov. and Aspergillus collinsii sp. nov., from Aspergillus section Usti. Int J Syst Evol Microbiol 2016; 66:2566-2572. [DOI: 10.1099/ijsem.0.001094] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Zeljko Jurjevic
- EMSL Analytical, Inc., 200 North Route 130, Cinnaminson, NJ 08077, USA
| | - Stephen W. Peterson
- Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, U. S. Department of Agriculture, 1815 North University Street, Peoria, IL 61604, USA
| |
Collapse
|
20
|
Visagie CM, Seifert KA, Houbraken J, Samson RA, Jacobs K. A phylogenetic revision of Penicillium sect. Exilicaulis, including nine new species from fynbos in South Africa. IMA Fungus 2016; 7:75-117. [PMID: 27433442 PMCID: PMC4941689 DOI: 10.5598/imafungus.2016.07.01.06] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 05/15/2016] [Indexed: 11/19/2022] Open
Abstract
A survey of the fynbos biome in South Africa resulted in the isolation of 61 Penicillium species from Protea repens infructescences, air, and soil samples. Fourteen of these belong to Penicillium sect. Exilicaulis and therefore we considered it an opportunity to re-evaluate the taxonomy of the section. Phylogenetic comparisons of the ITS, β-tubulin, calmodulin and RPB2 gene regions of the 76 section Exilicaulis species, revealed 52 distinct species, including nine new species from fynbos. Morphological comparisons confirmed the novelty for most of these, however, new species closely related to P. rubefaciens did not show significant or consistent morphological differences and we thus placed a bias on phylogenetic data applying the Genealogical Concordance Phylogenetic Species Recognition (GCPSR) concept. In this paper we describe the nine new species and update the accepted species list and resolve synonyms in the section. Importantly, we reveal that P. citreosulfuratum is the correct name for the clade previously considered to represent P. toxicarium fide Serra et al. (2008). The nine new species are: Penicillium atrolazulinum, P. consobrinum, P. cravenianum, P. hemitrachum, P. pagulum, P. repensicola, P. momoii, P. subturcoseum, and P. xanthomelinii spp. nov.
Collapse
Affiliation(s)
- Cobus M. Visagie
- Biodiversity (Mycology), Agriculture and Agri-Food Canada, Ottawa, ON K1A0C6, Canada
- CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, NL-3584 CT Utrecht, The Netherlands
- Department of Microbiology, University of Stellenbosch, Private Bag X1, Stellenbosch 7600, South Africa
| | - Keith A. Seifert
- Biodiversity (Mycology), Agriculture and Agri-Food Canada, Ottawa, ON K1A0C6, Canada
| | - Jos Houbraken
- CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, NL-3584 CT Utrecht, The Netherlands
| | - Robert A. Samson
- CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, NL-3584 CT Utrecht, The Netherlands
| | - Karin Jacobs
- Department of Microbiology, University of Stellenbosch, Private Bag X1, Stellenbosch 7600, South Africa
| |
Collapse
|
21
|
Fifteen new species of Penicillium. Persoonia - Molecular Phylogeny and Evolution of Fungi 2016; 36:247-80. [PMID: 27616792 PMCID: PMC4988371 DOI: 10.3767/003158516x691627] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 03/12/2016] [Indexed: 11/25/2022]
Abstract
We introduce 15 new species of Penicillium isolated from a diverse range of locations, including Canada, Costa Rica, Germany, Italy, New Zealand, Tanzania, USA and the Dry Valleys of Antarctica, from a variety of habitats, including leaf surfaces in tropical rain forests, soil eaten by chimpanzees, infrabuccal pockets of carpenter ants, intestinal contents of caterpillars and soil. The new species are classified in sections Aspergilloides (1), Canescentia (2), Charlesia (1), Exilicaulis (3), Lanata-Divaricata (7) and Stolkia (1). Each is characterised and described using classical morphology, LC-MS based extrolite analyses and multigene phylogenies based on ITS, BenA and CaM. Significant extrolites detected include andrastin, pulvilloric acid, penitrem A and citrinin amongst many others.
Collapse
|
22
|
Penicillium chroogomphum, a new species in Penicillium section Ramosa isolated from fruiting bodies of Chroogomphus rutilus in China. MYCOSCIENCE 2016. [DOI: 10.1016/j.myc.2015.09.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|