1
|
Strelkova OS, Osgood RT, Tian C, Zhang X, Hale E, De-la-Torre P, Hathaway DM, Indzhykulian AA. PKHD1L1 is required for stereocilia bundle maintenance, durable hearing function and resilience to noise exposure. Commun Biol 2024; 7:1423. [PMID: 39482437 PMCID: PMC11527881 DOI: 10.1038/s42003-024-07121-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 10/22/2024] [Indexed: 11/03/2024] Open
Abstract
Polycystic Kidney and Hepatic Disease 1-Like 1 (PKHD1L1) is a human deafness gene, responsible for autosomal recessive deafness-124 (DFNB124). Sensory hair cells of the cochlea are essential for hearing, relying on the mechanosensitive stereocilia bundle at their apical pole for their function. PKHD1L1 is a stereocilia protein required for the formation of the developmentally transient stereocilia surface coat. In this study, we carry out an in depth characterization of PKHD1L1 expression in mice during development and adulthood, analyze hair-cell bundle morphology and hearing function in aging PKHD1L1-deficient mouse lines, and assess their susceptibility to noise damage. Our findings reveal that PKHD1L1-deficient mice display no disruption to bundle cohesion or tectorial membrane attachment-crown formation during development. However, starting from 6 weeks of age, PKHD1L1-deficient mice display missing stereocilia and disruptions to bundle coherence. Both conditional and constitutive PKHD1L1 knockout mice develop high-frequency hearing loss progressing to lower frequencies with age. Furthermore, PKHD1L1-deficient mice are susceptible to permanent hearing loss following moderate acoustic overexposure, which induces only temporary hearing threshold shifts in wild-type mice. These results suggest a role for PKHD1L1 in establishing robust sensory hair bundles during development, necessary for maintaining bundle cohesion and function in response to acoustic trauma and aging.
Collapse
Affiliation(s)
- Olga S Strelkova
- Department of Otolaryngology Head and Neck Surgery, Mass Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Richard T Osgood
- Department of Otolaryngology Head and Neck Surgery, Mass Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Chunjie Tian
- Department of Otolaryngology Head and Neck Surgery, Mass Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Xinyuan Zhang
- Department of Otolaryngology Head and Neck Surgery, Mass Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Evan Hale
- Department of Otolaryngology Head and Neck Surgery, Mass Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Pedro De-la-Torre
- Department of Otolaryngology Head and Neck Surgery, Mass Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Daniel M Hathaway
- Department of Otolaryngology Head and Neck Surgery, Mass Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Artur A Indzhykulian
- Department of Otolaryngology Head and Neck Surgery, Mass Eye and Ear, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Zhang L, Liao H, Li Z, Yuan J. Individual and combined effects of noise exposure and diabetes mellitus on hearing. Noise Health 2024; 26:449-460. [PMID: 39787545 DOI: 10.4103/nah.nah_71_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 10/11/2024] [Indexed: 01/12/2025] Open
Abstract
Hearing loss (HL) is a prevalent health concern with a significant impact on society and the economy. Several factors contribute to the development of hearing impairment, with noise overexposure being the primary culprit. Diabetes mellitus (DM) is also a factor in hearing impairment, and studies have shown a positive correlation between DM and HL; however, the exact causal relationship and pathogenesis remain contentious. Given the ubiquity of noise exposure and the high incidence of DM, individuals may develop diabetes while being chronically exposed to noise. It is particularly important to explore the independent and combined effects of noise and DM on hearing, which can help healthcare professionals understand the potential risks posed by these factors and inspire prevention strategies and potential interventions for hearing impairment. This review summarizes the current research advancements in noise-induced HL and diabetes-related HL and discusses their characteristics and potential mechanisms. Furthermore, this review focuses on the combined effects of noise exposure and DM on hearing, setting the stage for further research and development of intervention strategies to address HL.
Collapse
Affiliation(s)
- Lan Zhang
- School of Public Health, Southern Medical University, Guangzhou 510515, China
- Nanshan District Center for Disease Control and Prevention, Shenzhen 518054, Guangdong, China
| | - Hui Liao
- Nanshan District Center for Disease Control and Prevention, Shenzhen 518054, Guangdong, China
| | - Zongnan Li
- Nanshan District Center for Disease Control and Prevention, Shenzhen 518054, Guangdong, China
- School of Public Health, Guangdong Medical University, Dongguan 523000, Guangdong, China
| | - Jianhui Yuan
- School of Public Health, Southern Medical University, Guangzhou 510515, China
- Nanshan District Center for Disease Control and Prevention, Shenzhen 518054, Guangdong, China
- School of Public Health, Guangdong Medical University, Dongguan 523000, Guangdong, China
| |
Collapse
|
3
|
Fujihira H, Yamagishi S, Furukawa S, Kashino M. Auditory brainstem response to paired clicks as a candidate marker of cochlear synaptopathy in humans. Clin Neurophysiol 2024; 165:44-54. [PMID: 38959535 DOI: 10.1016/j.clinph.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/02/2024] [Accepted: 06/08/2024] [Indexed: 07/05/2024]
Abstract
OBJECTIVE This study aimed to evaluate whether auditory brainstem response (ABR) using a paired-click stimulation paradigm could serve as a tool for detecting cochlear synaptopathy (CS). METHODS The ABRs to single-clicks and paired-clicks with various inter-click intervals (ICIs) and scores for word intelligibility in degraded listening conditions were obtained from 57 adults with normal hearing. The wave I peak amplitude and root mean square values for the post-wave I response within a range delayed from the wave I peak (referred to as the RMSpost-w1) were calculated for the single- and second-click responses. RESULTS The wave I peak amplitudes did not correlate with age except for the second-click responses at an ICI of 7 ms, and the word intelligibility scores. However, we found that the RMSpost-w1 values for the second-click responses significantly decreased with increasing age. Moreover, the RMSpost-w1 values for the second-click responses at an ICI of 5 ms correlated significantly with the scores for word intelligibility in degraded listening conditions. CONCLUSIONS The magnitude of the post-wave I response for the second-click response could serve as a tool for detecting CS in humans. SIGNIFICANCE Our findings shed new light on the analytical methods of ABR for quantifying CS.
Collapse
Affiliation(s)
- Haruna Fujihira
- NTT Communication Science Laboratories, Atsugi, Kanagawa, Japan; Department of Informatics, Faculty of Information Science and Electrical Engineering, Kyushu University, Fukuoka, Japan.
| | | | - Shigeto Furukawa
- NTT Communication Science Laboratories, Atsugi, Kanagawa, Japan; Graduate School of Public Health, Shizuoka Graduate University of Public Health, Shizuoka, Japan; Speech-Language-Hearing Center, Shizuoka General Hospital, Shizuoka, Japan
| | - Makio Kashino
- NTT Communication Science Laboratories, Atsugi, Kanagawa, Japan
| |
Collapse
|
4
|
Rommelspacher H, Bera S, Brommer B, Ward R, Kwiatkowska M, Zygmunt T, Theden F, Üsekes B, Eren N, Nieratschker M, Arnoldner C, Plontke SK, Hellmann-Regen J, Schlingensiepen R. A single dose of AC102 restores hearing in a guinea pig model of noise-induced hearing loss to almost prenoise levels. Proc Natl Acad Sci U S A 2024; 121:e2314763121. [PMID: 38557194 PMCID: PMC11009624 DOI: 10.1073/pnas.2314763121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 01/29/2024] [Indexed: 04/04/2024] Open
Abstract
Although sudden sensorineural hearing loss (SSNHL) is a serious condition, there are currently no approved drugs for its treatment. Nevertheless, there is a growing understanding that the cochlear pathologies that underlie SSNHL include apoptotic death of sensory outer hair cells (OHCs) as well as loss of ribbon synapses connecting sensory inner hair cells (IHCs) and neurites of the auditory nerve, designated synaptopathy. Noise-induced hearing loss (NIHL) is a common subtype of SSNHL and is widely used to model hearing loss preclinically. Here, we demonstrate that a single interventive application of a small pyridoindole molecule (AC102) into the middle ear restored auditory function almost to prenoise levels in a guinea pig model of NIHL. AC102 prevented noise-triggered loss of OHCs and reduced IHC synaptopathy suggesting a role of AC102 in reconnecting auditory neurons to their sensory target cells. Notably, AC102 exerted its therapeutic properties over a wide frequency range. Such strong improvements in hearing have not previously been demonstrated for other therapeutic agents. In vitro experiments of a neuronal damage model revealed that AC102 protected cells from apoptosis and promoted neurite growth. These effects may be explained by increased production of adenosine triphosphate, indicating improved mitochondrial function, and reduced levels of reactive-oxygen species which prevents the apoptotic processes responsible for OHC death. This action profile of AC102 might be causal for the observed hearing recovery in in vivo models.
Collapse
Affiliation(s)
| | - Sujoy Bera
- AudioCure Pharma GmbH, Berlin10115, Germany
| | | | | | | | | | | | - Berk Üsekes
- AudioCure Pharma GmbH, Berlin10115, Germany
- Department of Psychiatry and Psychotherapy, Section Clinical Neurobiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Campus Benjamin Franklin, Berlin12203, Germany
| | - Neriman Eren
- AudioCure Pharma GmbH, Berlin10115, Germany
- Department of Psychiatry and Psychotherapy, Section Clinical Neurobiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Campus Benjamin Franklin, Berlin12203, Germany
| | - Michael Nieratschker
- Department of Otorhinolaryngology, Head and Neck Surgery, Vienna General Hospital, Medical University of Vienna, Vienna1090, Austria
| | - Christoph Arnoldner
- Department of Otorhinolaryngology, Head and Neck Surgery, Vienna General Hospital, Medical University of Vienna, Vienna1090, Austria
| | - Stefan K. Plontke
- Department of Otorhinolaryngology, Head and Neck Surgery, Martin Luther University Halle-Wittenberg, Halle06120, Germany
| | - Julian Hellmann-Regen
- Department of Psychiatry and Psychotherapy, Section Clinical Neurobiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Campus Benjamin Franklin, Berlin12203, Germany
| | | |
Collapse
|
5
|
Strelkova OS, Osgood RT, Tian CJ, Zhang X, Hale E, De-la-Torre P, Hathaway DM, Indzhykulian AA. PKHD1L1 is required for stereocilia bundle maintenance, durable hearing function and resilience to noise exposure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.29.582786. [PMID: 38496629 PMCID: PMC10942330 DOI: 10.1101/2024.02.29.582786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Sensory hair cells of the cochlea are essential for hearing, relying on the mechanosensitive stereocilia bundle at their apical pole for their function. Polycystic Kidney and Hepatic Disease 1-Like 1 (PKHD1L1) is a stereocilia protein required for normal hearing in mice, and for the formation of the transient stereocilia surface coat, expressed during early postnatal development. While the function of the stereocilia coat remains unclear, growing evidence supports PKHD1L1 as a human deafness gene. In this study we carry out in depth characterization of PKHD1L1 expression in mice during development and adulthood, analyze hair-cell bundle morphology and hearing function in aging PKHD1L1-defficient mouse lines, and assess their susceptibility to noise damage. Our findings reveal that PKHD1L1-deficient mice display no disruption to bundle cohesion or tectorial membrane attachment-crown formation during development. However, starting from 6 weeks of age, PKHD1L1-defficient mice display missing stereocilia and disruptions to bundle coherence. Both conditional and constitutive PKHD1L1 knock-out mice develop high-frequency hearing loss progressing to lower frequencies with age. Furthermore, PKHD1L1-deficient mice are susceptible to permanent hearing loss following moderate acoustic overexposure, which induces only temporary hearing threshold shifts in wild-type mice. These results suggest a role for PKHD1L1 in establishing robust sensory hair bundles during development, necessary for maintaining bundle cohesion and function in response to acoustic trauma and aging.
Collapse
Affiliation(s)
| | | | | | - Xinyuan Zhang
- Department of Otolaryngology Head and Neck Surgery, Mass Eye and Ear, Harvard Medical School, Boston, MA, United States
| | - Evan Hale
- Department of Otolaryngology Head and Neck Surgery, Mass Eye and Ear, Harvard Medical School, Boston, MA, United States
| | - Pedro De-la-Torre
- Department of Otolaryngology Head and Neck Surgery, Mass Eye and Ear, Harvard Medical School, Boston, MA, United States
| | - Daniel M. Hathaway
- Department of Otolaryngology Head and Neck Surgery, Mass Eye and Ear, Harvard Medical School, Boston, MA, United States
| | - Artur A. Indzhykulian
- Department of Otolaryngology Head and Neck Surgery, Mass Eye and Ear, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
6
|
Rincon Sabatino S, Rivero A, Sangaletti R, Dietrich WD, Hoffer ME, King CS, Rajguru SM. Targeted therapeutic hypothermia protects against noise induced hearing loss. Front Neurosci 2024; 17:1296458. [PMID: 38292902 PMCID: PMC10826421 DOI: 10.3389/fnins.2023.1296458] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/14/2023] [Indexed: 02/01/2024] Open
Abstract
Introduction Exposure to occupational or recreational loud noise activates multiple biological regulatory circuits and damages the cochlea, causing permanent changes in hearing sensitivity. Currently, no effective clinical therapy is available for the treatment or mitigation of noise-induced hearing loss (NIHL). Here, we describe an application of localized and non-invasive therapeutic hypothermia and targeted temperature management of the inner ear to prevent NIHL. Methods We developed a custom-designed cooling neck collar to reduce the temperature of the inner ear by 3-4°C post-injury to deliver mild therapeutic hypothermia. Results This localized and non-invasive therapeutic hypothermia successfully mitigated NIHL in rats. Our results show that mild hypothermia can be applied quickly and safely to the inner ear following noise exposure. We show that localized hypothermia after NIHL preserves residual hearing and rescues noise-induced synaptopathy over a period of months. Discussion This study establishes a minimally-invasive therapeutic paradigm with a high potential for rapid translation to the clinic for long-term preservation of hearing health.
Collapse
Affiliation(s)
| | - Andrea Rivero
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, United States
| | - Rachele Sangaletti
- The Miami Project to Cure Paralysis, University of Miami, Coral Gables, FL, United States
| | - W. Dalton Dietrich
- Department of Otolaryngology, University of Miami, Coral Gables, FL, United States
| | - Michael E. Hoffer
- The Miami Project to Cure Paralysis, University of Miami, Coral Gables, FL, United States
| | | | - Suhrud M. Rajguru
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, United States
- The Miami Project to Cure Paralysis, University of Miami, Coral Gables, FL, United States
- RestorEar Devices LLC, Bozeman, MT, United States
| |
Collapse
|
7
|
Austin TT, Thomas CL, Warren B. Auditory robustness and resilience in the aging auditory system of the desert locust. Neurobiol Aging 2024; 133:39-50. [PMID: 37913625 DOI: 10.1016/j.neurobiolaging.2023.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/19/2023] [Accepted: 09/19/2023] [Indexed: 11/03/2023]
Abstract
After overexposure to loud music, we experience a decrease in our ability to hear (robustness), which usually recovers (resilience). Here, we exploited the amenable auditory system of the desert locust, Schistocerca gregaria, to measure how robustness and resilience depend on age. We found that gene expression changes are dominated by age as opposed to noise exposure. We measured sound-evoked nerve activity for young and aged locusts directly, after 24 hours and 48 hours after noise exposure. We found that both young and aged locusts recovered their auditory nerve function over 48 hours. We also measured the sound-evoked transduction current in individual auditory neurons, and although the transduction current magnitude recovered in the young locusts after noise exposure, it failed to recover in the aged locusts. A plastic mechanism compensates for the decreased transduction current in aged locusts. We suggest key genes upregulated in young noise-exposed locusts that mediate robustness to noise exposure and find potential candidates responsible for compensatory mechanisms in the auditory neurons of aged noise-exposed locusts.
Collapse
Affiliation(s)
- Thomas T Austin
- Neurogenetics Group, College of Life Sciences, University of Leicester, Leicester LE1 7RH, UK
| | - Christian L Thomas
- Neurogenetics Group, College of Life Sciences, University of Leicester, Leicester LE1 7RH, UK
| | - Ben Warren
- Neurogenetics Group, College of Life Sciences, University of Leicester, Leicester LE1 7RH, UK.
| |
Collapse
|
8
|
Natarajan N, Batts S, Stankovic KM. Noise-Induced Hearing Loss. J Clin Med 2023; 12:2347. [PMID: 36983347 PMCID: PMC10059082 DOI: 10.3390/jcm12062347] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 03/22/2023] Open
Abstract
Noise-induced hearing loss (NIHL) is the second most common cause of sensorineural hearing loss, after age-related hearing loss, and affects approximately 5% of the world's population. NIHL is associated with substantial physical, mental, social, and economic impacts at the patient and societal levels. Stress and social isolation in patients' workplace and personal lives contribute to quality-of-life decrements which may often go undetected. The pathophysiology of NIHL is multifactorial and complex, encompassing genetic and environmental factors with substantial occupational contributions. The diagnosis and screening of NIHL are conducted by reviewing a patient's history of noise exposure, audiograms, speech-in-noise test results, and measurements of distortion product otoacoustic emissions and auditory brainstem response. Essential aspects of decreasing the burden of NIHL are prevention and early detection, such as implementation of educational and screening programs in routine primary care and specialty clinics. Additionally, current research on the pharmacological treatment of NIHL includes anti-inflammatory, antioxidant, anti-excitatory, and anti-apoptotic agents. Although there have been substantial advances in understanding the pathophysiology of NIHL, there remain low levels of evidence for effective pharmacotherapeutic interventions. Future directions should include personalized prevention and targeted treatment strategies based on a holistic view of an individual's occupation, genetics, and pathology.
Collapse
Affiliation(s)
- Nirvikalpa Natarajan
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Shelley Batts
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Konstantina M. Stankovic
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Palo Alto, CA 94304, USA
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA 94304, USA
- Wu Tsai Neuroscience Institute, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
9
|
Barnes CC, Yee KT, Vetter DE. Conditional Ablation of Glucocorticoid and Mineralocorticoid Receptors from Cochlear Supporting Cells Reveals Their Differential Roles for Hearing Sensitivity and Dynamics of Recovery from Noise-Induced Hearing Loss. Int J Mol Sci 2023; 24:3320. [PMID: 36834731 PMCID: PMC9961551 DOI: 10.3390/ijms24043320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
Endogenous glucocorticoids (GC) are known to modulate basic elements of cochlear physiology. These include both noise-induced injury and circadian rhythms. While GC signaling in the cochlea can directly influence auditory transduction via actions on hair cells and spiral ganglion neurons, evidence also indicates that GC signaling exerts effects via tissue homeostatic processes that can include effects on cochlear immunomodulation. GCs act at both the glucocorticoid receptor (GR) and the mineralocorticoid receptor (MR). Most cell types in the cochlea express both receptors sensitive to GCs. The GR is associated with acquired sensorineural hearing loss (SNHL) through its effects on both gene expression and immunomodulatory programs. The MR has been associated with age-related hearing loss through dysfunction of ionic homeostatic balance. Cochlear supporting cells maintain local homeostatic requirements, are sensitive to perturbation, and participate in inflammatory signaling. Here, we have used conditional gene manipulation techniques to target Nr3c1 (GR) or Nr3c2 (MR) for tamoxifen-induced gene ablation in Sox9-expressing cochlear supporting cells of adult mice to investigate whether either of the receptors sensitive to GCs plays a role in protecting against (or exacerbating) noise-induced cochlear damage. We have selected mild intensity noise exposure to examine the role of these receptors related to more commonly experienced noise levels. Our results reveal distinct roles of these GC receptors for both basal auditory thresholds prior to noise exposure and during recovery from mild noise exposure. Prior to noise exposure, auditory brainstem responses (ABRs) were measured in mice carrying the floxed allele of interest and the Cre recombinase transgene, but not receiving tamoxifen injections (defined as control (no tamoxifen treatment), versus conditional knockout (cKO) mice, defined as mice having received tamoxifen injections. Results revealed hypersensitive thresholds to mid- to low-frequencies after tamoxifen-induced GR ablation from Sox9-expressing cochlear supporting cells compared to control (no tamoxifen) mice. GR ablation from Sox9-expressing cochlear supporting cells resulted in a permanent threshold shift in mid-basal cochlear frequency regions after mild noise exposure that produced only a temporary threshold shift in both control (no tamoxifen) f/fGR:Sox9iCre+ and heterozygous f/+GR:Sox9iCre+ tamoxifen-treated mice. A similar comparison of basal ABRs measured in control (no tamoxifen) and tamoxifen-treated, floxed MR mice prior to noise exposure indicated no difference in baseline thresholds. After mild noise exposure, MR ablation was initially associated with a complete threshold recovery at 22.6 kHz by 3 days post-noise. Threshold continued to shift to higher sensitivity over time such that by 30 days post-noise exposure the 22.6 kHz ABR threshold was 10 dB more sensitive than baseline. Further, MR ablation produced a temporary reduction in peak 1 neural amplitude one day post-noise. While supporting cell GR ablation trended towards reducing numbers of ribbon synapses, MR ablation reduced ribbon synapse counts but did not exacerbate noise-induced damage including synapse loss at the experimental endpoint. GR ablation from the targeted supporting cells increased the basal resting number of Iba1-positive (innate) immune cells (no noise exposure) and decreased the number of Iba1-positive cells seven days following noise exposure. MR ablation did not alter innate immune cell numbers at seven days post-noise exposure. Taken together, these findings support differential roles of cochlear supporting cell MR and GR expression at basal, resting conditions and especially during recovery from noise exposure.
Collapse
Affiliation(s)
- Charles C. Barnes
- Graduate Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Kathleen T. Yee
- Department of Otolaryngology–Head and Neck Surgery, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Douglas E. Vetter
- Graduate Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS 39216, USA
- Department of Otolaryngology–Head and Neck Surgery, University of Mississippi Medical Center, Jackson, MS 39216, USA
| |
Collapse
|
10
|
Early S, Saad MA, Mallidi S, Mansour A, Seist R, Hasan T, Stankovic KM. A fluorescent photoimmunoconjugate for imaging of cholesteatoma. Sci Rep 2022; 12:19905. [PMID: 36402793 PMCID: PMC9675863 DOI: 10.1038/s41598-022-22072-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 10/10/2022] [Indexed: 11/21/2022] Open
Abstract
Cholesteatoma is a potentially serious complication of chronic ear infections and requires surgical intervention for definitive management. Long-term complications include a frequent need for repeat surgical intervention for disease recurrence, and techniques to improve efficacy of single-stage surgery are an important area of continued research. This study investigates a novel application of the photosensitizer immune conjugate (PIC) cetuximab-benzoporphyrin derivative (Cet-BPD) for in vitro localization of human cholesteatoma tissue, coupled with an in vivo safety study for middle ear application of Cet-BPD in a murine model. In fresh human cholesteatoma tissues, Cet-BPD demonstrates selective localization to the hyperplastic squamous cell tissue associated with cholesteatoma, without localizing to other tissues such as middle ear mucosa. Applied to the murine middle ear, Cet-BPD does not demonstrate any deleterious effect on murine hearing when assessed by any of auditory brainstem response (ABR) thresholds, distortion product otoacoustic emission thresholds, or ABR wave I amplitudes. These findings demonstrate the technical promise and encouraging safety profile for the use of PICs for intraoperative localization and treatment of cholesteatoma.
Collapse
Affiliation(s)
- Samuel Early
- grid.39479.300000 0000 8800 3003Department of Otolaryngology – Head and Neck Surgery and Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA USA ,grid.38142.3c000000041936754XDepartment of Otolaryngology – Head and Neck Surgery, Harvard Medical School, Boston, MA USA ,grid.413086.80000 0004 0435 1668Department of Otolaryngology – Head and Neck Surgery, University of California San Diego Medical Center, San Diego, CA USA
| | - M. Ahsan Saad
- grid.32224.350000 0004 0386 9924Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA USA
| | - Srivalleesha Mallidi
- grid.32224.350000 0004 0386 9924Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA USA ,grid.429997.80000 0004 1936 7531Department of Biomedical Engineering, Tufts University, Medford, MA USA
| | - Amer Mansour
- grid.39479.300000 0000 8800 3003Department of Otolaryngology – Head and Neck Surgery and Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA USA
| | - Richard Seist
- grid.39479.300000 0000 8800 3003Department of Otolaryngology – Head and Neck Surgery and Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA USA ,grid.38142.3c000000041936754XDepartment of Otolaryngology – Head and Neck Surgery, Harvard Medical School, Boston, MA USA ,grid.168010.e0000000419368956Department of Otolaryngology – Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA USA
| | - Tayyaba Hasan
- grid.32224.350000 0004 0386 9924Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA USA
| | - Konstantina M. Stankovic
- grid.39479.300000 0000 8800 3003Department of Otolaryngology – Head and Neck Surgery and Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA USA ,grid.38142.3c000000041936754XDepartment of Otolaryngology – Head and Neck Surgery, Harvard Medical School, Boston, MA USA ,grid.168010.e0000000419368956Department of Otolaryngology – Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA USA
| |
Collapse
|
11
|
Pinsonnault-Skvarenina A, Soucy W, Noël J, Doucet F, Lévesque É, Fuente A, Leroux T. Supra-threshold deficits in normal hearing military recruits exposed to impulse noise. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2022; 152:2419. [PMID: 36319241 DOI: 10.1121/10.0014829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
The aim of this study was to determine the effect of impulse noise exposure on various proxy measures of cochlear synaptopathy in young military recruits. A total of 27 military recruits with exposure to firearm and artillery noise and 13 non exposed participants were recruited. All presented with normal hearing thresholds and the presence of distortion product otoacoustic emissions (DPOAEs). The Noise Exposure Structured Interview (NESI) was used to quantify noise exposure. Speech perception in noise (SPiN), equivalent rectangular bandwidth (ERB) of auditory filters, auditory brainstem response wave I amplitude, wave I amplitude growth function, wave I/V amplitude ratio, wave V latency, wave V latency shift with ipsilateral noise, and the summating potential/action potential ratio of the electrocochleography were measured. In military participants, SPiN was worse, ERB at 4 kHz was larger, wave I amplitude at 75 dBnHL was reduced, and wave V latency was delayed. However, no significant correlations were observed between NESI and auditory measures, once multiplicity of tests was controlled for. These results suggest that military recruits may exhibit supra-threshold deficits, despite presenting with normal hearing thresholds and presence of DPOAEs. Future studies should include a measure of auditory filters in their test battery.
Collapse
Affiliation(s)
| | - William Soucy
- École d'orthophonie et d'audiologie, Faculté de médecine, Université de Montréal, Montréal, Québec, H3C 3J7, Canada
| | - Jonathan Noël
- École d'orthophonie et d'audiologie, Faculté de médecine, Université de Montréal, Montréal, Québec, H3C 3J7, Canada
| | - Félicia Doucet
- École d'orthophonie et d'audiologie, Faculté de médecine, Université de Montréal, Montréal, Québec, H3C 3J7, Canada
| | - Élise Lévesque
- École d'orthophonie et d'audiologie, Faculté de médecine, Université de Montréal, Montréal, Québec, H3C 3J7, Canada
| | - Adrian Fuente
- École d'orthophonie et d'audiologie, Faculté de médecine, Université de Montréal, Montréal, Québec, H3C 3J7, Canada
| | - Tony Leroux
- École d'orthophonie et d'audiologie, Faculté de médecine, Université de Montréal, Montréal, Québec, H3C 3J7, Canada
| |
Collapse
|
12
|
Grierson KE, Hickman TT, Liberman MC. Dopaminergic and cholinergic innervation in the mouse cochlea after noise-induced or age-related synaptopathy. Hear Res 2022; 422:108533. [PMID: 35671600 PMCID: PMC11195664 DOI: 10.1016/j.heares.2022.108533] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/11/2022] [Accepted: 05/20/2022] [Indexed: 11/17/2022]
Abstract
Cochlear synaptopathy, the loss of or damage to connections between auditory-nerve fibers (ANFs) and inner hair cells (IHCs), is a prominent pathology in noise-induced and age-related hearing loss. Here, we investigated if degeneration of the olivocochlear (OC) efferent innervation is also a major aspect of the synaptopathic ear, by quantifying the volume and spatial organization of its cholinergic and dopaminergic components, using antibodies to vesicular acetylcholine transporter (VAT) and tyrosine hydroxylase (TH), respectively. CBA/CaJ male mice were examined 1 day to 8 months after a synaptopathic noise exposure, and compared to unexposed age-matched controls and unexposed aged mice at 24-28 months. In normal ears, cholinergic lateral (L)OC terminals were denser in the apical half of the cochlea and on the modiolar side of the inner hair cells (IHCs), where ANFs of low-spontaneous rate are typically found, while dopaminergic terminals were more common in the basal third of the cochlea and, re the IHC axes, were offset towards the habenula with respect to cholinergic terminals. The noise had only small and transient effects on the density of LOC innervation, its spatial organization around the IHC axes, or the extent to which TH and VAT signal were colocalized. The synaptopathic noise also had relatively small and transient effects on cholinergic innervation density in the outer hair cell (OHC) area, which normally peaks in the 16 kHz region and falls monotonically towards higher and lower frequencies. In contrast, in the aged ears, there was massive degeneration of OHC efferents, especially in the apical half of the cochlea, where there was also significant loss of OHCs. In the IHC area, there was significant loss of cholinergic terminals in both apical and basal regions and of dopaminergic innervation in the basal half. Furthermore, the cholinergic terminals in the aged ears spread from their normal clustering near the IHC basolateral pole, where the ANF synapses are found, to positions up and down the IHC somata and regions of the neuropil closer to the habenula. This apparent migration was most striking in the apex, where the hair cell pathology was greatest, and may be a harbinger of impending hair cell death.
Collapse
Affiliation(s)
- Kiera E Grierson
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, 02114 USA; Dept of Otolaryngology-Head & Neck Surgery, Harvard Medical School, Boston, MA, 02115 USA; Hearing Research Lab, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, AUS
| | - Tyler T Hickman
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, 02114 USA; Dept of Otolaryngology-Head & Neck Surgery, Harvard Medical School, Boston, MA, 02115 USA.
| | - M Charles Liberman
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, 02114 USA; Dept of Otolaryngology-Head & Neck Surgery, Harvard Medical School, Boston, MA, 02115 USA
| |
Collapse
|
13
|
Pinsonnault-Skvarenina A, Moïn-Darbari K, Zhao W, Zhang M, Qiu W, Fuente A. No effect of occupational noise exposure on auditory brainstem response and speech perception in noise. Front Neurosci 2022; 16:915211. [PMID: 35937884 PMCID: PMC9354017 DOI: 10.3389/fnins.2022.915211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/05/2022] [Indexed: 11/13/2022] Open
Abstract
The primary aim of this study was to investigate whether auditory brainstem response (ABR) and speech perception in noise (SPiN) were associated with occupational noise exposure in normal hearing young factory workers. Forty young adults occupationally exposed to noise and 40 non-exposed young adults (control group) from Zhejiang province in China were selected. All participants presented with normal hearing thresholds and distortion product otoacoustic emissions. Participants were evaluated with the Mandarin Bamford-Kowal-Bench (BKB) test and ABR. The latter was obtained for click stimulus at 50, 60, 70, 80, and 90 dBnHL. Peak-to-trough amplitudes and latencies for waves I and V were obtained. The ABR wave I amplitude, the wave I/V amplitude ratio, the slope of the wave I amplitude growth as a function of stimulus intensity (AMP-ISlope), and the wave V latency shift with ipsilateral noise (LAT-VSlope) were used as ABR outcomes. Finally, equivalent continuous average sound pressure level normalized to 8 h (LAeq.8h) and cumulative noise exposure (CNE) were obtained for noise-exposed participants. No significant differences between groups were found for any ABR outcomes. Noise-exposed participants exhibited worse BKB scores than control group participants. A multivariate regression model showed that 23.3% of the variance in BKB scores was explained by group category (exposed vs. non-exposed) and hearing thresholds. However, since none of the ABR outcomes exploring cochlear synaptopathy were associated with noise exposure, we cannot conclude that cochlear synaptopathy was the contributing factor for the differences between groups for BKB scores. Factors that go beyond sensory processing may explain such results, especially given socio-economic differences between the noise-exposed and control groups. We conclude that in this sample of participants, occupational noise exposure was not associated with signs of cochlear synaptopathy as measured by ABR and BKB.
Collapse
Affiliation(s)
- Alexis Pinsonnault-Skvarenina
- École d’Orthophonie et d’Audiologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
- Centre de Recherche Interdisciplinaire en Réadaptation du Montréal Métropolitain – CIUSSS du Centre-Sud-de-l’Île-de-Montréal, Montréal, QC, Canada
- Centre for Interdisciplinary Research in Music Media and Technology, McGill University, Montréal, QC, Canada
| | - Karina Moïn-Darbari
- École d’Orthophonie et d’Audiologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
- Centre de Recherche de l’Institut Universitaire de Gériatrie de Montréal – CIUSSS du Centre-Sud-de-l’ÎIe-de-Montréal, Montréal, QC, Canada
| | - Wulan Zhao
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Meibian Zhang
- National Institute of Occupational Health and Poison Control, Beijing, China
| | - Wei Qiu
- Auditory Research Laboratory, State University of New York at Plattsburgh, Plattsburgh, NY, United States
| | - Adrian Fuente
- École d’Orthophonie et d’Audiologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
- Centre de Recherche de l’Institut Universitaire de Gériatrie de Montréal – CIUSSS du Centre-Sud-de-l’ÎIe-de-Montréal, Montréal, QC, Canada
- *Correspondence: Adrian Fuente,
| |
Collapse
|
14
|
Shehabi AM, Prendergast G, Plack CJ. The Relative and Combined Effects of Noise Exposure and Aging on Auditory Peripheral Neural Deafferentation: A Narrative Review. Front Aging Neurosci 2022; 14:877588. [PMID: 35813954 PMCID: PMC9260498 DOI: 10.3389/fnagi.2022.877588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Animal studies have shown that noise exposure and aging cause a reduction in the number of synapses between low and medium spontaneous rate auditory nerve fibers and inner hair cells before outer hair cell deterioration. This noise-induced and age-related cochlear synaptopathy (CS) is hypothesized to compromise speech recognition at moderate-to-high suprathreshold levels in humans. This paper evaluates the evidence on the relative and combined effects of noise exposure and aging on CS, in both animals and humans, using histopathological and proxy measures. In animal studies, noise exposure seems to result in a higher proportion of CS (up to 70% synapse loss) compared to aging (up to 48% synapse loss). Following noise exposure, older animals, depending on their species, seem to either exhibit significant or little further synapse loss compared to their younger counterparts. In humans, temporal bone studies suggest a possible age- and noise-related auditory nerve fiber loss. Based on the animal data obtained from different species, we predict that noise exposure may accelerate age-related CS to at least some extent in humans. In animals, noise-induced and age-related CS in separation have been consistently associated with a decreased amplitude of wave 1 of the auditory brainstem response, reduced middle ear muscle reflex strength, and degraded temporal processing as demonstrated by lower amplitudes of the envelope following response. In humans, the individual effects of noise exposure and aging do not seem to translate clearly into deficits in electrophysiological, middle ear muscle reflex, and behavioral measures of CS. Moreover, the evidence on the combined effects of noise exposure and aging on peripheral neural deafferentation in humans using electrophysiological and behavioral measures is even more sparse and inconclusive. Further research is necessary to establish the individual and combined effects of CS in humans using temporal bone, objective, and behavioral measures.
Collapse
Affiliation(s)
- Adnan M. Shehabi
- Manchester Centre for Audiology and Deafness, University of Manchester, Manchester, United Kingdom
- Department of Audiology and Speech Therapy, Birzeit University, Birzeit, Palestine
| | - Garreth Prendergast
- Manchester Centre for Audiology and Deafness, University of Manchester, Manchester, United Kingdom
| | - Christopher J. Plack
- Manchester Centre for Audiology and Deafness, University of Manchester, Manchester, United Kingdom
- Department of Psychology, Lancaster University, Lancaster, United Kingdom
| |
Collapse
|
15
|
Kurioka T, Mizutari K, Satoh Y, Shiotani A. Correlation of blast-induced tympanic membrane perforation with peripheral cochlear synaptopathy. J Neurotrauma 2022; 39:999-1009. [PMID: 35243914 DOI: 10.1089/neu.2021.0487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The auditory organs, including the tympanic membrane, cochlea, and central auditory pathway, are the most fragile components of the human body when exposed to blast overpressure. Tympanic membrane perforation (TMP) is the most frequent symptom in blast-exposed patients. However, the impact of TMP on the inner ear and central auditory system is not fully understood. We aimed to analyze the effect of blast-induced TMP on the auditory pathophysiological changes in mice after blast exposure. Mice aged 7 weeks were exposed to blast overpressure to induce TMP and allowed to survive for 2 months. All TMP cases had spontaneously healed by week 3 following the blast exposure. Compared to controls, blast-exposed mice exhibited a significant elevation in hearing thresholds and an apparent disruption of stereocilia in the outer hair cells, regardless of the occurrence or absence of TMP. The reduction in synapses in the inner hair cells, which is known as the most frequent pathology in blast-exposed cochleae, was significantly more severe in mice without TMP. However, a decrease in the number of excitatory central synapses labeled by VGLUT-1 in the cochlear nucleus was observed regardless of the absence or presence of TMP. Our findings suggest that blast-induced TMP mitigates peripheral cochlear synaptic disruption but leaves the central auditory synapses unaffected, indicating that central synaptic disruption is independent of TMP and peripheral cochlear synaptic disruption. Synaptic deterioration in the peripheral and central auditory systems can contribute to the promotion of blast-induced hearing impairment, including abnormal auditory perception.
Collapse
Affiliation(s)
- Takaomi Kurioka
- Department of Otolaryngology, Head and Neck Surgery and National Defense Medical College, Saitama, Japan
| | - Kunio Mizutari
- Department of Otolaryngology, Head and Neck Surgery and National Defense Medical College, Saitama, Japan
| | - Yasushi Satoh
- Department of Biochemistry, National Defense Medical College, Saitama, Japan
| | - Akihiro Shiotani
- Department of Otolaryngology, Head and Neck Surgery and National Defense Medical College, Saitama, Japan
| |
Collapse
|
16
|
Zhang C, Ding D, Sun W, Hu BH, Manohar S, Salvi R. Time- and frequency-dependent changes in acoustic startle reflex amplitude following cyclodextrin-induced outer and inner cell loss. Hear Res 2022; 415:108441. [DOI: 10.1016/j.heares.2022.108441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/04/2022] [Accepted: 01/13/2022] [Indexed: 11/27/2022]
|
17
|
Chen D, Jia G, Zhang Y, Mao H, Zhao L, Li W, Chen Y, Ni Y. Sox2 overexpression alleviates noise-induced hearing loss by inhibiting inflammation-related hair cell apoptosis. J Neuroinflammation 2022; 19:59. [PMID: 35227273 PMCID: PMC8883703 DOI: 10.1186/s12974-022-02414-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 02/09/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
The transcription factor Sox2 plays important roles in the developmental processes of multiple organs and tissues. However, whether Sox2 can protect mature or terminally differentiated cells against injury is still unknown.
Methods
We investigated the roles of Sox2 in cochlear hair cells, which are terminally differentiated cells, using conditional transgenic mice and several hearing loss models.
Results
Sox2 overexpression dramatically mitigated the degree of cochlear hair cell loss when exposed to ototoxic drugs. Noise-induced apoptosis of cochlear hair cells and hearing loss were also significantly alleviated by Sox2 overexpression. Notably, noise-induced upregulation of pro-inflammatory factors such as TNF-α and IL6 was inhibited by Sox2 overexpression. Then we used lipopolysaccharide to clarify the effect of Sox2 on cochlear inflammation, and Sox2 overexpression significantly inhibited lipopolysaccharide-induced upregulation of pro-inflammatory factors and alleviated inflammation-related cochlear hair cell death.
Conclusions
These results demonstrate a novel protective role of Sox2 in mature and terminally differentiated cochlear hair cells by inhibiting inflammation.
Collapse
|
18
|
ROS-Induced Oxidative Damage and Mitochondrial Dysfunction Mediated by Inhibition of SIRT3 in Cultured Cochlear Cells. Neural Plast 2022; 2022:5567174. [PMID: 35096052 PMCID: PMC8791755 DOI: 10.1155/2022/5567174] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/23/2021] [Accepted: 12/28/2021] [Indexed: 11/18/2022] Open
Abstract
Sensorineural hearing loss (SNHL) is one of the most common causes of disability worldwide. Previous evidence suggests that reactive oxygen species (ROS) may play an important role in the occurrence and development of SNHL, while its mechanism remains unclear. We cultured dissected organs of Corti in medium containing different concentrations (0, 0.25, 0.5, 0.75, 1, and 1.25 mM) of hydrogen peroxide (H2O2) and established a four-concentration model of 0, 0.5, 0.75, and 1 mM to study different degrees of damage. We examined ROS-induced mitochondrial damage and the role of sirtuin 3 (SIRT3). Our results revealed that the number of ribbon synapses and hair cells appeared significantly concentration-dependent decrease with exposure to H2O2. Outer hair cells (OHCs) and inner hair cells (IHCs) began to be lost, and activation of apoptosis of hair cells (HCs) was observed at 0.75 mM and 1 mM H2O2, respectively. In contrast with the control group, the accumulation of ROS was significantly higher, and the mitochondrial membrane potential (MMP) was lower in the H2O2-treated groups. Furthermore, the expression of SIRT3, FOXO3A, and SOD2 proteins declined, except for an initial elevation of SIRT3 between 0 and 0.75 mM H2O2. Administration of the selective SIRT3 inhibitor 3-(1H-1,2,3-triazol-4-yl) pyridine resulted in increased damage to the cochlea, including loss of ribbon synapses and hair cells, apoptosis of hair cells, more production of ROS, and reduced mitochondrial membrane potential. Thoroughly, our results highlight that ROS-induced mitochondrial oxidative damage drives hair cell degeneration and apoptosis. Furthermore, SIRT3 is crucial for preserving mitochondrial function and protecting the cochlea from oxidative damage and may represent a possible therapeutic target for SNHL.
Collapse
|
19
|
Parker A, Hobson L, Bains R, Wells S, Bowl M. Investigating audible and ultrasonic noise in modern animal facilities. F1000Res 2022; 11:651. [PMID: 35949916 PMCID: PMC9334837 DOI: 10.12688/f1000research.111170.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/24/2022] [Indexed: 12/15/2022] Open
Abstract
Background: The environmental housing conditions of laboratory animals are important for both welfare and reliable, reproducible data. Guidelines currently exist for factors such as lighting cycles, temperature, humidity, and noise, however, for the latter the current guidelines may overlook important details. In the case of the most common laboratory species, the mouse, the range of frequencies they can hear is far higher than that of humans. The current guidelines briefly mention that ultrasonic (>20 kHz) frequencies can adversely affect mice, and that the acoustic environment should be checked, though no recommendations are provided relating to acceptable levels of ultrasonic noise. Methods: To investigate the ultrasonic environment in a large mouse breeding facility (the Mary Lyon Centre at MRC Harwell), we compared two systems, the Hottinger Bruel and Kjaer PULSE sound analyser, and an Avisoft Bioacoustics system. Potential noise sources were selected; we used the PULSE system to undertake real-time Fourier analysis of noise up to 100 kHz, and the Avisoft system to record noise up to 125 kHz for later analysis. The microphones from both systems were positioned consistently at the same distance from the source and environmental conditions were identical. In order to investigate our result further, a third system, the AudioMoth (Open Acoustic Devices), was also used for recording. We used DeepSqueak software for most of the recording analysis and, in some cases, we also undertook further spectral analysis using RX8 (iZotope, USA). Results: We found that both systems can detect a range of ultrasonic noise sources, and here discuss the benefits and limitations of each approach. Conclusions: We conclude that measuring the acoustic environment of animal facilities, including ultrasonic frequencies that may adversely affect the animals housed, will contribute to minimising disruption to animal welfare and perturbations in scientific research.
Collapse
Affiliation(s)
- Andrew Parker
- Mammalian Genetics Unit, MRC Harwell Institute, Harwell Oxford, UK
| | - Liane Hobson
- Mary Lyon Centre at MRC Harwell, Harwell Science Campus, Oxford, UK
| | - Rasneer Bains
- Mary Lyon Centre at MRC Harwell, Harwell Science Campus, Oxford, UK
| | - Sara Wells
- Mary Lyon Centre at MRC Harwell, Harwell Science Campus, Oxford, UK
| | - Michael Bowl
- Mammalian Genetics Unit, MRC Harwell Institute, Harwell Oxford, UK
- UCL Ear Institute, University College London, London, UK
| |
Collapse
|
20
|
Maele TV, Keshishzadeh S, Poortere ND, Dhooge I, Keppler H, Verhulst S. The Variability in Potential Biomarkers for Cochlear Synaptopathy After Recreational Noise Exposure. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2021; 64:4964-4981. [PMID: 34670099 DOI: 10.1044/2021_jslhr-21-00064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
PURPOSE Speech-in-noise tests and suprathreshold auditory evoked potentials are promising biomarkers to diagnose cochlear synaptopathy (CS) in humans. This study investigated whether these biomarkers changed after recreational noise exposure. METHOD The baseline auditory status of 19 normal-hearing young adults was analyzed using questionnaires, pure-tone audiometry, speech audiometry, and auditory evoked potentials. Nineteen subjects attended a music festival and completed the same tests again at Day 1, Day 3, and Day 5 after the music festival. RESULTS No significant relations were found between lifetime noise-exposure history and the hearing tests. Changes in biomarkers from the first session to the follow-up sessions were nonsignificant, except for speech audiometry, which showed a significant learning effect (performance improvement). CONCLUSIONS Despite the individual variability in prefestival biomarkers, we did not observe changes related to the noise-exposure dose caused by the attended event. This can indicate the absence of noise exposure-driven CS in the study cohort, or reflect that biomarkers were not sensitive enough to detect mild CS. Future research should include a more diverse study cohort, dosimetry, and results from test-retest reliability studies to provide more insight into the relationship between recreational noise exposure and CS. Supplemental Material https://doi.org/10.23641/asha.16821283.
Collapse
Affiliation(s)
- Tine Vande Maele
- Department of Rehabilitation Sciences, Ghent University, Belgium
| | - Sarineh Keshishzadeh
- Hearing Technology, WAVES, Department of Information Technology, Ghent University, Belgium
| | - Nele De Poortere
- Department of Rehabilitation Sciences, Ghent University, Belgium
| | - Ingeborg Dhooge
- Department of Head and Skin, Ghent University, Belgium
- Department of Ear, Nose and Throat, Ghent University Hospital, Belgium
| | - Hannah Keppler
- Department of Rehabilitation Sciences, Ghent University, Belgium
- Department of Ear, Nose and Throat, Ghent University Hospital, Belgium
| | - Sarah Verhulst
- Hearing Technology, WAVES, Department of Information Technology, Ghent University, Belgium
| |
Collapse
|
21
|
Badash I, Quiñones PM, Oghalai KJ, Wang J, Lui CG, Macias-Escriva F, Applegate BE, Oghalai JS. Endolymphatic Hydrops is a Marker of Synaptopathy Following Traumatic Noise Exposure. Front Cell Dev Biol 2021; 9:747870. [PMID: 34805158 PMCID: PMC8602199 DOI: 10.3389/fcell.2021.747870] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/20/2021] [Indexed: 12/28/2022] Open
Abstract
After acoustic trauma, there can be loss of synaptic connections between inner hair cells and auditory neurons in the cochlea, which may lead to hearing abnormalities including speech-in-noise difficulties, tinnitus, and hyperacusis. We have previously studied mice with blast-induced cochlear synaptopathy and found that they also developed a build-up of endolymph, termed endolymphatic hydrops. In this study, we used optical coherence tomography to measure endolymph volume in live CBA/CaJ mice exposed to various noise intensities. We quantified the number of synaptic ribbons and postsynaptic densities under the inner hair cells 1 week after noise exposure to determine if they correlated with acute changes in endolymph volume measured in the hours after the noise exposure. After 2 h of noise at an intensity of 95 dB SPL or below, both endolymph volume and synaptic counts remained normal. After exposure to 2 h of 100 dB SPL noise, mice developed endolymphatic hydrops and had reduced synaptic counts in the basal and middle regions of the cochlea. Furthermore, round-window application of hypertonic saline reduced the degree of endolymphatic hydrops that developed after 100 dB SPL noise exposure and partially prevented the reduction in synaptic counts in the cochlear base. Taken together, these results indicate that endolymphatic hydrops correlates with noise-induced cochlear synaptopathy, suggesting that these two pathologic findings have a common mechanistic basis.
Collapse
Affiliation(s)
- Ido Badash
- Caruso Department of Otolaryngology-Head and Neck Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States
| | - Patricia M Quiñones
- Caruso Department of Otolaryngology-Head and Neck Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States
| | - Kevin J Oghalai
- Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States
| | - Juemei Wang
- Caruso Department of Otolaryngology-Head and Neck Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States
| | - Christopher G Lui
- Department of Otolaryngology-Head and Neck Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Frank Macias-Escriva
- Caruso Department of Otolaryngology-Head and Neck Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States
| | - Brian E Applegate
- Caruso Department of Otolaryngology-Head and Neck Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States.,Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States
| | - John S Oghalai
- Caruso Department of Otolaryngology-Head and Neck Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States.,Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
22
|
Kesharwani A, Schwarz K, Dembla E, Dembla M, Schmitz F. Early Changes in Exo- and Endocytosis in the EAE Mouse Model of Multiple Sclerosis Correlate with Decreased Synaptic Ribbon Size and Reduced Ribbon-Associated Vesicle Pools in Rod Photoreceptor Synapses. Int J Mol Sci 2021; 22:ijms221910789. [PMID: 34639129 PMCID: PMC8509850 DOI: 10.3390/ijms221910789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 12/17/2022] Open
Abstract
Multiple sclerosis (MS) is an inflammatory disease of the central nervous system that finally leads to demyelination. Demyelinating optic neuritis is a frequent symptom in MS. Recent studies also revealed synapse dysfunctions in MS patients and MS mouse models. We previously reported alterations of photoreceptor ribbon synapses in the experimental auto-immune encephalomyelitis (EAE) mouse model of MS. In the present study, we found that the previously observed decreased imunosignals of photoreceptor ribbons in early EAE resulted from a decrease in synaptic ribbon size, whereas the number/density of ribbons in photoreceptor synapses remained unchanged. Smaller photoreceptor ribbons are associated with fewer docked and ribbon-associated vesicles. At a functional level, depolarization-evoked exocytosis as monitored by optical recording was diminished even as early as on day 7 after EAE induction. Moreover compensatory, post-depolarization endocytosis was decreased. Decreased post-depolarization endocytosis in early EAE correlated with diminished synaptic enrichment of dynamin3. In contrast, basal endocytosis in photoreceptor synapses of resting non-depolarized retinal slices was increased in early EAE. Increased basal endocytosis correlated with increased de-phosphorylation of dynamin1. Thus, multiple endocytic pathways in photoreceptor synapse are differentially affected in early EAE and likely contribute to the observed synapse pathology in early EAE.
Collapse
Affiliation(s)
- Ajay Kesharwani
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Medical School, Saarland University, 66421 Homburg, Germany; (K.S.); (E.D.); (M.D.); (F.S.)
- Correspondence:
| | - Karin Schwarz
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Medical School, Saarland University, 66421 Homburg, Germany; (K.S.); (E.D.); (M.D.); (F.S.)
| | - Ekta Dembla
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Medical School, Saarland University, 66421 Homburg, Germany; (K.S.); (E.D.); (M.D.); (F.S.)
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Mayur Dembla
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Medical School, Saarland University, 66421 Homburg, Germany; (K.S.); (E.D.); (M.D.); (F.S.)
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Frank Schmitz
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Medical School, Saarland University, 66421 Homburg, Germany; (K.S.); (E.D.); (M.D.); (F.S.)
| |
Collapse
|
23
|
Occelli F, Hasselmann F, Bourien J, Puel JL, Desvignes N, Wiszniowski B, Edeline JM, Gourévitch B. Temporal Alterations to Central Auditory Processing without Synaptopathy after Lifetime Exposure to Environmental Noise. Cereb Cortex 2021; 32:1737-1754. [PMID: 34494109 DOI: 10.1093/cercor/bhab310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 11/13/2022] Open
Abstract
People are increasingly exposed to environmental noise through the cumulation of occupational and recreational activities, which is considered harmless to the auditory system, if the sound intensity remains <80 dB. However, recent evidence of noise-induced peripheral synaptic damage and central reorganizations in the auditory cortex, despite normal audiometry results, has cast doubt on the innocuousness of lifetime exposure to environmental noise. We addressed this issue by exposing adult rats to realistic and nontraumatic environmental noise, within the daily permissible noise exposure limit for humans (80 dB sound pressure level, 8 h/day) for between 3 and 18 months. We found that temporary hearing loss could be detected after 6 months of daily exposure, without leading to permanent hearing loss or to missing synaptic ribbons in cochlear hair cells. The degraded temporal representation of sounds in the auditory cortex after 18 months of exposure was very different from the effects observed after only 3 months of exposure, suggesting that modifications to the neural code continue throughout a lifetime of exposure to noise.
Collapse
Affiliation(s)
- Florian Occelli
- NeuroScience Paris-Saclay Institute (NeuroPSI), CNRS, University of Paris-Saclay, Orsay F-91405, France
| | - Florian Hasselmann
- Institute for Neurosciences of Montpellier (INM), INSERM, University of Montpellier, Montpellier F-34091, France
| | - Jérôme Bourien
- Institute for Neurosciences of Montpellier (INM), INSERM, University of Montpellier, Montpellier F-34091, France
| | - Jean-Luc Puel
- Institute for Neurosciences of Montpellier (INM), INSERM, University of Montpellier, Montpellier F-34091, France
| | - Nathalie Desvignes
- NeuroScience Paris-Saclay Institute (NeuroPSI), CNRS, University of Paris-Saclay, Orsay F-91405, France
| | - Bernadette Wiszniowski
- NeuroScience Paris-Saclay Institute (NeuroPSI), CNRS, University of Paris-Saclay, Orsay F-91405, France
| | - Jean-Marc Edeline
- NeuroScience Paris-Saclay Institute (NeuroPSI), CNRS, University of Paris-Saclay, Orsay F-91405, France
| | - Boris Gourévitch
- NeuroScience Paris-Saclay Institute (NeuroPSI), CNRS, University of Paris-Saclay, Orsay F-91405, France.,Institut de l'Audition, Institut Pasteur, INSERM, Paris F-75012, France.,CNRS, France
| |
Collapse
|
24
|
Hickman TT, Hashimoto K, Liberman LD, Liberman MC. Cochlear Synaptic Degeneration and Regeneration After Noise: Effects of Age and Neuronal Subgroup. Front Cell Neurosci 2021; 15:684706. [PMID: 34434091 PMCID: PMC8380781 DOI: 10.3389/fncel.2021.684706] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/30/2021] [Indexed: 01/24/2023] Open
Abstract
In CBA/CaJ mice, confocal analysis has shown that acoustic overexposure can immediately destroy synapses between auditory-nerve fibers (ANFs) and their peripheral targets, the inner hair cells (IHCs), and that years later, a corresponding number of ANF cell bodies degenerate. In guinea pig, post-exposure disappearance of pre-synaptic ribbons can be equally dramatic, however, post-exposure recovery to near-baseline counts has been reported. Since confocal counts are confounded by thresholding issues, the fall and rise of synaptic ribbon counts could represent “regeneration,” i.e., terminal retraction, re-extension and synaptogenesis, or “recovery,” i.e., down- and subsequent up-regulation of synaptic markers. To clarify, we counted pre-synaptic ribbons, assessed their juxtaposition with post-synaptic receptors, measured the extension of ANF terminals, and quantified the spatial organization and size gradients of these synaptic elements around the hair cell. Present results in guinea pigs exposed as adults (14 months), along with prior results in juveniles (1 month), suggest there is post-exposure neural regeneration in the guinea pig, but not the CBA/CaJ mouse, and that this regenerative capacity extends into adulthood. The results also show, for the first time, that the acute synaptic loss is concentrated on the modiolar side of IHCs, consistent with a selective loss of the high-threshold ANFs with low spontaneous rates. The morphological similarities between the post-exposure neurite extension and synaptogenesis, seen spontaneously in the guinea pig, and in CBA/CaJ only with forced overexpression of neurotrophins, suggest that the key difference may be in the degree of sustained or injury-induced expression of these signaling molecules in the cochlea.
Collapse
Affiliation(s)
- Tyler T Hickman
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, United States.,Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA, United States
| | - Ken Hashimoto
- Department of Otolaryngology-Head and Neck Surgery, Tohoku University School of Medicine, Sendai, Japan
| | - Leslie D Liberman
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, United States
| | - M Charles Liberman
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, United States.,Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
25
|
Kimura E, Mizutari K, Kurioka T, Kawauchi S, Satoh Y, Sato S, Shiotani A. Effect of shock wave power spectrum on the inner ear pathophysiology in blast-induced hearing loss. Sci Rep 2021; 11:14704. [PMID: 34282183 PMCID: PMC8289960 DOI: 10.1038/s41598-021-94080-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/29/2021] [Indexed: 11/10/2022] Open
Abstract
Blast exposure can induce various types of hearing impairment, including permanent hearing loss, tinnitus, and hyperacusis. Herein, we conducted a detailed investigation of the cochlear pathophysiology in blast-induced hearing loss in mice using two blasts with different characteristics: a low-frequency dominant blast generated by a shock tube and a high-frequency dominant shock wave generated by laser irradiation (laser-induced shock wave). The pattern of sensorineural hearing loss (SNHL) was low-frequency- and high-frequency-dominant in response to the low- and high-frequency blasts, respectively. Pathological examination revealed that cochlear synaptopathy was the most frequent cochlear pathology after blast exposure, which involved synapse loss in the inner hair cells without hair cell loss, depending on the power spectrum of the blast. This pathological change completely reflected the physiological analysis of wave I amplitude using auditory brainstem responses. Stereociliary bundle disruption in the outer hair cells was also dependent on the blast’s power spectrum. Therefore, we demonstrated that the dominant frequency of the blast power spectrum was the principal factor determining the region of cochlear damage. We believe that the presenting models would be valuable both in blast research and the investigation of various types of hearing loss whose pathogenesis involves cochlear synaptopathy.
Collapse
Affiliation(s)
- Eiko Kimura
- Department of Otolaryngology-Head and Neck Surgery, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan
| | - Kunio Mizutari
- Department of Otolaryngology-Head and Neck Surgery, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan.
| | - Takaomi Kurioka
- Department of Otolaryngology-Head and Neck Surgery, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan
| | - Satoko Kawauchi
- Division of Bioinformation and Therapeutic Systems, National Defense Medical College Research Institute, Saitama, 359-8513, Japan
| | - Yasushi Satoh
- Department of Biochemistry, National Defense Medical College, Saitama, 359-8513, Japan
| | - Shunichi Sato
- Division of Bioinformation and Therapeutic Systems, National Defense Medical College Research Institute, Saitama, 359-8513, Japan
| | - Akihiro Shiotani
- Department of Otolaryngology-Head and Neck Surgery, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan
| |
Collapse
|
26
|
Mao H, Chen Y. Noise-Induced Hearing Loss: Updates on Molecular Targets and Potential Interventions. Neural Plast 2021; 2021:4784385. [PMID: 34306060 PMCID: PMC8279877 DOI: 10.1155/2021/4784385] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/12/2021] [Indexed: 12/18/2022] Open
Abstract
Noise overexposure leads to hair cell loss, synaptic ribbon reduction, and auditory nerve deterioration, resulting in transient or permanent hearing loss depending on the exposure severity. Oxidative stress, inflammation, calcium overload, glutamate excitotoxicity, and energy metabolism disturbance are the main contributors to noise-induced hearing loss (NIHL) up to now. Gene variations are also identified as NIHL related. Glucocorticoid is the only approved medication for NIHL treatment. New pharmaceuticals targeting oxidative stress, inflammation, or noise-induced neuropathy are emerging, highlighted by the nanoparticle-based drug delivery system. Given the complexity of the pathogenesis behind NIHL, deeper and more comprehensive studies still need to be fulfilled.
Collapse
Affiliation(s)
- Huanyu Mao
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
- NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai 200031, China
| | - Yan Chen
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
- NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai 200031, China
| |
Collapse
|
27
|
Dose-Dependent Pattern of Cochlear Synaptic Degeneration in C57BL/6J Mice Induced by Repeated Noise Exposure. Neural Plast 2021; 2021:9919977. [PMID: 34221004 PMCID: PMC8211526 DOI: 10.1155/2021/9919977] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/01/2021] [Accepted: 05/25/2021] [Indexed: 12/26/2022] Open
Abstract
It is widely accepted that even a single acute noise exposure at moderate intensity that induces temporary threshold shift (TTS) can result in permanent loss of ribbon synapses between inner hair cells and afferents. However, effects of repeated or chronic noise exposures on the cochlear synapses especially medial olivocochlear (MOC) efferent synapses remain elusive. Based on a weeklong repeated exposure model of bandwidth noise over 2-20 kHz for 2 hours at seven intensities (88 to 106 dB SPL with 3 dB increment per gradient) on C57BL/6J mice, we attempted to explore the dose-response mechanism of prolonged noise-induced audiological dysfunction and cochlear synaptic degeneration. In our results, mice repeatedly exposed to relatively low-intensity noise (88, 91, and 94 dB SPL) showed few changes on auditory brainstem response (ABR), ribbon synapses, or MOC efferent synapses. Notably, repeated moderate-intensity noise exposures (97 and 100 dB SPL) not only caused hearing threshold shifts and the inner hair cell ribbon synaptopathy but also impaired MOC efferent synapses, which might contribute to complex patterns of damages on cochlear function and morphology. However, repeated high-intensity (103 and 106 dB SPL) noise exposures induced PTSs mainly accompanied by damages on cochlear amplifier function of outer hair cells and the inner hair cell ribbon synaptopathy, rather than the MOC efferent synaptic degeneration. Moreover, we observed a frequency-dependent vulnerability of the repeated acoustic trauma-induced cochlear synaptic degeneration. This study provides a sight into the hypothesis that noise-induced cochlear synaptic degeneration involves both afferent (ribbon synapses) and efferent (MOC terminals) pathology. The pattern of dose-dependent pathological changes induced by repeated noise exposure at various intensities provides a possible explanation for the complicated cochlear synaptic degeneration in humans. The underlying mechanisms remain to be studied in the future.
Collapse
|
28
|
Seist R, Landegger LD, Robertson NG, Vasilijic S, Morton CC, Stankovic KM. Cochlin Deficiency Protects Against Noise-Induced Hearing Loss. Front Mol Neurosci 2021; 14:670013. [PMID: 34108864 PMCID: PMC8180578 DOI: 10.3389/fnmol.2021.670013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/16/2021] [Indexed: 12/20/2022] Open
Abstract
Cochlin is the most abundant protein in the inner ear. To study its function in response to noise trauma, we exposed adolescent wild-type (Coch +/+ ) and cochlin knock-out (Coch -/-) mice to noise (8-16 kHz, 103 dB SPL, 2 h) that causes a permanent threshold shift and hair cell loss. Two weeks after noise exposure, Coch-/- mice had substantially less elevation in noise-induced auditory thresholds and hair cell loss than Coch + / + mice, consistent with cochlin deficiency providing protection from noise trauma. Comparison of pre-noise exposure thresholds of auditory brain stem responses (ABRs) and distortion product otoacoustic emissions (DPOAEs) in Coch-/- mice and Coch + / + littermates revealed a small and significant elevation in thresholds of Coch-/- mice, overall consistent with a small conductive hearing loss in Coch-/- mice. We show quantitatively that the pro-inflammatory component of cochlin, LCCL, is upregulated after noise exposure in perilymph of wild-type mice compared to unexposed mice, as is the enzyme catalyzing LCCL release, aggrecanase1, encoded by Adamts4. We further show that upregulation of pro-inflammatory cytokines in perilymph and cochlear soft-tissue after noise exposure is lower in cochlin knock-out than wild-type mice. Taken together, our data demonstrate for the first time that cochlin deficiency results in conductive hearing loss that protects against physiologic and molecular effects of noise trauma.
Collapse
Affiliation(s)
- Richard Seist
- Eaton-Peabody Laboratories and Department of Otolaryngology – Head and Neck Surgery, Massachusetts Eye and Ear, Boston, MA, United States
- Department of Otolaryngology – Head and Neck Surgery, Harvard Medical School, Boston, MA, United States
- Department of Otorhinolaryngology – Head and Neck Surgery, Paracelsus Medical University, Salzburg, Austria
| | - Lukas D. Landegger
- Eaton-Peabody Laboratories and Department of Otolaryngology – Head and Neck Surgery, Massachusetts Eye and Ear, Boston, MA, United States
- Department of Otolaryngology – Head and Neck Surgery, Harvard Medical School, Boston, MA, United States
- Department of Otorhinolaryngology – Head and Neck Surgery, Medical University of Vienna, Vienna, Austria
| | - Nahid G. Robertson
- Department of Obstetrics and Gynecology and of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Sasa Vasilijic
- Eaton-Peabody Laboratories and Department of Otolaryngology – Head and Neck Surgery, Massachusetts Eye and Ear, Boston, MA, United States
- Department of Otolaryngology – Head and Neck Surgery, Harvard Medical School, Boston, MA, United States
| | - Cynthia C. Morton
- Department of Obstetrics and Gynecology and of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Broad Institute of MIT and Harvard, Cambridge, MA, United States
- Manchester Centre for Audiology and Deafness, School of Health Sciences, University of Manchester, Manchester, United Kingdom
- Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, MA, United States
| | - Konstantina M. Stankovic
- Eaton-Peabody Laboratories and Department of Otolaryngology – Head and Neck Surgery, Massachusetts Eye and Ear, Boston, MA, United States
- Department of Otolaryngology – Head and Neck Surgery, Harvard Medical School, Boston, MA, United States
- Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, MA, United States
- Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
29
|
Nevoux J, Alexandru M, Bellocq T, Tanaka L, Hayashi Y, Watabe T, Lahlou H, Tani K, Edge ASB. An antibody to RGMa promotes regeneration of cochlear synapses after noise exposure. Sci Rep 2021; 11:2937. [PMID: 33536466 PMCID: PMC7859405 DOI: 10.1038/s41598-021-81294-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 01/05/2021] [Indexed: 11/09/2022] Open
Abstract
Auditory neuropathy is caused by the loss of afferent input to the brainstem via the components of the neural pathway comprising inner hair cells and the first order neurons of the spiral ganglion. Recent work has identified the synapse between cochlear primary afferent neurons and sensory hair cells as a particularly vulnerable component of this pathway. Loss of these synapses due to noise exposure or aging results in the pathology identified as hidden hearing loss, an initial stage of cochlear dysfunction that goes undetected in standard hearing tests. We show here that repulsive axonal guidance molecule a (RGMa) acts to prevent regrowth and synaptogenesis of peripheral auditory nerve fibers with inner hair cells. Treatment of noise-exposed animals with an anti-RGMa blocking antibody regenerated inner hair cell synapses and resulted in recovery of wave-I amplitude of the auditory brainstem response, indicating effective reversal of synaptopathy.
Collapse
Affiliation(s)
- Jerome Nevoux
- Department of Otololaryngology, Harvard Medical School, Boston, MA, 02115, USA.,Eaton-Peabody Laboratories, Massachusetts Eye and Ear, 243 Charles St., Boston, MA, 02114, USA
| | - Mihaela Alexandru
- Department of Otololaryngology, Harvard Medical School, Boston, MA, 02115, USA.,Eaton-Peabody Laboratories, Massachusetts Eye and Ear, 243 Charles St., Boston, MA, 02114, USA
| | - Thomas Bellocq
- Department of Otololaryngology, Harvard Medical School, Boston, MA, 02115, USA.,Eaton-Peabody Laboratories, Massachusetts Eye and Ear, 243 Charles St., Boston, MA, 02114, USA
| | - Lei Tanaka
- Department of Otololaryngology, Harvard Medical School, Boston, MA, 02115, USA.,Eaton-Peabody Laboratories, Massachusetts Eye and Ear, 243 Charles St., Boston, MA, 02114, USA
| | - Yushi Hayashi
- Department of Otololaryngology, Harvard Medical School, Boston, MA, 02115, USA.,Eaton-Peabody Laboratories, Massachusetts Eye and Ear, 243 Charles St., Boston, MA, 02114, USA
| | - Takahisa Watabe
- Department of Otololaryngology, Harvard Medical School, Boston, MA, 02115, USA.,Eaton-Peabody Laboratories, Massachusetts Eye and Ear, 243 Charles St., Boston, MA, 02114, USA
| | - Hanae Lahlou
- Department of Otololaryngology, Harvard Medical School, Boston, MA, 02115, USA.,Eaton-Peabody Laboratories, Massachusetts Eye and Ear, 243 Charles St., Boston, MA, 02114, USA
| | - Kohsuke Tani
- Department of Otololaryngology, Harvard Medical School, Boston, MA, 02115, USA.,Eaton-Peabody Laboratories, Massachusetts Eye and Ear, 243 Charles St., Boston, MA, 02114, USA
| | - Albert S B Edge
- Department of Otololaryngology, Harvard Medical School, Boston, MA, 02115, USA. .,Eaton-Peabody Laboratories, Massachusetts Eye and Ear, 243 Charles St., Boston, MA, 02114, USA. .,Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, MA, 02115, USA. .,Harvard Stem Cell Institute, Cambridge, MA, 02138, USA.
| |
Collapse
|
30
|
Synaptic migration and reorganization after noise exposure suggests regeneration in a mature mammalian cochlea. Sci Rep 2020; 10:19945. [PMID: 33203940 PMCID: PMC7672098 DOI: 10.1038/s41598-020-76553-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/21/2020] [Indexed: 01/27/2023] Open
Abstract
Overexposure to intense noise can destroy the synapses between auditory nerve fibers and their hair cell targets without destroying the hair cells themselves. In adult mice, this synaptopathy is immediate and largely irreversible, whereas, in guinea pigs, counts of immunostained synaptic puncta can recover with increasing post-exposure survival. Here, we asked whether this recovery simply reflects changes in synaptic immunostaining, or whether there is actual retraction and extension of neurites and/or synaptogenesis. Analysis of the numbers, sizes and spatial distribution of pre- and post-synaptic markers on cochlear inner hair cells, in guinea pigs surviving from 1 day to 6 months after a synaptopathic exposure, shows dramatic synaptic re-organization during the recovery period in which synapse counts recover from 16 to 91% of normal in the most affected regions. Synaptic puncta move all over the hair cell membrane during recovery, translocating far from their normal positions at the basolateral pole, and auditory-nerve terminals extend towards the hair cell’s apical end to re-establish contact with them. These observations provide stronger evidence for spontaneous neural regeneration in a mature mammalian cochlea than can be inferred from synaptic counts alone.
Collapse
|
31
|
Seist R, Tong M, Landegger LD, Vasilijic S, Hyakusoku H, Katsumi S, McKenna CE, Edge ASB, Stankovic KM. Regeneration of Cochlear Synapses by Systemic Administration of a Bisphosphonate. Front Mol Neurosci 2020; 13:87. [PMID: 32765216 PMCID: PMC7381223 DOI: 10.3389/fnmol.2020.00087] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 04/28/2020] [Indexed: 12/12/2022] Open
Abstract
Sensorineural hearing loss (SNHL) caused by noise exposure and attendant loss of glutamatergic synapses between cochlear spiral ganglion neurons (SGNs) and hair cells is the most common sensory deficit worldwide. We show here that systemic administration of a bisphosphonate to mice 24 h after synaptopathic noise exposure regenerated synapses between inner hair cells and SGNs and restored cochlear function. We further demonstrate that this effect is mediated by inhibition of the mevalonate pathway. These results are highly significant because they suggest that bisphosphonates could reverse cochlear synaptopathy for the treatment of SNHL.
Collapse
Affiliation(s)
- Richard Seist
- Eaton-Peabody Laboratories, Department of Otolaryngology – Head and Neck Surgery, Massachusetts Eye and Ear, Boston, MA, United States
- Department of Otolaryngology – Head and Neck Surgery, Harvard Medical School, Boston, MA, United States
- Department of Otorhinolaryngology-Head and Neck Surgery, Paracelsus Medical University, Salzburg, Austria
| | - Mingjie Tong
- Eaton-Peabody Laboratories, Department of Otolaryngology – Head and Neck Surgery, Massachusetts Eye and Ear, Boston, MA, United States
- Department of Otolaryngology – Head and Neck Surgery, Harvard Medical School, Boston, MA, United States
| | - Lukas D. Landegger
- Eaton-Peabody Laboratories, Department of Otolaryngology – Head and Neck Surgery, Massachusetts Eye and Ear, Boston, MA, United States
- Department of Otolaryngology – Head and Neck Surgery, Harvard Medical School, Boston, MA, United States
- Department of Otorhinolaryngology-Head and Neck Surgery, Medical University of Vienna, Vienna, Austria
| | - Sasa Vasilijic
- Eaton-Peabody Laboratories, Department of Otolaryngology – Head and Neck Surgery, Massachusetts Eye and Ear, Boston, MA, United States
- Department of Otolaryngology – Head and Neck Surgery, Harvard Medical School, Boston, MA, United States
| | - Hiroshi Hyakusoku
- Eaton-Peabody Laboratories, Department of Otolaryngology – Head and Neck Surgery, Massachusetts Eye and Ear, Boston, MA, United States
- Department of Otolaryngology – Head and Neck Surgery, Harvard Medical School, Boston, MA, United States
- Department of Otorhinolaryngology, Yokosuka Kyosai Hospital, Kanagawa, Japan
| | - Sachiyo Katsumi
- Eaton-Peabody Laboratories, Department of Otolaryngology – Head and Neck Surgery, Massachusetts Eye and Ear, Boston, MA, United States
- Department of Otolaryngology – Head and Neck Surgery, Harvard Medical School, Boston, MA, United States
| | - Charles E. McKenna
- Department of Chemistry, University of Southern California, Los Angeles, CA, United States
| | - Albert S. B. Edge
- Eaton-Peabody Laboratories, Department of Otolaryngology – Head and Neck Surgery, Massachusetts Eye and Ear, Boston, MA, United States
- Department of Otolaryngology – Head and Neck Surgery, Harvard Medical School, Boston, MA, United States
- Speech and Hearing Bioscience and Technology Program, Harvard Medical School, Boston, MA, United States
- Harvard Stem Cell Institute, Cambridge, MA, United States
| | - Konstantina M. Stankovic
- Eaton-Peabody Laboratories, Department of Otolaryngology – Head and Neck Surgery, Massachusetts Eye and Ear, Boston, MA, United States
- Department of Otolaryngology – Head and Neck Surgery, Harvard Medical School, Boston, MA, United States
- Speech and Hearing Bioscience and Technology Program, Harvard Medical School, Boston, MA, United States
- Harvard Stem Cell Institute, Cambridge, MA, United States
- Program in Therapeutic Science, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
32
|
Yee KT, Neupane B, Bai F, Vetter DE. Zika virus infection causes widespread damage to the inner ear. Hear Res 2020; 395:108000. [PMID: 32623238 DOI: 10.1016/j.heares.2020.108000] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 02/07/2020] [Accepted: 05/20/2020] [Indexed: 12/20/2022]
Abstract
Zika virus (ZIKV) has been recently recognized as a causative agent of newborn microcephaly, as well as other neurological consequences. A less well recognized comorbidity of prenatal ZIKV infection is hearing loss, but cases of hearing impairment following adult ZIKV infection have also been recognized. Diminished hearing following prenatal ZIKV infection in a mouse model has been reported, but no cellular consequences were observed. We examined the effects of ZIKV infection on inner ear cellular integrity and expression levels of various proteins important for cochlear function in type I interferon receptor null (Ifnar1-/-) mice following infection at 5-6 weeks of age. We show that ZIKV antigens are present in cells within the cochlear epithelium, lateral wall, spiral limbus and spiral ganglion. Here we show that ZIKV infection alters cochlear expression of genes that signal cell damage (S100B), transport fluids (AQP1), are gaseous transmitters (eNOs) and modulate immune response (F4/80). Morphological analyses shows that not only are cochlear structures compromised by ZIKV infection, but damage also occurs in vestibular end organs. ZIKV produces a graded distribution of cellular damage in the cochlea, with greatest damage in the apex similar to that reported for cytomegalovirus (CMV) infection. The graded distribution of damage may indicate a differential susceptibility to ZIKV along the cochlear tonotopic axis. Collectively, these data are the first to show the molecular and morphological damage to the inner ear induced by ZIKV infection in adults and suggests multiple mechanisms contributing to the hearing loss reported in the human population.
Collapse
Affiliation(s)
- Kathleen T Yee
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS, 39202, USA
| | - Biswas Neupane
- Department of Cell and Molecular Biology, University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| | - Fengwei Bai
- Department of Cell and Molecular Biology, University of Southern Mississippi, Hattiesburg, MS, 39406, USA.
| | - Douglas E Vetter
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS, 39202, USA.
| |
Collapse
|
33
|
Katsumi S, Sahin MI, Lewis RM, Iyer JS, Landegger LD, Stankovic KM. Intracochlear Perfusion of Tumor Necrosis Factor-Alpha Induces Sensorineural Hearing Loss and Synaptic Degeneration in Guinea Pigs. Front Neurol 2020; 10:1353. [PMID: 32116980 PMCID: PMC7025643 DOI: 10.3389/fneur.2019.01353] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 12/09/2019] [Indexed: 12/15/2022] Open
Abstract
Tumor necrosis factor-alpha (TNF-α) is a proinflammatory cytokine that plays a prominent role in the nervous system, mediating a range of physiologic and pathologic functions. In the auditory system, elevated levels of TNF-α have been implicated in several types of sensorineural hearing loss, including sensorineural hearing loss induced by vestibular schwannoma, a potentially fatal intracranial tumor that originates from the eighth cranial nerve; however, the mechanisms underlying the tumor's deleterious effects on hearing are not well-understood. Here, we investigated the effect of acute elevations of TNF-α in the inner ear on cochlear function and morphology by perfusing the cochlea with TNF-α in vivo in guinea pigs. TNF-α perfusion did not significantly change thresholds for compound action potential (CAP) responses, which reflect cochlear nerve activity, or distortion product otoacoustic emissions, which reflect outer hair cell integrity. However, intracochlear TNF-α perfusion reduced CAP amplitudes and increased the number of inner hair cell synapses without paired post-synaptic terminals, suggesting a pattern of synaptic degeneration that resembles that observed in primary cochlear neuropathy. Additionally, etanercept, a TNF-α blocker, protected against TNF-α-induced synaptopathy when administered systemically prior to intracochlear TNF-α perfusion. Findings motivate further investigation into the harmful effects of chronically elevated intracochlear levels of TNF-α, and the potential for etanercept to counter these effects.
Collapse
Affiliation(s)
- Sachiyo Katsumi
- Eaton Peabody Laboratories, Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear, Boston, MA, United States.,Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA, United States
| | - Mehmet I Sahin
- Eaton Peabody Laboratories, Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear, Boston, MA, United States.,Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA, United States
| | - Rebecca M Lewis
- Eaton Peabody Laboratories, Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear, Boston, MA, United States.,Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA, United States
| | - Janani S Iyer
- Eaton Peabody Laboratories, Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear, Boston, MA, United States.,Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA, United States.,Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, MA, United States
| | - Lukas D Landegger
- Eaton Peabody Laboratories, Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear, Boston, MA, United States.,Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA, United States
| | - Konstantina M Stankovic
- Eaton Peabody Laboratories, Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear, Boston, MA, United States.,Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA, United States.,Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, MA, United States.,Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
34
|
Escabi CD, Frye MD, Trevino M, Lobarinas E. The rat animal model for noise-induced hearing loss. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 146:3692. [PMID: 31795685 PMCID: PMC7480078 DOI: 10.1121/1.5132553] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Rats make excellent models for the study of medical, biological, genetic, and behavioral phenomena given their adaptability, robustness, survivability, and intelligence. The rat's general anatomy and physiology of the auditory system is similar to that observed in humans, and this has led to their use for investigating the effect of noise overexposure on the mammalian auditory system. The current paper provides a review of the rat model for studying noise-induced hearing loss and highlights advancements that have been made using the rat, particularly as these pertain to noise dose and the hazardous effects of different experimental noise types. In addition to the traditional loss of auditory function following acoustic trauma, recent findings have indicated the rat as a useful model in observing alterations in neuronal processing within the central nervous system following noise injury. Furthermore, the rat provides a second animal model when investigating noise-induced cochlear synaptopathy, as studies examining this in the rat model resemble the general patterns observed in mice. Together, these findings demonstrate the relevance of this animal model for furthering the authors' understanding of the effects of noise on structural, anatomical, physiological, and perceptual aspects of hearing.
Collapse
Affiliation(s)
- Celia D Escabi
- Callier Center for Communication Disorders, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, Texas 75080, USA
| | - Mitchell D Frye
- Callier Center for Communication Disorders, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, Texas 75080, USA
| | - Monica Trevino
- Callier Center for Communication Disorders, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, Texas 75080, USA
| | - Edward Lobarinas
- Callier Center for Communication Disorders, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, Texas 75080, USA
| |
Collapse
|
35
|
Holt AG, Kühl A, Braun RD, Altschuler R. The rat as a model for studying noise injury and otoprotection. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 146:3681. [PMID: 31795688 DOI: 10.1121/1.5131344] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
A major challenge for those studying noise-induced injury pre-clinically is the selection of an animal model. Noise injury models are particularly relevant in an age when people are constantly bombarded by loud noise due to occupation and/or recreation. The rat has been widely used for noise-related morphological, physiological, biochemical, and molecular assessment. Noise exposure resulting in a temporary (TTS) or permanent threshold shift (PTS) yields trauma in peripheral and central auditory related pathways. While the precise nature of noise-related injuries continues to be delineated, both PTS and TTS (with or without hidden hearing loss) result in homeostatic changes implicated in conditions such as tinnitus and hyperacusis. Compared to mice, rats generally tolerate exposure to loud sounds reasonably well, often without exhibiting other physical non-inner ear related symptoms such as death, loss of consciousness, or seizures [Skradski, Clark, Jiang, White, Fu, and Ptacek (2001). Neuron 31, 537-544; Faingold (2002). Hear. Res. 168, 223-237; Firstova, Abaimov, Surina, Poletaeva, Fedotova, and Kovalev (2012). Bull Exp. Biol. Med. 154, 196-198; De Sarro, Russo, Citraro, and Meldrum (2017). Epilepsy Behav. 71, 165-173]. This ability of the rat to thrive following noise exposure permits study of long-term effects. Like the mouse, the rat also offers a well-characterized genome allowing genetic manipulations (i.e., knock-out, viral-based gene expression modulation, and optogenetics). Rat models of noise-related injury also provide valuable information for understanding mechanistic changes to identify therapeutic targets for treatment. This article provides a framework for selection of the rat as a model for noise injury studies.
Collapse
Affiliation(s)
- Avril Genene Holt
- Department of Ophthalmology, Visual, and Anatomical Sciences (OVAS), School of Medicine, Wayne State University, 550 East Canfield Avenue, 454 Lande Building, Detroit, Michigan 48201, USA
| | - André Kühl
- Department of Ophthalmology, Visual, and Anatomical Sciences (OVAS), School of Medicine, Wayne State University, 550 East Canfield Avenue, 454 Lande Building, Detroit, Michigan 48201, USA
| | - Rod D Braun
- Department of Ophthalmology, Visual, and Anatomical Sciences (OVAS), School of Medicine, Wayne State University, 550 East Canfield Avenue, 454 Lande Building, Detroit, Michigan 48201, USA
| | - Richard Altschuler
- Department of Otolaryngology; Cell and Developmental Biology, Kresge Hearing Research Institute, University of Michigan, 1150 West Medical Center Drive, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
36
|
Wong HTC, Zhang Q, Beirl AJ, Petralia RS, Wang YX, Kindt K. Synaptic mitochondria regulate hair-cell synapse size and function. eLife 2019; 8:e48914. [PMID: 31609202 PMCID: PMC6879205 DOI: 10.7554/elife.48914] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 10/13/2019] [Indexed: 11/21/2022] Open
Abstract
Sensory hair cells in the ear utilize specialized ribbon synapses. These synapses are defined by electron-dense presynaptic structures called ribbons, composed primarily of the structural protein Ribeye. Previous work has shown that voltage-gated influx of Ca2+ through CaV1.3 channels is critical for hair-cell synapse function and can impede ribbon formation. We show that in mature zebrafish hair cells, evoked presynaptic-Ca2+ influx through CaV1.3 channels initiates mitochondrial-Ca2+ (mito-Ca2+) uptake adjacent to ribbons. Block of mito-Ca2+ uptake in mature cells depresses presynaptic-Ca2+ influx and impacts synapse integrity. In developing zebrafish hair cells, mito-Ca2+ uptake coincides with spontaneous rises in presynaptic-Ca2+ influx. Spontaneous mito-Ca2+ loading lowers cellular NAD+/NADH redox and downregulates ribbon size. Direct application of NAD+ or NADH increases or decreases ribbon size respectively, possibly acting through the NAD(H)-binding domain on Ribeye. Our results present a mechanism where presynaptic- and mito-Ca2+ couple to confer proper presynaptic function and formation.
Collapse
MESH Headings
- 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester/pharmacology
- Animals
- Animals, Genetically Modified
- Calcium/metabolism
- Calcium Channel Agonists/pharmacology
- Calcium Channel Blockers/pharmacology
- Calcium Channels, L-Type/genetics
- Calcium Channels, L-Type/metabolism
- Calcium Signaling
- Cell Size
- Embryo, Nonmammalian
- Evoked Potentials, Auditory/physiology
- Eye Proteins/chemistry
- Eye Proteins/genetics
- Eye Proteins/metabolism
- Gene Expression
- Hair Cells, Auditory/cytology
- Hair Cells, Auditory/drug effects
- Hair Cells, Auditory/metabolism
- Isradipine/pharmacology
- Mitochondria/drug effects
- Mitochondria/metabolism
- Mitochondria/ultrastructure
- NAD/metabolism
- Oxidation-Reduction
- Protein Binding
- Protein Interaction Domains and Motifs
- Ruthenium Compounds/pharmacology
- Synapses/drug effects
- Synapses/metabolism
- Synapses/ultrastructure
- Synaptic Transmission
- Zebrafish
- Zebrafish Proteins/agonists
- Zebrafish Proteins/antagonists & inhibitors
- Zebrafish Proteins/chemistry
- Zebrafish Proteins/genetics
- Zebrafish Proteins/metabolism
Collapse
Affiliation(s)
- Hiu-tung C Wong
- Section on Sensory Cell Development and FunctionNational Institute on Deafness and Other Communication Disorders, National Institutes of HealthBethesdaUnited States
- National Institutes of Health-Johns Hopkins University Graduate Partnership ProgramNational Institute on Deafness and Other Communication Disorders, National Institutes of HealthBethesdaUnited States
| | - Qiuxiang Zhang
- Section on Sensory Cell Development and FunctionNational Institute on Deafness and Other Communication Disorders, National Institutes of HealthBethesdaUnited States
| | - Alisha J Beirl
- Section on Sensory Cell Development and FunctionNational Institute on Deafness and Other Communication Disorders, National Institutes of HealthBethesdaUnited States
| | - Ronald S Petralia
- Advanced Imaging CoreNational Institute on Deafness and Other Communication Disorders, National Institutes of HealthBethesdaUnited States
| | - Ya-Xian Wang
- Advanced Imaging CoreNational Institute on Deafness and Other Communication Disorders, National Institutes of HealthBethesdaUnited States
| | - Katie Kindt
- Section on Sensory Cell Development and FunctionNational Institute on Deafness and Other Communication Disorders, National Institutes of HealthBethesdaUnited States
| |
Collapse
|
37
|
Landegger LD, Vasilijic S, Fujita T, Soares VY, Seist R, Xu L, Stankovic KM. Cytokine Levels in Inner Ear Fluid of Young and Aged Mice as Molecular Biomarkers of Noise-Induced Hearing Loss. Front Neurol 2019; 10:977. [PMID: 31632328 PMCID: PMC6749100 DOI: 10.3389/fneur.2019.00977] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 08/27/2019] [Indexed: 12/11/2022] Open
Abstract
Sensorineural hearing loss (SNHL) is the most common sensory deficit worldwide, frequently caused by noise trauma and aging, with inflammation being implicated in both pathologies. Here, we provide the first direct measurements of proinflammatory cytokines in inner ear fluid, perilymph, of adolescent and 2-year-old mice. The perilymph of adolescent mice exposed to the noise intensity resulting in permanent auditory threshold elevations had significantly increased levels of IL-6, TNF-α, and CXCL1 6 h after exposure, with CXCL1 levels being most elevated (19.3 ± 6.2 fold). We next provide the first immunohistochemical localization of CXCL1 in specific cochlear supporting cells, and its presumed receptor, Duffy antigen receptor for chemokines (DARC), in hair cells and spiral ganglion neurons. Our results demonstrate the feasibility of molecular diagnostics of SNHL using only 0.5 μL of perilymph, and motivate future sub-μL based diagnostics of human SNHL based on liquid biopsy of the inner ear to guide therapy, promote hearing protection, and monitor response to treatment.
Collapse
Affiliation(s)
- Lukas D Landegger
- Eaton Peabody Laboratories, Department of Otolaryngology, Massachusetts Eye and Ear, Boston, MA, United States.,Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA, United States.,Department of Otolaryngology, Vienna General Hospital, Medical University of Vienna, Vienna, Austria
| | - Sasa Vasilijic
- Eaton Peabody Laboratories, Department of Otolaryngology, Massachusetts Eye and Ear, Boston, MA, United States.,Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA, United States
| | - Takeshi Fujita
- Eaton Peabody Laboratories, Department of Otolaryngology, Massachusetts Eye and Ear, Boston, MA, United States.,Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA, United States
| | - Vitor Y Soares
- Eaton Peabody Laboratories, Department of Otolaryngology, Massachusetts Eye and Ear, Boston, MA, United States.,Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA, United States
| | - Richard Seist
- Eaton Peabody Laboratories, Department of Otolaryngology, Massachusetts Eye and Ear, Boston, MA, United States.,Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA, United States
| | - Lei Xu
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Harvard Medical School, Massachusetts General Hospital, Boston, MA, United States
| | - Konstantina M Stankovic
- Eaton Peabody Laboratories, Department of Otolaryngology, Massachusetts Eye and Ear, Boston, MA, United States.,Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA, United States.,Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, MA, United States.,Program in Therapeutic Science, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
38
|
|
39
|
No Reliable Association Between Recreational Noise Exposure and Threshold Sensitivity, Distortion Product Otoacoustic Emission Amplitude, or Word-in-Noise Performance in a College Student Population. Ear Hear 2019. [PMID: 29543608 DOI: 10.1097/aud.0000000000000575] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
OBJECTIVES The purpose of this study was to evaluate the relationship between recreational sound exposure and potentially undiagnosed or subclinical hearing loss by assessing sound exposure history, threshold sensitivity, distortion product otoacoustic emission (DPOAE) amplitudes, and performance on the words-in-noise (WIN) test. DESIGN Survey data were collected from 74 adult participants (14 male and 60 female), 18 to 27 years of age, recruited via advertisements posted throughout the University of Florida campus. Of these participants, 70 completed both the survey and the additional functional test battery, and their preferred listening level was measured in a laboratory setting. RESULTS There were statistically significant relationships between hearing thresholds and DPOAE amplitude. In contrast, performance on the WIN was not reliably related to threshold sensitivity within this cohort with largely normal hearing. The two most common exposures included bars or dance clubs, followed by music player use. There were no statistically significant relationships between individual or composite measures of recreational sound exposure, including preferred listening level, years of music player use, number of reported sound exposures, previous impulse noise exposure, or previous noise-induced change in hearing, and functional measures including threshold, DPOAE amplitude, and WIN measures. Some subjects were highly consistent in listening level preferences, while others were more variable from song to song. CONCLUSIONS No reliable relationships between common recreational sound exposure or previous noise-induced changes in hearing were found during analysis of threshold sensitivity, DPOAE amplitude, or WIN performance in this cohort. However, the study sample was predominantly female and Caucasian, which limits generalizability of the results.
Collapse
|
40
|
Evidence for age-related cochlear synaptopathy in humans unconnected to speech-in-noise intelligibility deficits. Hear Res 2019; 374:35-48. [DOI: 10.1016/j.heares.2019.01.017] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 01/18/2019] [Accepted: 01/22/2019] [Indexed: 12/20/2022]
|
41
|
Grose JH, Buss E, Elmore H. Age-Related Changes in the Auditory Brainstem Response and Suprathreshold Processing of Temporal and Spectral Modulation. Trends Hear 2019; 23:2331216519839615. [PMID: 30977442 PMCID: PMC6463337 DOI: 10.1177/2331216519839615] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 02/21/2019] [Accepted: 02/22/2019] [Indexed: 01/05/2023] Open
Abstract
The purpose of this study was to determine whether cochlear synaptopathy can be shown to be a viable basis for age-related hearing difficulties in humans and whether it manifests as deficient suprathreshold processing of temporal and spectral modulation. Three experiments were undertaken evaluating the effects of age on (a) the auditory brainstem response as a function of level, (b) temporal modulation detection as a function of level and background noise, and (c) spectral modulation as a function of level. Across the three experiments, a total of 21 older listeners with near-normal audiograms and 29 young listeners with audiometrically normal hearing participated. The auditory brainstem response experiment demonstrated reduced Wave I amplitudes and concomitant reductions in the amplitude ratios of Wave I to Wave V in the older listener group. These findings were interpreted as consistent with an electrophysiological profile of cochlear synaptopathy. The temporal and spectral modulation detection experiments, however, provided no support for the hypothesis of compromised suprathreshold processing in these domains. This pattern of results suggests that even if cochlear synaptopathy can be shown to be a viable basis for age-related hearing difficulties, then temporal and spectral modulation detection paradigms are not sensitive to its presence.
Collapse
Affiliation(s)
- John H. Grose
- Department of Otolaryngology – Head and Neck Surgery, University of North Carolina at Chapel Hill, NC, USA
| | - Emily Buss
- Department of Otolaryngology – Head and Neck Surgery, University of North Carolina at Chapel Hill, NC, USA
| | - Hollis Elmore
- Department of Otolaryngology – Head and Neck Surgery, University of North Carolina at Chapel Hill, NC, USA
| |
Collapse
|
42
|
Liu Y, Wang H, Liu Z, Gu Y, Xin L, Liu J, Fan H. Short-term exposure to high-intensity sound induces hearing loss and apoptosis in guinea pigs. Acta Neurobiol Exp (Wars) 2019. [DOI: 10.21307/ane-2019-014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
43
|
Le Prell CG. Effects of noise exposure on auditory brainstem response and speech-in-noise tasks: a review of the literature. Int J Audiol 2018; 58:S3-S32. [DOI: 10.1080/14992027.2018.1534010] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Colleen G. Le Prell
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, USA
| |
Collapse
|
44
|
Amanipour RM, Zhu X, Duvey G, Celanire S, Walton JP, Frisina RD. Noise-Induced Hearing Loss in Mice: Effects of High and Low Levels of Noise Trauma in CBA Mice. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2018; 2018:1210-1213. [PMID: 30440607 DOI: 10.1109/embc.2018.8512525] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Acoustic trauma can induce temporary or permanent noise-induced hearing loss (NIHL). Noise exposed animal models allow us to study the effects of various noise trauma insults on the cochlea and auditory pathways. Here we studied the short-term and long-term functional changes occurring in the auditory system following exposure to two different noise traumas. Several measures of hearing function known to change following noise exposure were examined: Temporary (TTS) and permanent (PTS) threshold shifts were measured using auditory brainstem responses (ABR), outer hair cell function was examined using distortion product otoacoustic emissions (DPOAEs), and auditory temporal processing was assessed using a gap-in-noise (GIN) ABR paradigm. Physiological measures were made before and after the exposure (24 hours, 2 weeks, 4 weeks, and 1 year). The animals were perfused and their brain, and cochlea were collected for future biomarker studies. Young adult mice were exposed to 110 dB and 116 dB octave-band noise levels for 45 minutes, and both groups demonstrated significant threshold shifts 1 day post-noise exposure across all frequencies. However 2 weeks postexposure, PTS within the 110 dB group was significantly reduced compared to 1 day post trauma, this improvement in thresholds was not as great in the 116 dB exposure group. At 2 weeks post-trauma, differences between the measured PTS in the two groups was significant for 4 of the 7 measured frequencies. At this 1 year time point after exposure, mice in the 110 dB group showed very minor PTS, but the 116 dB group showed a large PTS comparable to their 2 and 4 week PTS. At this time point, PTS variation between the two groups was significant across all frequencies. DPOAE amplitudes measured 2 weeks post exposure showed recovery for all frequencies within 10 dB (average) of the baseline in the 110 dB group, however for the 116 dB exposure DP amplitudes were elevated by about 30 dB. The differences in DPOAE amplitudes between the 110 dB and 116 dB groups were significant at 2 weeks, 4 weeks, and 1 year post-trauma in the mid frequency range. At 2 weeks, 4 weeks, and 1 year, DPOAE thresholds returned to within 10 dB of the baseline for the 110 dB group in the low and mid frequency range, whereas the 116 dB group still showed shifts of 30 dB for all frequency ranges. For Gap ABRs, there was a significant decrease in both noise burst 1 (NB1) and noise burst 2 (NB2) amplitudes for peaks 1 and 4 in the 116 dB group relative to the 110 dB group when measured at 1 year post trauma. These results indicate that a 6 dB increase in noise exposure intensity results in a significant increased ototrauma in both the peripheral and central auditory systems.
Collapse
|
45
|
Solé M, Lenoir M, Fortuño JM, van der Schaar M, André M. A critical period of susceptibility to sound in the sensory cells of cephalopod hatchlings. Biol Open 2018; 7:bio.033860. [PMID: 30291138 PMCID: PMC6215419 DOI: 10.1242/bio.033860] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cephalopod statocyst and lateral line systems are sensory organs involved in orientation and balance. Lateral lines allow cephalopods to detect particle motion and are used for locating prey or predators in low light conditions. Here, we show the first analysis of damaged sensory epithelia in three species of cephalopod hatchlings (Sepia officinalis, Loligo vulgaris and Illex coindetii) after sound exposure. Our results indicate lesions in the statocyst sensory epithelia, similar to what was found in adult specimens. The novelty is that the severity of the lesions advanced more rapidly in hatchlings than in adult animals; i.e. the degree of lesions seen in hatchlings immediately after noise exposure would develop within 48 h in adults. This feature suggests a critical period of increased sensitivity to acoustic trauma in those species as has been described in developing mammalian cochlea and avian basilar papilla. The hair cells in the lateral lines of S. officinalis followed the same pattern of damage occurrence, while those of L. vulgaris and I. coindetii displayed a decreasing severity of damage after 24 h. These differences could be due to dissimilarities in size and life stages between the three species. Summary: We provide evidence of acoustic trauma in cephalopod hatchling sensory cells after sound exposure, whose damage increases faster than in adults, suggesting a critical period of sensitivity to anthropogenic noise in early stages.
Collapse
Affiliation(s)
- Marta Solé
- Laboratory of Applied Bioacoustics (LAB), Technical University of Catalonia, Vilanova i la Geltrú. 08800. Barcelona Tech (UPC), Spain
| | - Marc Lenoir
- Department of Physiopathology and Therapy of Sensory and Motor Deficits INSERM U.1051, Institute of Neurosciences of Montpellier, 34000 Montpellier, France
| | - José-Manuel Fortuño
- Electron Microscopy Laboratory, Institute of Marine Sciences, Spanish National Research Council, E-08003 Barcelona, Spain
| | - Mike van der Schaar
- Laboratory of Applied Bioacoustics (LAB), Technical University of Catalonia, Vilanova i la Geltrú. 08800. Barcelona Tech (UPC), Spain
| | - Michel André
- Laboratory of Applied Bioacoustics (LAB), Technical University of Catalonia, Vilanova i la Geltrú. 08800. Barcelona Tech (UPC), Spain
| |
Collapse
|
46
|
Abstract
Sensorineural hearing impairment is the most common sensory disorder and a major health and socio-economic issue in industrialized countries. It is primarily due to the degeneration of mechanosensory hair cells and spiral ganglion neurons in the cochlea via complex pathophysiological mechanisms. These occur following acute and/or chronic exposure to harmful extrinsic (e.g., ototoxic drugs, noise...) and intrinsic (e.g., aging, genetic) causative factors. No clinical therapies currently exist to rescue the dying sensorineural cells or regenerate these cells once lost. Recent studies have, however, provided renewed hope, with insights into the therapeutic targets allowing the prevention and treatment of ototoxic drug- and noise-induced, age-related hearing loss as well as cochlear cell degeneration. Moreover, genetic routes involving the replacement or corrective editing of mutant sequences or defected genes are showing promise, as are cell-replacement therapies to repair damaged cells for the future restoration of hearing in deaf people. This review begins by recapitulating our current understanding of the molecular pathways that underlie cochlear sensorineural damage, as well as the survival signaling pathways that can provide endogenous protection and tissue rescue. It then guides the reader through to the recent discoveries in pharmacological, gene and cell therapy research towards hearing protection and restoration as well as their potential clinical application.
Collapse
Affiliation(s)
- Jing Wang
- INSERM UMR 1051, Institute for Neurosciences of Montpellier, Montpellier, France; and University of Montpellier, Montpellier, France
| | - Jean-Luc Puel
- INSERM UMR 1051, Institute for Neurosciences of Montpellier, Montpellier, France; and University of Montpellier, Montpellier, France
| |
Collapse
|
47
|
Kindt KS, Sheets L. Transmission Disrupted: Modeling Auditory Synaptopathy in Zebrafish. Front Cell Dev Biol 2018; 6:114. [PMID: 30258843 PMCID: PMC6143809 DOI: 10.3389/fcell.2018.00114] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 08/23/2018] [Indexed: 01/04/2023] Open
Abstract
Sensorineural hearing loss is the most common form of hearing loss in humans, and results from either dysfunction in hair cells, the sensory receptors of sound, or the neurons that innervate hair cells. A specific type of sensorineural hearing loss, referred to as auditory synaptopathy, occurs when hair cells are able to detect sound but fail to transmit sound stimuli at the hair-cell synapse. Auditory synaptopathy can originate from genetic alterations that specifically disrupt hair-cell synapse function. Additionally, environmental factors such as noise exposure can leave hair cells intact but result in loss of hair-cell synapses, and represent an acquired form of auditory synaptopathy. The zebrafish model has emerged as a valuable system for studies of hair-cell function, and specifically hair-cell synaptopathy. In this review, we describe the experimental tools that have been developed to study hair-cell synapses in zebrafish. We discuss how zebrafish genetics has helped identify and define the roles of hair-cell synaptic proteins crucial for hearing in humans, and highlight how studies in zebrafish have contributed to our understanding of hair-cell synapse formation and function. In addition, we also discuss work that has used noise exposure or pharmacological mimic of noise-induced excitotoxicity in zebrafish to define cellular mechanisms underlying noise-induced hair-cell damage and synapse loss. Lastly, we highlight how future studies in zebrafish could enhance our understanding of the pathological processes underlying synapse loss in both genetic and acquired auditory synaptopathy. This knowledge is critical in order to develop therapies that protect or repair auditory synaptic contacts.
Collapse
Affiliation(s)
- Katie S. Kindt
- Section on Sensory Cell Development and Function, NIDCD/National Institutes of Health, Bethesda, MD, United States
| | - Lavinia Sheets
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
48
|
Enhancement of the Medial Olivocochlear System Prevents Hidden Hearing Loss. J Neurosci 2018; 38:7440-7451. [PMID: 30030403 DOI: 10.1523/jneurosci.0363-18.2018] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 07/02/2018] [Accepted: 07/09/2018] [Indexed: 01/15/2023] Open
Abstract
Cochlear synaptopathy produced by exposure to noise levels that cause only transient auditory threshold elevations is a condition that affects many people and is believed to contribute to poor speech discrimination in noisy environments. These functional deficits in hearing, without changes in sensitivity, have been called hidden hearing loss (HHL). It has been proposed that activity of the medial olivocochlear (MOC) system can ameliorate acoustic trauma effects. Here we explore the role of the MOC system in HHL by comparing the performance of two different mouse models: an α9 nicotinic receptor subunit knock-out (KO; Chrna9 KO), which lacks cholinergic transmission between efferent neurons and hair cells; and a gain-of-function knock-in (KI; Chrna9L9'T KI) carrying an α9 point mutation that leads to enhanced cholinergic activity. Animals of either sex were exposed to sound pressure levels that in wild-type produced transient cochlear threshold shifts and a decrease in neural response amplitudes, together with the loss of ribbon synapses, which is indicative of cochlear synaptopathy. Moreover, a reduction in the number of efferent contacts to outer hair cells was observed. In Chrna9 KO ears, noise exposure produced permanent auditory threshold elevations together with cochlear synaptopathy. In contrast, the Chrna9L9'T KI was completely resistant to the same acoustic exposure protocol. These results show a positive correlation between the degree of HHL prevention and the level of cholinergic activity. Notably, enhancement of the MOC feedback promoted new afferent synapse formation, suggesting that it can trigger cellular and molecular mechanisms to protect and/or repair the inner ear sensory epithelium.SIGNIFICANCE STATEMENT Noise overexposure is a major cause of a variety of perceptual disabilities, including speech-in-noise difficulties, tinnitus, and hyperacusis. Here we show that exposure to noise levels that do not cause permanent threshold elevations or hair cell death can produce a loss of cochlear nerve synapses to inner hair cells as well as degeneration of medial olivocochlear (MOC) terminals contacting the outer hair cells. Enhancement of the MOC reflex can prevent both types of neuropathy, highlighting the potential use of drugs that increase α9α10 nicotinic cholinergic receptor activity as a pharmacotherapeutic strategy to avoid hidden hearing loss.
Collapse
|
49
|
Barbee CM, James JA, Park JH, Smith EM, Johnson CE, Clifton S, Danhauer JL. Effectiveness of Auditory Measures for Detecting Hidden Hearing Loss and/or Cochlear Synaptopathy: A Systematic Review. Semin Hear 2018; 39:172-209. [PMID: 29915454 DOI: 10.1055/s-0038-1641743] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Standard audiometric evaluations are not sensitive enough to identify hidden hearing loss (HHL) and/or cochlear synaptopathy (CS). Patients with either of these conditions frequently present with difficulty understanding speech in noise or other complaints such as tinnitus. The purpose of this systematic review is to identify articles in peer-reviewed journals that assessed the sensitivity of audiologic measures for detecting HHL and/or CS, and which showed potential for use in a clinical test battery for these disorders. A reference librarian submitted specific boolean terminology to MEDLINE, Embase, and Web of Science. The authors used a consensus approach with specially designed score sheets for the selection of titles, abstracts, and then articles for inclusion in the systematic review and for quality assessment. Fifteen articles were included in the systematic review. Seven articles involved humans; seven involved animals, and one study used both humans and animals. Results showed that pure-tone audiometry to 20 kHz, otoacoustic emissions, electrocochleography, auditory brainstem response (ABR), electrophysiological tests, speech recognition in noise with and without temporal distortion, interviews, and self-report measures have been used to assess HHL and/or CS. For HHL, ultra-high-frequency audiometry may help identify persons with sensory hair cell loss that does not show up on standard audiograms. Promising nonbehavioral measures for CS included ABR wave I amplitude, the summating potential-to-action potential ratio, and speech recognition in noise with and without temporal distortion. Self-report questionnaires also may help identify auditory dysfunction in persons with normal hearing.
Collapse
Affiliation(s)
- Christi M Barbee
- Hearing Evaluation, Rehabilitation, and Outcomes Laboratory, Department of Communication Sciences and Disorders, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Jessica A James
- Hearing Evaluation, Rehabilitation, and Outcomes Laboratory, Department of Communication Sciences and Disorders, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Jin Hyung Park
- Hearing Evaluation, Rehabilitation, and Outcomes Laboratory, Department of Communication Sciences and Disorders, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Emily M Smith
- Hearing Evaluation, Rehabilitation, and Outcomes Laboratory, Department of Communication Sciences and Disorders, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Carole E Johnson
- Hearing Evaluation, Rehabilitation, and Outcomes Laboratory, Department of Communication Sciences and Disorders, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Shari Clifton
- Hearing Evaluation, Rehabilitation, and Outcomes Laboratory, Department of Communication Sciences and Disorders, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Jeffrey L Danhauer
- Department of Speech and Hearing Sciences, University of California Santa Barbara, Santa Barbara, California
| |
Collapse
|
50
|
Noise History and Auditory Function in Young Adults With and Without Type 1 Diabetes Mellitus. Ear Hear 2017; 38:724-735. [DOI: 10.1097/aud.0000000000000457] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|