1
|
Naghibi N, Jahangiri N, Khosrowabadi R, Eickhoff CR, Eickhoff SB, Coull JT, Tahmasian M. Embodying Time in the Brain: A Multi-Dimensional Neuroimaging Meta-Analysis of 95 Duration Processing Studies. Neuropsychol Rev 2024; 34:277-298. [PMID: 36857010 PMCID: PMC10920454 DOI: 10.1007/s11065-023-09588-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 10/05/2022] [Indexed: 03/02/2023]
Abstract
Time is an omnipresent aspect of almost everything we experience internally or in the external world. The experience of time occurs through such an extensive set of contextual factors that, after decades of research, a unified understanding of its neural substrates is still elusive. In this study, following the recent best-practice guidelines, we conducted a coordinate-based meta-analysis of 95 carefully-selected neuroimaging papers of duration processing. We categorized the included papers into 14 classes of temporal features according to six categorical dimensions. Then, using the activation likelihood estimation (ALE) technique we investigated the convergent activation patterns of each class with a cluster-level family-wise error correction at p < 0.05. The regions most consistently activated across the various timing contexts were the pre-SMA and bilateral insula, consistent with an embodied theory of timing in which abstract representations of duration are rooted in sensorimotor and interoceptive experience, respectively. Moreover, class-specific patterns of activation could be roughly divided according to whether participants were timing auditory sequential stimuli, which additionally activated the dorsal striatum and SMA-proper, or visual single interval stimuli, which additionally activated the right middle frontal and inferior parietal cortices. We conclude that temporal cognition is so entangled with our everyday experience that timing stereotypically common combinations of stimulus characteristics reactivates the sensorimotor systems with which they were first experienced.
Collapse
Affiliation(s)
- Narges Naghibi
- Institute for Cognitive and Brain Sciences, Shahid Beheshti University, Tehran, Iran
| | - Nadia Jahangiri
- Faculty of Psychology & Education, Allameh Tabataba'i University, Tehran, Iran
| | - Reza Khosrowabadi
- Institute for Cognitive and Brain Sciences, Shahid Beheshti University, Tehran, Iran
| | - Claudia R Eickhoff
- Institute of Neuroscience and Medicine Research, Structural and functional organisation of the brain (INM-1), Jülich Research Center, Jülich, Germany
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Simon B Eickhoff
- Institute of Neuroscience and Medicine Research, Brain and Behaviour (INM-7), Jülich Research Center, Wilhelm-Johnen-Straße, Jülich, Germany
- Institute for Systems Neuroscience, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Jennifer T Coull
- Laboratoire de Neurosciences Cognitives (UMR 7291), Aix-Marseille Université & CNRS, Marseille, France
| | - Masoud Tahmasian
- Institute of Neuroscience and Medicine Research, Brain and Behaviour (INM-7), Jülich Research Center, Wilhelm-Johnen-Straße, Jülich, Germany.
- Institute for Systems Neuroscience, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany.
| |
Collapse
|
2
|
Spapé MM, Serrien DJ, Ravaja N. 3-2-1, action! A combined motor control-temporal reproduction task shows intentions, motions, and consequences alter time perception. Heliyon 2023; 9:e19728. [PMID: 37809398 PMCID: PMC10559010 DOI: 10.1016/j.heliyon.2023.e19728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 08/28/2023] [Accepted: 08/31/2023] [Indexed: 10/10/2023] Open
Affiliation(s)
- Michiel M. Spapé
- University of Helsinki, Faculty of Medicine, Department of Psychology & Logopedics, Finland
| | - Deborah J. Serrien
- University of Nottingham, School of Psychology, Faculty of Science, United Kingdom
| | - Niklas Ravaja
- University of Helsinki, Faculty of Medicine, Department of Psychology & Logopedics, Finland
| |
Collapse
|
3
|
Petrizzo I, Chelli E, Bartolini T, Arrighi R, Anobile G. Similar effect of running on visual and auditory time perception in the ranges of milliseconds and seconds. Front Psychol 2023; 14:1146675. [PMID: 37063551 PMCID: PMC10102424 DOI: 10.3389/fpsyg.2023.1146675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/15/2023] [Indexed: 04/03/2023] Open
Abstract
IntroductionThe ability to accurately encode events’ duration is of critical importance for almost all everyday activities, yet numerous factors have been reported to robustly distort time perception. One of these is physical activity (i.e., running, walking) but, partly due to the variety of methodologies employed, a full comprehension of the role of exercise on the encoding of time has still to be achieved.MethodsHere we tackle the issue with a multifaceted approach by measuring the effect of vigorous running with a time generalization task for visual and auditory stimuli in the range of milliseconds (0.2–0.8 s) as well as seconds (1–4 s). At baseline, participants performed both the encoding and decoding at rest while in the experimental conditions the decoding was performed while running.ResultsOur results indicate that physical activity in both duration ranges (sub-second and seconds) was expanded during running regardless of the sensory modality used to present the stimuli. Despite this generalized effect of running on perceived duration, we found evidence for the existence of independent timing mechanisms: (1) the perceptual biases induced by running in the two temporal regimes were uncorrelated, (2) sensory precision levels (Weber fraction) were higher for stimuli in the seconds range, (3) sensory precision levels were higher for auditory than for visual stimuli, but only within the sub-second range.DiscussionOverall, our results support previous findings suggesting (at least partially) separate timing mechanisms for short/long durations and for visual and auditory stimuli. However, they also indicate that physical activity affects all these temporal modules, suggesting a generalized interaction—via generalized and shared resources—between the motor system and the brain time mechanisms.
Collapse
|
4
|
Li X, Baurès R, Cremoux S. Hand movements influence the perception of time in a prediction motion task. Atten Percept Psychophys 2023; 85:1276-1286. [PMID: 36991288 DOI: 10.3758/s13414-023-02690-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2023] [Indexed: 03/31/2023]
Abstract
Human perception of time is far from accurate and is subject to distortions. Previous research has demonstrated that any manipulation that distorts the perceived velocity of visible moving objects may shift prediction motion (PM) performance during occlusion. However, it is not clear whether motor action has the same influence during occlusion in the PM task. This work evaluated the influence of action on PM performance in two experiments. In both cases, participants performed an interruption paradigm, evaluating if an occluded object had reappeared earlier or later than expected. This task was done simultaneously with a motor action. In Experiment 1, we compared the PM performance according to the timing of the action made while the object was still visible or occluded. In Experiment 2, participants had to perform (or not) a motor action if the target was green (or red). In both experiments, our results showed that the duration of the object's occlusion was underestimated in the specific case of acting during the occlusion period. These results suggest that action and temporal perception share similar neural bases. Future research is needed to confirm this hypothesis.
Collapse
Affiliation(s)
- Xuening Li
- Centre de Recherche Cerveau et Cognition (CerCo), UMR CNRS 5549, Université Paul Sabatier Toulouse 3, Pavillon Baudot, 31059, Toulouse, France
| | - Robin Baurès
- Centre de Recherche Cerveau et Cognition (CerCo), UMR CNRS 5549, Université Paul Sabatier Toulouse 3, Pavillon Baudot, 31059, Toulouse, France
| | - Sylvain Cremoux
- Centre de Recherche Cerveau et Cognition (CerCo), UMR CNRS 5549, Université Paul Sabatier Toulouse 3, Pavillon Baudot, 31059, Toulouse, France.
| |
Collapse
|
5
|
De Kock R, Zhou W, Datta P, Mychal Joiner W, Wiener M. The role of consciously timed movements in shaping and improving auditory timing. Proc Biol Sci 2023; 290:20222060. [PMID: 36722075 PMCID: PMC9890119 DOI: 10.1098/rspb.2022.2060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/16/2022] [Indexed: 02/02/2023] Open
Abstract
Our subjective sense of time is intertwined with a plethora of perceptual, cognitive and motor functions, and likewise, the brain is equipped to expertly filter, weight and combine these signals for seamless interactions with a dynamic world. Until relatively recently, the literature on time perception has excluded the influence of simultaneous motor activity, yet it has been found that motor circuits in the brain are at the core of most timing functions. Several studies have now identified that concurrent movements exert robust effects on perceptual timing estimates, but critically have not assessed how humans consciously judge the duration of their own movements. This creates a gap in our understanding of the mechanisms driving movement-related effects on sensory timing. We sought to address this gap by administering a sensorimotor timing task in which we explicitly compared the timing of isolated auditory tones and arm movements, or both simultaneously. We contextualized our findings within a Bayesian cue combination framework, in which separate sources of temporal information are weighted by their reliability and integrated into a unitary time estimate that is more precise than either unisensory estimate. Our results revealed differences in accuracy between auditory, movement and combined trials, and (crucially) that combined trials were the most accurately timed. Under the Bayesian framework, we found that participants' combined estimates were more precise than isolated estimates, yet were sub-optimal when compared with the model's prediction, on average. These findings elucidate previously unknown qualities of conscious motor timing and propose computational mechanisms that can describe how movements combine with perceptual signals to create unified, multimodal experiences of time.
Collapse
Affiliation(s)
- Rose De Kock
- Department of Neurobiology, Physiology and Behaviour, University of California, Davis, CA, USA
| | - Weiwei Zhou
- Department of Neurobiology, Physiology and Behaviour, University of California, Davis, CA, USA
| | - Poorvi Datta
- Department of Neurobiology, Physiology and Behaviour, University of California, Davis, CA, USA
| | - Wilsaan Mychal Joiner
- Department of Neurobiology, Physiology and Behaviour, University of California, Davis, CA, USA
| | - Martin Wiener
- Department of Psychology, George Mason University, Fairfax, VA, USA
| |
Collapse
|
6
|
D’Agostino O, Castellotti S, Del Viva MM. Time estimation during motor activity. Front Hum Neurosci 2023; 17:1134027. [PMID: 37151903 PMCID: PMC10160443 DOI: 10.3389/fnhum.2023.1134027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 04/04/2023] [Indexed: 05/09/2023] Open
Abstract
Several studies on time estimation showed that the estimation of temporal intervals is related to the amount of attention devoted to time. This is explained by the scalar timing theory, which assumes that attention alters the number of pulses transferred by our internal clock to an accumulator that keeps track of the elapsed time. In a previous study, it was found that time underestimation during cognitive-demanding tasks was more pronounced while walking than while sitting, whereas no clear motor-induced effects emerged without a concurrent cognitive task. What remains unclear then is the motor interference itself on time estimation. Here we aim to clarify how the estimation of time can be influenced by demanding motor mechanisms and how different motor activities interact with concurrent cognitive tasks during time estimation. To this purpose, we manipulated simultaneously the difficulty of the cognitive task (solving arithmetic operations) and the motor task. We used an automated body movement that should require no motor or mental effort, a more difficult movement that requires some motor control, and a highly demanding movement requiring motor coordination and attention. We compared the effects of these three types of walking on time estimation accuracy and uncertainty, arithmetic performance, and reaction times. Our findings confirm that time estimation is affected by the difficulty of the cognitive task whereas we did not find any evidence that time estimation changes with the complexity of our motor task, nor an interaction between walking and the concurrent cognitive tasks. We can conclude that walking, although highly demanding, does not have the same effects as other mental tasks on time estimation.
Collapse
|
7
|
Pacella V, Scandola M, Bà M, Smania N, Beccherle M, Rossato E, Volpe D, Moro V. Temporal judgments of actions following unilateral brain damage. Sci Rep 2022; 12:21668. [PMID: 36522442 PMCID: PMC9755153 DOI: 10.1038/s41598-022-26070-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
Sense of time is a complex construct, and its neural correlates remain to date in most part unknown. To complicate the frame, physical attributes of the stimulus, such as its intensity or movement, influence temporal perception. Although previous studies have shown that time perception can be compromised after a brain lesion, the evidence on the role of the left and right hemispheres are meager. In two experiments, the study explores the ability of temporal estimation of multi-second actions and non-biological movements in 33 patients suffering from unilateral brain lesion. Furthermore, the modulatory role of induced embodiment processes is investigated. The results reveal a joint contribution of the two hemispheres depending not only on different durations but also on the presence of actions. Indeed, the left hemisphere damaged patients find it difficult to estimate 4500 ms or longer durations, while the right hemisphere damaged patients fail in 3000 ms durations. Furthermore, the former fail when a biological action is shown, while the latter fail in non-biological movement. Embodiment processes have a modulatory effect only after right hemisphere lesions. Among neuropsychological variables, only spatial neglect influences estimation of non-biological movement.
Collapse
Affiliation(s)
- Valentina Pacella
- grid.412041.20000 0001 2106 639XGroupe d’Imagerie NeurofonctionnelleInstitut des Maladies Neurodégénératives-UMR 5293, CNRS, CEA, University of Bordeaux, 146 Rue Léo Saignat, CS 61292, 33076 Bordeaux Cedex, France ,grid.462844.80000 0001 2308 1657Brain Connectivity and Behaviour Laboratory, Sorbonne Universities, Paris, France
| | - M. Scandola
- grid.5611.30000 0004 1763 1124NPSY-Lab.VR, Department of Human Sciences, University of Verona, Lungadige Porta Vittoria 17, 37129 Verona, Italy
| | - M. Bà
- grid.5611.30000 0004 1763 1124NPSY-Lab.VR, Department of Human Sciences, University of Verona, Lungadige Porta Vittoria 17, 37129 Verona, Italy
| | - N. Smania
- Neurorehabilitation Unit, Department of Neurosciences, Hospital Trust of Verona, Verona, Italy
| | - M. Beccherle
- grid.7841.aDepartment of Psychology, University La Sapienza, Rome, Italy
| | - E. Rossato
- Department of Rehabilitation, IRCSS Sacro Cuore Don Calabria, 37024 Negrar, Verona, Italy
| | - D. Volpe
- Department of Neurorehabilitation, Parkinson’s Disease Excellence Center, Fresco Institute Italy - NYU Langone, Casa di Cura Villa Margherita via Costacolonna n 1 Arcugnano, Vicenza, Italy
| | - Valentina Moro
- grid.5611.30000 0004 1763 1124NPSY-Lab.VR, Department of Human Sciences, University of Verona, Lungadige Porta Vittoria 17, 37129 Verona, Italy
| |
Collapse
|
8
|
Influence of Motor and Cognitive Tasks on Time Estimation. Brain Sci 2022; 12:brainsci12030404. [PMID: 35326362 PMCID: PMC8946194 DOI: 10.3390/brainsci12030404] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/18/2022] [Accepted: 03/17/2022] [Indexed: 02/01/2023] Open
Abstract
The passing of time can be precisely measured by using clocks, whereas humans’ estimation of temporal durations is influenced by many physical, cognitive and contextual factors, which distort our internal clock. Although it has been shown that temporal estimation accuracy is impaired by non-temporal tasks performed at the same time, no studies have investigated how concurrent cognitive and motor tasks interfere with time estimation. Moreover, most experiments only tested time intervals of a few seconds. In the present study, participants were asked to perform cognitive tasks of different difficulties (look, read, solve simple and hard mathematical operations) and estimate durations of up to two minutes, while walking or sitting. The results show that if observers pay attention only to time without performing any other mental task, they tend to overestimate the durations. Meanwhile, the more difficult the concurrent task, the more they tend to underestimate the time. These distortions are even more pronounced when observers are walking. Estimation biases and uncertainties change differently with durations depending on the task, consistent with a fixed relative uncertainty. Our findings show that cognitive and motor systems interact non-linearly and interfere with time perception processes, suggesting that they all compete for the same resources.
Collapse
|
9
|
Schlichting N, Kartashova T, Wiesing M, Zimmermann E. Temporal perturbations cause movement-context independent but modality specific sensorimotor adaptation. J Vis 2022; 22:18. [PMID: 35201280 PMCID: PMC8883149 DOI: 10.1167/jov.22.2.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Complex, goal-directed and time-critical movements require the processing of temporal features in sensory information as well as the fine-tuned temporal interplay of several effectors. Temporal estimates used to produce such behavior may thus be obtained through perceptual or motor processes. To disentangle the two options, we tested whether adaptation to a temporal perturbation in an interval reproduction task transfers to interval reproduction tasks with varying sensory information (visual appearance of targets, modality, and virtual reality [VR] environment or real-world) or varying movement types (continuous arm movements or brief clicking movements). Halfway through the experiments we introduced a temporal perturbation, such that continuous pointing movements were artificially slowed down in VR, causing participants to adapt their behavior to sustain performance. In four experiments, we found that sensorimotor adaptation to temporal perturbations is independent of environment context and movement type, but modality specific. Our findings suggest that motor errors induced by temporal sensorimotor adaptation affect the modality specific perceptual processing of temporal estimates.
Collapse
Affiliation(s)
- Nadine Schlichting
- Institute for Experimental Psychology, Heinrich-Heine-University Düsseldorf, Germany.,
| | - Tatiana Kartashova
- Institute for Experimental Psychology, Heinrich-Heine-University Düsseldorf, Germany.,
| | - Michael Wiesing
- Institute for Experimental Psychology, Heinrich-Heine-University Düsseldorf, Germany.,
| | - Eckart Zimmermann
- Institute for Experimental Psychology, Heinrich-Heine-University Düsseldorf, Germany.,
| |
Collapse
|
10
|
Petrizzo I, Anobile G, Chelli E, Arrighi R, Burr DC. Visual Duration but Not Numerosity Is Distorted While Running. Brain Sci 2022; 12:brainsci12010081. [PMID: 35053824 PMCID: PMC8773608 DOI: 10.3390/brainsci12010081] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/21/2021] [Accepted: 01/02/2022] [Indexed: 11/16/2022] Open
Abstract
There is increasing evidence that action and perception interact in the processing of magnitudes such as duration and numerosity. Sustained physical exercise (such as running or cycling) increases the apparent duration of visual stimuli presented during the activity. However, the effect of exercise on numerosity perception has not yet been investigated. Here, we asked participants to make either a temporal or a numerical judgment by comparing the duration or numerosity of standard stimuli displayed at rest with those presented while running. The results support previous reports in showing that physical activity significantly expands perceived duration; however, it had no effect on perceived numerosity. Furthermore, the distortions of the perceived durations vanished soon after the running session, making it unlikely that physiological factors such as heart rate underlie the temporal distortion. Taken together, these results suggest a domain-selective influence of the motor system on the perception of time, rather than a general effect on magnitude.
Collapse
|
11
|
Reddy NN. The implicit sense of agency is not a perceptual effect but is a judgment effect. Cogn Process 2021; 23:1-13. [PMID: 34751857 DOI: 10.1007/s10339-021-01066-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 10/25/2021] [Indexed: 01/02/2023]
Abstract
The sense of agency (SoA) is characterized as the sense of being the causal agent of one's own actions, and it is measured in two forms: explicit and implicit. In the explicit SoA experiments, the participants explicitly report whether they have a sense of control over their actions or whether they or somebody else is the causal agent of seen actions; the implicit SoA experiments study how do participants' agentive or voluntary actions modify perceptual processes (like time, vision, tactility, and audition) without directly asking the participants to explicitly think about their causal agency or sense of control. However, recent implicit SoA literature reported contradictory findings of the relationship between implicit SoA reports and agency states. Thus, I argue that the purported implicit SoA reports are not agency-driven perceptual effects per se but are judgment effects, by showing that (a) the typical operationalizations in implicit SoA domain lead to perceptual uncertainty on the part of the participants, (b) under uncertainty, participants' implicit SoA reports are due to heuristic judgments which are independent of agency states, and (c) under perceptual certainty, the typical implicit SoA reports might not have occurred at all. Thus, I conclude that the instances of implicit SoA are judgments (or response biases)-under uncertainty-rather than perceptual effects.
Collapse
|
12
|
De Kock R, Gladhill KA, Ali MN, Joiner WM, Wiener M. How movements shape the perception of time. Trends Cogn Sci 2021; 25:950-963. [PMID: 34531138 PMCID: PMC9991018 DOI: 10.1016/j.tics.2021.08.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 08/07/2021] [Accepted: 08/09/2021] [Indexed: 11/16/2022]
Abstract
In order to keep up with a changing environment, mobile organisms must be capable of deciding both where and when to move. This precision necessitates a strong sense of time, as otherwise we would fail in many of our movement goals. Yet, despite this intrinsic link, only recently have researchers begun to understand how these two features interact. Primarily, two effects have been observed: movements can bias time estimates, but they can also make them more precise. Here we review this literature and propose that both effects can be explained by a Bayesian cue combination framework, in which movement itself affords the most precise representation of time, which can influence perception in either feedforward or active sensing modes.
Collapse
|
13
|
Balzarotti S, Cavaletti F, D'Aloia A, Colombo B, Cardani E, Ciceri MR, Antonietti A, Eugeni R. The Editing Density of Moving Images Influences Viewers' Time Perception: The Mediating Role of Eye Movements. Cogn Sci 2021; 45:e12969. [PMID: 33844350 DOI: 10.1111/cogs.12969] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 02/26/2021] [Accepted: 03/04/2021] [Indexed: 11/29/2022]
Abstract
The present study examined whether cinematographic editing density affects viewers' perception of time. As a second aim, based on embodied models that conceive time perception as strictly connected to the movement, we tested the hypothesis that the editing density of moving images also affects viewers' eye movements and that these later mediate the effect of editing density on viewers' temporal judgments. Seventy participants watched nine video clips edited by manipulating the number of cuts (slow- and fast-paced editing against a master shot, unedited condition). For each editing density, multiple video clips were created, representing three different kinds of routine actions. The participants' eye movements were recorded while watching the video, and the participants were asked to report duration judgments and subjective passage of time judgments after watching each clip. The results showed that participants subjectively perceived that time flew more while watching fast-paced edited videos than slow-paced or unedited videos; by contrast, concerning duration judgments, participants overestimated the duration of fast-paced videos compared to the master-shot videos. Both the slow- and the fast-paced editing generated shorter fixations than the master shot, and the fast-paced editing led to shorter fixations than the slow-paced editing. Finally, compared to the unedited condition, editing led to an overestimation of durations through increased eye mobility. These findings suggest that the editing density of moving images by increasing the number of cuts effectively altered viewers' experience of time and add further evidence to prior research showing that performed eye movement is associated with temporal judgments.
Collapse
Affiliation(s)
| | | | - Adriano D'Aloia
- Department of Letters, Philosophy, Communication, University of Bergamo
| | | | - Elisa Cardani
- Department of Psychology, Università Cattolica del Sacro Cuore
| | | | | | - Ruggero Eugeni
- Department of Communication and Performing Arts, Università Cattolica del Sacro Cuore
| |
Collapse
|
14
|
De Kock R, Zhou W, Joiner WM, Wiener M. Slowing the body slows down time perception. eLife 2021; 10:e63607. [PMID: 33830016 PMCID: PMC8051945 DOI: 10.7554/elife.63607] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 04/07/2021] [Indexed: 12/25/2022] Open
Abstract
Interval timing is a fundamental component of action and is susceptible to motor-related temporal distortions. Previous studies have shown that concurrent movement biases temporal estimates, but have primarily considered self-modulated movement only. However, real-world encounters often include situations in which movement is restricted or perturbed by environmental factors. In the following experiments, we introduced viscous movement environments to externally modulate movement and investigated the resulting effects on temporal perception. In two separate tasks, participants timed auditory intervals while moving a robotic arm that randomly applied four levels of viscosity. Results demonstrated that higher viscosity led to shorter perceived durations. Using a drift-diffusion model and a Bayesian observer model, we confirmed these biasing effects arose from perceptual mechanisms, instead of biases in decision making. These findings suggest that environmental perturbations are an important factor in movement-related temporal distortions, and enhance the current understanding of the interactions of motor activity and cognitive processes.
Collapse
Affiliation(s)
- Rose De Kock
- University of California, DavisDavisUnited States
| | - Weiwei Zhou
- University of California, DavisDavisUnited States
| | | | | |
Collapse
|
15
|
Fernandes AC, Garcia-Marques T. The perception of time is dynamically interlocked with the facial muscle activity. Sci Rep 2019; 9:18737. [PMID: 31822706 PMCID: PMC6904682 DOI: 10.1038/s41598-019-55029-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 10/24/2019] [Indexed: 11/09/2022] Open
Abstract
Time perception relies on the motor system. Involves core brain regions of this system, including those associated with feelings generated from sensorimotor states. Perceptual timing is also distorted when movement occurs during timing tasks, possibly by interfering with sensorimotor afferent feedback. However, it is unknown if the perception of time is an active process associated with specific patterns of muscle activity. We explored this idea based on the phenomenon of electromyographic gradients, which consists of the dynamic increase of muscle activity during cognitive tasks that require sustained attention, a critical function in perceptual timing. We aimed to determine whether facial muscle dynamic activity indexes the subjective representation of time. We asked participants to judge stimuli durations (varying in familiarity) while we monitored the time course of the activity of the zygomaticus-major and corrugator-supercilii muscles, both associated with cognitive and affective feelings. The dynamic electromyographic activity in corrugator-supercilii over time reflected objective time and this relationship predicted subjective judgments of duration. Furthermore, the zygomaticus-major muscle signaled the bias that familiarity introduces in duration judgments. This suggests that subjective duration could be an embodiment process based in motor information changing over time and their associated feelings.
Collapse
Affiliation(s)
- Alexandre C Fernandes
- ISPA - Instituto Universitário, William James Center for Research, Lisboa, Portugal.
| | | |
Collapse
|
16
|
Movement Improves the Quality of Temporal Perception and Decision-Making. eNeuro 2019; 6:ENEURO.0042-19.2019. [PMID: 31395616 PMCID: PMC6709222 DOI: 10.1523/eneuro.0042-19.2019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 06/07/2019] [Accepted: 06/14/2019] [Indexed: 12/19/2022] Open
Abstract
A critical aspect of behavior is that mobile organisms must be able to precisely determine where and when to move. A better understanding of the mechanisms underlying precise movement timing and action planning is therefore crucial to understanding how we interact with the world around us. Recent evidence suggests that our experience of time is directly and intrinsically computed within the motor system, consistent with the theory of embodied cognition. To investigate the role of the motor system, we tested human subjects (n = 40) on a novel task combining reaching and time estimation. In this task, subjects were required to move a robotic manipulandum to one of two physical locations to categorize a concurrently timed suprasecond. Critically, subjects were divided into two groups: one in which movement during the interval was unrestricted and one in which they were restricted from moving until the stimulus interval had elapsed. Our results revealed a higher degree of precision for subjects in the free-moving group. A further experiment (n = 14) verified that these findings were not due to proximity to the target, counting strategies, bias, or movement length. A final experiment (n = 10) replicated these findings using a within-subjects design, performing a time reproduction task, in which movement during encoding of the interval led to more precise performance. Our findings suggest that time estimation may be instantiated within the motor system as an ongoing readout of timing judgment and confidence.
Collapse
|
17
|
Ciria A, López F, Lara B. Perceived Duration: The Interplay of Top-Down Attention and Task-Relevant Information. Front Psychol 2019; 10:490. [PMID: 30894834 PMCID: PMC6415616 DOI: 10.3389/fpsyg.2019.00490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 02/19/2019] [Indexed: 11/25/2022] Open
Abstract
Perception of time is susceptible to distortions; among other factors, it has been suggested that the perceived duration of a stimulus is affected by the observer’s expectations. It has been hypothesized that the duration of an oddball stimulus is overestimated because it is unexpected, whereas repeated stimuli have a shorter perceived duration because they are expected. However, recent findings suggest instead that fulfilled expectations about a stimulus elicit an increase in perceived duration, and that the oddball effect occurs because the oddball is a target stimulus, not because it is unexpected. Therefore, it has been suggested that top-down attention is sometimes sufficient to explain this effect, and sometimes only necessary, with an additional contribution from saliency. However, how the expectedness of a target stimulus and its salient features affect its perceived duration is still an open question. In the present study, participants’ expectations about and the saliency of target stimuli were orthogonally manipulated with stimuli presented on a short (Experiment 1) or long (Experiment 2) temporal scale. Four repetitive standard stimuli preceded each target stimulus in a task in which participants judged whether the target was longer or shorter in duration than the standards. Engagement of top-down attention to target stimuli increased their perceived duration to the same extent irrespective of their expectedness. A small but significant additional contribution to this effect from the saliency of target stimuli was dependent on the temporal scale of stimulus presentation. In Experiment 1, saliency only significantly increased perceived duration in the case of expected target stimuli. In contrast, in Experiment 2, saliency exerted a significant effect on the overestimation elicited by unexpected target stimuli, but the contribution of this variable was eliminated in the case of expected target stimuli. These findings point to top-down attention as the primary cognitive mechanism underlying the perceptual extraction and processing of task-relevant information, which may be strongly correlated with perceived duration. Furthermore, the scalar properties of timing were observed, favoring the pacemaker-accumulator model of timing as the underlying timing mechanism.
Collapse
Affiliation(s)
- Alejandra Ciria
- Facultad de Psicología, Universidad Nacional Autónoma de México, Mexico City, Mexico
- *Correspondence: Alejandra Ciria,
| | - Florente López
- Facultad de Psicología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Bruno Lara
- Laboratorio de Robótica Cognitiva, Centro de Investigación en Ciencias, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| |
Collapse
|
18
|
Tomassini A, Vercillo T, Torricelli F, Morrone MC. Rhythmic motor behaviour influences perception of visual time. Proc Biol Sci 2018; 285:20181597. [PMID: 30282654 PMCID: PMC6191697 DOI: 10.1098/rspb.2018.1597] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 09/10/2018] [Indexed: 01/08/2023] Open
Abstract
Temporal processing is fundamental for an accurate synchronization between motor behaviour and sensory processing. Here, we investigate how motor timing during rhythmic tapping influences perception of visual time. Participants listen to a sequence of four auditory tones played at 1 Hz and continue the sequence (without auditory stimulation) by tapping four times with their finger. During finger tapping, they are presented with an empty visual interval and are asked to judge its length compared to a previously internalized interval of 150 ms. The visual temporal estimates show non-monotonic changes locked to the finger tapping: perceived time is maximally expanded at halftime between the two consecutive finger taps, and maximally compressed near tap onsets. Importantly, the temporal dynamics of the perceptual time distortion scales linearly with the timing of the motor tapping, with maximal expansion always being anchored to the centre of the inter-tap interval. These results reveal an intrinsic coupling between distortion of perceptual time and production of self-timed motor rhythms, suggesting the existence of a timing mechanism that keeps perception and action accurately synchronized.
Collapse
Affiliation(s)
- Alice Tomassini
- Center for Translational Neurophysiology for Speech and Communication (CTNSC), Fondazione Istituto Italiano di Tecnologia, Via Fossato di Mortara, 17-19, 44121 Ferrara, Italy
| | - Tiziana Vercillo
- Ernest J. Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Francesco Torricelli
- Università di Ferrara, Dipartimento di Scienze Biomediche e Chirurgico Specialistiche, Sezione di Fisiologia Umana, Ferrara, Italy
| | - Maria Concetta Morrone
- Department of Translational Research on New Technologies in Medicine and Surgery, University of Pisa, via San Zeno 31, 56123 Pisa, Italy
| |
Collapse
|
19
|
Iwasaki M, Noguchi Y, Kakigi R. Neural correlates of time distortion in a preaction period. Hum Brain Mapp 2018; 40:804-817. [PMID: 30276935 DOI: 10.1002/hbm.24413] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 08/19/2018] [Accepted: 09/24/2018] [Indexed: 11/09/2022] Open
Abstract
An intention to move distorts the perception of time. For example, a visual stimulus presented during the preparation of manual movements is perceived longer than actual. Although neural mechanisms underlying this action-induced time distortion have been unclear, here we propose a new model in which the distortion is caused by a sensory-motor interaction mediated by alpha rhythm. It is generally known that viewing a stimulus induces a reduction in amplitude of occipital 10-Hz wave ("alpha-blocking"). Preparing manual movements are also known to reduce alpha power in the motor cortex ("mu-suppression"). When human participants prepared movements while viewing a stimulus, we found that those two types of classical alpha suppression interacted in the third (time-processing) region in the brain, inducing a prominent decrease in alpha power in the supplementary motor cortex (SMA). Interestingly, this alpha suppression in the SMA occurred in an asymmetric manner (such that troughs of alpha rhythm was more strongly suppressed than peaks), which can produce a gradual increase (slow shift of baseline) in neural activity. Since the neural processing in the SMA encodes a subjective time length for a sensory event, the increased activity in this region (by the asymmetric alpha suppression) would cause an overestimation of elapsed time, resulting in the action-induced time distortion. Those results showed a unique role of alpha wave enabling communications across distant (visual, motor, and time-processing) regions in the brain and further suggested a new type of sensory-motor interaction based on neural desynchronization (rather than synchronization).
Collapse
Affiliation(s)
- Miho Iwasaki
- Department of Psychology, Graduate School of Humanities, Kobe University, Kobe, Japan
| | - Yasuki Noguchi
- Department of Psychology, Graduate School of Humanities, Kobe University, Kobe, Japan
| | - Ryusuke Kakigi
- Department of Integrative Physiology, National Institute for Physiological Sciences, Okazaki, Japan
| |
Collapse
|
20
|
Kuroki S, Yokosaka T, Watanabe J. Sub-Second Temporal Integration of Vibro-Tactile Stimuli: Intervals between Adjacent, Weak, and Within-Channel Stimuli Are Underestimated. Front Psychol 2017; 8:1295. [PMID: 28824486 PMCID: PMC5534472 DOI: 10.3389/fpsyg.2017.01295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 07/14/2017] [Indexed: 11/13/2022] Open
Abstract
Tactile estimation of sub-second time is essential for correct recognition of sensory inputs and dexterous manipulation of objects. Despite our intuitive understanding that time is robustly estimated in any situation, tactile sub-second time is altered by, for example, body movement, similar to how visual time is modulated by eye movement. The effects of simpler factors, such as stimulus location, intensity, and frequency, have also been reported in temporal tasks in other modalities, but their effects on tactile sub-second interval estimation remain obscure. Here, we were interested in whether a perceived short interval presented by tactile stimuli is altered only by changing stimulus features. The perceived interval between a pair of stimuli presented on the same finger apparently became short relative to that on different fingers; that of a weak-intensity pair relative to that of a pair with stronger intensity was decreased; and that of a pair with the same frequency relative to one with different frequencies was underestimated. These findings can be ascribed to errors in encoding temporal relationships: nearby-space/weak-intensity/similar-frequency stimuli presented within a short time difference are likely to be integrated into a single event and lead to relative time compression.
Collapse
Affiliation(s)
- Scinob Kuroki
- NTT Communication Science Laboratories, Nippon Telegraph and Telephone CorporationKanagawa, Japan
| | - Takumi Yokosaka
- NTT Communication Science Laboratories, Nippon Telegraph and Telephone CorporationKanagawa, Japan
| | - Junji Watanabe
- NTT Communication Science Laboratories, Nippon Telegraph and Telephone CorporationKanagawa, Japan
| |
Collapse
|
21
|
Non-uniform transformation of subjective time during action preparation. Cognition 2017; 160:51-61. [PMID: 28049041 DOI: 10.1016/j.cognition.2016.12.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 12/18/2016] [Accepted: 12/23/2016] [Indexed: 11/23/2022]
Abstract
Although many studies have reported a distortion of subjective (internal) time during preparation and execution of actions, it is highly controversial whether actions cause a dilation or compression of time. In the present study, we tested a hypothesis that the previous controversy (dilation vs. compression) partly resulted from a mixture of two types of sensory inputs on which a time length was estimated; some studies asked subjects to measure the time of presentation for a single continuous stimulus (stimulus period, e.g. the duration of a long-lasting visual stimulus on a monitor) while others required estimation of a period without continuous stimulations (no-stimulus period, e.g. an inter-stimulus interval between two flashes). Results of our five experiments supported this hypothesis, showing that action preparation induced a dilation of a stimulus period, whereas a no-stimulus period was not subject to this dilation and sometimes can be compressed by action preparation. Those results provided a new insight into a previous view assuming a uniform dilation or compression of subjective time by actions. Our findings about the distinction between stimulus and no-stimulus periods also might contribute to a resolution of mixed results (action-induced dilation vs. compression) in a previous literature.
Collapse
|
22
|
Mitani K, Kashino M. Self-Produced Time Intervals Are Perceived as More Variable and/or Shorter Depending on Temporal Context in Subsecond and Suprasecond Ranges. Front Integr Neurosci 2016; 10:19. [PMID: 27313515 PMCID: PMC4887498 DOI: 10.3389/fnint.2016.00019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 05/17/2016] [Indexed: 11/24/2022] Open
Abstract
The processing of time intervals is fundamental for sensorimotor and cognitive functions. Perceptual and motor timing are often performed concurrently (e.g., playing a musical instrument). Although previous studies have shown the influence of body movements on time perception, how we perceive self-produced time intervals has remained unclear. Furthermore, it has been suggested that the timing mechanisms are distinct for the sub- and suprasecond ranges. Here, we compared perceptual performances for self-produced and passively presented time intervals in random contexts (i.e., multiple target intervals presented in a session) across the sub- and suprasecond ranges (Experiment 1) and within the sub- (Experiment 2) and suprasecond (Experiment 3) ranges, and in a constant context (i.e., a single target interval presented in a session) in the sub- and suprasecond ranges (Experiment 4). We show that self-produced time intervals were perceived as shorter and more variable across the sub- and suprasecond ranges and within the suprasecond range but not within the subsecond range in a random context. In a constant context, the self-produced time intervals were perceived as more variable in the suprasecond range but not in the subsecond range. The impairing effects indicate that motor timing interferes with perceptual timing. The dependence of impairment on temporal contexts suggests multiple timing mechanisms for the subsecond and suprasecond ranges. In addition, violation of the scalar property (i.e., a constant variability to target interval ratio) was observed between the sub- and suprasecond ranges. The violation was clearer for motor timing than for perceptual timing. This suggests that the multiple timing mechanisms for the sub- and suprasecond ranges overlap more for perception than for motor. Moreover, the central tendency effect (i.e., where shorter base intervals are overestimated and longer base intervals are underestimated) disappeared with motor timing within the subsecond range, suggesting multiple subsecond timing system for perception and motor.
Collapse
Affiliation(s)
- Keita Mitani
- Department of Information Processing, Tokyo Institute of Technology Yokohama, Japan
| | - Makio Kashino
- Department of Information Processing, Tokyo Institute of TechnologyYokohama, Japan; Human Information Science Laboratory, NTT Communication Science Laboratories, Nippon Telegraph and Telephone CorporationAtsugi, Japan
| |
Collapse
|
23
|
Perceived visual time depends on motor preparation and direction of hand movements. Sci Rep 2016; 6:27947. [PMID: 27283474 PMCID: PMC4901279 DOI: 10.1038/srep27947] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 05/25/2016] [Indexed: 12/04/2022] Open
Abstract
Perceived time undergoes distortions when we prepare and perform movements, showing compression and/or expansion for visual, tactile and auditory stimuli. However, the actual motor system contribution to these time distortions is far from clear. In this study we investigated visual time perception during preparation of isometric contractions and real movements of the hand in two different directions (right/left). Comparable modulations of visual event-timing are found in the isometric and in the movement condition, excluding explanations based on movement-induced sensory masking or attenuation. Most importantly, and surprisingly, visual time depends on the movement direction, being expanded for hand movements pointing away from the body and compressed in the other direction. Furthermore, the effect of movement direction is not constant, but rather undergoes non-monotonic modulations in the brief moments preceding movement initiation. Our findings indicate that time distortions are strongly linked to the motor system, and they may be unavoidable consequences of the mechanisms subserving sensory-motor integration.
Collapse
|
24
|
Abstract
The proposal that the processing of visual time might rely on a network of distributed mechanisms that are vision-specific and timescale-specific stands in contrast to the classical view of time perception as the product of a single supramodal clock. Evidence showing that some of these mechanisms have a sensory component that can be locally adapted is at odds with another traditional assumption, namely that time is completely divorced from space. Recent evidence suggests that multiple timing mechanisms exist across and within sensory modalities and that they operate in various neural regions. The current review summarizes this evidence and frames it into the broader scope of models for time perception in the visual domain.
Collapse
Affiliation(s)
- Aurelio Bruno
- Experimental Psychology, University College London, 26 Bedford Way, 16, London WC1H 0AP, UK
| | - Guido Marco Cicchini
- Institute of Neuroscience, Consiglio Nazionale delle Ricerche, Via Moruzzi 1, 56124 Pisa, Italy
| |
Collapse
|