1
|
Gómez I, López MC, Egui A, Palacios G, Carrilero B, Benítez C, Simón M, Segovia M, Carmelo E, Thomas MC. Differential expression profile of genes involved in the immune response associated to progression of chronic Chagas disease. PLoS Negl Trop Dis 2023; 17:e0011474. [PMID: 37440604 PMCID: PMC10368263 DOI: 10.1371/journal.pntd.0011474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND Patients with chronic Chagas disease present marked clinical and immunological heterogeneity. During the disease, multiple immune mechanisms are activated to fight the parasite. The purpose of this study was to investigate the expression patterns of genes involved in relevant immunological processes throughout the disease in patients with chronic Chagas disease. METHODOLOGY/PRINCIPAL FINDINGS High-throughput RT-qPCR with QuantStudio 12K Flex real-time PCR system was used to evaluate the expression of 106 immune-related genes in PBMC from a cohort of cardiac Chagas disease patients (CCC I), asymptomatic patients (IND) and healthy donors (HD) after being stimulated with T. cruzi soluble antigens. Principal component analysis (PCA), cluster analysis and volcano plots were used to identify differentially expressed genes. In addition, gene set enrichment analysis (GSEA) was employed to identify the enriched immunological pathways in which these genes are involved. PCA revealed the existence of a statistically divergent expression profile of the 36 genes correlated with PC1 between CCC I patients and HD (p < 0.0001). Differential gene expression analysis revealed upregulation of 41 genes (expression fold-change > 1.5) and downregulation of 14 genes (expression fold-change < 0.66) (p = 8.4x10-13 to p = 0.007) in CCC I patients versus HD. Furthermore, significant differences in the expression level of specific genes have been identified between CCC I and IND patients (8 up and 1 downregulated). GSEA showed that several upregulated genes in CCC I patients participate in immunological pathways such as antigen-dependent B cell activation, stress induction of HSP regulation, NO2-dependent IL12 pathway in NK cells, cytokines-inflammatory response and IL-10 anti-inflammatory signaling. CONCLUSIONS Cardiac Chagas disease patients show an antigen-specific differential gene expression profile in which several relevant immunological pathways seem to be activated. Assessment of gene expression profiles reveal unique insights into the immune response that occurs along chronic Chagas disease.
Collapse
Affiliation(s)
- Inmaculada Gómez
- Instituto de Parasitología y Biomedicina López-Neyra, CSIC, Granada, Spain
| | | | - Adriana Egui
- Instituto de Parasitología y Biomedicina López-Neyra, CSIC, Granada, Spain
| | - Génesis Palacios
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, La Laguna, Spain
| | - Bartolomé Carrilero
- Unidad Regional de Medicina Tropical, Hospital Universitario Virgen de la Arrixaca, Murcia, Spain
| | - Celia Benítez
- Instituto de Parasitología y Biomedicina López-Neyra, CSIC, Granada, Spain
| | - Marina Simón
- Unidad Regional de Medicina Tropical, Hospital Universitario Virgen de la Arrixaca, Murcia, Spain
| | - Manuel Segovia
- Unidad Regional de Medicina Tropical, Hospital Universitario Virgen de la Arrixaca, Murcia, Spain
| | - Emma Carmelo
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, La Laguna, Spain
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, La Laguna, Spain
| | - M Carmen Thomas
- Instituto de Parasitología y Biomedicina López-Neyra, CSIC, Granada, Spain
| |
Collapse
|
2
|
Caputo MB, Elias J, Cesar G, Alvarez MG, Laucella SA, Albareda MC. Role of the Complement System in the Modulation of T-Cell Responses in Chronic Chagas Disease. Front Cell Infect Microbiol 2022; 12:910854. [PMID: 35846776 PMCID: PMC9282465 DOI: 10.3389/fcimb.2022.910854] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/26/2022] [Indexed: 01/19/2023] Open
Abstract
Chagas disease, caused by the intracellular pathogen Trypanosoma cruzi, is the parasitic disease with the greatest impact in Latin America and the most common cause of infectious myocarditis in the world. The immune system plays a central role in the control of T. cruzi infection but at the same time needs to be controlled to prevent the development of pathology in the host. It has been shown that persistent infection with T. cruzi induces exhaustion of parasite-specific T cell responses in subjects with chronic Chagas disease. The continuous inflammatory reaction due to parasite persistence in the heart also leads to necrosis and fibrosis. The complement system is a key element of the innate immune system, but recent findings have also shown that the interaction between its components and immune cell receptors might modulate several functions of the adaptive immune system. Moreover, the findings that most of immune cells can produce complement proteins and express their receptors have led to the notion that the complement system also has non canonical functions in the T cell. During human infection by T. cruzi, complement activation might play a dual role in the acute and chronic phases of Chagas disease; it is initially crucial in controlling parasitemia and might later contributes to the development of symptomatic forms of Chagas disease due to its role in T-cell regulation. Herein, we will discuss the putative role of effector complement molecules on T-cell immune exhaustion during chronic human T. cruzi infection.
Collapse
Affiliation(s)
- María Belén Caputo
- Investigation Department, Instituto Nacional de Parasitología Dr. Fatala Chaben, Buenos Aires, Argentina
| | - Josefina Elias
- Investigation Department, Instituto Nacional de Parasitología Dr. Fatala Chaben, Buenos Aires, Argentina
| | - Gonzalo Cesar
- Investigation Department, Instituto Nacional de Parasitología Dr. Fatala Chaben, Buenos Aires, Argentina
| | - María Gabriela Alvarez
- Chagas Section, Hospital Interzonal General de Agudos Eva Perón, Buenos Aires, Argentina
| | - Susana Adriana Laucella
- Investigation Department, Instituto Nacional de Parasitología Dr. Fatala Chaben, Buenos Aires, Argentina
- Chagas Section, Hospital Interzonal General de Agudos Eva Perón, Buenos Aires, Argentina
| | - María Cecilia Albareda
- Investigation Department, Instituto Nacional de Parasitología Dr. Fatala Chaben, Buenos Aires, Argentina
| |
Collapse
|
3
|
Ferragut F, Acevedo GR, Gómez KA. T Cell Specificity: A Great Challenge in Chagas Disease. Front Immunol 2021; 12:674078. [PMID: 34267750 PMCID: PMC8276045 DOI: 10.3389/fimmu.2021.674078] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 06/09/2021] [Indexed: 11/13/2022] Open
Abstract
The CD4+ and CD8+ T cell immune response against T. cruzi, the parasite causing Chagas disease, are relevant for both parasite control and disease pathogenesis. Several studies have been focused on their phenotype and functionally, but only a few have drilled down to identify the parasite proteins that are processed and presented to these cells, especially to CD4+ T lymphocytes. Although approximately 10,000 proteins are encoded per haploid T. cruzi genome, fewer than 200 T cell epitopes from 49 T. cruzi proteins have been identified so far. In this context, a detailed knowledge of the specific targets of T cell memory response emerges as a prime tool for the conceptualization and development of prophylactic or therapeutic vaccines, an approach with great potential to prevent and treat this chronic disease. Here, we review the available information about this topic in a comprehensive manner and discuss the future challenges in the field.
Collapse
Affiliation(s)
- Fátima Ferragut
- Laboratorio de Inmunología de las Infecciones por Tripanosomátidos, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Gonzalo R Acevedo
- Laboratorio de Inmunología de las Infecciones por Tripanosomátidos, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Karina A Gómez
- Laboratorio de Inmunología de las Infecciones por Tripanosomátidos, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
4
|
Acevedo GR, Juiz NA, Ziblat A, Pérez Perri L, Girard MC, Ossowski MS, Fernández M, Hernández Y, Chadi R, Wittig M, Franke A, Nielsen M, Gómez KA. In Silico Guided Discovery of Novel Class I and II Trypanosoma cruzi Epitopes Recognized by T Cells from Chagas' Disease Patients. THE JOURNAL OF IMMUNOLOGY 2020; 204:1571-1581. [PMID: 32060134 DOI: 10.4049/jimmunol.1900873] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 12/29/2019] [Indexed: 11/19/2022]
Abstract
T cell-mediated immune response plays a crucial role in controlling Trypanosoma cruzi infection and parasite burden, but it is also involved in the clinical onset and progression of chronic Chagas' disease. Therefore, the study of T cells is central to the understanding of the immune response against the parasite and its implications for the infected organism. The complexity of the parasite-host interactions hampers the identification and characterization of T cell-activating epitopes. We approached this issue by combining in silico and in vitro methods to interrogate patients' T cells specificity. Fifty T. cruzi peptides predicted to bind a broad range of class I and II HLA molecules were selected for in vitro screening against PBMC samples from a cohort of chronic Chagas' disease patients, using IFN-γ secretion as a readout. Seven of these peptides were shown to activate this type of T cell response, and four out of these contain class I and II epitopes that, to our knowledge, are first described in this study. The remaining three contain sequences that had been previously demonstrated to induce CD8+ T cell response in Chagas' disease patients, or bind HLA-A*02:01, but are, in this study, demonstrated to engage CD4+ T cells. We also assessed the degree of differentiation of activated T cells and looked into the HLA variants that might restrict the recognition of these peptides in the context of human T. cruzi infection.
Collapse
Affiliation(s)
- Gonzalo R Acevedo
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular Dr. Héctor N. Torres, CONICET, C1428ADN Ciudad Autónoma de Buenos Aires, Argentina
| | - Natalia A Juiz
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular Dr. Héctor N. Torres, CONICET, C1428ADN Ciudad Autónoma de Buenos Aires, Argentina
| | - Andrea Ziblat
- Instituto de Biología y Medicina Experimental, CONICET, C1428ADN Ciudad Autónoma de Buenos Aires, Argentina
| | - Lucas Pérez Perri
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular Dr. Héctor N. Torres, CONICET, C1428ADN Ciudad Autónoma de Buenos Aires, Argentina
| | - Magalí C Girard
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular Dr. Héctor N. Torres, CONICET, C1428ADN Ciudad Autónoma de Buenos Aires, Argentina
| | - Micaela S Ossowski
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular Dr. Héctor N. Torres, CONICET, C1428ADN Ciudad Autónoma de Buenos Aires, Argentina
| | - Marisa Fernández
- Instituto Nacional de Parasitología Dr. Mario Fatala Chabén, C1063ACS Ciudad Autónoma de Buenos Aires, Argentina
| | - Yolanda Hernández
- Instituto Nacional de Parasitología Dr. Mario Fatala Chabén, C1063ACS Ciudad Autónoma de Buenos Aires, Argentina
| | - Raúl Chadi
- Hospital General de Agudos Dr. Ignacio Pirovano, C1430BKC Ciudad Autónoma de Buenos Aires, Argentina
| | - Michael Wittig
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, 24105 Kiel, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, 24105 Kiel, Germany
| | - Morten Nielsen
- Instituto de Investigaciones Biotecnológicas, CONICET, 1650 San Martín, Argentina; and.,Department of Health Technology, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Karina A Gómez
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular Dr. Héctor N. Torres, CONICET, C1428ADN Ciudad Autónoma de Buenos Aires, Argentina;
| |
Collapse
|
5
|
Differential phenotypic and functional profile of epitope-specific cytotoxic CD8 + T cells in benznidazole-treated chronic asymptomatic Chagas disease patients. Biochim Biophys Acta Mol Basis Dis 2019; 1866:165629. [PMID: 31816438 DOI: 10.1016/j.bbadis.2019.165629] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/18/2019] [Accepted: 10/28/2019] [Indexed: 12/11/2022]
Abstract
One of the greatest challenges in Chagas disease research is the search for tools that will enable the assessment of pharmacological treatment efficacy. A recently described set of serological biomarkers composed of four parasite antigens and established criteria of treatment efficacy allowed the evaluation of the impact of benznidazole treatment a short/medium time after the treatment. In addition, cellular immunological parameters have also been described as potential indicators of the treatment response. The cytotoxic CD8+ T cells specific to five epitopes in the PFR2, PFR3, TcCA-2 and KMP11 antigens have been analysed, and these epitopes have been shown to be recognized, processed and presented in the context of a natural T. cruzi infection. In the present manuscript, we characterized these antigen-specific CD8+ T cells in indeterminate chronic Chagas disease patients both before and after (from 11 to 28 months) benznidazole treatment. The results indicate that there is a differential memory CD8+ T cell profile depending on the antigenic epitope and that the benznidazole treatment modulates the memory, differentiation and senescence phenotypes of the epitope-specific CD8+ T cells. Moreover, in these patients, the reactivity of sera against the referred set of biomarkers was evaluated. The data obtained show that the patients who met the established therapeutic efficacy criteria presented a differential phenotypic profile of the antigen-specific CD8+ T cells even prior to treatment compared to the patients who did not meet the therapeutic efficacy criteria, and this behaviour is associated with a better functionality of these CD8+ T cells.
Collapse
|
6
|
Acosta Rodríguez EV, Araujo Furlan CL, Fiocca Vernengo F, Montes CL, Gruppi A. Understanding CD8 + T Cell Immunity to Trypanosoma cruzi and How to Improve It. Trends Parasitol 2019; 35:899-917. [PMID: 31607632 PMCID: PMC6815727 DOI: 10.1016/j.pt.2019.08.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/24/2019] [Accepted: 08/26/2019] [Indexed: 12/30/2022]
Abstract
The protozoan Trypanosoma cruzi is the causative agent of Chagas' disease, endemic in Latin America but present worldwide. Research efforts have focused on the examination of immune mechanisms that mediate host protection as well as immunopathology during this parasitic infection. The study of CD8+ T cell immunity emerges as a key aspect given the critical importance of parasite-specific CD8+ T cells for host resistance throughout the infection. In recent years, new research has shed light on novel pathways that modulate the induction, maintenance, and regulation of CD8+ T cell responses to T. cruzi. This new knowledge is setting the ground for future vaccines and/or immunotherapies. Herein, we critically review and analyze the latest results published in the field.
Collapse
Affiliation(s)
- Eva V Acosta Rodríguez
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI)-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA Córdoba, Argentina.
| | - Cintia L Araujo Furlan
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI)-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA Córdoba, Argentina
| | - Facundo Fiocca Vernengo
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI)-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA Córdoba, Argentina
| | - Carolina L Montes
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI)-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA Córdoba, Argentina
| | - Adriana Gruppi
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI)-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA Córdoba, Argentina
| |
Collapse
|
7
|
Egui A, Ledesma D, Pérez-Antón E, Montoya A, Gómez I, Robledo SM, Infante JJ, Vélez ID, López MC, Thomas MC. Phenotypic and Functional Profiles of Antigen-Specific CD4 + and CD8 + T Cells Associated With Infection Control in Patients With Cutaneous Leishmaniasis. Front Cell Infect Microbiol 2018; 8:393. [PMID: 30510917 PMCID: PMC6252334 DOI: 10.3389/fcimb.2018.00393] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 10/19/2018] [Indexed: 01/03/2023] Open
Abstract
The host immunological response is a key factor determining the pathogenesis of cutaneous leishmaniasis. It is known that a Th1 cellular response is associated with infection control and that antigen-specific memory T cells are necessary for the development of a rapid and strong protective cellular response. The present manuscript reports the analysis of the functional and phenotypic profiles of antigen-specific CD4+ and CD8+ T cells from patients cured of cutaneous leishmaniasis (CL), patients with an active process of cutaneous leishmaniasis, asymptomatic individuals with a positive Montenegro test and healthy donors (HD). Peripheral blood mononuclear cells (PBMCs) from the patients exhibited a lymphoproliferative capacity after stimulation with total soluble protein from either Leishmania panamensis (SLpA) or Leishmania infantum (SLiA) or with a recombinant paraflagellar rod protein-1 (rPFR1). Higher frequencies of antigen-specific TNAIVE cells, mainly following stimulation with rPFR1, were observed in asymptomatic and cured patients than in patients with active cutaneous leishmaniasis, while T cells from patients with active cutaneous leishmaniasis showed a higher percentage of effector memory T cells (TEM for CD4+ T cells and TEMRA for CD8+ T cells). The amount of antigen-specific CD57+/CD8+ TEMRA cells in patients with active cutaneous leishmaniasis was higher than that in cured patients and asymptomatic subjects. Regarding functionality, a more robust multifunctional CD8+ T cell response was detected in cured patients than in those with active cutaneous leishmaniasis. Moreover, cured patients showed a significant increase in the frequency of cells expressing a Th1-type cytotoxic production profile (IFN-γ+/granzyme-B/+perforin+). Patients with an active leishmaniosis process had a significantly higher frequency of CD8+ T cells expressing the inhibitory CD160 and 2B4 receptors than did cured patients. The expression profile observed in cured patients could be indicative of an imbalance toward a CD8+ Th1 response, which could be associated with infection control; consequently, the determination of this profile could be a useful tool for facilitating the clinical follow-up of patients with cutaneous leishmaniasis. The results also suggest a possible exhaustion process of CD8+ T cells associated with the evolution of Leishmania infection.
Collapse
Affiliation(s)
- Adriana Egui
- Molecular Biology Department, Instituto de Parasitología y Biomedicina "López Neyra", Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Darién Ledesma
- Molecular Biology Department, Instituto de Parasitología y Biomedicina "López Neyra", Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Elena Pérez-Antón
- Molecular Biology Department, Instituto de Parasitología y Biomedicina "López Neyra", Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Andrés Montoya
- Programa de Estudio y Control de Enfermedades Tropicales, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Inmaculada Gómez
- Molecular Biology Department, Instituto de Parasitología y Biomedicina "López Neyra", Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Sara María Robledo
- Programa de Estudio y Control de Enfermedades Tropicales, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Juan José Infante
- Bionaturis Group, Bioorganic Research and Services, S.A., Jerez de la Frontera, Spain
| | - Ivan Darío Vélez
- Programa de Estudio y Control de Enfermedades Tropicales, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Manuel C López
- Molecular Biology Department, Instituto de Parasitología y Biomedicina "López Neyra", Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - M Carmen Thomas
- Molecular Biology Department, Instituto de Parasitología y Biomedicina "López Neyra", Consejo Superior de Investigaciones Científicas, Granada, Spain
| |
Collapse
|
8
|
Egui A, Lasso P, Pérez-Antón E, Thomas MC, López MC. Dynamics of T Cells Repertoire During Trypanosoma cruzi Infection and its Post-Treatment Modulation. Curr Med Chem 2018; 26:6519-6543. [PMID: 30381063 DOI: 10.2174/0929867325666181101111819] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 09/11/2018] [Accepted: 09/25/2018] [Indexed: 01/16/2023]
Abstract
Chagas disease courses with different clinical phases and has a variable clinical presentation and progression. The acute infection phase mostly exhibits a non-specific symptomatology. In the absence of treatment, the acute phase is followed by a chronic phase, which is initially asymptomatic. This chronic asymptomatic phase of the disease is characterized by a fragile balance between the host's immune response and the parasite replication. The loss of this balance is crucial for the progression of the sickness. The virulence and tropism of the T. cruzi infecting strain together to the inflammation processes in the cardiac tissue are the main factors for the establishment and severity of the cardiomyopathy. The efficacy of treatment in chronic Chagas disease patients is controversial. However, several studies carried out in chronic patients demonstrated that antiparasitic treatment reduces parasite load in the bloodstream and leads to an improvement in the immune response against the Trypanosoma cruzi parasite. The present review is mainly focused on the cellular patterns associated to the clinical status and the evolution of the disease in chronic patients, as well as the effectiveness of the treatment related to T. cruzi infection control. Therefore, an emphasis is placed on the dynamics of specific-antigens T cell subpopulations, their memory and activation phenotypes, their functionality and their contribution to pathogenesis or disease control, as well as their association with risk of congenital transmission of the parasite.
Collapse
Affiliation(s)
- Adriana Egui
- Instituto de Parasitologia y Biomedicina Lopez-Neyra, Consejo Superior de Investigaciones Científicas; Granada, Spain
| | - Paola Lasso
- Grupo de Inmunobiologia y Biologia Celular, Pontificia Universidad Javeriana; Bogota, Colombia
| | - Elena Pérez-Antón
- Instituto de Parasitologia y Biomedicina Lopez-Neyra, Consejo Superior de Investigaciones Científicas; Granada, Spain
| | - M Carmen Thomas
- Instituto de Parasitologia y Biomedicina Lopez-Neyra, Consejo Superior de Investigaciones Científicas; Granada, Spain
| | - Manuel Carlos López
- Instituto de Parasitologia y Biomedicina Lopez-Neyra, Consejo Superior de Investigaciones Científicas; Granada, Spain
| |
Collapse
|
9
|
Villanueva-Lizama LE, Cruz-Chan JV, Aguilar-Cetina ADC, Herrera-Sanchez LF, Rodriguez-Perez JM, Rosado-Vallado ME, Ramirez-Sierra MJ, Ortega-Lopez J, Jones K, Hotez P, Bottazzi ME, Dumonteil E. Trypanosoma cruzi vaccine candidate antigens Tc24 and TSA-1 recall memory immune response associated with HLA-A and -B supertypes in Chagasic chronic patients from Mexico. PLoS Negl Trop Dis 2018; 12:e0006240. [PMID: 29377898 PMCID: PMC5805372 DOI: 10.1371/journal.pntd.0006240] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 02/08/2018] [Accepted: 01/16/2018] [Indexed: 12/15/2022] Open
Abstract
Trypanosoma cruzi antigens TSA-1 and Tc24 have shown promise as vaccine candidates in animal studies. We evaluated here the recall immune response these antigens induce in Chagasic patients, as a first step to test their immunogenicity in humans. We evaluated the in vitro cellular immune response after stimulation with recombinant TSA-1 (rTSA-1) or recombinant Tc24 (rTc24) in mononuclear cells of asymptomatic Chagasic chronic patients (n = 20) compared to healthy volunteers (n = 19) from Yucatan, Mexico. Proliferation assays, intracellular cytokine staining, cytometric bead arrays, and memory T cell immunophenotyping were performed by flow cytometry. Peripheral blood mononuclear cells (PBMC) from Chagasic patients showed significant proliferation after stimulation with rTc24 and presented a phenotype of T effector memory cells (CD45RA-CCR7-). These cells also produced IFN-γ and, to a lesser extent IL10, after stimulation with rTSA-1 and rTc24 proteins. Overall, both antigens recalled a broad immune response in some Chagasic patients, confirming that their immune system had been primed against these antigens during natural infection. Analysis of HLA-A and HLA-B allele diversity by PCR-sequencing indicated that HLA-A03 and HLA-B07 were the most frequent supertypes in this Mexican population. Also, there was a significant difference in the frequency of HLA-A01 and HLA-A02 supertypes between Chagasic patients and controls, while the other alleles were evenly distributed. Some aspects of the immune response, such as antigen-induced IFN-γ production by CD4+ and CD8+ T cells and CD8+ proliferation, showed significant association with specific HLA-A supertypes, depending on the antigen considered. In conclusion, our results confirm the ability of both TSA-1 and Tc24 recombinant proteins to recall an immune response induced by the native antigens during natural infection in at least some patients. Our data support the further development of these antigens as therapeutic vaccine against Chagas disease.
Collapse
Affiliation(s)
- Liliana E. Villanueva-Lizama
- Laboratorio de Parasitología, Centro de Investigaciones Regionales Dr. Hideyo Noguchi, Universidad Autónoma de Yucatán, Mérida, Yucatán, México
| | - Julio V. Cruz-Chan
- Laboratorio de Parasitología, Centro de Investigaciones Regionales Dr. Hideyo Noguchi, Universidad Autónoma de Yucatán, Mérida, Yucatán, México
- Texas Children’s Hospital Center for Vaccine Development, Department of Pediatrics and National School of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - Amarú del C. Aguilar-Cetina
- Laboratorio de Parasitología, Centro de Investigaciones Regionales Dr. Hideyo Noguchi, Universidad Autónoma de Yucatán, Mérida, Yucatán, México
| | - Luis F. Herrera-Sanchez
- Unidad Cardiometabólica, Facultad de Medicina, Universidad Autónoma de Yucatán, Mérida, Yucatán, México
| | - Jose M. Rodriguez-Perez
- Departmento de biología molecular, Instituto Nacional de Cardiología Ignacio Chávez, México D.F, México
| | - Miguel E. Rosado-Vallado
- Laboratorio de Parasitología, Centro de Investigaciones Regionales Dr. Hideyo Noguchi, Universidad Autónoma de Yucatán, Mérida, Yucatán, México
| | - Maria J. Ramirez-Sierra
- Laboratorio de Parasitología, Centro de Investigaciones Regionales Dr. Hideyo Noguchi, Universidad Autónoma de Yucatán, Mérida, Yucatán, México
| | - Jaime Ortega-Lopez
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México D.F, México
| | - Kathryn Jones
- Texas Children’s Hospital Center for Vaccine Development, Department of Pediatrics and National School of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - Peter Hotez
- Texas Children’s Hospital Center for Vaccine Development, Department of Pediatrics and National School of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America
- James A. Baker III Institute for Public Policy, Rice University, Houston, Texas, United States of America
- Department of Biology, Baylor University, Waco, Texas, United States of America
| | - Maria Elena Bottazzi
- Texas Children’s Hospital Center for Vaccine Development, Department of Pediatrics and National School of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Biology, Baylor University, Waco, Texas, United States of America
| | - Eric Dumonteil
- Laboratorio de Parasitología, Centro de Investigaciones Regionales Dr. Hideyo Noguchi, Universidad Autónoma de Yucatán, Mérida, Yucatán, México
- Department of Tropical Medicine, Vector-Borne Infectious Disease Research Center, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, United States of America
| |
Collapse
|
10
|
Miranda MBD, Melo ASD, Almeida MS, Marinho SM, Oliveira W, Gomes YDM. Ex vivo T-lymphocyte chemokine receptor phenotypes in patients with chronic Chagas disease. Rev Soc Bras Med Trop 2017; 50:689-692. [PMID: 29160519 DOI: 10.1590/0037-8682-0025-2017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 06/26/2017] [Indexed: 11/22/2022] Open
Abstract
INTRODUCTION Elucidating the molecules involved in the inflammatory process of chronic Chagas disease may allow identification of treatment targets. METHODS The ex vivo phenotypic expression of chemokine receptors CCR1, CCR3, CCR4, CCR5, CXCR2, CXCR3, CXCR4, and CXCR5 on the CD4+ and CD8+ T-cells of patients with chronic Chagas cardiomyopathy of varying severity was evaluated using flow cytometry. RESULTS Differential expression of CD4+CCR3+ and CD8+CCR4+ T-cells was observed in patients with mild cardiac involvement compared, respectively, with patients with severe cardiac and asymptomatic forms of Chagas disease. CONCLUSIONS These receptors are possibly involved in the pathogenesis of chronic Chagas cardiomyopathy.
Collapse
Affiliation(s)
| | | | | | - Silvia Martins Marinho
- Ambulatório de Doença de Chagas e Insuficiência Cardíaca, Pronto Socorro Cardiológico de Pernambuco, Universidade de Pernambuco, Recife, PE, Brasil.,Programa Integrado de Doença de Chagas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brasil
| | - Wilson Oliveira
- Ambulatório de Doença de Chagas e Insuficiência Cardíaca, Pronto Socorro Cardiológico de Pernambuco, Universidade de Pernambuco, Recife, PE, Brasil
| | - Yara de Miranda Gomes
- Centro de Pesquisas Aggeu Magalhães, Fundação Oswaldo Cruz, Recife, PE, Brasil.,Programa Integrado de Doença de Chagas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brasil
| |
Collapse
|