1
|
Yang B, Yang L, Kang L, You L, Chen H, Xiao H, Qian L, Rao Y, Liu Z. Integrated analysis of BSA-seq and RNA-seq identified the candidate genes for seed weight in Brassica juncea. FRONTIERS IN PLANT SCIENCE 2024; 15:1458294. [PMID: 39698460 PMCID: PMC11654836 DOI: 10.3389/fpls.2024.1458294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 11/13/2024] [Indexed: 12/20/2024]
Abstract
Introduction Brassica juncea is a major oilseed crop of Brassica. The seed weight is one of yield components in oilseed Brassica crops. Research on the genetic mechanism of seed weight is not only directly related to the yield and economic value of Brassica juncea but also can provide a theory foundation for studying other Brassica crops. Methods To map the genes for seed weight, the parental and F2 extreme bulks derived were constructed from the cross between the heavy-seeded accession 7981 and the light-seeded one Sichuan yellow (SY) of B. juncea, and used in bulk segregant sequencing (BSA-seq). Meanwhile, RNA-sequencing (RNA-seq) was performed for both parents at six seed development stages. Results Our results showed that a total of thirty five SNPs were identified in thirty two genes located on chromosomes A02 and A10, while fifty eight InDels in fifty one genes located on A01, A03, A05, A07, A09, A10, B01, B02 and B04. The 7,679 differentially expressed genes were identified in developing seeds between the parents. Furthermore, integrated analysis of BSA-seq and RNA-seq data revealed a cluster of nine genes on chromosome A10 and one gene on chromosome A05 that are putative candidate genes controlling seed weight in B. juncea. Discussion This study provides a new reference for research on Brassica seed weight and lays a solid foundation for the examination of seed in other Brassica crops.
Collapse
Affiliation(s)
- Bin Yang
- College of Agriculture, Hunan Agricultural University, Changsha, China
- Guizhou Institute of Oil Crops, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Liu Yang
- College of Agriculture, Hunan Agricultural University, Changsha, China
| | - Lei Kang
- College of Agriculture, Hunan Agricultural University, Changsha, China
| | - Liang You
- Hunan University of Humanities, Science and Technology, College of Agriculture and Biotechnology, Loudi, China
| | - Hao Chen
- College of Agriculture, Hunan Agricultural University, Changsha, China
| | - Huagui Xiao
- Guizhou Institute of Oil Crops, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Lunwen Qian
- College of Agriculture, Hunan Agricultural University, Changsha, China
| | - Yong Rao
- Guizhou Institute of Oil Crops, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Zhongsong Liu
- College of Agriculture, Hunan Agricultural University, Changsha, China
| |
Collapse
|
2
|
Osuna-Caballero S, Cobos MJ, Ruiz CM, Wohor OZ, Rispail N, Rubiales D. Genome-Wide Association Studies on Resistance to Pea Weevil: Identification of Novel Sources of Resistance and Associated Markers. Int J Mol Sci 2024; 25:7920. [PMID: 39063162 PMCID: PMC11276686 DOI: 10.3390/ijms25147920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Little resistance to the pea weevil insect pest (Bruchus pisorum) is available in pea (Pisum sativum) cultivars, highlighting the need to search for sources of resistance in Pisum germplasm and to decipher the genetic basis of resistance. To address this need, we screened the response to pea weevil in a Pisum germplasm collection (324 accession, previously genotyped) under field conditions over four environments. Significant variation for weevil seed infestation (SI) was identified, with resistance being frequent in P. fulvum, followed by P. sativum ssp. elatius, P. abyssinicum, and P. sativum ssp. humile. SI tended to be higher in accessions with lighter seed color. SI was also affected by environmental factors, being favored by high humidity during flowering and hampered by warm winter temperatures and high evapotranspiration during and after flowering. Merging the phenotypic and genotypic data allowed genome-wide association studies (GWAS) yielding 73 markers significantly associated with SI. Through the GWAS models, 23 candidate genes were found associated with weevil resistance, highlighting the interest of five genes located on chromosome 6. These included gene 127136761 encoding squalene epoxidase; gene 127091639 encoding a transcription factor MYB SRM1; gene 127097033 encoding a 60S ribosomal protein L14; gene 127092211, encoding a BolA-like family protein, which, interestingly, was located within QTL BpLD.I, earlier described as conferring resistance to weevil in pea; and gene 127096593 encoding a methyltransferase. These associated genes offer valuable potential for developing pea varieties resistant to Bruchus spp. and efficient utilization of genomic resources through marker-assisted selection (MAS).
Collapse
Affiliation(s)
- Salvador Osuna-Caballero
- Institute for Sustainable Agriculture, Spanish National Research Council (CSIC), Av. Menéndez Pidal s/n, 14004 Córdoba, Spain
| | | | | | | | | | - Diego Rubiales
- Institute for Sustainable Agriculture, Spanish National Research Council (CSIC), Av. Menéndez Pidal s/n, 14004 Córdoba, Spain
| |
Collapse
|
3
|
da Silva AA, Galego L, Arraiano CM. New Perspectives on BolA: A Still Mysterious Protein Connecting Morphogenesis, Biofilm Production, Virulence, Iron Metabolism, and Stress Survival. Microorganisms 2023; 11:microorganisms11030632. [PMID: 36985206 PMCID: PMC10051749 DOI: 10.3390/microorganisms11030632] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/09/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
The BolA-like protein family is widespread among prokaryotes and eukaryotes. BolA was originally described in E. coli as a gene induced in the stationary phase and in stress conditions. The BolA overexpression makes cells spherical. It was characterized as a transcription factor modulating cellular processes such as cell permeability, biofilm production, motility, and flagella assembly. BolA is important in the switch between motile and sedentary lifestyles having connections with the signaling molecule c-di-GMP. BolA was considered a virulence factor in pathogens such as Salmonella Typhimurium and Klebsiella pneumoniae and it promotes bacterial survival when facing stresses due to host defenses. In E. coli, the BolA homologue IbaG is associated with resistance to acidic stress, and in Vibrio cholerae, IbaG is important for animal cell colonization. Recently, it was demonstrated that BolA is phosphorylated and this modification is important for the stability/turnover of BolA and its activity as a transcription factor. The results indicate that there is a physical interaction between BolA-like proteins and the CGFS-type Grx proteins during the biogenesis of Fe-S clusters, iron trafficking and storage. We also review recent progress regarding the cellular and molecular mechanisms by which BolA/Grx protein complexes are involved in the regulation of iron homeostasis in eukaryotes and prokaryotes.
Collapse
|
4
|
Huang M, Jiang Y, Qin R, Jiang D, Chang D, Tian Z, Li C, Wang C. Full-Length Transcriptional Analysis of the Same Soybean Genotype With Compatible and Incompatible Reactions to Heterodera glycines Reveals Nematode Infection Activating Plant Defense Response. FRONTIERS IN PLANT SCIENCE 2022; 13:866322. [PMID: 35665156 PMCID: PMC9158574 DOI: 10.3389/fpls.2022.866322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/22/2022] [Indexed: 06/04/2023]
Abstract
Full-length transcriptome sequencing with long reads is a powerful tool to analyze transcriptional and post-transcriptional events; however, it has not been applied on soybean (Glycine max). Here, a comparative full-length transcriptome analysis was performed on soybean genotype 09-138 infected with soybean cyst nematode (SCN, Heterodera glycines) race 4 (SCN4, incompatible reaction) and race 5 (SCN5, compatible reaction) using Oxford Nanopore Technology. Each of 9 full-length samples collected 8 days post inoculation with/without nematodes generated an average of 6.1 GB of clean data and a total of 65,038 transcript sequences. After redundant transcripts were removed, 1,117 novel genes and 41,096 novel transcripts were identified. By analyzing the sequence structure of the novel transcripts, a total of 28,759 complete open reading frame (ORF) sequences, 5,337 transcription factors, 288 long non-coding RNAs, and 40,090 novel transcripts with function annotation were predicted. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses of differentially expressed genes (DEGs) revealed that growth hormone, auxin-activated signaling pathway and multidimensional cell growth, and phenylpropanoid biosynthesis pathway were enriched by infection with both nematode races. More DEGs associated with stress response elements, plant-hormone signaling transduction pathway, and plant-pathogen interaction pathway with more upregulation were found in the incompatible reaction with SCN4 infection, and more DEGs with more upregulation involved in cell wall modification and carbohydrate bioprocess were detected in the compatible reaction with SCN5 infection when compared with each other. Among them, overlapping DEGs with a quantitative difference was triggered. The combination of protein-protein interaction with DEGs for the first time indicated that nematode infection activated the interactions between transcription factor WRKY and VQ (valine-glutamine motif) to contribute to soybean defense. The knowledge of the SCN-soybean interaction mechanism as a model will present more understanding of other plant-nematode interactions.
Collapse
Affiliation(s)
- Minghui Huang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Ye Jiang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
- Heilongjiang Academy of Agricultural Sciences, Daqing, China
| | - Ruifeng Qin
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
- Heilongjiang Academy of Agricultural Sciences, Daqing, China
| | - Dan Jiang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
- Heilongjiang Academy of Agricultural Sciences, Daqing, China
| | - Doudou Chang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
- Heilongjiang Academy of Agricultural Sciences, Daqing, China
| | - Zhongyan Tian
- Heilongjiang Academy of Agricultural Sciences, Daqing, China
| | - Chunjie Li
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Congli Wang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| |
Collapse
|
5
|
Kanwar P, Sanyal SK, Mahiwal S, Ravi B, Kaur K, Fernandes JL, Yadav AK, Tokas I, Srivastava AK, Suprasanna P, Pandey GK. CIPK9 targets VDAC3 and modulates oxidative stress responses in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:241-260. [PMID: 34748255 DOI: 10.1111/tpj.15572] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 10/22/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
Calcium (Ca2+ ) is widely recognized as a key second messenger in mediating various plant adaptive responses. Here we show that calcineurin B-like interacting protein kinase CIPK9 along with its interacting partner VDAC3 identified in the present study are involved in mediating plant responses to methyl viologen (MV). CIPK9 physically interacts with and phosphorylates VDAC3. Co-localization, co-immunoprecipitation, and fluorescence resonance energy transfer experiments proved their physical interaction in planta. Both cipk9 and vdac3 mutants exhibited a tolerant phenotype against MV-induced oxidative stress, which coincided with the lower-level accumulation of reactive oxygen species in their roots. In addition, the analysis of cipk9vdac3 double mutant and VDAC3 overexpressing plants revealed that CIPK9 and VDAC3 were involved in the same pathway for inducing MV-dependent oxidative stress. The response to MV was suppressed by the addition of lanthanum chloride, a non-specific Ca2+ channel blocker indicating the role of Ca2+ in this pathway. Our study suggest that CIPK9-VDAC3 module may act as a key component in mediating oxidative stress responses in Arabidopsis.
Collapse
Affiliation(s)
- Poonam Kanwar
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, 110021, India
| | - Sibaji K Sanyal
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, 110021, India
| | - Swati Mahiwal
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, 110021, India
| | - Barkha Ravi
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, 110021, India
| | - Kanwaljeet Kaur
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, 110021, India
| | - Joel L Fernandes
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, 110021, India
| | - Akhilesh K Yadav
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, 110021, India
| | - Indu Tokas
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, 110021, India
| | - Ashish K Srivastava
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
- Homi Bhabha National Institute, Mumbai, 400094, India
| | - Penna Suprasanna
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - Girdhar K Pandey
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, 110021, India
| |
Collapse
|
6
|
Jang S, Cho JY, Do GR, Kang Y, Li HY, Song J, Kim HY, Kim BG, Hsing YI. Modulation of Rice Leaf Angle and Grain Size by Expressing OsBCL1 and OsBCL2 under the Control of OsBUL1 Promoter. Int J Mol Sci 2021; 22:7792. [PMID: 34360554 PMCID: PMC8346013 DOI: 10.3390/ijms22157792] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/18/2021] [Accepted: 07/20/2021] [Indexed: 11/17/2022] Open
Abstract
Leaf angle and grain size are important agronomic traits affecting rice productivity directly and/or indirectly through modulating crop architecture. OsBC1, as a typical bHLH transcription factor, is one of the components comprising a complex formed with LO9-177 and OsBUL1 contributing to modulation of rice leaf inclination and grain size. In the current study, two homologues of OsBC1, OsBCL1 and OsBCL2 were functionally characterized by expressing them under the control of OsBUL1 promoter, which is preferentially expressed in the lamina joint and the spikelet of rice. Increased leaf angle and grain length with elongated cells in the lamina joint and the grain hull were observed in transgenic rice containing much greater gibberellin A3 (GA3) levels than WT, demonstrating that both OsBCL1 and OsBCL2 are positive regulators of cell elongation at least partially through increased GA biosynthesis. Moreover, the cell elongation was likely due to cell expansion rather than cell division based on the related gene expression and, the cell elongation-promoting activities of OsBCL1 and OsBCL2 were functional in a dicot species, Arabidopsis.
Collapse
Affiliation(s)
- Seonghoe Jang
- World Vegetable Center Korea Office (WKO), Wanju-gun, Jeollabuk-do 55365, Korea;
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan 711, Taiwan;
| | - Jwa-Yeong Cho
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung, Gangwon 25451, Korea; (J.-Y.C.); (H.-Y.K.)
| | - Gyung-Ran Do
- Planning and Coordination Division, National Institute of Horticultural and Herbal Science, Rural Development Administration (RDA), Wanju-gun, Jeollabuk-do 55365, Korea;
| | - Yeeun Kang
- World Vegetable Center Korea Office (WKO), Wanju-gun, Jeollabuk-do 55365, Korea;
| | - Hsing-Yi Li
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan 711, Taiwan;
| | - Jaeeun Song
- Metabolic Engineering Division, National Institute of Agricultural Sciences, RDA, Jeonju 54874, Korea; (J.S.); (B.-G.K.)
| | - Ho-Youn Kim
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung, Gangwon 25451, Korea; (J.-Y.C.); (H.-Y.K.)
| | - Beom-Gi Kim
- Metabolic Engineering Division, National Institute of Agricultural Sciences, RDA, Jeonju 54874, Korea; (J.S.); (B.-G.K.)
| | - Yue-Ie Hsing
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan;
| |
Collapse
|
7
|
Riquier S, Mathieu M, Bessiere C, Boureux A, Ruffle F, Lemaitre JM, Djouad F, Gilbert N, Commes T. Long non-coding RNA exploration for mesenchymal stem cell characterisation. BMC Genomics 2021; 22:412. [PMID: 34088266 PMCID: PMC8178833 DOI: 10.1186/s12864-020-07289-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 11/28/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The development of RNA sequencing (RNAseq) and the corresponding emergence of public datasets have created new avenues of transcriptional marker search. The long non-coding RNAs (lncRNAs) constitute an emerging class of transcripts with a potential for high tissue specificity and function. Therefore, we tested the biomarker potential of lncRNAs on Mesenchymal Stem Cells (MSCs), a complex type of adult multipotent stem cells of diverse tissue origins, that is frequently used in clinics but which is lacking extensive characterization. RESULTS We developed a dedicated bioinformatics pipeline for the purpose of building a cell-specific catalogue of unannotated lncRNAs. The pipeline performs ab initio transcript identification, pseudoalignment and uses new methodologies such as a specific k-mer approach for naive quantification of expression in numerous RNAseq data. We next applied it on MSCs, and our pipeline was able to highlight novel lncRNAs with high cell specificity. Furthermore, with original and efficient approaches for functional prediction, we demonstrated that each candidate represents one specific state of MSCs biology. CONCLUSIONS We showed that our approach can be employed to harness lncRNAs as cell markers. More specifically, our results suggest different candidates as potential actors in MSCs biology and propose promising directions for future experimental investigations.
Collapse
Affiliation(s)
- Sébastien Riquier
- IRMB, University of Montpellier, INSERM, 80 rue Augustin Fliche, Montpellier, France
| | - Marc Mathieu
- IRMB, University of Montpellier, INSERM, 80 rue Augustin Fliche, Montpellier, France
| | - Chloé Bessiere
- IRMB, University of Montpellier, INSERM, 80 rue Augustin Fliche, Montpellier, France
| | - Anthony Boureux
- IRMB, University of Montpellier, INSERM, 80 rue Augustin Fliche, Montpellier, France
| | - Florence Ruffle
- IRMB, University of Montpellier, INSERM, 80 rue Augustin Fliche, Montpellier, France
| | - Jean-Marc Lemaitre
- IRMB, University of Montpellier, INSERM, 80 rue Augustin Fliche, Montpellier, France
| | - Farida Djouad
- IRMB, University of Montpellier, INSERM, 80 rue Augustin Fliche, Montpellier, France
| | - Nicolas Gilbert
- IRMB, University of Montpellier, INSERM, 80 rue Augustin Fliche, Montpellier, France
| | - Thérèse Commes
- IRMB, University of Montpellier, INSERM, 80 rue Augustin Fliche, Montpellier, France
| |
Collapse
|
8
|
Cheng N, Yu H, Rao X, Park S, Connolly EL, Hirschi KD, Nakata PA. Alteration of iron responsive gene expression in Arabidopsis glutaredoxin S17 loss of function plants with or without iron stress. PLANT SIGNALING & BEHAVIOR 2020; 15:1758455. [PMID: 32351167 PMCID: PMC8570760 DOI: 10.1080/15592324.2020.1758455] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 05/25/2023]
Abstract
Iron (Fe) is a mineral nutrient and a metal cofactor essential for plants. Iron limitation can have detrimental effects on plant growth and development, while excess iron inside plant cells leads to oxidative damage. As a result, plants have evolved complex regulatory networks to respond to fluctuations in cellular iron concentrations. The mechanisms that regulate these responses however, are not fully understood. Heterologous expression of an Arabidopsis thaliana monothiol glutaredoxin S17 (GRXS17) suppresses the over-accumulation of iron in the Saccharomyces cerevisiae Grx3/Grx4 mutant and disruption of GRXS17 causes plant sensitivity to exogenous oxidants and iron deficiency stress. GRXS17 may act as an important regulator in the plant's ability to respond to iron deficiency stress and maintain redox homeostasis. Here, we extend this investigation by analyzing iron-responsive gene expression of the Fer-like iron deficiency-induced transcription factor (FIT) network (FIT, IRT1, FRO1, and FRO2) and the bHLH transcription factor POPEYE (PYE) network (PYE, ZIF1, FRO3, NAS4, and BTS) in GRXS17 KO plants and wildtype controls grown under iron sufficiency and deficiency conditions. Our findings suggest that GRXS17 is required for tolerance to iron deficiency, and plays a negative regulatory role under conditions of iron sufficiency.
Collapse
Affiliation(s)
- Ninghui Cheng
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Han Yu
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Xiaolan Rao
- BioDiscovery Institute and Department of Biological Sciences, College of Sciences, University of North Texas, Denton, TX, USA
| | - Sunghun Park
- Department of Horticulture and Natural Resources, Kansas State University, Manhattan, KS, USA
| | - Erin L. Connolly
- Department of Plant Science, Penn State University, State College, PA, USA
| | - Kendal D. Hirschi
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Paul A. Nakata
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
9
|
Rey P, Taupin-Broggini M, Couturier J, Vignols F, Rouhier N. Is There a Role for Glutaredoxins and BOLAs in the Perception of the Cellular Iron Status in Plants? FRONTIERS IN PLANT SCIENCE 2019; 10:712. [PMID: 31231405 PMCID: PMC6558291 DOI: 10.3389/fpls.2019.00712] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 05/14/2019] [Indexed: 05/12/2023]
Abstract
Glutaredoxins (GRXs) have at least three major identified functions. In apoforms, they exhibit oxidoreductase activity controlling notably protein glutathionylation/deglutathionylation. In holoforms, i.e., iron-sulfur (Fe-S) cluster-bridging forms, they act as maturation factors for the biogenesis of Fe-S proteins or as regulators of iron homeostasis contributing directly or indirectly to the sensing of cellular iron status and/or distribution. The latter functions seem intimately connected with the capacity of specific GRXs to form [2Fe-2S] cluster-bridging homodimeric or heterodimeric complexes with BOLA proteins. In yeast species, both proteins modulate the localization and/or activity of transcription factors regulating genes coding for proteins involved in iron uptake and intracellular sequestration in response notably to iron deficiency. Whereas vertebrate GRX and BOLA isoforms may display similar functions, the involved partner proteins are different. We perform here a critical evaluation of the results supporting the implication of both protein families in similar signaling pathways in plants and provide ideas and experimental strategies to delineate further their functions.
Collapse
Affiliation(s)
- Pascal Rey
- Plant Protective Proteins Team, CEA, CNRS, BIAM, Aix-Marseille University, Saint-Paul-lez-Durance, France
| | - Maël Taupin-Broggini
- Biochimie et Physiologie Moléculaire des Plantes, CNRS/INRA/Université de Montpellier/SupAgro, Montpellier, France
| | | | - Florence Vignols
- Biochimie et Physiologie Moléculaire des Plantes, CNRS/INRA/Université de Montpellier/SupAgro, Montpellier, France
| | - Nicolas Rouhier
- Université de Lorraine, INRA, IAM, Nancy, France
- *Correspondence: Nicolas Rouhier,
| |
Collapse
|
10
|
Martins L, Trujillo-Hernandez JA, Reichheld JP. Thiol Based Redox Signaling in Plant Nucleus. FRONTIERS IN PLANT SCIENCE 2018; 9:705. [PMID: 29892308 PMCID: PMC5985474 DOI: 10.3389/fpls.2018.00705] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 05/09/2018] [Indexed: 05/18/2023]
Abstract
Reactive oxygen species (ROS) are well-described by-products of cellular metabolic activities, acting as signaling molecules and regulating the redox state of proteins. Solvent exposed thiol residues like cysteines are particularly sensitive to oxidation and their redox state affects structural and biochemical capacities of many proteins. While thiol redox regulation has been largely studied in several cell compartments like in the plant chloroplast, little is known about redox sensitive proteins in the nucleus. Recent works have revealed that proteins with oxidizable thiols are important for the regulation of many nuclear functions, including gene expression, transcription, epigenetics, and chromatin remodeling. Moreover, thiol reducing molecules like glutathione and specific isoforms of thiols reductases, thioredoxins and glutaredoxins were found in different nuclear subcompartments, further supporting that thiol-dependent systems are active in the nucleus. This mini-review aims to discuss recent progress in plant thiol redox field, taking examples of redox regulated nuclear proteins and focusing on major thiol redox systems acting in the nucleus.
Collapse
Affiliation(s)
- Laura Martins
- Laboratoire Génome et Développement des Plantes, Université Perpignan Via Domitia, Perpignan, France
- Laboratoire Génome et Développement des Plantes, Centre National de la Recherche Scientifique, Perpignan, France
| | - José Abraham Trujillo-Hernandez
- Laboratoire Génome et Développement des Plantes, Université Perpignan Via Domitia, Perpignan, France
- Laboratoire Génome et Développement des Plantes, Centre National de la Recherche Scientifique, Perpignan, France
| | - Jean-Philippe Reichheld
- Laboratoire Génome et Développement des Plantes, Université Perpignan Via Domitia, Perpignan, France
- Laboratoire Génome et Développement des Plantes, Centre National de la Recherche Scientifique, Perpignan, France
- *Correspondence: Jean-Philippe Reichheld,
| |
Collapse
|
11
|
Yu H, Yang J, Shi Y, Donelson J, Thompson SM, Sprague S, Roshan T, Wang DL, Liu J, Park S, Nakata PA, Connolly EL, Hirschi KD, Grusak MA, Cheng N. Arabidopsis Glutaredoxin S17 Contributes to Vegetative Growth, Mineral Accumulation, and Redox Balance during Iron Deficiency. FRONTIERS IN PLANT SCIENCE 2017; 8:1045. [PMID: 28674546 DOI: 10.3389/fpls.2017.01045/full] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 05/31/2017] [Indexed: 05/28/2023]
Abstract
Iron (Fe) is an essential mineral nutrient and a metal cofactor required for many proteins and enzymes involved in the processes of DNA synthesis, respiration, and photosynthesis. Iron limitation can have detrimental effects on plant growth and development. Such effects are mediated, at least in part, through the generation of reactive oxygen species (ROS). Thus, plants have evolved a complex regulatory network to respond to conditions of iron limitations. However, the mechanisms that couple iron deficiency and oxidative stress responses are not fully understood. Here, we report the discovery that an Arabidopsis thaliana monothiol glutaredoxin S17 (AtGRXS17) plays a critical role in the plants ability to respond to iron deficiency stress and maintain redox homeostasis. In a yeast expression assay, AtGRXS17 was able to suppress the iron accumulation in yeast ScGrx3/ScGrx4 mutant cells. Genetic analysis indicated that plants with reduced AtGRXS17 expression were hypersensitive to iron deficiency and showed increased iron concentrations in mature seeds. Disruption of AtGRXS17 caused plant sensitivity to exogenous oxidants and increased ROS production under iron deficiency. Addition of reduced glutathione rescued the growth and alleviates the sensitivity of atgrxs17 mutants to iron deficiency. These findings suggest AtGRXS17 helps integrate redox homeostasis and iron deficiency responses.
Collapse
Affiliation(s)
- Han Yu
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, HoustonTX, United States
| | - Jian Yang
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, HoustonTX, United States
| | - Yafei Shi
- College of Chemistry and Life Science, Zhejiang Normal UniversityJinhua, China
| | - Jimmonique Donelson
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, HoustonTX, United States
| | - Sean M Thompson
- Department of Horticultural Sciences, Texas A&M University, College StationTX, United States
| | - Stuart Sprague
- Department of Horticulture, Forestry and Recreation Resources, Kansas State University, ManhattanKS, United States
| | - Tony Roshan
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, HoustonTX, United States
| | - Da-Li Wang
- College of Chemistry and Life Science, Zhejiang Normal UniversityJinhua, China
| | - Jianzhong Liu
- College of Chemistry and Life Science, Zhejiang Normal UniversityJinhua, China
| | - Sunghun Park
- Department of Horticulture, Forestry and Recreation Resources, Kansas State University, ManhattanKS, United States
| | - Paul A Nakata
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, HoustonTX, United States
| | - Erin L Connolly
- Department of Plant Science, Penn State University, University ParkPA, United States
| | - Kendal D Hirschi
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, HoustonTX, United States
- Vegetable and Fruit Improvement Center, Texas A&M University, College StationTX, United States
| | - Michael A Grusak
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, HoustonTX, United States
- USDA/ARS Red River Valley Agricultural Research Center, FargoND, United States
| | - Ninghui Cheng
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, HoustonTX, United States
| |
Collapse
|
12
|
Yu H, Yang J, Shi Y, Donelson J, Thompson SM, Sprague S, Roshan T, Wang DL, Liu J, Park S, Nakata PA, Connolly EL, Hirschi KD, Grusak MA, Cheng N. Arabidopsis Glutaredoxin S17 Contributes to Vegetative Growth, Mineral Accumulation, and Redox Balance during Iron Deficiency. FRONTIERS IN PLANT SCIENCE 2017; 8:1045. [PMID: 28674546 PMCID: PMC5474874 DOI: 10.3389/fpls.2017.01045] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 05/31/2017] [Indexed: 05/08/2023]
Abstract
Iron (Fe) is an essential mineral nutrient and a metal cofactor required for many proteins and enzymes involved in the processes of DNA synthesis, respiration, and photosynthesis. Iron limitation can have detrimental effects on plant growth and development. Such effects are mediated, at least in part, through the generation of reactive oxygen species (ROS). Thus, plants have evolved a complex regulatory network to respond to conditions of iron limitations. However, the mechanisms that couple iron deficiency and oxidative stress responses are not fully understood. Here, we report the discovery that an Arabidopsis thaliana monothiol glutaredoxin S17 (AtGRXS17) plays a critical role in the plants ability to respond to iron deficiency stress and maintain redox homeostasis. In a yeast expression assay, AtGRXS17 was able to suppress the iron accumulation in yeast ScGrx3/ScGrx4 mutant cells. Genetic analysis indicated that plants with reduced AtGRXS17 expression were hypersensitive to iron deficiency and showed increased iron concentrations in mature seeds. Disruption of AtGRXS17 caused plant sensitivity to exogenous oxidants and increased ROS production under iron deficiency. Addition of reduced glutathione rescued the growth and alleviates the sensitivity of atgrxs17 mutants to iron deficiency. These findings suggest AtGRXS17 helps integrate redox homeostasis and iron deficiency responses.
Collapse
Affiliation(s)
- Han Yu
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, HoustonTX, United States
| | - Jian Yang
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, HoustonTX, United States
| | - Yafei Shi
- College of Chemistry and Life Science, Zhejiang Normal UniversityJinhua, China
| | - Jimmonique Donelson
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, HoustonTX, United States
| | - Sean M. Thompson
- Department of Horticultural Sciences, Texas A&M University, College StationTX, United States
| | - Stuart Sprague
- Department of Horticulture, Forestry and Recreation Resources, Kansas State University, ManhattanKS, United States
| | - Tony Roshan
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, HoustonTX, United States
| | - Da-Li Wang
- College of Chemistry and Life Science, Zhejiang Normal UniversityJinhua, China
| | - Jianzhong Liu
- College of Chemistry and Life Science, Zhejiang Normal UniversityJinhua, China
| | - Sunghun Park
- Department of Horticulture, Forestry and Recreation Resources, Kansas State University, ManhattanKS, United States
| | - Paul A. Nakata
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, HoustonTX, United States
| | - Erin L. Connolly
- Department of Plant Science, Penn State University, University ParkPA, United States
| | - Kendal D. Hirschi
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, HoustonTX, United States
- Vegetable and Fruit Improvement Center, Texas A&M University, College StationTX, United States
| | - Michael A. Grusak
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, HoustonTX, United States
- USDA/ARS Red River Valley Agricultural Research Center, FargoND, United States
| | - Ninghui Cheng
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, HoustonTX, United States
- *Correspondence: Ninghui Cheng,
| |
Collapse
|