1
|
Jiménez C, Garrote-de-Barros A, López-Portugués C, Hernández-Sánchez M, Díez P. Characterization of Human B Cell Hematological Malignancies Using Protein-Based Approaches. Int J Mol Sci 2024; 25:4644. [PMID: 38731863 PMCID: PMC11083628 DOI: 10.3390/ijms25094644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
The maturation of B cells is a complex, multi-step process. During B cell differentiation, errors can occur, leading to the emergence of aberrant versions of B cells that, finally, constitute a malignant tumor. These B cell malignancies are classified into three main groups: leukemias, myelomas, and lymphomas, the latter being the most heterogeneous type. Since their discovery, multiple biological studies have been performed to characterize these diseases, aiming to define their specific features and determine potential biomarkers for diagnosis, stratification, and prognosis. The rise of advanced -omics approaches has significantly contributed to this end. Notably, proteomics strategies appear as promising tools to comprehensively profile the final molecular effector of these cells. In this narrative review, we first introduce the main B cell malignancies together with the most relevant proteomics approaches. Then, we describe the core studies conducted in the field and their main findings and, finally, we evaluate the advantages and drawbacks of flow cytometry, mass cytometry, and mass spectrometry for the profiling of human B cell disorders.
Collapse
Affiliation(s)
- Cristina Jiménez
- Hematology Department, University Hospital of Salamanca (HUS/IBSAL), CIBERONC and Cancer Research Institute of Salamanca-IBMCC (USAL-CSIC), 37007 Salamanca, Spain;
| | - Alba Garrote-de-Barros
- Department of Biochemistry and Molecular Biology, Pharmacy School, Universidad Complutense de Madrid, 28040 Madrid, Spain; (A.G.-d.-B.); (M.H.-S.)
- Department of Translational Hematology, Instituto de Investigación Hospital 12 de Octubre (imas12), Hematological Malignancies Clinical Research Unit H12O-CNIO, 28029 Madrid, Spain
| | - Carlos López-Portugués
- Department of Physical and Analytical Chemistry Chemistry, Faculty of Chemistry, University of Oviedo, 33006 Oviedo, Spain;
- Health Research Institute of the Principality of Asturias (ISPA), 33011 Oviedo, Spain
| | - María Hernández-Sánchez
- Department of Biochemistry and Molecular Biology, Pharmacy School, Universidad Complutense de Madrid, 28040 Madrid, Spain; (A.G.-d.-B.); (M.H.-S.)
- Department of Translational Hematology, Instituto de Investigación Hospital 12 de Octubre (imas12), Hematological Malignancies Clinical Research Unit H12O-CNIO, 28029 Madrid, Spain
| | - Paula Díez
- Department of Physical and Analytical Chemistry Chemistry, Faculty of Chemistry, University of Oviedo, 33006 Oviedo, Spain;
- Health Research Institute of the Principality of Asturias (ISPA), 33011 Oviedo, Spain
- Department of Functional Biology, Faculty of Medicine and Health Science, University of Oviedo, 33006 Oviedo, Spain
| |
Collapse
|
2
|
Identification of a Candidate Gene Set Signature for the Risk of Progression in IgM MGUS to Smoldering/Symptomatic Waldenström Macroglobulinemia (WM) by a Comparative Transcriptome Analysis of B Cells and Plasma Cells. Cancers (Basel) 2021; 13:cancers13081837. [PMID: 33921415 PMCID: PMC8070603 DOI: 10.3390/cancers13081837] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/25/2021] [Accepted: 04/06/2021] [Indexed: 02/04/2023] Open
Abstract
Waldenström Macroglobulinemia (WM) is a B-cell lymphoma characterized by the precursor condition IgM monoclonal gammopathies of undetermined significance (IgM MGUS). We performed a gene expression profiling study to compare the transcriptome signatures of bone marrow (BM) B-cells and plasma cells of 36 WM patients, 13 IgM MGUS cases, and 7 healthy subjects used as controls (CTRLs) by Affymetrix microarray. We determined 2038 differentially expressed genes (DEGs) in CD19+ cells and 29 DEGs genes in CD138+ cells, respectively. The DEGs identified in B-cells were associated with KEGG pathways, mainly involved in hematopoietic cell lineage antigens, cell adhesion/focal adhesion/transmembrane proteins, adherens junctions, Wnt-signaling pathway, BCR-signaling pathway, calcium signaling pathway, complement/coagulation cascade, platelet activation, cytokine-cytokine receptor interactions, and signaling pathways responsible for cell cycle, apoptosis, proliferation and survival. In conclusion, we showed the deregulation of groups of genes belonging to KEGG pathways in the comparison among WM vs. IgM MGUS vs. CTRLs in B-cells. Interestingly, a small set of genes in B-cells displayed a common transcriptome expression profile between WM and IgM MGUS compared to CTRLs, suggesting its possible role in the risk of transformation of IgM MGUS to WM.
Collapse
|
3
|
Yin X, Chen L, Fan F, Yan H, Zhang Y, Huang Z, Sun C, Hu Y. Trends in Incidence and Mortality of Waldenström Macroglobulinemia: A Population-Based Study. Front Oncol 2020; 10:1712. [PMID: 33014849 PMCID: PMC7511580 DOI: 10.3389/fonc.2020.01712] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 07/31/2020] [Indexed: 11/13/2022] Open
Abstract
Background: The incidence of Waldenström macroglobulinemia (WM) has increased in certain groups over several decades in the United States. It is unclear whether the increasing incidence is associated with mortality trends. Methods: The incidence and incidence-based mortality (IBM) rates were obtained from the Surveillance, Epidemiology, and End Results (SEER) database (1980-2016) with SEER*Stat software. The secular trends stratified by demographic characteristics were analyzed by joinpoint regression. Results: The incidence of WM showed an initial rapid increase from 1980 to 1993 {annual percentage change (APC), 14.1% [95% confidence interval (CI), 10 to 18.4%]}, whereas it began to stabilize from 1993 to 2016 [APC, 0.5% (95% CI, -0.3 to 1.3%)]. The WM IBM trend followed a similar pattern, with a decrease occurring around 1994. The trends in the incidence and mortality significantly differed according to geographic location, race, age, sex, primary site of involvement and subtype, which could help in further investigations into the specific etiology. Moreover, a dramatic increase in the 5-year survival rate from the 1980s to 2010s was observed (47.84 vs. 69.41%). Conclusions: Although both the incidence and IBM of WM continued to increase during the study period, a reduction in the rate of increase occurred around 1993. We believe that further advances in healthcare delivery and research can ensure a low mortality rate. Future studies can use the findings of this paper to monitor the results of WM therapy.
Collapse
Affiliation(s)
- Xuejiao Yin
- Tongji Medical College, Institute of Hematology, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Chen
- Tongji Medical College, Institute of Hematology, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Fengjuan Fan
- Tongji Medical College, Institute of Hematology, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Han Yan
- Tongji Medical College, Institute of Hematology, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yuyang Zhang
- Tongji Medical College, Institute of Hematology, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Zhenli Huang
- Tongji Medical College, Institute of Hematology, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Chunyan Sun
- Tongji Medical College, Institute of Hematology, Union Hospital, Huazhong University of Science and Technology, Wuhan, China.,Collaborative Innovation Center of Hematology, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Hu
- Tongji Medical College, Institute of Hematology, Union Hospital, Huazhong University of Science and Technology, Wuhan, China.,Collaborative Innovation Center of Hematology, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Anderson KJ, Ósvaldsdóttir ÁB, Atzinger B, Traustadóttir GÁ, Jensen KN, Lárusdóttir AE, Bergthórsson JT, Hardardóttir I, Magnúsdóttir E. The BLIMP1-EZH2 nexus in a non-Hodgkin lymphoma. Oncogene 2020; 39:5138-5151. [PMID: 32533097 DOI: 10.1038/s41388-020-1347-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 05/26/2020] [Accepted: 06/01/2020] [Indexed: 01/12/2023]
Abstract
Waldenström's macroglobulinemia (WM) is a non-Hodgkin lymphoma, resulting in antibody-secreting lymphoplasmacytic cells in the bone marrow and pathologies resulting from high levels of monoclonal immunoglobulin M (IgM) in the blood. Despite the key role for BLIMP1 in plasma cell maturation and antibody secretion, its potential effect on WM cell biology has not yet been explored. Here we provide evidence of a crucial role for BLIMP1 in the survival of cells from WM cell line models and further demonstrate that BLIMP1 is necessary for the expression of the histone methyltransferase EZH2 in both WM and multiple myeloma cell lines. The effect of BLIMP1 on EZH2 levels is post-translational, at least partially through the regulation of proteasomal targeting of EZH2. Chromatin immunoprecipitation analysis and transcriptome profiling suggest that the two factors co-operate in regulating genes involved in cancer cell immune evasion. Co-cultures of natural killer cells and cells from a WM cell line further suggest that both factors participate in immune evasion by promoting escape from natural killer cell-mediated cytotoxicity. Together, the interplay of BLIMP1 and EZH2 plays a vital role in promoting the survival of WM cell lines, suggesting a role for the two factors in Waldenström's macroglobulinaemia.
Collapse
Affiliation(s)
- Kimberley Jade Anderson
- Department of Anatomy, Faculty of Medicine, University of Iceland, Vatnsmýrarvegur 16, 101, Reykjavik, Iceland.,Department of Biomedical Science, Faculty of Medicine, University of Iceland, Vatnsmýrarvegur 16, 101, Reykjavík, Iceland.,The University of Iceland Biomedical Center, Vatnsmýrarvegur 16, 101, Reykjavík, Iceland
| | - Árný Björg Ósvaldsdóttir
- Department of Anatomy, Faculty of Medicine, University of Iceland, Vatnsmýrarvegur 16, 101, Reykjavik, Iceland.,Department of Biomedical Science, Faculty of Medicine, University of Iceland, Vatnsmýrarvegur 16, 101, Reykjavík, Iceland.,The University of Iceland Biomedical Center, Vatnsmýrarvegur 16, 101, Reykjavík, Iceland
| | - Birgit Atzinger
- Department of Anatomy, Faculty of Medicine, University of Iceland, Vatnsmýrarvegur 16, 101, Reykjavik, Iceland.,Department of Biomedical Science, Faculty of Medicine, University of Iceland, Vatnsmýrarvegur 16, 101, Reykjavík, Iceland.,The University of Iceland Biomedical Center, Vatnsmýrarvegur 16, 101, Reykjavík, Iceland
| | - Gunnhildur Ásta Traustadóttir
- Department of Anatomy, Faculty of Medicine, University of Iceland, Vatnsmýrarvegur 16, 101, Reykjavik, Iceland.,The University of Iceland Biomedical Center, Vatnsmýrarvegur 16, 101, Reykjavík, Iceland
| | - Kirstine Nolling Jensen
- The University of Iceland Biomedical Center, Vatnsmýrarvegur 16, 101, Reykjavík, Iceland.,Department of Biochemistry and Molecular Biology, Faculty of Medicine, Vatnsmýrarvegur 16, University of Iceland, 101, Reykjavík, Iceland.,Department of Immunology, Landspitali-The National University Hospital of Iceland, Hringbraut, 101, Reykjavík, Iceland
| | - Aðalheiður Elín Lárusdóttir
- Department of Anatomy, Faculty of Medicine, University of Iceland, Vatnsmýrarvegur 16, 101, Reykjavik, Iceland.,Department of Biomedical Science, Faculty of Medicine, University of Iceland, Vatnsmýrarvegur 16, 101, Reykjavík, Iceland.,The University of Iceland Biomedical Center, Vatnsmýrarvegur 16, 101, Reykjavík, Iceland
| | - Jón Thór Bergthórsson
- Department of Biomedical Science, Faculty of Medicine, University of Iceland, Vatnsmýrarvegur 16, 101, Reykjavík, Iceland.,The University of Iceland Biomedical Center, Vatnsmýrarvegur 16, 101, Reykjavík, Iceland.,Department of Laboratory Haematology, Landspitali-The National University Hospital of Iceland, Hringbraut, 101, Reykjavík, Iceland
| | - Ingibjörg Hardardóttir
- The University of Iceland Biomedical Center, Vatnsmýrarvegur 16, 101, Reykjavík, Iceland.,Department of Biochemistry and Molecular Biology, Faculty of Medicine, Vatnsmýrarvegur 16, University of Iceland, 101, Reykjavík, Iceland.,Department of Immunology, Landspitali-The National University Hospital of Iceland, Hringbraut, 101, Reykjavík, Iceland
| | - Erna Magnúsdóttir
- Department of Anatomy, Faculty of Medicine, University of Iceland, Vatnsmýrarvegur 16, 101, Reykjavik, Iceland. .,Department of Biomedical Science, Faculty of Medicine, University of Iceland, Vatnsmýrarvegur 16, 101, Reykjavík, Iceland. .,The University of Iceland Biomedical Center, Vatnsmýrarvegur 16, 101, Reykjavík, Iceland.
| |
Collapse
|
5
|
Soluble PD-1 ligands regulate T-cell function in Waldenstrom macroglobulinemia. Blood Adv 2019; 2:1985-1997. [PMID: 30104397 DOI: 10.1182/bloodadvances.2018021113] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/18/2018] [Indexed: 01/11/2023] Open
Abstract
Although immune checkpoint molecules regulate the progression of certain cancers, their significance in malignant development of Waldenstrom macroglobulinemia (WM), an incurable low-grade B-cell lymphoma, remains unknown. Recently, cytokines in the bone marrow (BM) microenvironment are shown to contribute to the pathobiology of WM. Here, we investigated the impact of cytokines, including interleukin-6 (IL-6) and IL-21, on immune regulation and particularly on the programmed death-1 (PD-1) and its ligands PD-L1 and PD-L2. We showed that IL-21, interferon γ, and IL-6 significantly induced PD-L1 and PD-L2 gene expression in WM cell lines. Increased PD-L1 and PD-L2 messenger RNA was also detected in patients' BM cells. Patients' nonmalignant BM cells, including T cells and monocytes, showed increased PD-L1, but minimal or undetectable PD-L2 surface expression. There was also very modest PD-L1 and PD-L2 surface expression by malignant WM cells, suggesting that ligands are cleaved from the cell surface. Levels of soluble ligands were higher in patients' BM plasma and blood serum than controls. Furthermore, IL-21 and IL-6 increased secreted PD-L1 in the culture media of WM cell lines, implying that elevated levels of soluble PD-1 ligands are cytokine mediated. Soluble PD-1 ligands reduced T-cell proliferation, phosphorylated extracellular signal-regulated kinase and cyclin A levels, mitochondrial adenosine triphosphate production, and spare respiratory capacity. In conclusion, we identify that soluble PD-1 ligands are elevated in WM patients and, in addition to surface-bound ligands in WM BM, could regulate T-cell function. Given the capability of secreted forms to be bioactive at distant sites, soluble PD-1 ligands have the potential to promote disease progression in WM.
Collapse
|
6
|
Paulus A, Manna A, Akhtar S, Paulus SM, Sharma M, Coignet MV, Jiang L, Roy V, Witzig TE, Ansell SM, Allan J, Furman R, Aulakh S, Manochakian R, Ailawadhi S, Chanan-Khan AA, Sher T. Targeting CD38 with daratumumab is lethal to Waldenström macroglobulinaemia cells. Br J Haematol 2018; 183:196-211. [PMID: 30080238 DOI: 10.1111/bjh.15515] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 06/07/2018] [Indexed: 12/11/2022]
Abstract
CD38 is expressed on Waldenström macroglobulinaemia (WM) cells, but its role as a therapeutic target remains undefined. With recent approval of the anti-CD38 monoclonal antibody, daratumumab (Dara), we hypothesized that blocking CD38 would be lethal to WM cells. In vitro Dara treatment of WM cells (including ibrutinib-resistant lines) elicited antibody-dependent cellular cytotoxicity (ADCC), complement-dependent cytotoxicity (CDC), antibody-dependent cell phagocytosis (ADCP) and direct apoptosis. In vivo, Dara treatment was well tolerated and delayed tumour growth in RPCI-WM1-xenografted mice. CD38 is reported to augment B-cell receptor (BCR) signalling; we noted that Dara significantly attenuated phosphorylated SYK, LYN, BTK, PLCγ2, ERK1/2, AKT, mTOR, and S6 levels, and this effect was augmented by cotreatment with ibrutinib. Indeed, WM cells, including ibrutinib-resistant WM cell lines treated with the ibrutinib + Dara combination, showed significantly more cell death through ADCC, CDC, ADCP and apoptosis relative to single-agent Dara or ibrutinib. In summary, we are the first to report the in vitro and in vivo anti-WM activity of Dara. Furthermore, we show a close connection between BCR and CD38 signalling, which can be co-targeted with ibrutinib + Dara to induce marked WM cell death, irrespective of acquired resistance to ibrutinib.
Collapse
Affiliation(s)
- Aneel Paulus
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| | - Alak Manna
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| | - Sharoon Akhtar
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| | - Shumail M Paulus
- Division of Hematology and Medical Oncology, Mayo Clinic, Jacksonville, FL, USA
| | - Mayank Sharma
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Marie V Coignet
- Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Liuyan Jiang
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Jacksonville, FL, USA
| | - Vivek Roy
- Division of Hematology and Medical Oncology, Mayo Clinic, Jacksonville, FL, USA
| | - Thomas E Witzig
- Division of Hematology, Mayo Clinic, Rochester, MN, USA.,Division of Hematopathology, Mayo Clinic, Rochester, MN, USA
| | | | - John Allan
- Department of Medicine, Weill Cornell Medical College, Cornell, NY, USA
| | - Richard Furman
- Department of Medicine, Weill Cornell Medical College, Cornell, NY, USA
| | - Sonikpreet Aulakh
- Division of Hematology and Medical Oncology, Mayo Clinic, Jacksonville, FL, USA
| | - Rami Manochakian
- Division of Hematology and Medical Oncology, Mayo Clinic, Jacksonville, FL, USA
| | - Sikander Ailawadhi
- Division of Hematology and Medical Oncology, Mayo Clinic, Jacksonville, FL, USA
| | - Asher A Chanan-Khan
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA.,Division of Hematology and Medical Oncology, Mayo Clinic, Jacksonville, FL, USA
| | - Taimur Sher
- Division of Hematology and Medical Oncology, Mayo Clinic, Jacksonville, FL, USA
| |
Collapse
|
7
|
Waldenstrom macroglobulinemia cells devoid of BTK C481S or CXCR4 WHIM-like mutations acquire resistance to ibrutinib through upregulation of Bcl-2 and AKT resulting in vulnerability towards venetoclax or MK2206 treatment. Blood Cancer J 2017; 7:e565. [PMID: 28548645 PMCID: PMC5518884 DOI: 10.1038/bcj.2017.40] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 02/09/2017] [Accepted: 02/23/2017] [Indexed: 12/27/2022] Open
Abstract
Although ibrutinib is highly effective in Waldenstrom macroglobulinemia (WM), no complete remissions in WM patients treated with ibrutinib have been reported to date. Moreover, ibrutinib-resistant disease is being steadily reported and is associated with dismal clinical outcome (overall survival of 2.9–3.1 months). To understand mechanisms of ibrutinib resistance in WM, we established ibrutinib-resistant in vitro models using validated WM cell lines. Characterization of these models revealed the absence of BTKC481S and CXCR4WHIM-like mutations. BTK-mediated signaling was found to be highly attenuated accompanied by a shift in PI3K/AKT and apoptosis regulation-associated genes/proteins. Cytotoxicity studies using the AKT inhibitor, MK2206±ibrutinib, and the Bcl-2-specific inhibitor, venetoclax±ibrutinib, demonstrated synergistic loss of cell viability when either MK22016 or venetoclax were used in combination with ibrutinib. Our findings demonstrate that induction of ibrutinib resistance in WM cells can arise independent of BTKC481S and CXCR4WHIM-like mutations and sustained pressure from ibrutinib appears to activate compensatory AKT signaling as well as reshuffling of Bcl-2 family proteins for maintenance of cell survival. Combination treatment demonstrated greater (and synergistic) antitumor effect and provides rationale for development of therapeutic strategies encompassing venetoclax+ibrutinib or PI3K/AKT inhibitors+ibrutinib in ibrutinib-resistant WM.
Collapse
|
8
|
Paulus A, Ailawadhi S, Chanan-Khan A. Novel therapeutic targets in Waldenstrom macroglobulinemia. Best Pract Res Clin Haematol 2016; 29:216-228. [PMID: 27825468 DOI: 10.1016/j.beha.2016.08.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Accepted: 08/30/2016] [Indexed: 01/04/2023]
Abstract
Understanding of molecular mechanisms that drive Waldenstrom macroglobulinemia (WM) cell survival are rapidly evolving. This review briefly highlights emerging "WM-relevant" targets; for which therapeutic strategies are currently being investigated in preclinical and clinical studies. With the discovery of MYD88L265P signaling and remarkable activity of ibrutinib in WM, other targets within the B-cell receptor pathway are now being focused on for therapeutic intervention. Additional targets which play a role in WM cell survival include TLR7, 8 and 9, proteasome-associated deubiquitinating enzymes (USP14 and UCHL5), XPO1/CRM1 and AURKA. New drugs for established targets are also discussed. Lastly, we spotlight 3 highly innovative WM-specific therapies: MYD88 peptide inhibitors, MYD88L265P-directed immune activation and CD19-directed chimeric antigen receptor T-cell therapy, which are in various stages of development. Indeed, treatment of WM is poised to undergo a paradigm shift in the coming years towards highly disease-driven and more personalized therapeutic modalities with curative intent.
Collapse
Affiliation(s)
- Aneel Paulus
- Mayo Clinic Jacksonville, Department of Cancer Biology and Division of Hematology and Oncology, United States.
| | - Sikander Ailawadhi
- Mayo Clinic Jacksonville, Division of Hematology and Oncology, United States.
| | - Asher Chanan-Khan
- Mayo Clinic Jacksonville, Division of Hematology and Oncology, United States.
| |
Collapse
|
9
|
Ailawadhi S, Paulus A, Chanan-Khan A. Preclinical models of Waldenström's macroglobulinemia and drug resistance. Best Pract Res Clin Haematol 2016; 29:169-178. [PMID: 27825463 DOI: 10.1016/j.beha.2016.08.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 08/26/2016] [Indexed: 12/30/2022]
Abstract
Newer therapeutic strategies are emerging in Waldenström's Macroglobulinemia (WM), which has traditionally been an orphan disease diagnosis. Ibrutinib, a Bruton's tyrosine kinase (BTK) inhibitor was FDA-approved in 2015 as the first ever drug for the treatment of WM. This being a targeted therapy, has given rise to increased research into novel agents and pathways that can be exploited for clinical benefit in WM. In order to understand the underlying mechanisms of disease behavior as well as to test the benefit of various drugs, appropriate preclinical models are required. Historically there had been a lack of representative preclinical models in WM, but in recent years this has dramatically changed. This review highlights the currently available preclinical models and data regarding drug resistance pathways in WM. Knowledge from these will certainly help in paving the future course of treatment in this rare disorder which is indolent and yet, so far incurable.
Collapse
Affiliation(s)
- Sikander Ailawadhi
- Mayo Clinic Jacksonville, Division of Hematology and Oncology, United States.
| | - Aneel Paulus
- Mayo Clinic Jacksonville, Department of Cancer Biology and Division of Hematology and Oncology, United States.
| | - Asher Chanan-Khan
- Mayo Clinic Jacksonville, Division of Hematology and Oncology, United States.
| |
Collapse
|
10
|
Requirement of CXCL12-CXCR7 signaling for CD20(-) CD138(-) double-negative population in lymphoplasmacytic lymphoma. J Transl Med 2016; 96:517-25. [PMID: 26878134 DOI: 10.1038/labinvest.2016.28] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 12/13/2015] [Accepted: 12/25/2015] [Indexed: 12/12/2022] Open
Abstract
Cancer cells with tumorigenic potential are limited to a small subpopulation known as cancer-initiating cells (CICs). Recently we investigated a candidate of CICs of lymphoplasmacytic lymphoma (LPL), which is positive for both B-cell marker CD20 and plasma-cell marker CD138. We reported that the subpopulation of CD20(-) CD138(-) phenotype, in which both markers were negative was a candidate of CICs in LPL using LPL cell line, MWCL-1. CICs are known to be plastic under stressed condition, in which non-CICs are changed to CICs. In the present study, we investigated the plasticity of CICs of LPL, and found that hypoxia induced the conversion of CD20(+) CD138(-) to CD20(-) CD138(-) phenotype. We then searched for markers preferentially expressed in CD20(-) CD138(-) subpopulation, and the chemokine receptor CXCR7 was isolated. When cultured with CXCL12, a ligand of CXCR7, the number of CD20(-) CD138(-) cells increased in a time- and dose-dependent manner. In addition, hypoxia enhanced the expression level of CXCL12 in MWCL-1. In clinical samples of LPL, a few tumor cells expressed CXCR7, in which CD20 expression was not detected. These results indicated that hypoxia and CXCL12-CXCR7 axis appeared to be advantageous microenvironments to CD20(-) CD138(-) cells.
Collapse
|