1
|
Bobek JM, Stuttgen GM, Sahoo D. A comprehensive analysis of the role of native and modified HDL in ER stress in primary macrophages. Front Cardiovasc Med 2024; 11:1448607. [PMID: 39328237 PMCID: PMC11424405 DOI: 10.3389/fcvm.2024.1448607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/26/2024] [Indexed: 09/28/2024] Open
Abstract
Introduction Recent findings demonstrate that high density lipoprotein (HDL) function rather than HDL-cholesterol levels themselves may be a better indicator of cardiovascular disease risk. One mechanism by which HDL can become dysfunctional is through oxidative modification by reactive aldehydes. Previous studies from our group demonstrated that HDL modified by reactive aldehydes alters select cardioprotective functions of HDL in macrophages. To identify mechanisms by which dysfunctional HDL contributes to atherosclerosis progression, we designed experiments to test the hypothesis that HDL modified by reactive aldehydes triggers endoplasmic reticulum (ER) stress in primary murine macrophages. Methods and results Peritoneal macrophages were harvested from wild-type C57BL/6J mice and treated with thapsigargin, oxLDL, and/or HDL for up to 48 hours. Immunoblot analysis and semi-quantitative PCR were used to measure expression of BiP, p-eIF2α, ATF6, and XBP1 to assess activation of the unfolded protein response (UPR). Through an extensive set of comprehensive experiments, and contrary to some published studies, our findings led us to three novel discoveries in primary murine macrophages: (i) oxLDL alone was unable to induce ER stress; (ii) co-incubation with oxLDL or HDL in the presence of thapsigargin had an additive effect in which expression of ER stress markers were significantly increased and prolonged as compared to cells treated with thapsigargin alone; and (iii) HDL, in the presence or absence of reactive aldehydes, was unable blunt the ER stress induced by thapsigargin in the presence or absence of oxLDL. Conclusions Our systematic approach to assess the role of native and modified HDL in mediating primary macrophage ER stress led to the discovery that lipoproteins on their own require the presence of thapsigargin to synergistically increase expression of ER stress markers. We further demonstrated that HDL, in the presence or absence of reactive aldehydes, was unable to blunt the ER stress induced by thapsigargin in the presence or absence of oxLDL. Together, our findings suggest the need for more detailed investigations to better understand the role of native and modified lipoproteins in mediating ER stress pathways.
Collapse
Affiliation(s)
- Jordan M. Bobek
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, United States
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Gage M. Stuttgen
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, United States
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Daisy Sahoo
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, United States
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States
- Division of Endocrinology & Molecular Medicine, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
2
|
Munno M, Mallia A, Greco A, Modafferi G, Banfi C, Eligini S. Radical Oxygen Species, Oxidized Low-Density Lipoproteins, and Lectin-like Oxidized Low-Density Lipoprotein Receptor 1: A Vicious Circle in Atherosclerotic Process. Antioxidants (Basel) 2024; 13:583. [PMID: 38790688 PMCID: PMC11118168 DOI: 10.3390/antiox13050583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Atherosclerosis is a complex condition that involves the accumulation of lipids and subsequent plaque formation in the arterial intima. There are various stimuli, cellular receptors, and pathways involved in this process, but oxidative modifications of low-density lipoprotein (ox-LDL) are particularly important in the onset and progression of atherosclerosis. Ox-LDLs promote foam-cell formation, activate proinflammatory pathways, and induce smooth-muscle-cell migration, apoptosis, and cell death. One of the major receptors for ox-LDL is LOX-1, which is upregulated in several cardiovascular diseases, including atherosclerosis. LOX-1 activation in endothelial cells promotes endothelial dysfunction and induces pro-atherogenic signaling, leading to plaque formation. The binding of ox-LDLs to LOX-1 increases the generation of reactive oxygen species (ROS), which can induce LOX-1 expression and oxidize LDLs, contributing to ox-LDL generation and further upregulating LOX-1 expression. This creates a vicious circle that is amplified in pathological conditions characterized by high plasma levels of LDLs. Although LOX-1 has harmful effects, the clinical significance of inhibiting this protein remains unclear. Further studies both in vitro and in vivo are needed to determine whether LOX-1 inhibition could be a potential therapeutic target to counteract the atherosclerotic process.
Collapse
Affiliation(s)
- Marco Munno
- Unit of Functional Proteomics, Metabolomics and Network Analysis, Centro Cardiologico Monzino, 20138 Milan, Italy; (M.M.); (A.M.); (A.G.); (G.M.); (S.E.)
| | - Alice Mallia
- Unit of Functional Proteomics, Metabolomics and Network Analysis, Centro Cardiologico Monzino, 20138 Milan, Italy; (M.M.); (A.M.); (A.G.); (G.M.); (S.E.)
- Dipartimento di Biologia e Biotecnologie “Lazzaro Spallanzani”, Università di Pavia, 27100 Pavia, Italy
| | - Arianna Greco
- Unit of Functional Proteomics, Metabolomics and Network Analysis, Centro Cardiologico Monzino, 20138 Milan, Italy; (M.M.); (A.M.); (A.G.); (G.M.); (S.E.)
| | - Gloria Modafferi
- Unit of Functional Proteomics, Metabolomics and Network Analysis, Centro Cardiologico Monzino, 20138 Milan, Italy; (M.M.); (A.M.); (A.G.); (G.M.); (S.E.)
| | - Cristina Banfi
- Unit of Functional Proteomics, Metabolomics and Network Analysis, Centro Cardiologico Monzino, 20138 Milan, Italy; (M.M.); (A.M.); (A.G.); (G.M.); (S.E.)
| | - Sonia Eligini
- Unit of Functional Proteomics, Metabolomics and Network Analysis, Centro Cardiologico Monzino, 20138 Milan, Italy; (M.M.); (A.M.); (A.G.); (G.M.); (S.E.)
| |
Collapse
|
3
|
Abstract
Epidemiologic studies detected an inverse relationship between HDL (high-density lipoprotein) cholesterol (HDL-C) levels and atherosclerotic cardiovascular disease (ASCVD), identifying HDL-C as a major risk factor for ASCVD and suggesting atheroprotective functions of HDL. However, the role of HDL-C as a mediator of risk for ASCVD has been called into question by the failure of HDL-C-raising drugs to reduce cardiovascular events in clinical trials. Progress in understanding the heterogeneous nature of HDL particles in terms of their protein, lipid, and small RNA composition has contributed to the realization that HDL-C levels do not necessarily reflect HDL function. The most examined atheroprotective function of HDL is reverse cholesterol transport, whereby HDL removes cholesterol from plaque macrophage foam cells and delivers it to the liver for processing and excretion into bile. Indeed, in several studies, HDL has shown inverse associations between HDL cholesterol efflux capacity and ASCVD in humans. Inflammation plays a key role in the pathogenesis of atherosclerosis and vulnerable plaque formation, and a fundamental function of HDL is suppression of inflammatory signaling in macrophages and other cells. Oxidation is also a critical process to ASCVD in promoting atherogenic oxidative modifications of LDL (low-density lipoprotein) and cellular inflammation. HDL and its proteins including apoAI (apolipoprotein AI) and PON1 (paraoxonase 1) prevent cellular oxidative stress and LDL modifications. Importantly, HDL in humans with ASCVD is oxidatively modified rendering HDL dysfunctional and proinflammatory. Modification of HDL with reactive carbonyl species, such as malondialdehyde and isolevuglandins, dramatically impairs the antiatherogenic functions of HDL. Importantly, treatment of murine models of atherosclerosis with scavengers of reactive dicarbonyls improves HDL function and reduces systemic inflammation, atherosclerosis development, and features of plaque instability. Here, we discuss the HDL antiatherogenic functions in relation to oxidative modifications and the potential of reactive dicarbonyl scavengers as a therapeutic approach for ASCVD.
Collapse
Affiliation(s)
- MacRae F. Linton
- 1. Department of Medicine, Division of Cardiovascular Medicine, Atherosclerosis Research Unit, Vanderbilt University School of Medicine, Nashville, TN 37232
- 2. Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Patricia G. Yancey
- 1. Department of Medicine, Division of Cardiovascular Medicine, Atherosclerosis Research Unit, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Huan Tao
- 1. Department of Medicine, Division of Cardiovascular Medicine, Atherosclerosis Research Unit, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Sean S. Davies
- 2. Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232
| |
Collapse
|
4
|
Day NJ, Wang J, Johnston CJ, Kim SY, Olson HM, House EL, Attah IK, Clair GC, Qian WJ, McGraw MD. Rat bronchoalveolar lavage proteome changes following e-cigarette aerosol exposures. Am J Physiol Lung Cell Mol Physiol 2023; 324:L571-L583. [PMID: 36881561 PMCID: PMC10085554 DOI: 10.1152/ajplung.00016.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/21/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
E-cigarette liquids are complex mixtures of chemicals consisting of humectants, such as propylene glycol (PG) and vegetable glycerin (VG), with nicotine or flavorings added. Published literature emphasizes the toxicity of e-cigarette aerosols with flavorings whereas much less attention has been given to the biologic effects of humectants. The purpose of the current study was to provide a comprehensive view of the acute biologic effects of e-cigarette aerosols on rat bronchoalveolar lavage (BAL) using mass spectrometry-based global proteomics. Sprague-Dawley rats were exposed to e-cigarette aerosol for 3 h/day for three consecutive days. Groups included: PG/VG alone, PG/VG + 2.5% nicotine (N), or PG/VG + N + 3.3% vanillin (V). Right lung lobes were lavaged for BAL and supernatants prepared for proteomics. Extracellular BAL S100A9 concentrations and BAL cell staining for citrullinated histone H3 (citH3) were also performed. From global proteomics, ∼2,100 proteins were identified from rat BAL. The greatest change in number of BAL proteins occurred with PG/VG exposures alone compared with controls with biological pathways enriched for acute phase responses, extracellular trap formation, and coagulation. Extracellular BAL S100A9 concentrations and the number of citH3 + BAL cells also increased significantly in PG/VG and PG/VG + 2.5% N. In contrast to PG/VG or PG/VG + N, the addition of vanillin to PG/VG + N increased BAL neutrophilia and downregulated lipid transport proteins. In summary, global proteomics support e-cigarette aerosol exposures to PG/VG alone as having a significant biologic effect on the lung independent of nicotine or flavoring with increased markers of extracellular trap formation.
Collapse
Affiliation(s)
- Nicholas J Day
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States
| | - Juan Wang
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States
| | - Carl J Johnston
- Division of Pulmonology, Department of Pediatric Pulmonology, University of Rochester Medical Center, Rochester, New York, United States
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York, United States
| | - So-Young Kim
- Division of Pulmonology, Department of Pediatric Pulmonology, University of Rochester Medical Center, Rochester, New York, United States
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York, United States
| | - Heather M Olson
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States
| | - Emma L House
- Division of Pulmonology, Department of Pediatric Pulmonology, University of Rochester Medical Center, Rochester, New York, United States
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York, United States
| | - Isaac Kwame Attah
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States
| | - Geremy C Clair
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States
| | - Matthew D McGraw
- Division of Pulmonology, Department of Pediatric Pulmonology, University of Rochester Medical Center, Rochester, New York, United States
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York, United States
| |
Collapse
|
5
|
Jullmusi O, Yunibhand J, Jitpanya C. The effect of the multimodal intervention on blood pressure in patients with first ischemic stroke: A randomized controlled trial. BELITUNG NURSING JOURNAL 2023; 9:34-42. [PMID: 37469638 PMCID: PMC10353624 DOI: 10.33546/bnj.2432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/26/2022] [Accepted: 12/28/2022] [Indexed: 07/21/2023] Open
Abstract
Background Multimodal intervention is currently promoted to control blood pressure in patients with first ischemic stroke. However, a dearth of studies has examined the influence of the intervention among patients with ischemic stroke, particularly in Thailand. Objective This study aimed to determine the effect of the multimodal intervention on blood pressure in patients with first ischemic stroke. Methods A randomized controlled trial was conducted. Sixty participants were randomly selected from two tertiary hospitals in Thailand. Eligible participants were randomly assigned into an experimental group (n = 30) and a control group (n = 30). The experimental group was provided with the multimodal intervention, while the control group was given the usual care. Data were collected from May 2021 to October 2021 at baseline (pre-test), 4th week, 8th week, and 12th week using the demographic data form and sphygmomanometer. The data were analyzed using the Chi-square test, t-test, and repeated measure analysis of variance (ANOVA). Results The participants' blood pressures after receiving the multimodal intervention were lower than those before receiving the multimodal intervention. Both systolic and diastolic blood pressure were statistically significantly decreased over time, starting from baseline to the 8th week and 12th week (p <0.001). In addition, the participants' mean scores of systolic blood pressure (F (1, 58) = 4.059, p = 0.049) and diastolic blood pressure (F (1, 58) = 4.515, p = 0.038) were lower than the control group. Conclusion The multimodal intervention is effective in controlling blood pressure. Therefore, nurses should educate patients with ischemic stroke to manage systolic and diastolic blood pressure, facilitate the patient's participation in the exercise program, and monitor the patients via telephone to continue blood pressure control. Trial Registry Thai Clinical Trials Registry (TCTR) identifier number 20210318001.
Collapse
Affiliation(s)
- Orapin Jullmusi
- Faculty of Nursing, Chulalongkorn University, Bangkok, Thailand
| | | | | |
Collapse
|
6
|
Kluck GE, Qian AS, Sakarya EH, Quach H, Deng YD, Trigatti BL. Apolipoprotein A1 Protects Against Necrotic Core Development in Atherosclerotic Plaques: PDZK1-Dependent High-Density Lipoprotein Suppression of Necroptosis in Macrophages. Arterioscler Thromb Vasc Biol 2023; 43:45-63. [PMID: 36353992 PMCID: PMC9762725 DOI: 10.1161/atvbaha.122.318062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACKGROUND Atherosclerosis is a chronic disease affecting artery wall and a major contributor to cardiovascular diseases. Large necrotic cores increase risk of plaque rupture leading to thrombus formation. Necrotic cores are rich in debris from dead macrophages. Programmed necrosis (necroptosis) contributes to necrotic core formation. HDL (high-density lipoprotein) exerts direct atheroprotective effects on different cells within atherosclerotic plaques. Some of these depend on the SR-B1 (scavenger receptor class B type I) and the adapter protein PDZK1 (postsynaptic density protein/Drosophila disc-large protein/Zonula occludens protein containing 1). However, a role for HDL in protecting against necroptosis and necrotic core formation in atherosclerosis is not completely understood. METHODS Low-density lipoprotein receptor-deficient mice engineered to express different amounts of ApoA1 (apolipoprotein A1), or to lack PDZK1 were fed a high fat diet for 10 weeks. Atherosclerotic plaque areas, necrotic cores, and key necroptosis mediators, RIPK3 (receptor interacting protein kinase 3), and MLKL (mixed lineage kinase domain-like protein) were characterized. Cultured macrophages were treated with HDL to determine its effects, as well as the roles of SR-B1, PDZK1, and the PI3K (phosphoinositide 3-kinase) signaling pathway on necroptotic cell death. RESULTS Genetic overexpression reduced, and ApoA1 knockout increased necrotic core formation and RIPK3 and MLKL within atherosclerotic plaques. Macrophages were protected against necroptosis by HDL and this protection required SR-B1, PDZK1, and PI3K/Akt pathway. PDZK1 knockout increased atherosclerosis in LDLRKO mice, increasing necrotic cores and phospho-MLKL; both of which were reversed by restoring PDZK1 in BM-derived cells. CONCLUSIONS Our findings demonstrate that HDL in vitro and ApoA1, in vivo, protect against necroptosis in macrophages and necrotic core formation in atherosclerosis, suggesting a pathway that could be a target for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- George E.G. Kluck
- Thrombosis and Atherosclerosis Research Institute, Department of Biochemistry and Biomedical Sciences, McMaster University, and Hamilton Health Sciences, Ontario, Canada
| | - Alexander S. Qian
- Thrombosis and Atherosclerosis Research Institute, Department of Biochemistry and Biomedical Sciences, McMaster University, and Hamilton Health Sciences, Ontario, Canada
| | - Emmanuel H. Sakarya
- Thrombosis and Atherosclerosis Research Institute, Department of Biochemistry and Biomedical Sciences, McMaster University, and Hamilton Health Sciences, Ontario, Canada
| | - Henry Quach
- Thrombosis and Atherosclerosis Research Institute, Department of Biochemistry and Biomedical Sciences, McMaster University, and Hamilton Health Sciences, Ontario, Canada
| | - Yak D. Deng
- Thrombosis and Atherosclerosis Research Institute, Department of Biochemistry and Biomedical Sciences, McMaster University, and Hamilton Health Sciences, Ontario, Canada
| | - Bernardo L. Trigatti
- Thrombosis and Atherosclerosis Research Institute, Department of Biochemistry and Biomedical Sciences, McMaster University, and Hamilton Health Sciences, Ontario, Canada
| |
Collapse
|
7
|
Fadaei R, Davies SS. Oxidative modification of HDL by lipid aldehydes impacts HDL function. Arch Biochem Biophys 2022; 730:109397. [PMID: 36116503 PMCID: PMC9670862 DOI: 10.1016/j.abb.2022.109397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/12/2022] [Indexed: 11/21/2022]
Abstract
Reduced levels of high-density lipoprotein (HDL) cholesterol correlate with increased risk for atherosclerotic cardiovascular diseases and HDL performs functions including reverse cholesterol transport, inhibition of lipid peroxidation, and suppression of inflammation, that would appear critical for cardioprotection. However, several large clinical trials utilizing pharmacologic interventions that elevated HDL cholesterol levels failed to provide cardioprotection to at-risk individuals. The reasons for these unexpected results have only recently begun to be elucidated. HDL cholesterol levels and HDL function can be significantly discordant, so that elevating HDL cholesterol levels may not necessarily lead to increased functional capacity, particularly under conditions that cause HDL to become oxidatively modified, resulting in HDL dysfunction. Here we review evidence that oxidative modifications of HDL, including by reactive lipid aldehydes generated by lipid peroxidation, reduce HDL functionality and that dicarbonyl scavengers that protect HDL against lipid aldehyde modification are beneficial in pre-clinical models of atherosclerotic cardiovascular disease.
Collapse
Affiliation(s)
- Reza Fadaei
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sean S Davies
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
8
|
Chen P, Liu S, Yin Z, Liang P, Wang C, Zhu H, Liu Y, Ou S, Li G. Rutin alleviated acrolein-induced cytotoxicity in Caco-2 and GES-1 cells by forming a cyclic hemiacetal product. Front Nutr 2022; 9:976400. [PMID: 36051900 PMCID: PMC9424909 DOI: 10.3389/fnut.2022.976400] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Acrolein (ACR), an α, β-unsaturated aldehyde, is a toxic compound formed during food processing, and the use of phenolics derived from dietary materials to scavenge ACR is a hot spot. In this study, rutin, a polyphenol widely present in various dietary materials, was used to investigate its capacity to scavenge ACR. It was shown that more than 98% of ACR was eliminated under the conditions of reaction time of 2 h, temperature of 80 °C, and molar ratio of rutin/ACR of 2/1. Further structural characterization of the formed adduct revealed that the adduct of rutin to ACR to form a cyclic hemiacetal compound (RAC) was the main scavenging mechanism. Besides, the stability of RAC during simulated in vitro digestion was evaluated, which showed that more than 83.61% of RAC was remained. Furthermore, the cytotoxicity of RAC against Caco-2 and GES-1 cells was significantly reduced compared with ACR, where the IC50 values of ACR were both below 20 μM while that of RAC were both above 140 μM. And the improvement of the loss of mitochondrial membrane potential (MMP) by RAC might be one of the detoxification pathways. The present study indicated that rutin was one of the potential ACR scavengers among natural polyphenols.
Collapse
Affiliation(s)
- Peifang Chen
- Department of Food Science, Foshan University, Foshan, China
| | - Shuang Liu
- Department of Hematology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Zhao Yin
- Department of Hematology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Pengjie Liang
- Department of Food Science, Foshan University, Foshan, China
| | - Chunhua Wang
- Department of Food Science, Foshan University, Foshan, China
| | - Hanyue Zhu
- Department of Food Science, Foshan University, Foshan, China
| | - Yang Liu
- Department of Food Science, Foshan University, Foshan, China
| | - Shiyi Ou
- Department of Food Science and Engineering, Jinan University, Guangzhou, China
- Shiyi Ou
| | - Guoqiang Li
- Department of Food Science, Foshan University, Foshan, China
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan, China
- South China National Center for Food Safety Research and Development, Foshan University, Foshan, China
- *Correspondence: Guoqiang Li
| |
Collapse
|
9
|
Zhang J, Dai W, Chen Y. Editorial: The Roles of Lipids in Immunometabolism: The Crosstalk Between Lipid Metabolisms and Inflammation. Front Cardiovasc Med 2022; 9:938535. [PMID: 35811702 PMCID: PMC9257247 DOI: 10.3389/fcvm.2022.938535] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 06/06/2022] [Indexed: 11/24/2022] Open
Affiliation(s)
- Jue Zhang
- Versiti Blood Research Institute, Milwaukee, WI, United States
| | - Wen Dai
- Versiti Blood Research Institute, Milwaukee, WI, United States
| | - Yiliang Chen
- Versiti Blood Research Institute, Milwaukee, WI, United States
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
- *Correspondence: Yiliang Chen
| |
Collapse
|
10
|
Punch E, Klein J, Diaba-Nuhoho P, Morawietz H, Garelnabi M. Effects of PCSK9 Targeting: Alleviating Oxidation, Inflammation, and Atherosclerosis. J Am Heart Assoc 2022; 11:e023328. [PMID: 35048716 PMCID: PMC9238481 DOI: 10.1161/jaha.121.023328] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Characterized as a chronic inflammatory disease of the large arteries, atherosclerosis is the primary cause of cardiovascular disease, the leading contributor of morbidity and mortality worldwide. Elevated plasma cholesterol levels and chronic inflammation within the arterial plaque are major mediators of plaque initiation, progression, and instability. In 2003, the protein PCSK9 (proprotein convertase subtilisin/kexin 9) was discovered to play a critical role in cholesterol regulation, thus becoming a key player in the mechanisms behind atherosclerotic plaque development. Emerging evidence suggests that PCSK9 could potentially have effects on atherosclerosis that are independent of cholesterol levels. The objective of this review was to discuss the role on PCSK9 in oxidation, inflammation, and atherosclerosis. This function activates proinflammatory cytokine production and affects oxidative modifications within atherosclerotic lesions, revealing its more significant role in atherosclerosis. Although a variety of evidence demonstrates that PCSK9 plays a role in atherosclerotic inflammation, the direct mechanism of involvement is still unknown, driving a gap in knowledge to such a predominant player in cardiovascular disease. Investigation of proteins structurally related to PCSK9 may interestingly be the link in unveiling the mechanistic role of this protein’s involvement in oxidation and inflammation. Importantly, the unique structure of PCSK9 bears structural homology to a one‐of‐a‐kind domain found in the metabolic protein resistin, which is responsible for many of the same inflammatory outcomes as PCSK9. Closing this gap in knowledge of PCSK9`s role in atherosclerotic oxidation and inflammation will provide fundamental information for understanding, preventing, and treating cardiovascular disease.
Collapse
Affiliation(s)
- Emily Punch
- Department of Chemistry University of Massachusetts Lowell MA
| | - Justus Klein
- Division of Vascular Endothelium and Microcirculation Department of Medicine III University Hospital and Medical Faculty Carl Gustav CarusTechnische Universität Dresden Germany
| | - Patrick Diaba-Nuhoho
- Division of Vascular Endothelium and Microcirculation Department of Medicine III University Hospital and Medical Faculty Carl Gustav CarusTechnische Universität Dresden Germany
| | - Henning Morawietz
- Division of Vascular Endothelium and Microcirculation Department of Medicine III University Hospital and Medical Faculty Carl Gustav CarusTechnische Universität Dresden Germany
| | - Mahdi Garelnabi
- Biomedical and Nutritional Sciences University of Massachusetts Lowell MA
| |
Collapse
|
11
|
Structure and Dynamics of Oxidized Lipoproteins In Vivo: Roles of High-Density Lipoprotein. Biomedicines 2021; 9:biomedicines9060655. [PMID: 34201176 PMCID: PMC8229488 DOI: 10.3390/biomedicines9060655] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 01/30/2023] Open
Abstract
Oxidative modification of lipoproteins is implicated in the occurrence and development of atherosclerotic lesions. Earlier studies have elucidated on the mechanisms of foam cell formation and lipid accumulation in these lesions, which is mediated by scavenger receptor-mediated endocytosis of oxidized low-density lipoprotein (oxLDL). Mounting clinical evidence has supported the involvement of oxLDL in cardiovascular diseases. High-density lipoprotein (HDL) is known as anti-atherogenic; however, recent studies have shown circulating oxidized HDL (oxHDL) is related to cardiovascular diseases. A modified structure of oxLDL, which was increased in the plasma of patients with acute myocardial infarction, was characterized. It had two unique features: (1) a fraction of oxLDL accompanied oxHDL, and (2) apoA1 was heavily modified, while modification of apoB, and the accumulation of oxidized phosphatidylcholine (oxPC) and lysophosphatidylcholine (lysoPC) was less pronounced. When LDL and HDL were present at the same time, oxidized lipoproteins actively interacted with each other, and oxPC and lysoPC were transferred to another lipoprotein particle and enzymatically metabolized rapidly. This brief review provides a novel view on the dynamics of oxLDL and oxHDL in circulation.
Collapse
|
12
|
Tereshkina YA, Kostryukova LV, Torkhovskaya TI, Khudoklinova YY, Tikhonova EG. [Plasma high density lipoproteins phospholipds as an indirect indicator of their cholesterol efflux capacity - new suspected atherosclerosis risk factor]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2021; 67:119-129. [PMID: 33860768 DOI: 10.18097/pbmc20216702119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
High density lipoproteins (HDL) are a unique natural structure, protecting the body from the development of atherosclerotic vascular lesions and cardiovascular diseases due to this ability to remove cholesterol from cells. Plasma HDL level estimated by their cholesterol content, is a common lipid parameter, and its decrease is considered as an established atherosclerosis risk factor. However, a number of studies have shown the absence of positive clinical effects after drug-induced increase in HDL cholesterol. There is increasing evidence that not only HDL concentration, but also HDL properties, considered in this review are important. Many studies showed the decrease of HDL cholesterol efflux capacity in patients with coronary heart diseases and its association with disease severity. Some authors consider a decrease of this HDL capacity as a new additional risk factor of atherosclerosis. The review summarizes existing information on various protein and lipid components of HDL with a primary emphasis on the HDL. Special attention is paid to correlation between the HDL cholesterol efflux capacity and HDL phospholipids and the ratio "phospholipids/free cholesterol". The accumulated information indicates importance of evaluation in the HDL fraction not only in terms of their cholesterol, but also phospholipids. In addition to the traditionally used lipid criteria, this would provide more comprehensive information about the activity of the reverse cholesterol transport process in the body and could contribute to the targeted correction of the detected disorders.
Collapse
|
13
|
High-Density Lipoproteins and the Kidney. Cells 2021; 10:cells10040764. [PMID: 33807271 PMCID: PMC8065870 DOI: 10.3390/cells10040764] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 03/28/2021] [Accepted: 03/30/2021] [Indexed: 02/07/2023] Open
Abstract
Dyslipidemia is a typical trait of patients with chronic kidney disease (CKD) and it is typically characterized by reduced high-density lipoprotein (HDL)-cholesterol(c) levels. The low HDL-c concentration is the only lipid alteration associated with the progression of renal disease in mild-to-moderate CKD patients. Plasma HDL levels are not only reduced but also characterized by alterations in composition and structure, which are responsible for the loss of atheroprotective functions, like the ability to promote cholesterol efflux from peripheral cells and antioxidant and anti-inflammatory proprieties. The interconnection between HDL and renal function is confirmed by the fact that genetic HDL defects can lead to kidney disease; in fact, mutations in apoA-I, apoE, apoL, and lecithin–cholesterol acyltransferase (LCAT) are associated with the development of renal damage. Genetic LCAT deficiency is the most emblematic case and represents a unique tool to evaluate the impact of alterations in the HDL system on the progression of renal disease. Lipid abnormalities detected in LCAT-deficient carriers mirror the ones observed in CKD patients, which indeed present an acquired LCAT deficiency. In this context, circulating LCAT levels predict CKD progression in individuals at early stages of renal dysfunction and in the general population. This review summarizes the main alterations of HDL in CKD, focusing on the latest update of acquired and genetic LCAT defects associated with the progression of renal disease.
Collapse
|
14
|
Gianazza E, Brioschi M, Martinez Fernandez A, Casalnuovo F, Altomare A, Aldini G, Banfi C. Lipid Peroxidation in Atherosclerotic Cardiovascular Diseases. Antioxid Redox Signal 2021; 34:49-98. [PMID: 32640910 DOI: 10.1089/ars.2019.7955] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Significance: Atherosclerotic cardiovascular diseases (ACVDs) continue to be a primary cause of mortality worldwide in adults aged 35-70 years, occurring more often in countries with lower economic development, and they constitute an ever-growing global burden that has a considerable socioeconomic impact on society. The ACVDs encompass diverse pathologies such as coronary artery disease and heart failure (HF), among others. Recent Advances: It is known that oxidative stress plays a relevant role in ACVDs and some of its effects are mediated by lipid oxidation. In particular, lipid peroxidation (LPO) is a process under which oxidants such as reactive oxygen species attack unsaturated lipids, generating a wide array of oxidation products. These molecules can interact with circulating lipoproteins, to diffuse inside the cell and even to cross biological membranes, modifying target nucleophilic sites within biomolecules such as DNA, lipids, and proteins, and resulting in a plethora of biological effects. Critical Issues: This review summarizes the evidence of the effect of LPO in the development and progression of atherosclerosis-based diseases, HF, and other cardiovascular diseases, highlighting the role of protein adduct formation. Moreover, potential therapeutic strategies targeted at lipoxidation in ACVDs are also discussed. Future Directions: The identification of valid biomarkers for the detection of lipoxidation products and adducts may provide insights into the improvement of the cardiovascular risk stratification of patients and the development of therapeutic strategies against the oxidative effects that can then be applied within a clinical setting.
Collapse
Affiliation(s)
- Erica Gianazza
- Proteomics Unit, Monzino Cardiology Center IRCCS, Milan, Italy
| | - Maura Brioschi
- Proteomics Unit, Monzino Cardiology Center IRCCS, Milan, Italy
| | | | | | | | - Giancarlo Aldini
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Cristina Banfi
- Proteomics Unit, Monzino Cardiology Center IRCCS, Milan, Italy
| |
Collapse
|
15
|
Kudinov VA, Alekseeva OY, Torkhovskaya TI, Baskaev KK, Artyushev RI, Saburina IN, Markin SS. High-Density Lipoproteins as Homeostatic Nanoparticles of Blood Plasma. Int J Mol Sci 2020; 21:E8737. [PMID: 33228032 PMCID: PMC7699323 DOI: 10.3390/ijms21228737] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/14/2020] [Accepted: 11/15/2020] [Indexed: 02/07/2023] Open
Abstract
It is well known that blood lipoproteins (LPs) are multimolecular complexes of lipids and proteins that play a crucial role in lipid transport. High-density lipoproteins (HDL) are a class of blood plasma LPs that mediate reverse cholesterol transport (RCT)-cholesterol transport from the peripheral tissues to the liver. Due to this ability to promote cholesterol uptake from cell membranes, HDL possess antiatherogenic properties. This function was first observed at the end of the 1970s to the beginning of the 1980s, resulting in high interest in this class of LPs. It was shown that HDL are the prevalent class of LPs in several types of living organisms (from fishes to monkeys) with high resistance to atherosclerosis and cardiovascular disorders. Lately, understanding of the mechanisms of the antiatherogenic properties of HDL has significantly expanded. Besides the contribution to RCT, HDL have been shown to modulate inflammatory processes, blood clotting, and vasomotor responses. These particles also possess antioxidant properties and contribute to immune reactions and intercellular signaling. Herein, we review data on the structure and mechanisms of the pleiotropic biological functions of HDL from the point of view of their evolutionary role and complex dynamic nature.
Collapse
Affiliation(s)
- Vasily A. Kudinov
- Laboratory of Cell Biology and Developmental Pathology, FSBSI Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia;
- Experimental Drug Research and Production Department, Institute of Biomedical Chemistry, 119121 Moscow, Russia; (K.K.B.); (R.I.A.)
| | - Olga Yu. Alekseeva
- Cell Physiology Laboratory, Institute of Biomedical Problems, Russian Academy of Sciences, 123007 Moscow, Russia;
- Department of Biochemistry, People’s Friendship University (RUDN University), 117198 Moscow, Russia
| | - Tatiana I. Torkhovskaya
- Laboratory of Phospholipid Transport Systems and Nanomedicines, Institute of Biomedical Chemistry, 119121 Moscow, Russia;
| | - Konstantin K. Baskaev
- Experimental Drug Research and Production Department, Institute of Biomedical Chemistry, 119121 Moscow, Russia; (K.K.B.); (R.I.A.)
| | - Rafael I. Artyushev
- Experimental Drug Research and Production Department, Institute of Biomedical Chemistry, 119121 Moscow, Russia; (K.K.B.); (R.I.A.)
| | - Irina N. Saburina
- Laboratory of Cell Biology and Developmental Pathology, FSBSI Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia;
| | - Sergey S. Markin
- Clinical Research Department, Institute of Biomedical Chemistry, 119121 Moscow, Russia;
| |
Collapse
|
16
|
Kobayashi M, Watanabe K, Suzuki T, Dohmae N, Fujiyoshi M, Uchida M, Suzuki T, Igarashi K, Ishii I. Analysis of the acrolein-modified sites of apolipoprotein B-100 in LDL. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1866:158809. [PMID: 32919080 DOI: 10.1016/j.bbalip.2020.158809] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 08/20/2020] [Accepted: 08/26/2020] [Indexed: 11/18/2022]
Abstract
We have reported that acrolein-conjugated low-density lipoprotein (Acro-LDL) uptake by scavenger receptor class A type 1 (SR-A1) can mediate macrophage foam cell formation. The purpose of this study was to determine which amino acid residues of apoB protein in LDL are conjugated with acrolein. Acro-apoB was prepared by incubation of LDL with acrolein (10 to 60 μM) at 37 °C for 7 days. Identification of acrolein-conjugated amino acid residues in apoB was performed using LC-MS/MS. The levels of acrolein-conjugated amino acid residues of apoB as well as crosslinking apoB increased in proportion to acrolein concentration. The level of LDL uptake by macrophages was parallel with the acrolein-conjugated monomer apoB. Acrolein-conjugated amino acid residues in apoB were C212, K327, K742, K949, K1087, H1923, K2634, K3237 and K3846. The NH2-teriminal four amino acid residues (C212, K327, K742 and K949) were located at the scavenger receptor SR-A1 recognition site, suggesting that these four acrolein-conjugated amino acids are involved in the rapid uptake of Acro-LDL by macrophages. It is proposed that the rapid uptake of LDL by macrophages is dependent on acrolein conjugation of four amino acids residues at the scavenger receptor recognition site of apoB in LDL.
Collapse
Affiliation(s)
- Mizuki Kobayashi
- Departments of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Kenta Watanabe
- Division of Pharmacy, Chiba University Hospital, Chiba, Japan
| | | | - Naoshi Dohmae
- RIKEN Center Sustainable Resource Science, Yokohama, Japan
| | - Masachika Fujiyoshi
- Departments of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Masashi Uchida
- Departments of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan; Division of Pharmacy, Chiba University Hospital, Chiba, Japan
| | - Takaaki Suzuki
- Division of Pharmacy, Chiba University Hospital, Chiba, Japan
| | - Kazuei Igarashi
- Departments of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan; Amine Pharma Research Institute, Innovation Plaza at Chiba University, Chiba, Japan
| | - Itsuko Ishii
- Departments of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan; Division of Pharmacy, Chiba University Hospital, Chiba, Japan.
| |
Collapse
|
17
|
Contreras LM, Gonzalez-Rivera JC, Baldridge KC, Wang DS, Chuvalo-Abraham J, Ruiz LH. Understanding the Functional Impact of VOC-Ozone Mixtures on the Chemistry of RNA in Epithelial Lung Cells. Res Rep Health Eff Inst 2020; 2020:Res Rep Health Eff Inst. 2020 Jul;(201):3-43.. [PMID: 32845096 PMCID: PMC7448316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023] Open
Abstract
Introduction Ambient air pollution is associated with premature death caused by heart disease, stroke, chronic obstructive pulmonary disease (COPD), and lung cancer. Recent studies have suggested that ribonucleic acid (RNA) oxidation is a sensitive environment-related biomarker that is implicated in pathogenesis. Aims and Methods We used a novel approach that integrated RNA-Seq analysis with detection by immunoprecipitation techniques of the prominent RNA oxidative modification 8-oxo-7,8-dihydroguanine (8-oxoG). Our goal was to uncover specific messenger RNA (mRNA) oxidation induced by mixtures of volatile organic compounds (VOCs) and ozone in healthy human epithelial lung cells. To this end, we exposed the BEAS-2B human epithelial lung cell line to the gas- and particle-phase products formed from reactions of 790 ppb acrolein (ACR) and 670 ppb methacrolein (MACR) with 4 ppm ozone. Results Using this approach, we identified 222 potential direct targets of oxidation belonging to previously described pathways, as well as uncharacterized pathways, after air pollution exposures. We demonstrated the effect of our VOC-ozone mixtures on the morphology and actin cytoskeleton of lung cells, suggesting the influence of selective mRNA oxidation in members of pathways regulating physical components of the cells. In addition, we observed the influence of the VOC-ozone mixtures on metabolic cholesterol synthesis, likely implicated as a result of the incidence of mRNA oxidation and the deregulation of protein levels of squalene synthase (farnesyl-diphosphate farnesyltransferase 1 [FDFT1]), a key enzyme in endogenous cholesterol biosynthesis. Conclusions Overall, our findings indicate that air pollution influences the accumulation of 8-oxoG in transcripts of epithelial lung cells that largely belong to stress-induced signaling and metabolic and structural pathways. A strength of the study was that it combined traditional transcriptome analysis with transcriptome-wide 8-oxoG mapping to facilitate the discovery of underlying processes not characterized by earlier approaches. Investigation of the processes mediated by air pollution oxidation of RNA molecules in primary cells and animal models needs to be explored in future studies. Our research has thus opened new avenues to further inform the relationship between atmospheric agents on the one hand and cellular responses on the other that are implicated in diseases.
Collapse
Affiliation(s)
- L M Contreras
- McKetta Department of Chemical Engineering, University of Texas, Austin
| | | | - K C Baldridge
- McKetta Department of Chemical Engineering, University of Texas, Austin
| | - D S Wang
- McKetta Department of Chemical Engineering, University of Texas, Austin
| | | | - L H Ruiz
- McKetta Department of Chemical Engineering, University of Texas, Austin
| |
Collapse
|
18
|
Chuang ST, Cruz S, Narayanaswami V. Reconfiguring Nature's Cholesterol Accepting Lipoproteins as Nanoparticle Platforms for Transport and Delivery of Therapeutic and Imaging Agents. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E906. [PMID: 32397159 PMCID: PMC7279153 DOI: 10.3390/nano10050906] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/27/2020] [Accepted: 04/29/2020] [Indexed: 12/13/2022]
Abstract
Apolipoproteins are critical structural and functional components of lipoproteins, which are large supramolecular assemblies composed predominantly of lipids and proteins, and other biomolecules such as nucleic acids. A signature feature of apolipoproteins is the preponderance of amphipathic α-helical motifs that dictate their ability to make extensive non-covalent inter- or intra-molecular helix-helix interactions in lipid-free states or helix-lipid interactions with hydrophobic biomolecules in lipid-associated states. This review focuses on the latter ability of apolipoproteins, which has been capitalized on to reconstitute synthetic nanoscale binary/ternary lipoprotein complexes composed of apolipoproteins/peptides and lipids that mimic native high-density lipoproteins (HDLs) with the goal to transport drugs. It traces the historical development of our understanding of these nanostructures and how the cholesterol accepting property of HDL has been reconfigured to develop them as drug-loading platforms. The review provides the structural perspective of these platforms with different types of apolipoproteins and an overview of their synthesis. It also examines the cargo that have been loaded into the core for therapeutic and imaging purposes. Finally, it lays out the merits and challenges associated with apolipoprotein-based nanostructures with a future perspective calling for a need to develop "zip-code"-based delivery for therapeutic and diagnostic applications.
Collapse
Affiliation(s)
| | | | - Vasanthy Narayanaswami
- Department of Chemistry and Biochemistry, California State University, Long Beach, 1250 Bellflower Blvd, Long Beach, CA 90840, USA; (S.T.C.); (S.C.)
| |
Collapse
|
19
|
Ito F, Ito T. High-Density Lipoprotein (HDL) Triglyceride and Oxidized HDL: New Lipid Biomarkers of Lipoprotein-Related Atherosclerotic Cardiovascular Disease. Antioxidants (Basel) 2020; 9:antiox9050362. [PMID: 32357465 PMCID: PMC7278571 DOI: 10.3390/antiox9050362] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/21/2020] [Accepted: 04/24/2020] [Indexed: 12/14/2022] Open
Abstract
Lipid markers are well-established predictors of vascular disease. The most frequently measured lipid markers are total cholesterol, high-density lipoprotein (HDL)-cholesterol (HDL-C), LDL cholesterol (LDL-C), and triglyceride. HDL reduces atherosclerosis by multiple mechanisms, leading to a reduced risk of cardiovascular disease, and HDL-C, as a metric of HDL quantity, is inversely associated with cardiovascular disease, independent of LDL-C. However, the quality of the HDL appears to be more important than its quantity, because HDL loses its antiatherogenic functions due to changes in its composition and becomes “dysfunctional HDL”. Although there is evidence of the existence of “dysfunctional HDL”, biomarkers for monitoring dysfunctional HDL in clinical practice have not yet been established. In this review, we propose a new lipid panel for the assessment of dysfunctional HDL and lipoprotein-related atherosclerotic cardiovascular disease. The lipid panel includes the measurement of lipid peroxide and triglyceride contents within HDL particles.
Collapse
Affiliation(s)
- Fumiaki Ito
- The Institute of Prophylactic Pharmacology, Shinagawa, Tokyo 140-0001, Japan
- Correspondence:
| | - Tomoyuki Ito
- Physical Medicine and Rehabilitation, Tanabe Memorial Hospital, Kyotanabe-City, Kyoto 610-0331, Japan;
- Department of Rehabilitation Medicine, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| |
Collapse
|
20
|
Suematsu Y, Goto M, Park C, Nunes ACF, Jing W, Streja E, Rhee CM, Cruz S, Kashyap ML, Vaziri ND, Narayanaswami V, Kalantar-Zadeh K, Moradi H. Association of Serum Paraoxonase/Arylesterase Activity With All-Cause Mortality in Maintenance Hemodialysis Patients. J Clin Endocrinol Metab 2019; 104:4848-4856. [PMID: 30920627 PMCID: PMC6733492 DOI: 10.1210/jc.2019-00334] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 03/22/2019] [Indexed: 12/25/2022]
Abstract
CONTEXT In end-stage renal disease (ESRD), serum high-density lipoprotein cholesterol (HDL-C) level is not an accurate predictor of mortality, partly because it does not necessarily correlate with indices of HDL function. Paraoxonase (PON) is a major enzyme constituent of HDL and a key component of HDL antioxidant activity. Apolipoprotein A-I (Apo A-1) is the core HDL structural protein that plays a major role in various aspects of HDL function. OBJECTIVE We sought to examine PON activity and Apo A-I levels in patients with ESRD vs healthy controls. DESIGN AND SETTING PON/arylesterase activity was measured in 499 patients with maintenance hemodialysis (MHD) and 24 healthy controls with similar distributions of age, sex, and race/ethnicity. Serum acrolein-modified Apo A-I was measured in 30 patients with MHD and 10 healthy controls. MAIN OUTCOME MEASURES Multilevel Cox models were used to assess associations among PON activity, Apo A-I, and HDL-C levels with 12-month all-cause mortality. RESULTS PON activity was significantly lower in patients with MHD vs controls. Furthermore, acrolein-modified Apo A-I levels were higher in patients with MHD vs controls. In fully adjusted models, high PON activity was associated with lower 12-month mortality, whereas no difference of mortality risk was observed across HDL-C levels. The combination of high PON and low Apo A-I compared with low PON and low Apo A-I was associated with lower mortality risk. CONCLUSIONS In patients with MHD, PON activity had a stronger association with 12-month mortality than HDL-C. Future studies are needed to examine the role of these markers as potential diagnostic and therapeutic tools in ESRD.
Collapse
Affiliation(s)
- Yasunori Suematsu
- Division of Nephrology and Hypertension, Department of Medicine, University of California, Irvine, California
- Nephrology Section, Tibor Rubin VA Medical Center, Long Beach, California
| | - Masaki Goto
- Division of Nephrology and Hypertension, Department of Medicine, University of California, Irvine, California
- Nephrology Section, Tibor Rubin VA Medical Center, Long Beach, California
| | - Christina Park
- Division of Nephrology and Hypertension, Department of Medicine, University of California, Irvine, California
- Nephrology Section, Tibor Rubin VA Medical Center, Long Beach, California
| | - Ane C F Nunes
- Division of Nephrology and Hypertension, Department of Medicine, University of California, Irvine, California
| | - WangHui Jing
- Division of Nephrology and Hypertension, Department of Medicine, University of California, Irvine, California
| | - Elani Streja
- Division of Nephrology and Hypertension, Department of Medicine, University of California, Irvine, California
- Nephrology Section, Tibor Rubin VA Medical Center, Long Beach, California
| | - Connie M Rhee
- Division of Nephrology and Hypertension, Department of Medicine, University of California, Irvine, California
| | - Siobanth Cruz
- Department of Chemistry & Biochemistry, California State University Long Beach, Long Beach, California
| | - Moti L Kashyap
- Atherosclerosis Research Center, Department of Veterans Affairs Healthcare System, Long Beach, California
- University of California, Irvine, California
| | - Nosratola D Vaziri
- Division of Nephrology and Hypertension, Department of Medicine, University of California, Irvine, California
| | - Vasanthy Narayanaswami
- Department of Chemistry & Biochemistry, California State University Long Beach, Long Beach, California
| | - Kamyar Kalantar-Zadeh
- Division of Nephrology and Hypertension, Department of Medicine, University of California, Irvine, California
- Nephrology Section, Tibor Rubin VA Medical Center, Long Beach, California
| | - Hamid Moradi
- Division of Nephrology and Hypertension, Department of Medicine, University of California, Irvine, California
- Nephrology Section, Tibor Rubin VA Medical Center, Long Beach, California
- Correspondence and Reprint Requests: Hamid Moradi, MD, Department of Medicine, Nephrology Section, Long Beach VA Healthcare System, 5901 East 7th Street, Long Beach, California 90822. E-mail:
| |
Collapse
|
21
|
Cruz S, Narayanaswami V. Cellular Uptake and Clearance of Oxidatively-modified Apolipoprotein E3 by Cerebral Cortex Endothelial Cells. Int J Mol Sci 2019; 20:ijms20184582. [PMID: 31533203 PMCID: PMC6769588 DOI: 10.3390/ijms20184582] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/05/2019] [Accepted: 09/07/2019] [Indexed: 12/12/2022] Open
Abstract
Apolipoprotein E3 (apoE3) plays a critical role in the metabolism of lipoproteins and lowers plasma lipid levels by serving as a ligand for the low-density lipoprotein receptor (LDLr) family of proteins and by promoting macrophage cholesterol efflux. The current study examines the effect of acrolein (an endogenously generated metabolite and an environmental pollutant) modification on the structure and function of apoE3. Acrolein modification was confirmed in Western blots by reactivity with acrolein–lysine-specific antibody and by the presence of oligomeric species due to cross-linking. LC-MS/MS analysis revealed modification of 10 out of 12 lysines in apoE3, with Nε-(3-methylpyridinium)-lysine being the predominant form of modification, and Lys75 being a ‘hot spot’ in terms of susceptibility to oxidation. Circular dichroism spectroscopy showed no major change in overall secondary structure compared to unmodified apoE3. Reconstituted high density lipoprotein (HDL) bearing acrolein modified apoE3 showed loss of binding to soluble LDLr; however, incubation with mouse endothelioma bEnd.3 cells showed that it was internalized. Incubation with excess LDL did not abolish cellular uptake of acrolein modified apoE3, suggesting alternative mechanism(s) not involving LDLr. Incubation with anti-CD36 antibody did not show a decrease in internalization while incubation with anti- lectin-like oxidized LDL receptor 1 (LOX1) showed partial internalization. However, incubation with anti-scavenger receptor class B type I (SRB1) antibody abolished internalization of acrolein modified apoE3. Taken together, our studies suggest that acrolein modification of apoE3 at lysine residues leads to increase in net negative charge, and as a consequence, results in clearance by LOX1 and SRB1 on endothelial cells. Overall, oxidative modification of apoE3 likely impairs its role in regulating plasma cholesterol homeostasis, eventually leading to lipid disorders.
Collapse
Affiliation(s)
- Siobanth Cruz
- Department of Chemistry and Biochemistry 1250 Bellflower Blvd., California State University Long Beach, Long Beach, CA 90840, USA.
| | - Vasanthy Narayanaswami
- Department of Chemistry and Biochemistry 1250 Bellflower Blvd., California State University Long Beach, Long Beach, CA 90840, USA.
| |
Collapse
|
22
|
Schill RL, Knaack DA, Powers HR, Chen Y, Yang M, Schill DJ, Silverstein RL, Sahoo D. Modification of HDL by reactive aldehydes alters select cardioprotective functions of HDL in macrophages. FEBS J 2019; 287:695-707. [PMID: 31386799 DOI: 10.1111/febs.15034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/23/2019] [Accepted: 08/02/2019] [Indexed: 01/02/2023]
Abstract
While increased levels of high-density lipoprotein (HDL)-cholesterol correlate with protection against cardiovascular disease, recent findings demonstrate that HDL function, rather than HDL-cholesterol levels, may be a better indicator of cardiovascular risk. One mechanism by which HDL function can be compromised is through modification by reactive aldehydes such as acrolein (Acro), 4-hydroxynonenal, and malondialdehyde (MDA). In this study, we tested the hypothesis that modification of HDL with reactive aldehydes would impair HDL's athero-protective functions in macrophages. Compared to native HDL, Acro- and MDA-modified HDL have impaired abilities to promote migration of primary peritoneal macrophages isolated from C57BL6/J mice. Incubation of macrophages with MDA-HDL also led to an increased ability to generate reactive oxygen species. Our studies revealed that the changes in HDL function following aldehyde modification are likely not through activation of canonical nuclear factor-kappa B signaling pathways. Consistent with this finding, treatment of either noncholesterol-loaded macrophages or foam cells with modified forms of HDL does not lead to significant changes in expression levels of inflammatory markers. Importantly, our data also demonstrate that changes in HDL function are dependent on the type of modification present on the HDL particle. Our findings suggest that modification of HDL with reactive aldehydes can impair some, but not all, of HDL's athero-protective functions in macrophages.
Collapse
Affiliation(s)
- Rebecca L Schill
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Darcy A Knaack
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Hayley R Powers
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Yiliang Chen
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI, USA
| | - Moua Yang
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI, USA.,Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Daniel J Schill
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Roy L Silverstein
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI, USA.,Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA.,Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Daisy Sahoo
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA.,Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
23
|
Zirak MR, Mehri S, Karimani A, Zeinali M, Hayes AW, Karimi G. Mechanisms behind the atherothrombotic effects of acrolein, a review. Food Chem Toxicol 2019; 129:38-53. [DOI: 10.1016/j.fct.2019.04.034] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 03/18/2019] [Accepted: 04/18/2019] [Indexed: 12/31/2022]
|
24
|
Badea M, Gaman L, Delia C, Ilea A, Leașu F, Henríquez-Hernández LA, Luzardo OP, Rădoi M, Rogozea L. Trends of Lipophilic, Antioxidant and Hematological Parameters Associated with Conventional and Electronic Smoking Habits in Middle-Age Romanians. J Clin Med 2019; 8:E665. [PMID: 31083602 PMCID: PMC6571835 DOI: 10.3390/jcm8050665] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/01/2019] [Accepted: 05/09/2019] [Indexed: 01/15/2023] Open
Abstract
It is known that cigarette smoking is correlated with medical associated inquires. New electronic cigarettes are intensively advertised as an alternative to conventional smoking, but only a few studies demonstrate their harmful potential. A cross-sectional study was designed using 150 subjects from Brasov (Romania), divided into three groups: non-smokers (NS = 58), conventional cigarettes smokers (CS = 58) and electronic cigarettes users (ECS = 34). The aim of this study was to determine levels of some plasma lipophilic and hematological components, and the total antioxidant status that could be associated with the smoking status of the subjects. Serum low density lipoproteins (LDL) cholesterol increased significantly for ECS participants versus NS group (18.9% difference) (p < 0.05). Also, the CS group is characterized by an increase of serum LDL cholesterol (7.9% difference vs. NS), but with no significant statistical difference. The variation of median values of serum very low density lipoproteins (VLDL) was in order NS < ECS < CS, with statistical difference between NS and CS groups (34.6% difference; p = 0.023). When comparing the antioxidant status of the three groups, significant differences (p < 0.05) were obtained between NS vs. CS and NS vs. ECS. Similar behavior was identified for CS and ECS. Statistically significant changes (p < 0.0001) for both vitamin A and vitamin E were identified in the blood of NS vs. CS and NS vs. ECS, and also when comparing vitamin A in the blood of the CS group versus the ECS group (p < 0.05). When all groups were compared, the difference in the white blood cell (WBC) was (p = 0.008). A slight increase in the red blood cell (RBC) count was observed, but with no statistical difference between groups. These results indicated that conventional cigarette and e-cigarette usage promotes the production of excess reactive oxygen species, involving different pathways, different antioxidants and bioactive molecules.
Collapse
Affiliation(s)
- Mihaela Badea
- Faculty of Medicine, Transilvania University of Brasov, Brasov 500019, Romania.
| | - Laura Gaman
- "Carol Davila" University of Medicine and Pharmacy, Bucharest 050474, Romania.
| | - Corina Delia
- National Institute for Mother and Child Health "Alessandrescu-Rusescu", Bucharest 20395, Romania.
| | - Anca Ilea
- Faculty of Medicine, Transilvania University of Brasov, Brasov 500019, Romania.
| | - Florin Leașu
- Faculty of Medicine, Transilvania University of Brasov, Brasov 500019, Romania.
| | - Luis Alberto Henríquez-Hernández
- Toxicology Unit, Clinical Sciences Department, Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe, s/n, 35019 Las Palmas de Gran Canaria, Spain.
| | - Octavio P Luzardo
- Toxicology Unit, Clinical Sciences Department, Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe, s/n, 35019 Las Palmas de Gran Canaria, Spain.
| | - Mariana Rădoi
- Faculty of Medicine, Transilvania University of Brasov, Brasov 500019, Romania.
| | - Liliana Rogozea
- Faculty of Medicine, Transilvania University of Brasov, Brasov 500019, Romania.
| |
Collapse
|
25
|
Jansson P, Kay B. Aldehydes identified in commercially available ω-3 supplements via 1 H NMR spectroscopy. Nutrition 2018; 60:74-79. [PMID: 30529885 DOI: 10.1016/j.nut.2018.10.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/13/2018] [Accepted: 10/07/2018] [Indexed: 11/17/2022]
Abstract
OBJECTIVES Cardiovascular disease (CVD) is the leading cause of mortality globally. Studies have suggested that supplementary ω-3 oils may provide cardiovascular protection, although the literature is equivocal. Recently, it has been established that many commercially available ω-3 supplements are unacceptably oxidized, leading to myriad potential health risks. One oxidation product of concern is aldehydes, which have been shown to have mutagenic, cytotoxic, and inflammatory properties that may contribute to many different disease processes, including CVD. The aim of this study was to assess the prevalence of aldehyde contamination in commercially available ω-3 supplements. METHODS We tested 12 different ω-3 oils (6 fish, 4 krill, 2 algae), using 1 H-nuclear magnetic resonance scanning. This work is of a pilot nature, as such we randomly selected and purchased 12 different oils over the counter from various local retailers according to the sales representatives' recommendations. RESULTS The four krill products contained aldehydes at concentrations between 5.652 (±0.496) and 6.779 (±1.817) mMol/L. Both algae samples contained aldehydes: 1.235 (±0.111) and 1.565 (±0.618) mMol/L. Two of the six fish oils contained aldehydes 1.568 (±0.291) and 4.319 (±2.361) mMol/L. There is currently no standard for aldehyde content nor for labeling of ω-3 supplements. Two-thirds (8 of 12) of the ω-3 supplements tested in this study contained aldehydes. Aldehydes have the potential to precipitate serious health problems even at very low absolute intake volumes. These findings may provide reason for sober reflection.
Collapse
Affiliation(s)
- Pim Jansson
- Independent nutritionist and biomedical scientist, Mapua, New Zealand
| | - Bartholomew Kay
- Independent physiologist and nutritionist, Mapua, New Zealand.
| |
Collapse
|
26
|
Iqubal A, Iqubal MK, Sharma S, Ansari MA, Najmi AK, Ali SM, Ali J, Haque SE. Molecular mechanism involved in cyclophosphamide-induced cardiotoxicity: Old drug with a new vision. Life Sci 2018; 218:112-131. [PMID: 30552952 DOI: 10.1016/j.lfs.2018.12.018] [Citation(s) in RCA: 171] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 11/08/2018] [Accepted: 12/10/2018] [Indexed: 12/20/2022]
Abstract
Cyclophosphamide (CP) is an important anticancer drug which belongs to the class of alkylating agent. Cyclophosphamide is mostly used in bone marrow transplantation, rheumatoid arthritis, lupus erythematosus, multiple sclerosis, neuroblastoma and other types of cancer. Dose-related cardiotoxicity is a limiting factor for its use. CP-induced cardiotoxicity ranges from 7 to 28% and mortality ranges from 11 to 43% at the therapeutic dose of 170-180 mg/kg, i.v. CP undergoes hepatic metabolism that results in the production of aldophosphamide. Aldophosphamide decomposes into phosphoramide mustard & acrolein. Phosphoramide is an active neoplastic agent, and acrolein is a toxic metabolite which acts on the myocardium and endothelial cells. This is the first review article that talks about cyclophosphamide-induced cardiotoxicity and the different signaling pathways involved in its pathogenicity. Based on the available literature, CP is accountable for cardiomyocytes energy pool alteration by affecting the heart fatty acid binding proteins (H-FABP). CP has been found associated with cardiomyocytes apoptosis, inflammation, endothelial dysfunction, calcium dysregulation, endoplasmic reticulum damage, and mitochondrial damage. Molecular mechanism of cardiotoxicity has been discussed in detail through crosstalk of Nrf2/ARE, Akt/GSK-3β/NFAT/calcineurin, p53/p38MAPK, NF-kB/TLR-4, and Phospholamban/SERCA-2a signaling pathway. Based on the available literature we support the fact that metabolites of CP are responsible for cardiotoxicity due to depletion of antioxidants/ATP level, altered contractility, damaged endothelium and enhanced pro-inflammatory/pro-apoptotic activities resulting into cardiomyopathy, myocardial infarction, and heart failure. Dose adjustment, elimination/excretion of acrolein and maintenance of endogenous antioxidant pool could be the therapeutic approach to mitigate the toxicities.
Collapse
Affiliation(s)
- Ashif Iqubal
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Mohammad Kashif Iqubal
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Sumit Sharma
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Mohd Asif Ansari
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Abul Kalam Najmi
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Syed Mansoor Ali
- Department of Biosciences, Jamia Millia Islamia,110025 New Delhi, India
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Syed Ehtaishamul Haque
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
27
|
Afonso CB, Spickett CM. Lipoproteins as targets and markers of lipoxidation. Redox Biol 2018; 23:101066. [PMID: 30579928 PMCID: PMC6859580 DOI: 10.1016/j.redox.2018.101066] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 11/28/2018] [Accepted: 12/05/2018] [Indexed: 12/24/2022] Open
Abstract
Lipoproteins are essential systemic lipid transport particles, composed of apolipoproteins embedded in a phospholipid and cholesterol monolayer surrounding a cargo of diverse lipid species. Many of the lipids present are susceptible to oxidative damage by lipid peroxidation, giving rise to the formation of reactive lipid peroxidation products (rLPPs). In view of the close proximity of the protein and lipid moieties within lipoproteins, the probability of adduct formation between rLPPs and amino acid residues of the proteins, a process called lipoxidation, is high. There has been interest for many years in the biological effects of such modifications, but the field has been limited to some extent by the availability of methods to determine the sites and exact nature of such modification. More recently, the availability of a wide range of antibodies to lipoxidation products, as well as advances in analytical techniques such as liquid chromatography tandem mass spectrometry (LC-MSMS), have increased our knowledge substantially. While most work has focused on LDL, oxidation of which has long been associated with pro-inflammatory responses and atherosclerosis, some studies on HDL, VLDL and Lipoprotein(a) have also been reported. As the broader topic of LDL oxidation has been reviewed previously, this review focuses on lipoxidative modifications of lipoproteins, from the historical background through to recent advances in the field. We consider the main methods of analysis for detecting rLPP adducts on apolipoproteins, including their advantages and disadvantages, as well as the biological effects of lipoxidized lipoproteins and their potential roles in diseases. Lipoproteins can be modified by reactive Lipid Peroxidation Products (rLPPs). Lipoprotein lipoxidation is known to occur in several inflammatory diseases. Biochemical, immunochemical and mass spectrometry methods can detect rLPP adducts. Due to higher information output, MS can facilitate localization of modifications. Antibodies against some rLPPs have been used to identify lipoxidation in vivo.
Collapse
Affiliation(s)
- Catarina B Afonso
- School of Life and Health Sciences, Aston University, Aston Triangle, Aston University, Birmingham B4 7ET, UK
| | - Corinne M Spickett
- School of Life and Health Sciences, Aston University, Aston Triangle, Aston University, Birmingham B4 7ET, UK.
| |
Collapse
|
28
|
Wu X, Li C, Mariyam Z, Jiang P, Zhou M, Zeb F, Haq IU, Chen A, Feng Q. Acrolein-induced atherogenesis by stimulation of hepatic flavin containing monooxygenase 3 and a protection from hydroxytyrosol. J Cell Physiol 2018; 234:475-485. [PMID: 29953618 DOI: 10.1002/jcp.26600] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 03/15/2018] [Indexed: 12/24/2022]
Abstract
Acrolein, a highly toxic α, β-unsaturated aldehyde, promotes the progression of atherosclerosis in association with inflammatory signaling pathway and reverse cholesterol transport (RCT) process. Additionally, hepatic flavin containing monooxygenase 3 (FMO3) is involved in the pathogenesis of atherosclerosis by regulating cholesterol metabolism. Hydroxytyrosol (HT), as a major phenolic compound in olive oil, exerts anti-inflammatory and anti-atherogenic activities in vitro and animal models. The current study was designed to evaluate whether FMO3 participated in pro-atherogenic process by acrolein and HT showed protective effect during this process. Here, endothelial cells and macrophage Raw264.7 cells were used as the cell models. Following oxidized low-density lipoprotein (OX-LDL) treatment, acrolein exposure promoted foam cells formation in macrophage Raw264.7 cells. The expression of FMO3 and inflammatory makers such as phospho-NF-κB, IL-1β, TNFα as well as IL-6 were significantly increased. However, ATP-binding cassette transporters subfamily A member 1 (ABCA1), a major transporter in RCT process, was repressed by acrolein. In addition, FMO3 knockdown could suppress inflammatory markers and promote ABCA1 expression. Hydroxytyrosol (HT) was observed to reduce lipid accumulation, FMO3 expression as well as inflammatory response. Moreover, it promoted ABCA1 expression. Therefore, our findings indicated that acrolein-enhanced atherogenesis by increasing FMO3 which increased inflammatory responses and decreased ABCA1 in vitro can be alleviated by HT, which may have a therapeutic potential for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Xiaoyue Wu
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Chaofeng Li
- Department of Cardiology, The Second Affiliated Hospital of Southeast University, Nanjing, China
| | - Zahula Mariyam
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Pan Jiang
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Ming Zhou
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Falak Zeb
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Ijaz Ul Haq
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Aochang Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Qing Feng
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
29
|
Abstract
Acrolein is a highly reactive unsaturated aldehyde that is formed during the burning of gasoline and diesel fuels, cigarettes, woods and plastics. In addition, acrolein is generated during the cooking or frying of food with fats or oils. Acrolein is also used in the synthesis of many organic chemicals and as a biocide in agricultural and industrial water supply systems. The total emissions of acrolein in the United States from all sources are estimated to be 62,660 tons/year. Acrolein is classified by the Environmental Protection Agency as a high-priority air and water toxicant. Acrolein can exert toxic effects following inhalation, ingestion, and dermal exposures that are dose dependent. Cardiovascular tissues are particularly sensitive to the toxic effects of acrolein based primarily on in vitro and in vivo studies. Acrolein can generate free oxygen radical stress in the heart, decrease endothelial nitric oxide synthase phosphorylation and nitric oxide formation, form cytoplasmic and nuclear protein adducts with myocyte and vascular endothelial cell proteins and cause vasospasm. In this manner, chronic exposure to acrolein can cause myocyte dysfunction, myocyte necrosis and apoptosis and ultimately lead to cardiomyopathy and cardiac failure. Epidemiological studies of acrolein exposure and toxicity should be developed and treatment strategies devised that prevent or significantly limit acrolein cardiovascular toxicity.
Collapse
|
30
|
Radiolabeled cholesteryl ethers: A need to analyze for biological stability before use. Biochem Biophys Rep 2017; 13:1-6. [PMID: 29188234 PMCID: PMC5697731 DOI: 10.1016/j.bbrep.2017.10.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 10/23/2017] [Indexed: 11/22/2022] Open
Abstract
Radiolabeled cholesteryl ethers are widely used as non-metabolizable tracers for lipoproteins and lipid emulsions in a variety of in vitro and in vivo experiments. Since cholesteryl ethers do not leave cells after uptake and are not hydrolyzed by mammalian cellular enzymes, these compounds can act as markers for cumulative cell uptakes of labeled particles. We have employed [3H]cholesteryl oleoyl ether to study the uptake and distribution of triglyceride-rich emulsion particles on animal models. However, questionable unexpected results compelled us to analyze the stability of these ethers. We tested the stability of two commercially available radiolabeled cholesteryl ethers - [3H]cholesteryl oleoyl ether and [3H]cholesteryl hexadecyl ether from different suppliers, employing in vitro, in vivo and chemical model systems. Our results show that, among the two cholesteryl ethers tested, one ether was hydrolyzed to free cholesterol in vitro, in vivo and chemically under alkaline hydrolyzing agent. Free cholesterol, unlike cholesteryl ether, can then re-enter the circulation leading to confounding results. The other ether was not hydrolyzed to free cholesterol and remained as a stable ether. Hence, radiolabeled cholesteryl ethers should be analyzed for biological stability before utilizing them for in vitro or in vivo experiments. Tested stability of two commercially available radiolabeled cholesteryl ethers. One ether was hydrolyzed to free cholesterol (FC) in vitro and in vivo. FC, re-entered circulation giving questionable unexpected results in experiments. The other ether was unhydrolyzed in all model systems. Radiolabeled cholesteryl ethers should be analyzed for stability before use.
Collapse
|
31
|
Boyce G, Button E, Soo S, Wellington C. The pleiotropic vasoprotective functions of high density lipoproteins (HDL). J Biomed Res 2017; 32:164. [PMID: 28550271 PMCID: PMC6265396 DOI: 10.7555/jbr.31.20160103] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 12/23/2016] [Indexed: 12/19/2022] Open
Abstract
The pleiotropic functions of circulating high density lipoprotein (HDL) on peripheral vascular health are well established. HDL plays a pivotal role in reverse cholesterol transport and is also known to suppress inflammation, endothelial activation and apoptosis in peripheral vessels. Although not expressed in the central nervous system, HDL has nevertheless emerged as a potential resilience factor for dementia in multiple epidemiological studies. Animal model data specifically support a role for HDL in attenuating the accumulation of β-amyloid within cerebral vessels concomitant with reduced neuroinflammation and improved cognitive performance. As the vascular contributions to dementia are increasingly appreciated, this review seeks to summarize recent literature focused on the vasoprotective properties of HDL that may extend to cerebral vessels, discuss potential roles of HDL in dementia relative to brain-derived lipoproteins, identify gaps in current knowledge, and highlight new opportunities for research and discovery.
Collapse
Affiliation(s)
- Guilaine Boyce
- Department of Pathology and Laboratory Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Emily Button
- Department of Pathology and Laboratory Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Sonja Soo
- Department of Pathology and Laboratory Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Cheryl Wellington
- Department of Pathology and Laboratory Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
32
|
Yang Y, Zhang Z, Zhang H, Hong K, Tang W, Zhao L, Lin H, Liu D, Mao J, Wu H, Jiang H. Effects of maternal acrolein exposure during pregnancy on testicular testosterone production in fetal rats. Mol Med Rep 2017; 16:491-498. [PMID: 28560422 PMCID: PMC5482093 DOI: 10.3892/mmr.2017.6624] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 11/29/2016] [Indexed: 12/31/2022] Open
Abstract
Acrolein has been reported to have diverse toxic effects on various organs, including the reproductive system. However, little is known regarding the effects of maternal acrolein exposure on testicular steroidogenesis in male offspring. The present study investigated the effects of acrolein on fetal testosterone production and associated genes. Pregnant Sprague-Dawley rats were intraperitoneally injected with vehicle (normal saline) or 1, 2 or 5 mg/kg acrolein from gestational day (GD) 14–20, and fetal testes were examined on GD 21. Fetal body and testicular weights were markedly reduced in pups following exposure to high doses of acrolein (5 mg/kg) in late pregnancy. Notably, in utero exposure of 5 mg/kg acrolein significantly decreased the testicular testosterone level and downregulated the expression levels of steroidogenic acute regulatory protein (StAR) and 3β-hydroxysteroid dehydrogenase (3β-HSD), whereas the levels of other steroidogenic enzymes, including scavenger receptor class B, cholesterol side-chain cleavage enzyme and steroid 17 alpha-hydroxylase/17,20 lyase, were unaffected. Furthermore, the 3β-HSD immunoreactive area in the interstitial region of the fetal testes was reduced at a 5 mg/kg dose, whereas the protein expression levels of 4-hydroxynonenalwere dose-dependently increased following maternal exposure to acrolein. mRNA expression levels of insulin-like factor 3, a critical gene involved in testicular descent, were unaltered following maternal acrolein exposure. Taken together, the results of the present study suggested that maternal exposure to high doses of acrolein inhibited fetal testosterone synthesis, and abnormal expression of StAR and 3β-HSD may be associated with impairment of the steroidogenic capacity.
Collapse
Affiliation(s)
- Yuzhuo Yang
- Department of Urology, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Zhe Zhang
- Department of Urology, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Hongliang Zhang
- Reproductive Medicine Center, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Kai Hong
- Department of Urology, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Wenhao Tang
- Department of Urology, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Lianming Zhao
- Department of Urology, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Haocheng Lin
- Department of Urology, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Defeng Liu
- Reproductive Medicine Center, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Jiaming Mao
- Reproductive Medicine Center, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Han Wu
- Department of Urology, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Hui Jiang
- Department of Urology, Peking University Third Hospital, Beijing 100191, P.R. China
| |
Collapse
|
33
|
Honda H, Hirano T, Ueda M, Kojima S, Mashiba S, Hayase Y, Michihata T, Shishido K, Takahashi K, Hosaka N, Ikeda M, Sanada D, Shibata T. Associations among apolipoproteins, oxidized high-density lipoprotein and cardiovascular events in patients on hemodialysis. PLoS One 2017; 12:e0177980. [PMID: 28542510 PMCID: PMC5436869 DOI: 10.1371/journal.pone.0177980] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Accepted: 05/05/2017] [Indexed: 11/18/2022] Open
Abstract
Apolipoproteins are associated with survival among patients on hemodialysis (HD), but these associations might be influenced by dysfunctional (oxidized) high-density lipoprotein (HDL). We assessed associations among apolipoproteins and oxidized HDL, mortality and cardiovascular disease (CVD) events in patients on HD. This prospective observational study examined 412 patients on prevalent HD. Blood samples were obtained before dialysis at baseline to measure lipids, apolipoproteins, oxidized LDL, oxidized HDL, high-sensitivity C-reactive protein (hs-CRP) and interleukin (IL)-6 at baseline, and HDL-C and hs-CRP were measured 12 months later. Patients were then prospectively followed-up (mean, 40 months) and all-cause mortality and composite CVD events were analyzed. Associations between variables at baseline and clinical outcome were assessed by Cox proportional hazards modeling (n = 412) and Cox hazards modeling with a time-varying covariate with HDL-C and hs-CRP (n = 369). Quartiles of apolipoproteins and oxidized HDL were not associated with all-cause mortality. However, Cox proportional hazards models with quartiles of each variable adjusted for confounders and hs-CRP or IL-6 identified apolipoprotein (apo)B-to-apoA-I ratio (apoB/apoA-I) and oxidized HDL, but not apoA-I or apoA-II, as independent risk factors for composite CVD events. These associations were confirmed by Cox proportional hazards modeling with time-varying covariates for hs-CRP. ApoB/apoA-I was independently associated with composite CVD events in 1-standard deviation (SD) increase-of-variables models adjusted for the confounders, oxidized HDL and hs-CRP. However, these associations disappeared from the model adjusted with IL-6 instead of hs-CRP, and oxidized HDL and IL-6 were independently associated with composite CVD events. Findings resembled those from Cox proportional hazards modeling using time-varying covariates with HDL-C adjusted with IL-6. In conclusion, both oxidized HDL and apoB/apoA-I might be associated with CVD events in patients on prevalent HD, while associations of apoB/apoA-I with CVD events differed between models of apoB/apoA-I quartiles and 1-SD increases, and were influenced by IL-6.
Collapse
Affiliation(s)
- Hirokazu Honda
- Division of Nephrology, Department of Medicine, Showa University Koto Toyosu Hospital, Tokyo, Japan
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
- * E-mail:
| | - Tsutomu Hirano
- Division of Diabetes, Metabolism, and Endocrinology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | - Kanji Shishido
- Department of Dialysis, Kawasaki Clinic, Kawasaki, Japan
| | - Keiko Takahashi
- Division of Dialysis, Kitami Higashiyama Clinic, Tokyo, Japan
| | - Nozomu Hosaka
- Division of Nephrology, Department of Medicine, Showa University Koto Toyosu Hospital, Tokyo, Japan
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Misa Ikeda
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Daisuke Sanada
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Takanori Shibata
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| |
Collapse
|
34
|
Acrolein increases macrophage atherogenicity in association with gut microbiota remodeling in atherosclerotic mice: protective role for the polyphenol-rich pomegranate juice. Arch Toxicol 2016; 91:1709-1725. [PMID: 27696135 DOI: 10.1007/s00204-016-1859-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 09/22/2016] [Indexed: 01/13/2023]
Abstract
The unsaturated aldehyde acrolein is pro-atherogenic, and the polyphenol-rich pomegranate juice (PJ), known for its anti-oxidative/anti-atherogenic properties, inhibits macrophage foam cell formation, the hallmark feature of early atherosclerosis. This study aimed to investigate two unexplored areas of acrolein atherogenicity: macrophage lipid metabolism and the gut microbiota composition. The protective effects of PJ against acrolein atherogenicity were also evaluated. Atherosclerotic apolipoprotein E-deficient (apoE-/-) mice that were fed acrolein (3 mg/kg/day) for 1 month showed significant increases in serum and aortic cholesterol, triglycerides, and lipid peroxides. In peritoneal macrophages isolated from the mice and in J774A.1 cultured macrophages, acrolein exposure increased intracellular oxidative stress and stimulated cholesterol and triglyceride accumulation via enhanced rates of their biosynthesis and over-expression of key regulators of cellular lipid biosynthesis: sterol regulatory element-binding proteins (SREBPs), 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMGCR), and diacylglycerol acyltransferase1 (DGAT1). Acrolein-fed mice demonstrated a major shift in the gut microbiota composition, including a significant phylum-level change in increased Firmicutes and decreased Bacteroidetes. At the family level, acrolein significantly increased the prevalence of Ruminococcaceae and Lachnospiraceae of which the Coprococcus genus was significantly and positively correlated with serum, aortic and macrophage lipid levels and peroxidation. The pro-atherogenic effects of acrolein on serum, aortas, macrophages, and the gut microbiota were substantially abolished by PJ. In conclusion, these findings provide novel mechanisms by which acrolein increases macrophage lipid accumulation and alters the gut microbiota composition in association with enhanced atherogenesis. Moreover, PJ was found as an effective strategy against acrolein atherogenicity.
Collapse
|