1
|
Okuda M, Araki M, De Marchi F, Morishita S, Imai M, Fukada H, Ando M, Komatsu N. Involvement of CREB3L1 in erythropoiesis induced by JAK2 exon 12 mutation. Exp Hematol 2024; 139:104636. [PMID: 39237052 DOI: 10.1016/j.exphem.2024.104636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/07/2024]
Abstract
CREB3L1, a gene encoding the endoplasmic reticulum stress transducer, is specifically overexpressed in platelet RNA from patients with myeloproliferative neoplasms (MPNs). However, the pathophysiological roles of CREB3L1 overexpression remain unclear. In the present study, we aimed to study CREB3L1 messenger RNA (mRNA) expression in the red blood cells (RBCs) of patients with MPN and its role in erythrocytosis. Elevated expression of CREB3L1 was exclusively observed in the RBCs of patients with polycythemia vera (PV) harboring JAK2 exon 12 mutations, but not in those harboring JAK2 V617F mutation or control subjects. In erythropoiesis, CREB3L1 expression was sharply induced in erythroblasts of bone marrow cells collected from patients with JAK2 exon 12 mutation. This was also evident when erythropoiesis was induced in vitro using hematopoietic stem and progenitor cells (HSPCs) with JAK2 exon 12 mutation. Interestingly, overexpression of CREB3L1 in RBCs was observed in patients with reactive erythrocytosis whose serum erythropoietin (EPO) levels exceeded 100 mIU/mL. Elevated CREB3L1 expression was also observed in the erythroblasts of a patient with acute erythroid leukemia. EPO-dependent induction of CREB3L1 was evident in erythroblasts differentiated from HSPCs in vitro, regardless of driver mutation status or MPN pathogenesis. These data strongly suggest that CREB3L1 overexpression in RBCs is associated with hyperactivation of the EPO receptor and its downstream molecule, JAK2. Short hairpin RNA (shRNA) knockdown of CREB3L1 expression in HSPCs blocked erythroblast formation in vitro. These results suggest that CREB3L1 is required for erythropoiesis in the presence of JAK2 exon 12 mutation or high level of EPO, possibly by antagonizing cellular stress.
Collapse
Affiliation(s)
- Maho Okuda
- Laboratory for the Development of Therapies against MPN, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan; Department of Advanced Hematology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan; Institute for Environmental and Gender-Specific Medicine, Juntendo University Graduate School of Medicine, Urayasu, Chiba, Japan
| | - Marito Araki
- Laboratory for the Development of Therapies against MPN, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan.
| | - Federico De Marchi
- Department of Hematology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Soji Morishita
- Laboratory for the Development of Therapies against MPN, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Misa Imai
- Laboratory for the Development of Therapies against MPN, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Hanaka Fukada
- Juntendo University Faculty of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Miki Ando
- Department of Hematology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Norio Komatsu
- Laboratory for the Development of Therapies against MPN, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan; Department of Advanced Hematology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan; Department of Hematology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan; PharmaEssentia Japan KK, Minato-ku, Tokyo, Japan.
| |
Collapse
|
2
|
Greenwood M, Gillard BT, Murphy D, Greenwood MP. Dimerization of hub protein DYNLL1 and bZIP transcription factor CREB3L1 enhances transcriptional activation of CREB3L1 target genes like arginine vasopressin. Peptides 2024; 179:171269. [PMID: 38960286 DOI: 10.1016/j.peptides.2024.171269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/29/2024] [Accepted: 07/01/2024] [Indexed: 07/05/2024]
Abstract
bZIP transcription factors can function as homodimers or heterodimers through interactions with their disordered coiled-coil domain. Such dimer assemblies are known to influence DNA-binding specificity and/or the recruitment of binding partners, which can cause a functional switch of a transcription factor from being an activator to a repressor. We recently identified the genomic targets of a bZIP transcription factor called CREB3L1 in rat hypothalamic supraoptic nucleus by ChIP-seq. The objective of this study was to investigate the CREB3L1 protein-to-protein interactome of which little is known. For this approach, we created and screened a rat supraoptic nucleus yeast two-hybrid prey library with the bZIP region of rat CREB3L1 as the bait. Our yeast two-hybrid approach captured five putative CREB3L1 interacting prey proteins in the supraoptic nucleus. One interactor was selected by bioinformatic analyses for more detailed investigation by co-immunoprecipitation, immunofluorescent cellular localisation, and reporter assays in vitro. Here we identify dimerisation hub protein Dynein Light Chain LC8-Type 1 as a CREB3L1 interacting protein that in vitro enhances CREB3L1 activation of target genes.
Collapse
Affiliation(s)
- Mingkwan Greenwood
- Molecular Neuroendocrinology Research Group, Bristol Medical School: Translational Health Sciences, University of Bristol, Dorothy Hodgkin Building, Bristol, United Kingdom
| | - Benjamin T Gillard
- Molecular Neuroendocrinology Research Group, Bristol Medical School: Translational Health Sciences, University of Bristol, Dorothy Hodgkin Building, Bristol, United Kingdom
| | - David Murphy
- Molecular Neuroendocrinology Research Group, Bristol Medical School: Translational Health Sciences, University of Bristol, Dorothy Hodgkin Building, Bristol, United Kingdom
| | - Michael P Greenwood
- Molecular Neuroendocrinology Research Group, Bristol Medical School: Translational Health Sciences, University of Bristol, Dorothy Hodgkin Building, Bristol, United Kingdom.
| |
Collapse
|
3
|
Witkamp D, Oudejans E, Hoogterp L, Hu-A-Ng GV, Glaittli KA, Stevenson TJ, Huijsmans M, Abbink TEM, van der Knaap MS, Bonkowsky JL. Lithium: effects in animal models of vanishing white matter are not promising. Front Neurosci 2024; 18:1275744. [PMID: 38352041 PMCID: PMC10861708 DOI: 10.3389/fnins.2024.1275744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 01/04/2024] [Indexed: 02/16/2024] Open
Abstract
Vanishing white matter (VWM) is a devastating autosomal recessive leukodystrophy, resulting in neurological deterioration and premature death, and without curative treatment. Pathogenic hypomorphic variants in subunits of the eukaryotic initiation factor 2B (eIF2B) cause VWM. eIF2B is required for regulating the integrated stress response (ISR), a physiological response to cellular stress. In patients' central nervous system, reduced eIF2B activity causes deregulation of the ISR. In VWM mouse models, the extent of ISR deregulation correlates with disease severity. One approach to restoring eIF2B activity is by inhibition of GSK3β, a kinase that phosphorylates eIF2B and reduces its activity. Lithium, an inhibitor of GSK3β, is thus expected to stimulate eIF2B activity and ameliorate VWM symptoms. The effects of lithium were tested in zebrafish and mouse VWM models. Lithium improved motor behavior in homozygous eif2b5 mutant zebrafish. In lithium-treated 2b4he2b5ho mutant mice, a paradoxical increase in some ISR transcripts was found. Furthermore, at the dosage tested, lithium induced significant polydipsia in both healthy controls and 2b4he2b5ho mutant mice and did not increase the expression of other markers of lithium efficacy. In conclusion, lithium is not a drug of choice for further development in VWM based on the limited or lack of efficacy and significant side-effect profile.
Collapse
Affiliation(s)
- Diede Witkamp
- Child Neurology, Emma Children’s Hospital, Amsterdam Leukodystrophy Center, Amsterdam University Medical Centers, Vrije Universiteit and Amsterdam Neuroscience, Amsterdam, Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University, Amsterdam, Netherlands
| | - Ellen Oudejans
- Child Neurology, Emma Children’s Hospital, Amsterdam Leukodystrophy Center, Amsterdam University Medical Centers, Vrije Universiteit and Amsterdam Neuroscience, Amsterdam, Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University, Amsterdam, Netherlands
| | - Leoni Hoogterp
- Child Neurology, Emma Children’s Hospital, Amsterdam Leukodystrophy Center, Amsterdam University Medical Centers, Vrije Universiteit and Amsterdam Neuroscience, Amsterdam, Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University, Amsterdam, Netherlands
| | - Gino V. Hu-A-Ng
- Child Neurology, Emma Children’s Hospital, Amsterdam Leukodystrophy Center, Amsterdam University Medical Centers, Vrije Universiteit and Amsterdam Neuroscience, Amsterdam, Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University, Amsterdam, Netherlands
| | - Kathryn A. Glaittli
- Department of Pediatrics, University of Utah, Salt Lake City, UT, United States
| | - Tamara J. Stevenson
- Department of Pediatrics, University of Utah, Salt Lake City, UT, United States
| | - Marleen Huijsmans
- Child Neurology, Emma Children’s Hospital, Amsterdam Leukodystrophy Center, Amsterdam University Medical Centers, Vrije Universiteit and Amsterdam Neuroscience, Amsterdam, Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University, Amsterdam, Netherlands
| | - Truus E. M. Abbink
- Child Neurology, Emma Children’s Hospital, Amsterdam Leukodystrophy Center, Amsterdam University Medical Centers, Vrije Universiteit and Amsterdam Neuroscience, Amsterdam, Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University, Amsterdam, Netherlands
| | - Marjo S. van der Knaap
- Child Neurology, Emma Children’s Hospital, Amsterdam Leukodystrophy Center, Amsterdam University Medical Centers, Vrije Universiteit and Amsterdam Neuroscience, Amsterdam, Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University, Amsterdam, Netherlands
| | - Joshua L. Bonkowsky
- Department of Pediatrics, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
4
|
Zhao Y, Yu Z, Song Y, Fan L, Lei T, He Y, Hu S. The Regulatory Network of CREB3L1 and Its Roles in Physiological and Pathological Conditions. Int J Med Sci 2024; 21:123-136. [PMID: 38164349 PMCID: PMC10750332 DOI: 10.7150/ijms.90189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 10/26/2023] [Indexed: 01/03/2024] Open
Abstract
CREB3 subfamily belongs to the bZIP transcription factor family and comprises five members. Normally they are located on the endoplasmic reticulum (ER) membranes and proteolytically activated through RIP (regulated intramembrane proteolysis) on Golgi apparatus to liberate the N-terminus to serve as transcription factors. CREB3L1 acting as one of them transcriptionally regulates the expressions of target genes and exhibits distinct functions from the other members of CREB3 family in eukaryotes. Physiologically, CREB3L1 involves in the regulation of bone morphogenesis, neurogenesis, neuroendocrine, secretory cell differentiation, and angiogenesis. Pathologically, CREB3L1 implicates in the modulation of osteogenesis imperfecta, low grade fibro myxoid sarcoma (LGFMS), sclerosing epithelioid fibrosarcoma (SEF), glioma, breast cancer, thyroid cancer, and tissue fibrosis. This review summarizes the upstream and downstream regulatory network of CREB3L1 and thoroughly presents our current understanding of CREB3L1 research progress in both physiological and pathological conditions with special focus on the novel findings of CREB3L1 in cancers.
Collapse
Affiliation(s)
- Ying Zhao
- Department of Anesthesiology and Perioperative Medicine, Xi'an People's Hospital (Xi'an Fourth Hospital), Northwest University, Xi'an, Shaanxi Province, China
| | - Zhou Yu
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Yajuan Song
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Liumeizi Fan
- Department of Anesthesiology and Perioperative Medicine, Xi'an People's Hospital (Xi'an Fourth Hospital), Northwest University, Xi'an, Shaanxi Province, China
| | - Ting Lei
- Department of Anesthesiology and Perioperative Medicine, Xi'an People's Hospital (Xi'an Fourth Hospital), Northwest University, Xi'an, Shaanxi Province, China
| | - Yinbin He
- Department of Anesthesiology and Perioperative Medicine, Xi'an People's Hospital (Xi'an Fourth Hospital), Northwest University, Xi'an, Shaanxi Province, China
| | - Sheng Hu
- Department of Anesthesiology and Perioperative Medicine, Xi'an People's Hospital (Xi'an Fourth Hospital), Northwest University, Xi'an, Shaanxi Province, China
| |
Collapse
|
5
|
Malintha GHT, Celino-Brady FT, Stoytcheva ZR, Seale AP. Osmosensitive transcription factors in the prolactin cell of a euryhaline teleost. Comp Biochem Physiol A Mol Integr Physiol 2023; 278:111356. [PMID: 36535574 PMCID: PMC9911408 DOI: 10.1016/j.cbpa.2022.111356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/14/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
In euryhaline fish, prolactin (Prl) plays a key role in freshwater acclimation. Prl release in the rostral pars distalis (RPD) of the pituitary is directly stimulated by a fall in extracellular osmolality. Recently, we identified several putative transcription factor modules (TFM) predicted to bind to the promoter regions of the two prl isoforms in Mozambique tilapia, Oreochromis mossambicus. We characterized the effects of extracellular osmolality on the activation of these TFMs from RPDs, in vivo and in vitro. OCT1_PIT1 01, CEBP_CEBP 01 and BRNF_RXRF 01 were significantly activated in freshwater (FW)- acclimated tilapia RPDs while SORY_PAX3 02 and SP1F_SP1F 06, SP1F_SP1F 09 were significantly activated in seawater (SW)- counterparts. Short-term incubation of SW- acclimated tilapia RPDs in hyposmotic media (280 mOsm/kg) resulted in activation of CAAT_AP1F 01, OCT1_CEBP 01, AP1F_SMAD 01, GATA_SP1F 01, SORY_PAX6 01 and CREB_EBOX 02, EBOX_AP2F 01, EBOX_MITF 01 while hyperosmotic media (420 mOsm/kg) activated SORY_PAX3 02 and AP1F_SMAD 01 in FW- tilapia. Short-term incubation of dispersed Prl cells from FW- acclimated fish exposed to hyperosmotic conditions decreased pou1f1, pou2f1b, stat3, stat1a and ap1b1 expression, while pou1f1, pou2f1b, and stat3 were inversely related to osmolality in their SW- counterparts. Further, in Prl cells of SW- tilapia, creb3l1 was suppressed in hyposmotic media. Collectively, our results indicate that multiple TFMs are involved in regulating prl transcription at different acclimation salinities and, together, they modulate responses of Prl cells to changes in extracellular osmolality. These responses reflect the complexity of osmosensitive molecular regulation of the osmoreceptive Prl cell of a euryhaline teleost.
Collapse
Affiliation(s)
- G H T Malintha
- Department of Human Nutrition, Food and Animal Sciences, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA
| | - Fritzie T Celino-Brady
- Department of Human Nutrition, Food and Animal Sciences, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA
| | - Zoia R Stoytcheva
- Department of Human Nutrition, Food and Animal Sciences, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA
| | - Andre P Seale
- Department of Human Nutrition, Food and Animal Sciences, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA.
| |
Collapse
|
6
|
Greenwood MP, Greenwood M, Bárez-López S, Hawkins JW, Short K, Tatovic D, Murphy D. Osmoadaptive GLP-1R signalling in hypothalamic neurones inhibits antidiuretic hormone synthesis and release. Mol Metab 2023; 70:101692. [PMID: 36773648 PMCID: PMC9969259 DOI: 10.1016/j.molmet.2023.101692] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
OBJECTIVES The excessive release of the antidiuretic hormone vasopressin is implicated in many diseases including cardiovascular disease, diabetes, obesity, and metabolic syndrome. Once thought to be elevated as a consequence of diseases, data now supports a more causative role. We have previously identified CREB3L1 as a transcription factor that co-ordinates vasopressin synthesis and release in the hypothalamus. The objective here was to identify mechanisms orchestrated by CREB3L1 that co-ordinate vasopressin release. METHODS We mined Creb3l1 knockdown SON RNA-seq data to identify downstream target genes. We proceeded to investigate the expression of these genes and associated pathways in the supraoptic nucleus of the hypothalamus in response to physiological and pharmacological stimulation. We used viruses to selectively knockdown gene expression in the supraoptic nucleus and assessed physiological and metabolic parameters. We adopted a phosphoproteomics strategy to investigate mechanisms that facilitate hormone release by the pituitary gland. RESULTS We discovered glucagon like peptide 1 receptor (Glp1r) as a downstream target gene and found increased expression in stimulated vasopressin neurones. Selective knockdown of supraoptic nucleus Glp1rs resulted in decreased food intake and body weight. Treatment with GLP-1R agonist liraglutide decreased vasopressin synthesis and release. Quantitative phosphoproteomics of the pituitary neurointermediate lobe revealed that liraglutide initiates hyperphosphorylation of presynapse active zone proteins that control vasopressin exocytosis. CONCLUSION In summary, we show that GLP-1R signalling inhibits the vasopressin system. Our data advises that hydration status may influence the pharmacodynamics of GLP-1R agonists so should be considered in current therapeutic strategies.
Collapse
Affiliation(s)
- Michael P Greenwood
- Molecular Neuroendocrinology Research Group, Bristol Medical School: Translational Health Sciences, University of Bristol, Dorothy Hodgkin Building, Bristol, United Kingdom.
| | - Mingkwan Greenwood
- Molecular Neuroendocrinology Research Group, Bristol Medical School: Translational Health Sciences, University of Bristol, Dorothy Hodgkin Building, Bristol, United Kingdom
| | - Soledad Bárez-López
- Molecular Neuroendocrinology Research Group, Bristol Medical School: Translational Health Sciences, University of Bristol, Dorothy Hodgkin Building, Bristol, United Kingdom
| | - Joe W Hawkins
- Molecular Neuroendocrinology Research Group, Bristol Medical School: Translational Health Sciences, University of Bristol, Dorothy Hodgkin Building, Bristol, United Kingdom
| | - Katherine Short
- Molecular Neuroendocrinology Research Group, Bristol Medical School: Translational Health Sciences, University of Bristol, Dorothy Hodgkin Building, Bristol, United Kingdom
| | - Danijela Tatovic
- Diabetes and Endocrinology Department, North Bristol NHS Trust, Bristol, United Kingdom
| | - David Murphy
- Molecular Neuroendocrinology Research Group, Bristol Medical School: Translational Health Sciences, University of Bristol, Dorothy Hodgkin Building, Bristol, United Kingdom
| |
Collapse
|
7
|
Hitrec T, Petit C, Cryer E, Muir C, Tal N, Fustin JM, Hughes AT, Piggins HD. Timed exercise stabilizes behavioral rhythms but not molecular programs in the brain's suprachiasmatic clock. iScience 2023; 26:106002. [PMID: 36866044 PMCID: PMC9971895 DOI: 10.1016/j.isci.2023.106002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/25/2022] [Accepted: 01/13/2023] [Indexed: 01/20/2023] Open
Abstract
Timed daily access to a running-wheel (scheduled voluntary exercise; SVE) synchronizes rodent circadian rhythms and promotes stable, 24h rhythms in animals with genetically targeted impairment of neuropeptide signaling (Vipr2 -/- mice). Here we used RNA-seq and/or qRT-PCR to assess how this neuropeptide signaling impairment as well as SVE shapes molecular programs in the brain clock (suprachiasmatic nuclei; SCN) and peripheral tissues (liver and lung). Compared to Vipr2 +/+ animals, the SCN transcriptome of Vipr2 -/- mice showed extensive dysregulation which included core clock components, transcription factors, and neurochemicals. Furthermore, although SVE stabilized behavioral rhythms in these animals, the SCN transcriptome remained dysregulated. The molecular programs in the lung and liver of Vipr2 -/- mice were partially intact, although their response to SVE differed to that of these peripheral tissues in the Vipr2 +/+ mice. These findings highlight that SVE can correct behavioral abnormalities in circadian rhythms without causing large scale alterations to the SCN transcriptome.
Collapse
Affiliation(s)
- Timna Hitrec
- School of Physiology, Pharmacology, and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol BS8 1TD, UK
| | - Cheryl Petit
- School of Medical Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester M13 9PT, UK
| | - Emily Cryer
- School of Biological Sciences, Faculty of Life Sciences, University of Bristol, Bristol BS8 1TQ, UK
| | - Charlotte Muir
- School of Physiology, Pharmacology, and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol BS8 1TD, UK
| | - Natalie Tal
- School of Medical Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester M13 9PT, UK
| | - Jean-Michel Fustin
- School of Medical Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester M13 9PT, UK
| | - Alun T.L. Hughes
- School of Medical Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester M13 9PT, UK,School of Biological and Environmental Sciences, Faculty of Science, Liverpool John Moores University, Liverpool L3 3AF, UK,Corresponding author
| | - Hugh D. Piggins
- School of Physiology, Pharmacology, and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol BS8 1TD, UK,School of Medical Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester M13 9PT, UK,Corresponding author
| |
Collapse
|
8
|
Wan MX, Huang XJ, Li X, Suan J, Xu L. Integrating network pharmacology and experimental verification to explore the mechanism of puerarin against oliguria in acute alcoholism. Front Pharmacol 2022; 13:1006660. [DOI: 10.3389/fphar.2022.1006660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose: This study was designed to evaluate the pharmacological mechanisms of puerarin against oliguria in acute alcoholism via network pharmacology analysis combined with experimental verification.Methods: First, this study established an acute alcoholism rat model, compared the changes in urine volume in each group, and observed the therapeutic effect of puerarin by H&E staining, biochemical, RT-qPCR, and immunohistochemical analyses. Second, puerarin-related targets were searched in TCMS, PubChem, CNKI, Wanfang, PubMed, and GeenMedical Academic databases. Also, potential disease targets were obtained from the GeneCards, MalaCards, and NCBI-gene databases and genes with puerarin target gene intersections were screened out. The interaction network for co-predicted targets was obtained using the STRING database, and the core targets were imported into Cytoscape for visualization using DAVID Bioinformatics Resources 6.8. The essential genes were subjected to the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) pathway enrichment analyses to predict related biological processes and significant signaling pathways. Finally, molecular docking was used to examine the interaction of puerarin with key targets, and the core targets were validated further by RT-qPCR and Western blotting.Results: Compared to the model group, the urine volume of the rats was significantly increased after puerarin treatment, and the levels of anti-diuretic hormone (ADH) and aquaporin 2 (AQP2) expression were decreased. Searching the intersection of puerarin and acute alcoholism targets yielded 214 potential targets, 837 biological processes, and 185 signaling pathways involved. The molecular docking results indicated a good affinity between puerarin and key targets (cyclic adenosine monophosphate (cAMP), protein kinase A (PKA), cAMP-response element-binding protein (CREB), and c-Fos). RT-qPCR and Western blotting further verified that puerarin could down-regulate the expression of cAMP/PKA/CREB/c-Fos.Conclusion: This study identified the potential targets of puerarin against oliguria in rats with acute alcoholism using network pharmacology and animal experiments. The mechanism may be closely related to the cAMP signaling pathway.
Collapse
|
9
|
Lin P, Gillard BT, Pauža AG, Iraizoz FA, Ali MA, Mecawi AS, Alim FZD, Romanova EV, Burger PA, Greenwood MP, Adem A, Murphy D. Transcriptomic plasticity of the hypothalamic osmoregulatory control centre of the Arabian dromedary camel. Commun Biol 2022; 5:1008. [PMID: 36151304 PMCID: PMC9508118 DOI: 10.1038/s42003-022-03857-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/17/2022] [Indexed: 11/08/2022] Open
Abstract
Water conservation is vital for life in the desert. The dromedary camel (Camelus dromedarius) produces low volumes of highly concentrated urine, more so when water is scarce, to conserve body water. Two hormones, arginine vasopressin and oxytocin, both produced in the supraoptic nucleus, the core hypothalamic osmoregulatory control centre, are vital for this adaptive process, but the mechanisms that enable the camel supraoptic nucleus to cope with osmotic stress are not known. To investigate the central control of water homeostasis in the camel, we first build three dimensional models of the camel supraoptic nucleus based on the expression of the vasopressin and oxytocin mRNAs in order to facilitate sampling. We then compare the transcriptomes of the supraoptic nucleus under control and water deprived conditions and identified genes that change in expression due to hyperosmotic stress. By comparing camel and rat datasets, we have identified common elements of the water deprivation transcriptomic response network, as well as elements, such as extracellular matrix remodelling and upregulation of angiotensinogen expression, that appear to be unique to the dromedary camel and that may be essential adaptations necessary for life in the desert.
Collapse
Affiliation(s)
- Panjiao Lin
- Molecular Neuroendocrinology Research Group, Bristol Medical School: Translational Health Sciences, University of Bristol, Dorothy Hodgkin Building, Bristol, UK
| | - Benjamin T Gillard
- Molecular Neuroendocrinology Research Group, Bristol Medical School: Translational Health Sciences, University of Bristol, Dorothy Hodgkin Building, Bristol, UK
| | - Audrys G Pauža
- Molecular Neuroendocrinology Research Group, Bristol Medical School: Translational Health Sciences, University of Bristol, Dorothy Hodgkin Building, Bristol, UK
- Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Fernando A Iraizoz
- Molecular Neuroendocrinology Research Group, Bristol Medical School: Translational Health Sciences, University of Bristol, Dorothy Hodgkin Building, Bristol, UK
- Gene Therapy and Regulation of Gene Expression Program, Centre for Applied Medical Research-CIMA, University of Navarra, Navarra, Spain
| | - Mahmoud A Ali
- Department of Pharmacology, College of Medicine & Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Andre S Mecawi
- Laboratory of Molecular Neuroendocrinology, Department of Biophysics, Paulista School of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Fatma Z Djazouli Alim
- University Blida 1, Faculty of Nature and Life Sciences, Department of Biotechnology and Agroecology, Blida, Algeria
| | - Elena V Romanova
- Department of Chemistry and the Beckman Institute, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Pamela A Burger
- Department of Integrative Biology and Evolution, Research Institute of Wildlife Ecology, Vetmeduni Vienna, Vienna, Austria
| | - Michael P Greenwood
- Molecular Neuroendocrinology Research Group, Bristol Medical School: Translational Health Sciences, University of Bristol, Dorothy Hodgkin Building, Bristol, UK
| | - Abdu Adem
- Department of Pharmacology, College of Medicine & Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates.
- Department of Pharmacology, Khalifa University, Abu Dhabi, United Arab Emirates.
| | - David Murphy
- Molecular Neuroendocrinology Research Group, Bristol Medical School: Translational Health Sciences, University of Bristol, Dorothy Hodgkin Building, Bristol, UK.
| |
Collapse
|
10
|
Greenwood M, Gillard BT, Farrukh R, Paterson A, Althammer F, Grinevich V, Murphy D, Greenwood MP. Transcription factor Creb3l1 maintains proteostasis in neuroendocrine cells. Mol Metab 2022; 63:101542. [PMID: 35803572 PMCID: PMC9294333 DOI: 10.1016/j.molmet.2022.101542] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/29/2022] [Accepted: 07/03/2022] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVES Dynamic changes to neuropeptide hormone synthesis and secretion by hypothalamic neuroendocrine cells is essential to ensure metabolic homeostasis. The specialised molecular mechanisms that allow neuroendocrine cells to synthesise and secrete vast quantities of neuropeptides remain ill defined. The objective of this study was to identify novel genes and pathways controlled by transcription factor and endoplasmic reticulum stress sensor Creb3l1 which is robustly activated in hypothalamic magnocellular neurones in response to increased demand for protein synthesis. METHODS We adopted a multiomic strategy to investigate specific roles of Creb3l1 in rat magnocellular neurones. We first performed chromatin immunoprecipitation followed by genome sequencing (ChIP-seq) to identify Creb3l1 genomic targets and then integrated this data with RNA sequencing data from physiologically stimulated and Creb3l1 knockdown magnocellular neurones. RESULTS The data converged on Creb3l1 targets that code for ribosomal proteins and endoplasmic reticulum proteins crucial for the maintenance of cellular proteostasis. We validated genes that compose the PERK arm of the unfolded protein response pathway including Eif2ak3, Eif2s1, Atf4 and Ddit3 as direct Creb3l1 targets. Importantly, knockdown of Creb3l1 in the hypothalamus led to a dramatic depletion in neuropeptide synthesis and secretion. The physiological outcomes from studies of paraventricular and supraoptic nuclei Creb3l1 knockdown animals were changes to food and water consumption. CONCLUSION Collectively, our data identify Creb3l1 as a comprehensive controller of the PERK signalling pathway in magnocellular neurones in response to physiological stimulation. The broad regulation of neuropeptide synthesis and secretion by Creb3l1 presents a new therapeutic strategy for metabolic diseases.
Collapse
Affiliation(s)
- Mingkwan Greenwood
- Molecular Neuroendocrinology Research Group, Bristol Medical School: Translational Health Sciences, University of Bristol, Dorothy Hodgkin Building, Bristol, United Kingdom.
| | - Benjamin T Gillard
- Molecular Neuroendocrinology Research Group, Bristol Medical School: Translational Health Sciences, University of Bristol, Dorothy Hodgkin Building, Bristol, United Kingdom.
| | - Rizwan Farrukh
- Molecular Neuroendocrinology Research Group, Bristol Medical School: Translational Health Sciences, University of Bristol, Dorothy Hodgkin Building, Bristol, United Kingdom.
| | - Alex Paterson
- Molecular Neuroendocrinology Research Group, Bristol Medical School: Translational Health Sciences, University of Bristol, Dorothy Hodgkin Building, Bristol, United Kingdom.
| | - Ferdinand Althammer
- Institute of Human Genetics, University Hospital Heidelberg, Heidelberg, Germany.
| | - Valery Grinevich
- Department of Neuropeptide Research in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany; Center for Neuroinflammation and Cardiometabolic Diseases, Georgia State University, Atlanta, GA, USA.
| | - David Murphy
- Molecular Neuroendocrinology Research Group, Bristol Medical School: Translational Health Sciences, University of Bristol, Dorothy Hodgkin Building, Bristol, United Kingdom.
| | - Michael P Greenwood
- Molecular Neuroendocrinology Research Group, Bristol Medical School: Translational Health Sciences, University of Bristol, Dorothy Hodgkin Building, Bristol, United Kingdom.
| |
Collapse
|
11
|
Bourouti KE, Konstantaros C, Gaitanaki C, Aggeli IK. Severe Hyperosmotic Stress Issues an ER Stress-Mediated “Death Sentence” in H9c2 Cells, with p38-MAPK and Autophagy “Coming to the Rescue”. Biomedicines 2022; 10:biomedicines10061421. [PMID: 35740442 PMCID: PMC9219732 DOI: 10.3390/biomedicines10061421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 11/16/2022] Open
Abstract
With several cardiovascular pathologies associated with osmotic perturbations, researchers are in pursuit of identifying the signaling sensors, mediators and effectors involved, aiming at formulating novel diagnostic and therapeutic strategies. In the present study, H9c2 cells were treated with 0.5 M sorbitol to elicit hyperosmotic stress. Immunoblotting as well as cell viability analyses revealed the simultaneous but independent triggering of multiple signaling pathways. In particular, our findings demonstrated the phosphorylation of eukaryotic translation initiation factor 2 (eIF2α) and upregulation of the immunoglobulin heavy-chain-binding protein (BiP) expression, indicating the onset of the Integrated Stress Response (IRS) and endoplasmic reticulum stress (ERS), respectively. In addition, autophagy was also induced, evidenced by the enhancement of Beclin-1 protein expression and of AMP-dependent kinase (AMPK) and Raptor phosphorylation levels. The involvement of a Na+/H+ exchanger-1 (NHE-1) as well as NADPH oxidase (Nox) in 0.5 M sorbitol-induced eIF2α phosphorylation was also indicated. Of note, while inhibition of ERS partially alleviated the detrimental effect of 0.5 M sorbitol on H9c2 cellular viability, attenuation of p38-MAPK activity and late phase autophagy further mitigated it. Deciphering the mode of these pathways’ potential interactions and of their complications may contribute to the quest for effective clinical interventions against associated cardiovascular diseases.
Collapse
|
12
|
Bárez-López S, Konopacka A, Cross SJ, Greenwood M, Skarveli M, Murphy D, Greenwood MP. Transcriptional and Post-Transcriptional Regulation of Oxytocin and Vasopressin Gene Expression by CREB3L1 and CAPRIN2. Neuroendocrinology 2022; 112:1058-1077. [PMID: 35051932 DOI: 10.1159/000522088] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/06/2022] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Water homoeostasis is achieved by secretion of the peptide hormones arginine vasopressin (AVP) and oxytocin (OXT) that are synthesized by separate populations of magnocellular neurones (MCNs) in the supraoptic and paraventricular (PVN) nuclei of the hypothalamus. To further understand the molecular mechanisms that facilitate biosynthesis of AVP and OXT by MCNs, we have explored the spatiotemporal dynamic, both mRNA and protein expression, of two genes identified by our group as being important components of the osmotic defence response: Caprin2 and Creb3l1. METHODS By RNA in situ hybridization and immunohistochemistry, we have characterized the expression of Caprin2 and Creb3l1 in MCNs in the basal state, in response to dehydration, and during rehydration in the rat. RESULTS We found that Caprin2 and Creb3l1 are expressed in AVP and OXT MCNs and in response to dehydration expression increases in both MCN populations. Protein levels mirror the increase in transcript levels for both CREB3L1 and CAPRIN2. In view of increased CREB3L1 and CAPRIN2 expression in OXT neurones by dehydration, we explored OXT-specific functions for these genes. By luciferase assays, we demonstrate that CREB3L1 may be a transcription factor regulating Oxt gene expression. By RNA immunoprecipitation assays and Northern blot analysis of Oxt mRNA poly(A) tails, we have found that CAPRIN2 binds to Oxt mRNA and regulates its poly(A) tail length. Moreover, in response to dehydration, Caprin2 mRNA is subjected to nuclear retention, possibly to regulate Caprin2 mRNA availability in the cytoplasm. CONCLUSION The exploration of the spatiotemporal dynamics of Creb3l1- and Caprin2-encoded mRNAs and proteins has provided novel insights beyond the AVP-ergic system, revealing novel OXT-ergic system roles of these genes in the osmotic defence response.
Collapse
Affiliation(s)
- Soledad Bárez-López
- Molecular Neuroendocrinology Research Group, Bristol Medical School, Translational Health Sciences, University of Bristol, Dorothy Hodgkin Building, Bristol, UK
| | - Agnieszka Konopacka
- Molecular Neuroendocrinology Research Group, Bristol Medical School, Translational Health Sciences, University of Bristol, Dorothy Hodgkin Building, Bristol, UK
| | - Stephen J Cross
- Wolfson Bioimaging Facility, Biomedical Sciences Building, University of Bristol, Bristol, UK
| | - Mingkwan Greenwood
- Molecular Neuroendocrinology Research Group, Bristol Medical School, Translational Health Sciences, University of Bristol, Dorothy Hodgkin Building, Bristol, UK
| | - Marina Skarveli
- Molecular Neuroendocrinology Research Group, Bristol Medical School, Translational Health Sciences, University of Bristol, Dorothy Hodgkin Building, Bristol, UK
| | - David Murphy
- Molecular Neuroendocrinology Research Group, Bristol Medical School, Translational Health Sciences, University of Bristol, Dorothy Hodgkin Building, Bristol, UK
| | - Michael P Greenwood
- Molecular Neuroendocrinology Research Group, Bristol Medical School, Translational Health Sciences, University of Bristol, Dorothy Hodgkin Building, Bristol, UK
| |
Collapse
|
13
|
Ida Y, Umetsu A, Furuhashi M, Watanabe M, Hikage F, Ohguro H. The EP2 agonist, omidenepag, alters the physical stiffness of 3D spheroids prepared from human corneal stroma fibroblasts differently depending on the osmotic pressure. FASEB J 2021; 36:e22067. [PMID: 34914140 DOI: 10.1096/fj.202101263r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/23/2021] [Accepted: 11/10/2021] [Indexed: 11/11/2022]
Abstract
The objective of the current study was to examine the drug-induced effects of the EP2 agonist, omidenapag (OMD), on human corneal stroma, two- and three-dimensional (2D and 3D) cultures of human corneal stroma fibroblasts (HCSFs). The drug-induced effects on 2D monolayers and 3D spheroids were characterized by examining the ultrastructures by scanning electron microscope (SEM), transendothelial electrical resistance (TEER) measurements, and fluorescein isothiocyanate (FITC)-dextran permeability. The physical properties of 3D spheroids with respect to size and stiffness were also examined. In addition, the gene expressions of extracellular matrix (ECM) molecules, including collagen (COL) 1, 4, and 6, and fibronectin (FN), a tissue inhibitor of metalloproteinase (TIMP) 1-4, matrix metalloproteinase (MMP) 2, 9, and 14, aquaporin1 (AQP1), and several endoplasmic reticulum (ER) stress-related factors were evaluated. In the 2D HCSFs, OMD induced (1) a significant increase in ECM deposits, as evidenced by SEM, the mRNA expression of COL4 and FN, and (2) a decrease in TEER values and a concentration-dependent increase in FITC-dextran permeability. In the case of 3D spheroids, OMD had no effect on size but a substantial increase in stiffness was observed. Furthermore, such OMD-induced effects on stiffness were dramatically modulated by the osmotic pressure of the system. In contrast to the above 2D cultures, among the ECM molecules and the modulators of 3D spheroids, namely, TIMPS and MMPs, the down-regulation of COL1, TIMP1 and 2 and the up-regulation of MMP9 were observed. Interestingly, such diversity in terms of OMD-induced gene expressions between 2D and 3D cultures was also recognized in AQP1 (2D; no significant change, 3D; significant up-regulation) and ER stress-related genes. The findings presented herein suggest that the EP2 agonist, OMD, alters the physical stiffness of 3D spheroids obtained from human corneal stroma fibroblasts and this alteration is dependent on the osmotic pressures. 2D and 3D cell cultures may be useful for evaluating the drug induced effects of OMD toward human corneal stroma.
Collapse
Affiliation(s)
- Yosuke Ida
- Department of Ophthalmology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Araya Umetsu
- Department of Ophthalmology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Masato Furuhashi
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Megumi Watanabe
- Department of Ophthalmology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Fumihito Hikage
- Department of Ophthalmology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hiroshi Ohguro
- Department of Ophthalmology, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
14
|
Yasoob TB, Khalid AR, Zhang Z, Zhu X, Hang S. Liver transcriptome of rabbits supplemented with oral Moringa oleifera leaf powder under heat stress is associated with modulation of lipid metabolism and up-regulation of genes for thermo-tolerance, antioxidation and immunity. Nutr Res 2021; 99:25-39. [DOI: 10.1016/j.nutres.2021.09.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/24/2021] [Accepted: 09/25/2021] [Indexed: 12/19/2022]
|
15
|
Impact of high salt diets on CHOP-mediated apoptosis and renal fibrosis in a rat model. Mol Biol Rep 2021; 48:6423-6433. [PMID: 34436723 DOI: 10.1007/s11033-021-06644-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 08/11/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Prolonged and excessive salt intake accelerates oxidative stress in kidney tissues, which brings about ER stress. The PERK/ATF4/CHOP/BCL-2 signaling pathway has an essential role in ER stress-induced apoptosis. The present study aimed to investigate the effect of high salt diets on the development of renal fibrosis through CHOP-mediated apoptosis. METHODS AND RESULTS Twenty-five male Wistar rats were randomly divided into five groups (n = 5 each). Groups 1-5 were treated with 0%, 0.5%, 1%, 1.2%, 1.5% of NaCl dissolved in distilled water, respectively, for 8 weeks. To detect the degree of renal tubular damage, urinary KIM-1 was measured. The slides of renal tissues were stained via Masson's Trichrome staining methods for fibrosis detection. The relative gene expression of ATF4, CHOP, and BCl-2 in renal tissues were analyzed using the qRT-PCR method. The results revealed no significant difference between the urea, creatinine, and urine flow rate of the rats receiving different concentrations of NaCl (groups 2-5) and those of the control group (group 1). The rats treated with 1.5% NaCl (group 5) showed significant elevations in urinary KIM-1 and the mRNA level of CHOP compared to the control group. Mild renal fibrosis was also observed in group 5. CONCLUSIONS Excessive salt intake leads to fibrosis as it induces the PERK/ATF4/CHOP/BCL-2 signaling pathway in renal tissues. KIM-1 is detectable in urine before the impairment of renal function which can be used as a diagnostic marker to prevent the development of progressive renal failure.
Collapse
|
16
|
Islam MB, Chowdhury UN, Nain Z, Uddin S, Ahmed MB, Moni MA. Identifying molecular insight of synergistic complexities for SARS-CoV-2 infection with pre-existing type 2 diabetes. Comput Biol Med 2021; 136:104668. [PMID: 34340124 PMCID: PMC8299293 DOI: 10.1016/j.compbiomed.2021.104668] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/30/2021] [Accepted: 07/17/2021] [Indexed: 01/07/2023]
Abstract
The ongoing COVID-19 outbreak, caused by SARS-CoV-2, has posed a massive threat to global public health, especially to people with underlying health conditions. Type 2 diabetes (T2D) is lethal comorbidity of COVID-19. However, its pathogenetic link remains unclear. This research aims to determine the genetic factors and processes contributing to the synergistic severity of SARS-CoV-2 infection among T2D patients through bioinformatics approaches. We analyzed two sets of transcriptomic data of SARS-CoV-2 infection obtained from lung epithelium cells and PBMCs, and two sets of T2D data from pancreatic islet cells and PBMCs to identify the associated differentially expressed genes (DEGs) followed by their functional enrichment analyses in terms of protein-protein interaction (PPI) to detect hub-proteins and associated comorbidities, transcription factors (TFs), microRNAs (miRNAs) as well as the potential drug candidates. In PPI analysis, four potential hub-proteins (i.e., BIRC3, C3, MME, and IL1B) were identified among 25 DEGs shared between the disease pair. Enrichment analyses using the mutually overlapped DEGs revealed the most prevalent GO and cell signalling pathways, including TNF signalling, cytokine-cytokine receptor interaction, and IL-17 signalling, which are related to cytokine activities. Furthermore, as significant TFs, we identified IRF1, KLF11, FOSL1, and CREB3L1 while miRNAs including miR-1-3p, 34a-5p, 16–5p, 155–5p, 20a-5p, and let-7b-5p were found to be noteworthy. The findings illustrated the significant association between COVID-19 and T2D at the molecular level. These genetic determinants can further be explored for their specific roles in disease progression and therapeutic intervention, while significant pathways can also be studied as molecular checkpoints. Finally, the identified drug candidates may be evaluated for their potency to minimize the severity of COVID-19 patients with pre-existing T2D.
Collapse
Affiliation(s)
- M Babul Islam
- Department of Electrical and Electronic Engineering, University of Rajshahi, Rajshahi, Bangladesh
| | - Utpala Nanda Chowdhury
- Department of Computer Science and Engineering, University of Rajshahi, Rajshahi, Bangladesh
| | - Zulkar Nain
- Department of Biotechnology and Genetic Engineering, Islamic University, Kushtia, Bangladesh
| | - Shahadat Uddin
- Complex Systems Research Group & Project Management Program, Faculty of Engineering, The University of Sydney, NSW, 2006, Australia
| | - Mohammad Boshir Ahmed
- School of Material Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Mohammad Ali Moni
- Healthy Ageing Theme, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia; WHO Collaborating Centre on eHealth, UNSW Digital Health, School of Public Health and Community Medicine, Faculty of Medicine, UNSW Sydney, NSW, 2052, Australia.
| |
Collapse
|
17
|
Pauža AG, Mecawi AS, Paterson A, Hindmarch CCT, Greenwood M, Murphy D, Greenwood MP. Osmoregulation of the transcriptome of the hypothalamic supraoptic nucleus: A resource for the community. J Neuroendocrinol 2021; 33:e13007. [PMID: 34297454 DOI: 10.1111/jne.13007] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/25/2021] [Accepted: 06/20/2021] [Indexed: 01/13/2023]
Abstract
The hypothalamic supraoptic nucleus (SON) is a core osmoregulatory control centre that deciphers information about the metabolic state of the organism and orchestrates appropriate homeostatic (endocrine) and allostatic (behavioural) responses. We have used RNA sequencing to describe the polyadenylated transcriptome of the SON of the male Wistar Han rat. These data have been mined to generate comprehensive catalogues of functional classes of genes (enzymes, transcription factors, endogenous peptides, G protein coupled receptors, transporters, catalytic receptors, channels and other pharmacological targets) expressed in this nucleus in the euhydrated state, and that together form the basal substrate for its physiological interactions. We have gone on to show that fluid deprivation for 3 days (dehydration) results in changes in the expression levels of 2247 RNA transcripts, which have similarly been functionally catalogued, and further mined to describe enriched gene categories and putative regulatory networks (Regulons) that may have physiological importance in SON function related plasticity. We hope that the revelation of these genes, pathways and networks, most of which have no characterised roles in the SON, will encourage the neuroendocrine community to pursue new investigations into the new 'known-unknowns' reported in the present study.
Collapse
Affiliation(s)
- Audrys G Pauža
- Molecular Neuroendocrinology Research Group, Bristol Medical School: Translational Health Sciences, University of Bristol, Bristol, UK
| | - André Souza Mecawi
- Laboratory of Neuroendocrinology, Department of Biophysics, Paulista School of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Alex Paterson
- Molecular Neuroendocrinology Research Group, Bristol Medical School: Translational Health Sciences, University of Bristol, Bristol, UK
- Bristol Genomics Facility, University of Bristol, Bristol, UK
| | - Charles C T Hindmarch
- Queen's Cardiopulmonary Unit (QCPU), Department of Medicine, Translational Institute of Medicine (TIME), Queen's University, Kingston, ON, Canada
| | - Mingkwan Greenwood
- Molecular Neuroendocrinology Research Group, Bristol Medical School: Translational Health Sciences, University of Bristol, Bristol, UK
| | - David Murphy
- Molecular Neuroendocrinology Research Group, Bristol Medical School: Translational Health Sciences, University of Bristol, Bristol, UK
| | - Michael P Greenwood
- Molecular Neuroendocrinology Research Group, Bristol Medical School: Translational Health Sciences, University of Bristol, Bristol, UK
| |
Collapse
|
18
|
Regulation of Social Stress and Neural Degeneration by Activity-Regulated Genes and Epigenetic Mechanisms in Dopaminergic Neurons. Mol Neurobiol 2020; 57:4500-4510. [PMID: 32748368 PMCID: PMC7515954 DOI: 10.1007/s12035-020-02037-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/22/2020] [Indexed: 02/08/2023]
Abstract
Transcriptional and epigenetic regulation of both dopaminergic neurons and their accompanying glial cells is of great interest in the search for therapies for neurodegenerative disorders such as Parkinson’s disease (PD). In this review, we collate transcriptional and epigenetic changes identified in adult Drosophila melanogaster dopaminergic neurons in response to either prolonged social deprivation or social enrichment, and compare them with changes identified in mammalian dopaminergic neurons during normal development, stress, injury, and neurodegeneration. Surprisingly, a small set of activity-regulated genes (ARG) encoding transcription factors, and a specific pattern of epigenetic marks on gene promoters, are conserved in dopaminergic neurons over the long evolutionary period between mammals and insects. In addition to their classical function as immediate early genes to mark acute neuronal activity, these ARG transcription factors are repurposed in both insects and mammals to respond to chronic perturbations such as social enrichment, social stress, nerve injury, and neurodegeneration. We suggest that these ARG transcription factors and epigenetic marks may represent important targets for future therapeutic intervention strategies in various neurodegenerative disorders including PD.
Collapse
|
19
|
Burgos JI, Morell M, Mariángelo JIE, Vila Petroff M. Hyperosmotic stress promotes endoplasmic reticulum stress-dependent apoptosis in adult rat cardiac myocytes. Apoptosis 2020; 24:785-797. [PMID: 31309362 DOI: 10.1007/s10495-019-01558-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In different pathological situations, cardiac cells undergo hyperosmotic stress and cell shrinkage. This change in cellular volume has been associated with contractile dysfunction and cell death. However, the intracellular mechanisms involved in hyperosmotic stress-induced cell death have not been investigated in depth in adult cardiac myocytes. Given that osmotic stress has been shown to promote endoplasmic reticulum stress (ERS), a recognized trigger for apoptosis, we examined whether hyperosmotic stress triggers ERS in adult cardiac myocytes and if so whether this mechanism mediates hyperosmotic stress-induced cell death. Adult rat cardiomyocytes cultured overnight in a hypertonic solution (HS) containing mannitol as the osmolite, showed increased expression of ERS markers, GRP78, CHOP and cleaved-Caspase-12, compared with myocytes in isotonic solution (IS), suggesting that hyperosmotic stress induces ERS. In addition, HS significantly reduced cell viability and increased TUNEL staining and the expression of active Caspase-3, indicative of apoptosis. These effects were prevented with the addition of the ERS inhibitor, 4-PBA, indicating that hyperosmotic stress-induced apoptosis is mediated by ERS. Hyperosmotic stress-induced apoptosis was also prevented when cells were cultured in the presence of a Ca2+-chelating agent (EGTA) or the CaMKII inhibitor (KN93), suggesting that hyperosmotic stress-induced ERS is mediated by a Ca2+ and CaMKII-dependent mechanism. Similar results were observed when hyperosmotic stress was induced using glucose as the osmolite. We conclude that hyperosmotic stress promotes ERS by a CaMKII-dependent mechanism leading to apoptosis of adult cardiomyocytes. More importantly, we demonstrate that hyperosmotic stress-triggered ERS contributes to hyperglycemia-induced cell death.
Collapse
Affiliation(s)
- Juan Ignacio Burgos
- Centro de Investigaciones Cardiovasculares, CONICET La Plata, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, 60 y 120, 1900, La Plata, Argentina
| | - Malena Morell
- Centro de Investigaciones Cardiovasculares, CONICET La Plata, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, 60 y 120, 1900, La Plata, Argentina
| | - Juan Ignacio E Mariángelo
- Centro de Investigaciones Cardiovasculares, CONICET La Plata, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, 60 y 120, 1900, La Plata, Argentina
| | - Martin Vila Petroff
- Centro de Investigaciones Cardiovasculares, CONICET La Plata, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, 60 y 120, 1900, La Plata, Argentina.
| |
Collapse
|
20
|
Greenwood M, Paterson A, Rahman PA, Gillard BT, Langley S, Iwasaki Y, Murphy D, Greenwood MP. Transcription factor Creb3l1 regulates the synthesis of prohormone convertase enzyme PC1/3 in endocrine cells. J Neuroendocrinol 2020; 32:e12851. [PMID: 32319174 PMCID: PMC7359860 DOI: 10.1111/jne.12851] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 03/31/2020] [Accepted: 03/31/2020] [Indexed: 12/23/2022]
Abstract
Transcription factor cAMP responsive element-binding protein 3 like 1 (Creb3l1) is a non-classical endoplasmic reticulum stress molecule that is emerging as an important component for cellular homeostasis, particularly within cell types with high peptide secretory capabilities. We have previously shown that Creb3l1 serves an important role in body fluid homeostasis through its transcriptional control of the gene coding for antidiuretic hormone arginine vasopressin in the neuropeptide-rich magnocellular neurones of the supraoptic nucleus. In response to osmotic stimuli such as dehydration, vasopressin magnocellular neurones undergo remarkable transcriptome changes, including increased Creb3l1 expression, to ensure that the supply of vasopressin meets demand. To determine where else Creb3l1 fits into the secretory cell supply chain, we performed RNA-sequencing of Creb3l1 knockdown anterior pituitary mouse corticotroph cell line AtT20. The target chosen for further investigation was Pcsk1, which encodes proprotein convertase enzyme 1 (PC1/3). PC1/3 is crucial for processing of neuropeptides and peptide hormones such as pro-opiomelanocortin (POMC), proinsulin, proglucagon, vasopressin and oxytocin. Viral manipulations in supraoptic nuclei by over-expression of Creb3l1 increased Pcsk1, whereas Creb3l1 knockdown decreased Pcsk1 expression. In vitro promoter activity and binding studies showed that Creb3l1 was a transcription factor of the Pcsk1 gene binding directly to a G-box motif in the promoter. In the dehydrated rat anterior pituitary, Creb3l1 and Pcsk1 expression decreased in parallel compared to control, supporting our findings from manipulations in AtT20 cells and the supraoptic nucleus. No relationship was observed between Creb3l1 and Pcsk1 expression in the neurointermediate lobe of the pituitary, indicating a different mechanism of PC1/3 synthesis by these POMC-synthesising cells. Therefore, Creb3l1, by regulating the expression of Pcsk1, does not control the processing of POMC peptides in the intermediate lobe.
Collapse
Affiliation(s)
- Mingkwan Greenwood
- Translational Health SciencesBristol Medical SchoolUniversity of BristolBristolUK
| | - Alex Paterson
- Translational Health SciencesBristol Medical SchoolUniversity of BristolBristolUK
| | | | | | - Sydney Langley
- Translational Health SciencesBristol Medical SchoolUniversity of BristolBristolUK
| | | | - David Murphy
- Translational Health SciencesBristol Medical SchoolUniversity of BristolBristolUK
| | | |
Collapse
|
21
|
Ramachandran CD, Gholami K, Lam SK, Hoe SZ. A preliminary study of the effect of a high-salt diet on transcriptome dynamics in rat hypothalamic forebrain and brainstem cardiovascular control centers. PeerJ 2020; 8:e8528. [PMID: 32175184 PMCID: PMC7059759 DOI: 10.7717/peerj.8528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 01/07/2020] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND High dietary salt intake is strongly correlated with cardiovascular (CV) diseases and it is regarded as a major risk factor associated with the pathogenesis of hypertension. The CV control centres in the brainstem (the nucleus tractus solitarii (NTS) and the rostral ventrolateral medulla (RVLM)) and hypothalamic forebrain (the subfornical organ, SFO; the supraoptic nucleus, SON and the paraventricular nucleus, PVN) have critical roles in regulating CV autonomic motor outflows, and thus maintaining blood pressure (BP). Growing evidence has implicated autonomic regulatory networks in salt-sensitive HPN (SSH), but the genetic basis remains to be delineated. We hypothesized that the development and/ or maintenance of SSH is reliant on the change in the expression of genes in brain regions controlling the CV system. METHODOLOGY We used RNA-Sequencing (RNA-Seq) to describe the differential expression of genes in SFO, SON, PVN, NTS and RVLM of rats being chronically fed with high-salt (HS) diet. Subsequently, a selection of putatively regulated genes was validated with quantitative reverse transcription polymerase chain reaction (qRT-PCR) in both Spontaneously Hypertensive rats (SHRs) and Wistar Kyoto (WKY) rats. RESULTS The findings enabled us to identify number of differentially expressed genes in SFO, SON, PVN, NTS and RVLM; that are either up-regulated in both strains of rats (SON- Caprin2, Sctr), down-regulated in both strains of rats (PVN- Orc, Gkap1), up-regulated only in SHRs (SFO- Apopt1, Lin52, AVP, OXT; SON- AVP, OXT; PVN- Caprin2, Sclt; RVLM- A4galt, Slc29a4, Cmc1) or down-regulated only in SHRs (SON- Ndufaf2, Kcnv1; PVN- Pi4k2a; NTS- Snrpd2l, Ankrd29, St6galnac6, Rnf157, Iglon5, Csrnp3, Rprd1a; RVLM- Ttr, Faim). CONCLUSIONS These findings demonstrated the adverse effects of HS diet on BP, which may be mediated via modulating the signaling systems in CV centers in the hypothalamic forebrain and brainstem.
Collapse
Affiliation(s)
- Chitra Devi Ramachandran
- Department of Physiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Wilayah Perseketuan, Malaysia
| | - Khadijeh Gholami
- Department of Physiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Wilayah Perseketuan, Malaysia
- Human Biology Division, School of Medicine, International Medical University, Kuala Lumpur, Wilayah Perseketuan, Malaysia
| | - Sau Kuen Lam
- Department of Physiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Wilayah Perseketuan, Malaysia
- Department of Pre-Clinical Sciences, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Sungai Long, Selangor, Malaysia
| | - See Ziau Hoe
- Department of Physiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Wilayah Perseketuan, Malaysia
| |
Collapse
|
22
|
Sigdel A, Abdollahi-Arpanahi R, Aguilar I, Peñagaricano F. Whole Genome Mapping Reveals Novel Genes and Pathways Involved in Milk Production Under Heat Stress in US Holstein Cows. Front Genet 2019; 10:928. [PMID: 31636656 PMCID: PMC6788456 DOI: 10.3389/fgene.2019.00928] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 09/05/2019] [Indexed: 01/17/2023] Open
Abstract
Heat stress represents a major environmental factor that negatively affects the health and performance of dairy cows, causing huge economic losses to the dairy industry. Identifying and selecting animals that are thermotolerant is an attractive alternative for reducing the negative effects of heat stress on dairy cattle performance. As such, the objectives of the present study were to estimate genetic components of milk yield, fat yield, and protein yield considering heat stress and to perform whole-genome scans and a subsequent gene-set analysis for identifying candidate genes and functional gene-sets implicated in milk production under heat stress conditions. Data consisted of about 254k test-day records from 17,522 Holstein cows. Multi-trait repeatability test day models with random regressions on a function of temperature-humidity index (THI) values were used for genetic analyses. The models included herd-test-day and DIM classes as fixed effects, and general and thermotolerance additive genetic and permanent environmental as random effects. Notably, thermotolerance additive genetic variances for all milk traits increased across parities suggesting that cows become more sensitive to heat stress as they age. In addition, our study revealed negative genetic correlations between general and thermotolerance additive effects, ranging between −0.18 to −0.68 indicating that high producing cows are more susceptible to heat stress. The association analysis identified at least three different genomic regions on BTA5, BTA14, and BTA15 strongly associated with milk production under heat stress conditions. These regions harbor candidate genes, such as HSF1, MAPK8IP1, and CDKN1B that are directly involved in the cellular response to heat stress. Moreover, the gene-set analysis revealed several functional terms related to heat shock proteins, apoptosis, immune response, and oxidative stress, among others. Overall, the genes and pathways identified in this study provide a better understanding of the genetic architecture underlying dairy cow performance under heat stress conditions. Our findings point out novel opportunities for improving thermotolerance in dairy cattle through marker-assisted breeding.
Collapse
Affiliation(s)
- Anil Sigdel
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States
| | | | - Ignacio Aguilar
- Instituto Nacional de Investigación Agropecuaria, Canelones, Uruguay
| | - Francisco Peñagaricano
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States.,University of Florida Genetics Institute, University of Florida, Gainesville, FL, United States
| |
Collapse
|
23
|
Sampieri L, Di Giusto P, Alvarez C. CREB3 Transcription Factors: ER-Golgi Stress Transducers as Hubs for Cellular Homeostasis. Front Cell Dev Biol 2019; 7:123. [PMID: 31334233 PMCID: PMC6616197 DOI: 10.3389/fcell.2019.00123] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 06/17/2019] [Indexed: 12/21/2022] Open
Abstract
CREB3 family of transcription factors are ER localized proteins that belong to the bZIP family. They are transported from the ER to the Golgi, cleaved by S1P and S2P proteases and the released N-terminal domains act as transcription factors. CREB3 family members regulate the expression of a large variety of genes and according to their tissue-specific expression profiles they play, among others, roles in acute phase response, lipid metabolism, development, survival, differentiation, organelle autoregulation, and protein secretion. They have been implicated in the ER and Golgi stress responses as regulators of the cell secretory capacity and cell specific cargos. In this review we provide an overview of the diverse functions of each member of the family (CREB3, CREB3L1, CREB3L2, CREB3L3, CREB3L4) with special focus on their role in the central nervous system.
Collapse
Affiliation(s)
- Luciana Sampieri
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Córdoba, Argentina.,Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Pablo Di Giusto
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Córdoba, Argentina.,Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Cecilia Alvarez
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Córdoba, Argentina.,Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
24
|
Mitochondria, Oxytocin, and Vasopressin: Unfolding the Inflammatory Protein Response. Neurotox Res 2018; 36:239-256. [PMID: 30259418 DOI: 10.1007/s12640-018-9962-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 09/11/2018] [Accepted: 09/17/2018] [Indexed: 01/07/2023]
Abstract
Neuroendocrine and immune signaling pathways are activated following insults such as stress, injury, and infection, in a systemic response aimed at restoring homeostasis. Mitochondrial metabolism and function have been implicated in the control of immune responses. Commonly studied along with mitochondrial function, reactive oxygen species (ROS) are closely linked to cellular inflammatory responses. It is also accepted that cells experiencing mitochondrial or endoplasmic reticulum (ER) stress induce response pathways in order to cope with protein-folding dysregulation, in homeostatic responses referred to as the unfolded protein responses (UPRs). Recent reports indicate that the UPRs may play an important role in immune responses. Notably, the homeostasis-regulating hormones oxytocin (OXT) and vasopressin (AVP) are also associated with the regulation of inflammatory responses and immune function. Intriguingly, OXT and AVP have been linked with ER unfolded protein responses (UPRER), and can impact ROS production and mitochondrial function. Here, we will review the evidence for interactions between these various factors and how these neuropeptides might influence mitochondrial processes.
Collapse
|
25
|
Greenwood MP, Greenwood M, Romanova EV, Mecawi AS, Paterson A, Sarenac O, Japundžić-Žigon N, Antunes-Rodrigues J, Paton JFR, Sweedler JV, Murphy D. The effects of aging on biosynthetic processes in the rat hypothalamic osmoregulatory neuroendocrine system. Neurobiol Aging 2018; 65:178-191. [PMID: 29494864 PMCID: PMC5878011 DOI: 10.1016/j.neurobiolaging.2018.01.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 07/11/2017] [Accepted: 01/16/2018] [Indexed: 11/21/2022]
Abstract
Elderly people exhibit a diminished capacity to cope with osmotic challenges such as dehydration. We have undertaken a detailed molecular analysis of arginine vasopressin (AVP) biosynthetic processes in the supraoptic nucleus (SON) of the hypothalamus and secretory activity in the posterior pituitary of adult (3 months) and aged (18 months) rats, to provide a comprehensive analysis of age-associated changes to the AVP system. By matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis, we identified differences in pituitary peptides, including AVP, in adult and aged rats under both basal and dehydrated states. In the SON, increased Avp gene transcription, coincided with reduced Avp promoter methylation in aged rats. Based on transcriptome data, we have previously characterized a number of novel dehydration-induced regulatory factors involved in the response of the SON to osmotic cues. We found that some of these increase in expression with age, while dehydration-induced expression of these genes in the SON was attenuated in aged rats. In summary, we show that aging alters the rat AVP system at the genome, transcriptome, and peptidome levels. These alterations however did not affect circulating levels of AVP in basal or dehydrated states.
Collapse
Affiliation(s)
| | | | - Elena V Romanova
- Department of Chemistry and the Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Andre S Mecawi
- School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil; Department of Physiology, University of Malaya, Kuala Lumpur, Malaysia; Department of Physiological Sciences, Institute of Biological and Health Sciênces, Federal Rural University of Rio de Janeiro, Seropedica, Brazil
| | - Alex Paterson
- School of Clinical Sciences, University of Bristol, Bristol, England
| | - Olivera Sarenac
- School of Clinical Sciences, University of Bristol, Bristol, England; Institute of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Nina Japundžić-Žigon
- Institute of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | | | - Julian F R Paton
- School of Physiology and Pharmacology, University of Bristol, Bristol, England
| | - Jonathan V Sweedler
- Department of Chemistry and the Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - David Murphy
- School of Clinical Sciences, University of Bristol, Bristol, England; Department of Physiology, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
26
|
Nichenametla SN, Mattocks DAL, Malloy VL, Pinto JT. Sulfur amino acid restriction-induced changes in redox-sensitive proteins are associated with slow protein synthesis rates. Ann N Y Acad Sci 2018; 1418:80-94. [PMID: 29377163 DOI: 10.1111/nyas.13556] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 10/02/2017] [Accepted: 10/27/2017] [Indexed: 12/29/2022]
Abstract
The mechanisms underlying life span extension by sulfur amino acid restriction (SAAR) are unclear. Cysteine and methionine are essential for the biosynthesis of proteins and glutathione (GSH), a major redox buffer in the endoplasmic reticulum (ER). We hypothesized that SAAR alters protein synthesis by modulating the redox milieu. Male F344-rats were fed control (CD: 0.86% methionine without cysteine) and SAAR diets (0.17% methionine without cysteine) for 12 weeks. Growth rates, food intake, cysteine and GSH levels, proteins associated with redox status and translation, and fractional protein synthesis rates (FSRs) were determined in liver. Despite a 40% higher food intake, growth rates for SAAR rats were 27% of those fed CD. Hepatic free cysteine in SAAR rats was 55% compared with CD rats. SAAR altered tissue distribution of GSH, as hepatic and erythrocytic levels were 56% and 196% of those in CD rats. Lower GSH levels did not induce ER stress (i.e., unchanged expression of Xbp1s , Chop, and Grp78), but activated PERK and its substrates eIF2-α and NRF2. SAAR-induced changes in translation-initiation machinery (higher p-eIF2-α and 4E-BP1, and lower eIF4G-1) resulted in slower protein synthesis rates (53% of CD). Proteins involved in the antioxidant response (NRF2, KEAP1, GCLM, and NQO1) and protein folding (PDI and ERO1-α) were increased in SAAR. Lower FSR and efficient protein folding might be improving proteostasis in SAAR.
Collapse
Affiliation(s)
| | | | - Virginia L Malloy
- Orentreich Foundation for the Advancement of Science, Cold Spring, New York
| | - John T Pinto
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York
| |
Collapse
|
27
|
Greenwood MP, Greenwood M, Gillard BT, Chitra Devi R, Murphy D. Regulation of cAMP Responsive Element Binding Protein 3-Like 1 (Creb3l1) Expression by Orphan Nuclear Receptor Nr4a1. Front Mol Neurosci 2017; 10:413. [PMID: 29311806 PMCID: PMC5732970 DOI: 10.3389/fnmol.2017.00413] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 11/28/2017] [Indexed: 12/28/2022] Open
Abstract
Cyclic AMP (cAMP) inducible transcription factor cAMP responsive element binding protein 3 like 1 (Creb3l1) is strongly activated in the hypothalamus in response to hyperosmotic cues such as dehydration (DH). We have recently shown that Creb3l1 expression is upregulated by cAMP pathways in vitro, however the exact mechanisms are not known. Here we show that increasing Creb3l1 transcription by raising cAMP levels in mouse pituitary AtT20 cells automatically initiates cleavage of Creb3l1, leading to a greater abundance of the transcriptionally active N-terminal portion. Inhibiting protein synthesis indicated that de novo protein synthesis of an intermediary transcription factor was required for Creb3l1 induction. Strategic mining of our microarray data from dehydrated rodent hypothalamus revealed four candidates, reduced to two by analysis of acute hyperosmotic-induced transcriptional activation profiles in the hypothalamus, and one, orphan nuclear receptor Nr4a1, by direct shRNA mediated silencing in AtT20 cells. We show that activation of Creb3l1 transcription by Nr4a1 involves interaction with a single NBRE site in the promoter region. The ability to activate Creb3l1 transcription by this pathway in vitro is dictated by the level of methylation of a CpG island within the proximal promoter/5′UTR of this gene. We thus identify a novel cAMP-Nr4a1-Creb3l1 transcriptional pathway in AtT20 cells and also, our evidence would suggest, in the hypothalamus.
Collapse
Affiliation(s)
| | - Mingkwan Greenwood
- School of Clinical Sciences, University of Bristol, Bristol, United Kingdom
| | - Benjamin T Gillard
- School of Clinical Sciences, University of Bristol, Bristol, United Kingdom
| | - R Chitra Devi
- Department of Physiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - David Murphy
- School of Clinical Sciences, University of Bristol, Bristol, United Kingdom.,Department of Physiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
28
|
An oasis in the desert of cancer chemotherapeutic resistance: The enlightenment from reciprocal crosstalk between signaling pathways of UPR and autophagy in cancers. Biomed Pharmacother 2017; 92:972-981. [DOI: 10.1016/j.biopha.2017.05.132] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 05/28/2017] [Accepted: 05/28/2017] [Indexed: 12/21/2022] Open
|
29
|
Peña-Oyarzun D, Troncoso R, Kretschmar C, Hernando C, Budini M, Morselli E, Lavandero S, Criollo A. Hyperosmotic stress stimulates autophagy via polycystin-2. Oncotarget 2017; 8:55984-55997. [PMID: 28915568 PMCID: PMC5593539 DOI: 10.18632/oncotarget.18995] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 06/21/2017] [Indexed: 12/13/2022] Open
Abstract
Various intracellular mechanisms are activated in response to stress, leading to adaptation or death. Autophagy, an intracellular process that promotes lysosomal degradation of proteins, is an adaptive response to several types of stress. Osmotic stress occurs under both physiological and pathological conditions, provoking mechanical stress and activating various osmoadaptive mechanisms. Polycystin-2 (PC2), a membrane protein of the polycystin family, is a mechanical sensor capable of activating the cell signaling pathways required for cell adaptation and survival. Here we show that hyperosmotic stress provoked by treatment with hyperosmolar concentrations of sorbitol or mannitol induces autophagy in HeLa and HCT116 cell lines. In addition, we show that mTOR and AMPK, two stress sensor proteins involved modulating autophagy, are downregulated and upregulated, respectively, when cells are subjected to hyperosmotic stress. Finally, our findings show that PC2 is required to promote hyperosmotic stress-induced autophagy. Downregulation of PC2 prevents inhibition of hyperosmotic stress-induced mTOR pathway activation. In conclusion, our data provide new insight into the role of PC2 as a mechanosensor that modulates autophagy under hyperosmotic stress conditions.
Collapse
Affiliation(s)
- Daniel Peña-Oyarzun
- Advanced Center for Chronic Diseases, Facultad Ciencias Quimicas y Farmaceuticas & Facultad Medicina, Universidad de Chile, Santiago, Chile.,Center for Molecular Studies of the Cell, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Rodrigo Troncoso
- Advanced Center for Chronic Diseases, Facultad Ciencias Quimicas y Farmaceuticas & Facultad Medicina, Universidad de Chile, Santiago, Chile.,Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, Santiago, Chile
| | - Catalina Kretschmar
- Advanced Center for Chronic Diseases, Facultad Ciencias Quimicas y Farmaceuticas & Facultad Medicina, Universidad de Chile, Santiago, Chile.,Instituto de Investigación en Ciencias Odontológicas, Facultad de Odontología, Universidad de Chile, Santiago, Chile
| | - Cecilia Hernando
- Advanced Center for Chronic Diseases, Facultad Ciencias Quimicas y Farmaceuticas & Facultad Medicina, Universidad de Chile, Santiago, Chile.,Instituto de Investigación en Ciencias Odontológicas, Facultad de Odontología, Universidad de Chile, Santiago, Chile
| | - Mauricio Budini
- Instituto de Investigación en Ciencias Odontológicas, Facultad de Odontología, Universidad de Chile, Santiago, Chile
| | - Eugenia Morselli
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Sergio Lavandero
- Advanced Center for Chronic Diseases, Facultad Ciencias Quimicas y Farmaceuticas & Facultad Medicina, Universidad de Chile, Santiago, Chile.,Center for Molecular Studies of the Cell, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Alfredo Criollo
- Advanced Center for Chronic Diseases, Facultad Ciencias Quimicas y Farmaceuticas & Facultad Medicina, Universidad de Chile, Santiago, Chile.,Instituto de Investigación en Ciencias Odontológicas, Facultad de Odontología, Universidad de Chile, Santiago, Chile
| |
Collapse
|
30
|
Gergics P, Christian HC, Choo MS, Ajmal A, Camper SA. Gene Expression in Mouse Thyrotrope Adenoma: Transcription Elongation Factor Stimulates Proliferation. Endocrinology 2016; 157:3631-46. [PMID: 27580811 PMCID: PMC5007889 DOI: 10.1210/en.2016-1183] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Thyrotrope hyperplasia and hypertrophy are common responses to primary hypothyroidism. To understand the genetic regulation of these processes, we studied gene expression changes in the pituitaries of Cga(-/-) mice, which are deficient in the common α-subunit of TSH, LH, and FSH. These mice have thyrotrope hypertrophy and hyperplasia and develop thyrotrope adenoma. We report that cell proliferation is increased, but the expression of most stem cell markers is unchanged. The α-subunit is required for secretion of the glycoprotein hormone β-subunits, and mutants exhibit elevated expression of many genes involved in the unfolded protein response, consistent with dilation and stress of the endoplasmic reticulum. Mutants have elevated expression of transcription factors that are important in thyrotrope function, such as Gata2 and Islet 1, and those that stimulate proliferation, including Nupr1, E2f1, and Etv5. We characterized the expression and function of a novel, overexpressed gene, transcription elongation factor A (SII)-like 5 (Tceal5). Stable expression of Tceal5 in a pituitary progenitor cell line is sufficient to increase cell proliferation. Thus, Tceal5 may act as a proto-oncogene. This study provides a rich resource for comparing pituitary transcriptomes and an analysis of gene expression networks.
Collapse
Affiliation(s)
- Peter Gergics
- Department of Human Genetics (P.G., M.S.C., S.A.C.), University of Michigan, Ann Arbor, Michigan 48109; Department of Physiology, Anatomy and Genetics (H.C.C.), University of Oxford, Oxford OX3 0RZ, United Kingdom; and Department of Internal Medicine, Metabolism, Endocrinology and Diabetes (A.A.), University of Michigan, Ann Arbor, Michigan 48105
| | - Helen C Christian
- Department of Human Genetics (P.G., M.S.C., S.A.C.), University of Michigan, Ann Arbor, Michigan 48109; Department of Physiology, Anatomy and Genetics (H.C.C.), University of Oxford, Oxford OX3 0RZ, United Kingdom; and Department of Internal Medicine, Metabolism, Endocrinology and Diabetes (A.A.), University of Michigan, Ann Arbor, Michigan 48105
| | - Monica S Choo
- Department of Human Genetics (P.G., M.S.C., S.A.C.), University of Michigan, Ann Arbor, Michigan 48109; Department of Physiology, Anatomy and Genetics (H.C.C.), University of Oxford, Oxford OX3 0RZ, United Kingdom; and Department of Internal Medicine, Metabolism, Endocrinology and Diabetes (A.A.), University of Michigan, Ann Arbor, Michigan 48105
| | - Adnan Ajmal
- Department of Human Genetics (P.G., M.S.C., S.A.C.), University of Michigan, Ann Arbor, Michigan 48109; Department of Physiology, Anatomy and Genetics (H.C.C.), University of Oxford, Oxford OX3 0RZ, United Kingdom; and Department of Internal Medicine, Metabolism, Endocrinology and Diabetes (A.A.), University of Michigan, Ann Arbor, Michigan 48105
| | - Sally A Camper
- Department of Human Genetics (P.G., M.S.C., S.A.C.), University of Michigan, Ann Arbor, Michigan 48109; Department of Physiology, Anatomy and Genetics (H.C.C.), University of Oxford, Oxford OX3 0RZ, United Kingdom; and Department of Internal Medicine, Metabolism, Endocrinology and Diabetes (A.A.), University of Michigan, Ann Arbor, Michigan 48105
| |
Collapse
|
31
|
Up-regulation of FGFBP1 signaling contributes to miR-146a-induced angiogenesis in human umbilical vein endothelial cells. Sci Rep 2016; 6:25272. [PMID: 27121396 PMCID: PMC4848533 DOI: 10.1038/srep25272] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 04/14/2016] [Indexed: 12/24/2022] Open
Abstract
Recent microRNA expression profiling studies have documented an up-regulation of miR-146a in several angiogenesis models. However, the underlying molecular mechanism of miR-146a in the angiogenic activity of endothelial cells has not been clearly elucidated. The present study was aimed to evaluate whether miR-146a promotes angiogenesis in HUVECs by increasing FGFBP1 expression via directly targeting CREB3L1. miR-146a was over expressed in HUVECs via lentiviral-miR-146a. Expression profiling analysis found miR-146a over expression resulted in up-regulation of angiogenesis and cytokine activity associated genes including FGF2. Further a combination of bioinformatics and experimental analyses demonstrated the CREB3L1 as a bona fide functional target of miR-146a during angiogenesis. Moreover, CREB3L1 inhibited luciferase expression from FGFBP1 promoter containing only CRE elements. Furthermore, CREB3L1 inhibited FGFBP1 expression by binding to two CRE-like sites located at approximately −1780–1777 and −868–865 bp relative to the FGFBP1 transcription start site. Additionally, ectopic expression of CREB3L1 decreased miR-146a-induced FGF2 secretion. These findings indicate that the miR-146a-CREB3L1-FGFBP1 signaling axis plays an important role in the regulation of angiogenesis in HUVECs and provides a potential therapeutic target for anti-angiogenic therapeutics.
Collapse
|
32
|
Greenwood M, Greenwood MP, Mecawi AS, Loh SY, Rodrigues JA, Paton JFR, Murphy D. Transcription factor CREB3L1 mediates cAMP and glucocorticoid regulation of arginine vasopressin gene transcription in the rat hypothalamus. Mol Brain 2015; 8:68. [PMID: 26503226 PMCID: PMC4624382 DOI: 10.1186/s13041-015-0159-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 10/18/2015] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Arginine vasopressin (AVP), a neuropeptide hormone that functions in the regulation of water homeostasis by controlling water re-absorption at kidneys, is synthesised in supraoptic nucleus and paraventricular nucleus of the hypothalamus. An increase in plasma osmolality stimulates secretion of AVP to blood circulation and induces AVP synthesis in these nuclei. Although studies on mechanism of AVP transcriptional regulation in hypothalamus proposed that cAMP and glucocorticoids positively and negatively regulate Avp expression, respectively, the molecular mechanisms have remained elusive. Recently, we identified CREB3L1 (cAMP-responsive element binding protein 3 like 1) as a putative transcription factor of Avp transcription in the rat hypothalamus. However the mechanism of how CREB3L1 is regulated in response of hyperosmotic stress in the neurons of hypothalamus has never been reported. This study aims to investigate effect of previously reported regulators (cAMP and glucocorticoid) of Avp transcription on transcription factor CREB3L1 in order to establish a molecular explanation for cAMP and glucocorticoids effect on AVP expression. RESULTS The effect of cAMP and glucocorticoid treatment on Creb3l1 was investigated in both AtT20 cells and hypothalamic organotypic cultures. The expression of Creb3l1 was increased in both mRNA and protein level by treatment with forskolin, which raises intracellular cAMP levels. Activation of cAMP by forskolin also increased Avp promoter activity in AtT20 cells and this effect was blunted by shRNA mediated silencing of Creb3l1. The forskolin induced increase in Creb3l1 expression was diminished by combined treatment with dexamethasone, and, in vivo, intraperitoneal dexamethasone injection blunted the increase in Creb3l1 and Avp expression induced by hyperosmotic stress. CONCLUSION Here we shows that cAMP and glucocorticoid positively and negatively regulate Creb3l1 expression in the rat hypothalamus, respectively, and regulation of cAMP on AVP expression is mediated through CREB3L1. This data provides the connection between CREB3L1, a newly identified transcription factor of AVP expression, with the previously proposed mechanism of Avp transcription which extends our understanding in transcription regulation of Avp in the hypothalamus.
Collapse
Affiliation(s)
- Mingkwan Greenwood
- School of Clinical Sciences, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol, BS1 3NY, England.
| | - Michael P Greenwood
- School of Clinical Sciences, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol, BS1 3NY, England.
| | - Andre S Mecawi
- School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil. .,Department of Physiology, University of Malaya, Kuala Lumpur, 50603, Malaysia. .,Department of Physiological Sciences, Biology Institute, Federal Rural University of Rio de Janeiro, Seropedica, Rio de Janeiro, Brazil.
| | - Su Yi Loh
- Department of Physiology, University of Malaya, Kuala Lumpur, 50603, Malaysia.
| | | | - Julian F R Paton
- School of Physiology and Pharmacology, University of Bristol, Bristol, BS8 1TD, England.
| | - David Murphy
- School of Clinical Sciences, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol, BS1 3NY, England. .,Department of Physiology, University of Malaya, Kuala Lumpur, 50603, Malaysia.
| |
Collapse
|