1
|
Fort J, Pérez-Losada J. Interbreeding between farmers and hunter-gatherers along the inland and Mediterranean routes of Neolithic spread in Europe. Nat Commun 2024; 15:7032. [PMID: 39147743 PMCID: PMC11327347 DOI: 10.1038/s41467-024-51335-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 08/05/2024] [Indexed: 08/17/2024] Open
Abstract
The Neolithic (i.e., farming and stockbreeding) spread from the Near East across Europe since about 9000 years before the common era (BCE) until about 4000 yr BCE. It followed two main routes, namely a sea route along the northern Mediterranean coast and an inland one across the Balkans and central Europe. It is known that the dispersive behavior of farmers depended on geography, with longer movements along the Mediterranean coast than along the inland route. In sharp contrast, here we show that for both routes the percentage of farmers who interbred with hunter-gatherers and/or acculturated one of them was strikingly the same (about 3.6%). Therefore, whereas the dispersive behavior depended on the proximity to the Mediterranean sea, the interaction behavior (incorporation of hunter-gatherers) did not depend on geographical constraints but only on the transition in the subsistence economy (from hunting and gathering to farming) and its associated way of life. These conclusions are reached by analyzing the clines of haplogroup K, which was virtually absent in hunter-gatherers and the most frequent mitochondrial haplogroup in early farmers. Similarly, the most frequent Y-chromosome Neolithic haplogroup (G2a) displays an inland cline that agrees with the percentage of interbreeding reported above.
Collapse
Affiliation(s)
- Joaquim Fort
- Complex Systems Laboratory, Universitat de Girona, C/ Maria Aurèlia Capmany 61, 17003, Girona, Catalonia, Spain.
- Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluís Companys 3, 08010, Barcelona, Catalonia, Spain.
| | - Joaquim Pérez-Losada
- Complex Systems Laboratory, Universitat de Girona, C/ Maria Aurèlia Capmany 61, 17003, Girona, Catalonia, Spain
| |
Collapse
|
2
|
Rivollat M, Rohrlach AB, Ringbauer H, Childebayeva A, Mendisco F, Barquera R, Szolek A, Le Roy M, Colleran H, Tuke J, Aron F, Pemonge MH, Späth E, Télouk P, Rey L, Goude G, Balter V, Krause J, Rottier S, Deguilloux MF, Haak W. Extensive pedigrees reveal the social organization of a Neolithic community. Nature 2023; 620:600-606. [PMID: 37495691 PMCID: PMC10432279 DOI: 10.1038/s41586-023-06350-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 06/21/2023] [Indexed: 07/28/2023]
Abstract
Social anthropology and ethnographic studies have described kinship systems and networks of contact and exchange in extant populations1-4. However, for prehistoric societies, these systems can be studied only indirectly from biological and cultural remains. Stable isotope data, sex and age at death can provide insights into the demographic structure of a burial community and identify local versus non-local childhood signatures, archaeogenetic data can reconstruct the biological relationships between individuals, which enables the reconstruction of pedigrees, and combined evidence informs on kinship practices and residence patterns in prehistoric societies. Here we report ancient DNA, strontium isotope and contextual data from more than 100 individuals from the site Gurgy 'les Noisats' (France), dated to the western European Neolithic around 4850-4500 BC. We find that this burial community was genetically connected by two main pedigrees, spanning seven generations, that were patrilocal and patrilineal, with evidence for female exogamy and exchange with genetically close neighbouring groups. The microdemographic structure of individuals linked and unlinked to the pedigrees reveals additional information about the social structure, living conditions and site occupation. The absence of half-siblings and the high number of adult full siblings suggest that there were stable health conditions and a supportive social network, facilitating high fertility and low mortality5. Age-structure differences and strontium isotope results by generation indicate that the site was used for just a few decades, providing new insights into shifting sedentary farming practices during the European Neolithic.
Collapse
Affiliation(s)
- Maïté Rivollat
- University of Bordeaux, CNRS, PACEA - UMR 5199, Allée Geoffroy Saint-Hilaire, Pessac, France.
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
- Department of Archaeology, Durham University, Durham, UK.
- Department of Archaeology, Ghent University, Ghent, Belgium.
| | - Adam Benjamin Rohrlach
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- School of Computer and Mathematical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Harald Ringbauer
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Ainash Childebayeva
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Fanny Mendisco
- University of Bordeaux, CNRS, PACEA - UMR 5199, Allée Geoffroy Saint-Hilaire, Pessac, France
| | - Rodrigo Barquera
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - András Szolek
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany
- Applied Bioinformatics, Department of Computer Science, University of Tübingen, Tübingen, Germany
| | - Mélie Le Roy
- Department of Archaeology & Anthropology, Bournemouth University, Bournemouth, UK
| | - Heidi Colleran
- Department of Human Behavior, Ecology and Culture, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- BirthRites Lise Meitner Research Group, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Jonathan Tuke
- School of Computer and Mathematical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Franziska Aron
- Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), Jena, Germany
- RNA Bioinformatics and High Throughput Analysis, Friedrich Schiller University, Jena, Germany
| | - Marie-Hélène Pemonge
- University of Bordeaux, CNRS, PACEA - UMR 5199, Allée Geoffroy Saint-Hilaire, Pessac, France
| | - Ellen Späth
- Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), Jena, Germany
| | - Philippe Télouk
- Ecole Normale Supérieure de Lyon, CNRS, UCBL, LGL-TPE, Lyon, France
| | - Léonie Rey
- University of Bordeaux, CNRS, PACEA - UMR 5199, Allée Geoffroy Saint-Hilaire, Pessac, France
| | - Gwenaëlle Goude
- CNRS, Aix Marseille University, Ministry of Culture, LAMPEA, Aix-en-Provence, France
| | - Vincent Balter
- Ecole Normale Supérieure de Lyon, CNRS, UCBL, LGL-TPE, Lyon, France
| | - Johannes Krause
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Stéphane Rottier
- University of Bordeaux, CNRS, PACEA - UMR 5199, Allée Geoffroy Saint-Hilaire, Pessac, France.
| | - Marie-France Deguilloux
- University of Bordeaux, CNRS, PACEA - UMR 5199, Allée Geoffroy Saint-Hilaire, Pessac, France
| | - Wolfgang Haak
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
| |
Collapse
|
3
|
Ceccobelli S, Landi V, Senczuk G, Mastrangelo S, Sardina MT, Ben-Jemaa S, Persichilli C, Karsli T, Bâlteanu VA, Raschia MA, Poli MA, Ciappesoni G, Muchadeyi FC, Dzomba EF, Kunene NW, Lühken G, Deniskova TE, Dotsev AV, Zinovieva NA, Zsolnai A, Anton I, Kusza S, Carolino N, Santos-Silva F, Kawęcka A, Świątek M, Niżnikowski R, Špehar M, Anaya G, Granero A, Perloiro T, Cardoso P, Grande S, de Los Santos BL, Danchin-Burge C, Pasquini M, Martínez Martínez A, Delgado Bermejo JV, Lasagna E, Ciani E, Sarti FM, Pilla F. A comprehensive analysis of the genetic diversity and environmental adaptability in worldwide Merino and Merino-derived sheep breeds. Genet Sel Evol 2023; 55:24. [PMID: 37013467 PMCID: PMC10069132 DOI: 10.1186/s12711-023-00797-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 03/24/2023] [Indexed: 04/05/2023] Open
Abstract
BACKGROUND To enhance and extend the knowledge about the global historical and phylogenetic relationships between Merino and Merino-derived breeds, 19 populations were genotyped with the OvineSNP50 BeadChip specifically for this study, while an additional 23 populations from the publicly available genotypes were retrieved. Three complementary statistical tests, Rsb (extended haplotype homozygosity between-populations), XP-EHH (cross-population extended haplotype homozygosity), and runs of homozygosity (ROH) islands were applied to identify genomic variants with potential impact on the adaptability of Merino genetic type in two contrasting climate zones. RESULTS The results indicate that a large part of the Merino's genetic relatedness and admixture patterns are explained by their genetic background and/or geographic origin, followed by local admixture. Multi-dimensional scaling, Neighbor-Net, Admixture, and TREEMIX analyses consistently provided evidence of the role of Australian, Rambouillet and German strains in the extensive gene introgression into the other Merino and Merino-derived breeds. The close relationship between Iberian Merinos and other South-western European breeds is consistent with the Iberian origin of the Merino genetic type, with traces from previous contributions of other Mediterranean stocks. Using Rsb and XP-EHH approaches, signatures of selection were detected spanning four genomic regions located on Ovis aries chromosomes (OAR) 1, 6 and 16, whereas two genomic regions on OAR6, that partially overlapped with the previous ones, were highlighted by ROH islands. Overall, the three approaches identified 106 candidate genes putatively under selection. Among them, genes related to immune response were identified via the gene interaction network. In addition, several candidate genes were found, such as LEKR1, LCORL, GHR, RBPJ, BMPR1B, PPARGC1A, and PRKAA1, related to morphological, growth and reproductive traits, adaptive thermogenesis, and hypoxia responses. CONCLUSIONS To the best of our knowledge, this is the first comprehensive dataset that includes most of the Merino and Merino-derived sheep breeds raised in different regions of the world. The results provide an in-depth picture of the genetic makeup of the current Merino and Merino-derived breeds, highlighting the possible selection pressures associated with the combined effect of anthropic and environmental factors. The study underlines the importance of Merino genetic types as invaluable resources of possible adaptive diversity in the context of the occurring climate changes.
Collapse
Affiliation(s)
- Simone Ceccobelli
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, 60131, Ancona, Italy.
| | - Vincenzo Landi
- Department of Veterinary Medicine, University of Bari ''Aldo Moro", 70010, Valenzano, Italy
| | - Gabriele Senczuk
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100, Campobasso, Italy
| | - Salvatore Mastrangelo
- Department of Agricultural, Food and Forest Sciences, University of Palermo, 90128, Palermo, Italy
| | - Maria Teresa Sardina
- Department of Agricultural, Food and Forest Sciences, University of Palermo, 90128, Palermo, Italy
| | - Slim Ben-Jemaa
- Laboratoire des Productions Animales et Fourragères, Institut National de la Recherche Agronomique de Tunisie, Université de Carthage, 2049, Ariana, Tunisia
| | - Christian Persichilli
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100, Campobasso, Italy
| | - Taki Karsli
- Department of Animal Science, Faculty of Agriculture, Eskisehir Osmangazi University, 26040, Eskisehir, Turkey
| | - Valentin-Adrian Bâlteanu
- Laboratory of Genomics, Biodiversity, Animal Breeding and Molecular Pathology, Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 400372, Cluj-Napoca, Romania
| | - María Agustina Raschia
- Instituto de Genética "Ewald A. Favret", Instituto Nacional de Tecnología Agropecuaria, CICVyA-CNIA, B1686, Hurlingham, Buenos Aires, Argentina
| | - Mario Andrés Poli
- Instituto de Genética "Ewald A. Favret", Instituto Nacional de Tecnología Agropecuaria, CICVyA-CNIA, B1686, Hurlingham, Buenos Aires, Argentina
| | - Gabriel Ciappesoni
- Instituto Nacional de Investigación Agropecuaria, 90200, Canelones, Uruguay
| | | | - Edgar Farai Dzomba
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, 3209, Scottsville, Pietermaritzburg, South Africa
| | | | - Gesine Lühken
- Institute of Animal Breeding and Genetics, Justus Liebig University, 35390, Giessen, Germany
| | | | | | | | - Attila Zsolnai
- Department of Animal Breeding, Institute of Animal Science, Hungarian University of Agriculture and Life Sciences, Kaposvár Campus, 2053, Herceghalom, Hungary
| | - István Anton
- Department of Animal Breeding, Institute of Animal Science, Hungarian University of Agriculture and Life Sciences, Kaposvár Campus, 2053, Herceghalom, Hungary
| | - Szilvia Kusza
- Centre for Agricultural Genomics and Biotechnology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 4032, Debrecen, Hungary
| | - Nuno Carolino
- Instituto Nacional de Investigação Agrária e Veterinária, 2005-048, Vale de Santarém, Portugal
| | - Fátima Santos-Silva
- Instituto Nacional de Investigação Agrária e Veterinária, 2005-048, Vale de Santarém, Portugal
| | - Aldona Kawęcka
- Department of Sheep and Goat Breeding, National Research Institute of Animal Production, 32-083, Kraków, Poland
| | - Marcin Świątek
- Department of Animal Breeding, Institute of Animal Sciences, Warsaw University of Life Sciences-SGGW, 02-786, Warsaw, Poland
| | - Roman Niżnikowski
- Department of Animal Breeding, Institute of Animal Sciences, Warsaw University of Life Sciences-SGGW, 02-786, Warsaw, Poland
| | - Marija Špehar
- Croatian Agency for Agriculture and Food, 10000, Zagreb, Croatia
| | - Gabriel Anaya
- MERAGEM Group, Department of Genetics, University of Córdoba, 14071, Córdoba, Spain
| | - Antonio Granero
- Asociación Nacional de Criadores de Ganado Merino (ACME), 28028, Madrid, Spain
| | - Tiago Perloiro
- Associação Nacional de Criadores de Ovinos da Raça Merina (ANCORME), 7005-665, Évora, Portugal
| | - Pedro Cardoso
- Associação de Produtores Agropecuários (OVIBEIRA), 6000-244, Castelo Branco, Portugal
| | - Silverio Grande
- Associazione Nazionale della Pastorizia (ASSONAPA), 00187, Rome, Italy
| | | | | | - Marina Pasquini
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, 60131, Ancona, Italy
| | | | | | - Emiliano Lasagna
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121, Perugia, Italy
| | - Elena Ciani
- Department of Bioscience, Biotechnology and Biopharmaceutics, University of Bari "Aldo Moro", 70124, Bari, Italy
| | - Francesca Maria Sarti
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121, Perugia, Italy
| | - Fabio Pilla
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100, Campobasso, Italy
| |
Collapse
|
4
|
Dalal V, Pasupuleti N, Chaubey G, Rai N, Shinde V. Advancements and Challenges in Ancient DNA Research: Bridging the Global North-South Divide. Genes (Basel) 2023; 14:479. [PMID: 36833406 PMCID: PMC9956214 DOI: 10.3390/genes14020479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/02/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023] Open
Abstract
Ancient DNA (aDNA) research first began in 1984 and ever since has greatly expanded our understanding of evolution and migration. Today, aDNA analysis is used to solve various puzzles about the origin of mankind, migration patterns, and the spread of infectious diseases. The incredible findings ranging from identifying the new branches within the human family to studying the genomes of extinct flora and fauna have caught the world by surprise in recent times. However, a closer look at these published results points out a clear Global North and Global South divide. Therefore, through this research, we aim to emphasize encouraging better collaborative opportunities and technology transfer to support researchers in the Global South. Further, the present research also focuses on expanding the scope of the ongoing conversation in the field of aDNA by reporting relevant literature published around the world and discussing the advancements and challenges in the field.
Collapse
Affiliation(s)
- Vasundhra Dalal
- Centre for Cellular and Molecular Biology, Hyderabad 500007, Telangana, India
| | | | - Gyaneshwer Chaubey
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Niraj Rai
- Ancient DNA Lab, Birbal Sahni Institute of Palaeosciences, Lucknow 226007, Uttar Pradesh, India
| | - Vasant Shinde
- Centre for Cellular and Molecular Biology, Hyderabad 500007, Telangana, India
| |
Collapse
|
5
|
Consortium VG, Nijman IJ, Rosen BD, Bardou P, Faraut T, Cumer T, Daly KG, Zheng Z, Cai Y, Asadollahpour H, Kul BÇ, Zhang WY, Guangxin E, Ayin A, Baird H, Bakhtin M, Bâlteanu VA, Barfield D, Berger B, Blichfeldt T, Boink G, Bugiwati SRA, Cai Z, Carolan S, Clark E, Cubric-Curik V, Dagong MIA, Dorji T, Drew L, Guo J, Hallsson J, Horvat S, Kantanen J, Kawaguchi F, Kazymbet P, Khayatzadeh N, Kim N, Shah MK, Liao Y, Martínez A, Masangkay JS, Masaoka M, Mazza R, McEwan J, Milanesi M, Faruque MO, Nomura Y, Ouchene-Khelifi NA, Pereira F, Sahana G, Salavati M, Sasazaki S, Da Silva A, Simčič M, Sölkner J, Sutherland A, Tigchelaar J, Zhang H, Consortium E, Ajmone-Marsan P, Bradley DG, Colli L, Drögemüller C, Jiang Y, Lei C, Mannen H, Pompanon F, Tosser-Klopp G, Lenstra JA. Geographical contrasts of Y-chromosomal haplogroups from wild and domestic goats reveal ancient migrations and recent introgressions. Mol Ecol 2022; 31:4364-4380. [PMID: 35751552 DOI: 10.1111/mec.16579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/12/2022] [Accepted: 06/20/2022] [Indexed: 11/29/2022]
Abstract
By their paternal transmission, Y-chromosomal haplotypes are sensitive markers of population history and male-mediated introgression. Previous studies identified biallelic single-nucleotide variants in the SRY, ZFY, DDX3Y genes, which in domestic goats identified four major Y-chromosomal haplotypes Y1A, Y1B, Y2A and Y2B with a marked geographic partitioning. Here, we extracted goat Y-chromosomal variants from whole-genome sequences of 386 domestic goats (75 breeds) and 7 wild goat species, which were generated by the VarGoats goat genome project. Phylogenetic analyses indicated domestic haplogroups corresponding to Y1B, Y2A and Y2B, respectively, whereas Y1A is split into Y1AA and Y1AB. All five haplogroups were detected in 26 ancient DNA samples from southeast Europe or Asia. Haplotypes from present-day bezoars are not shared with domestic goats and are attached to deep nodes of the trees and networks. Haplogroup distributions for 186 domestic breeds indicate ancient paternal population bottlenecks and expansions during the migrations into northern Europe, eastern and southern Asia and Africa south of the Sahara. In addition, sharing of haplogroups indicates male-mediated introgressions, most notably an early gene flow from Asian goats into Madagascar and the crossbreeding that in the 19th century resulted in the popular Boer and Anglo-Nubian breeds. More recent introgressions are those from European goats into the native Korean goat population and from Boer goat into Uganda, Kenya, Tanzania, Malawi and Zimbabwe. This study illustrates the power of the Y-chromosomal variants for reconstructing the history of domestic species with a wide geographic range.
Collapse
Affiliation(s)
| | - Isaäc J Nijman
- Utrecht Univ., Netherlands.,Univ. Medical Center Utrecht, Utrecht Univ, The Netherlands
| | | | - Philippe Bardou
- GenPhySE, Univ. Toulouse, INRA, INPT, ENVT, Castanet Tolosan, France
| | - Thomas Faraut
- GenPhySE, Univ. Toulouse, INRA, INPT, ENVT, Castanet Tolosan, France
| | - Tristan Cumer
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, LECA, Grenoble, France
| | | | - Zhuqing Zheng
- College of Animal Science & Technology, Northwest A&F Univ., Yangling, China
| | - Yudong Cai
- College of Animal Science & Technology, Northwest A&F Univ., Yangling, China
| | | | | | | | | | | | - Hayley Baird
- AgResearch, Invermay Agricultural Centre, Mosgiel, New Zealand
| | | | - Valentin A Bâlteanu
- Inst. of Life SciencesUniv. Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania
| | | | - Beate Berger
- Univ. Natural Resources and Life Sciences Vienna (BOKU)
| | - Thor Blichfeldt
- Norwegian Association of Sheep and Goat Breeders, Aas, Norway
| | - Geert Boink
- Stichting Zeldzame Huisdierrassen, Wageningen, The Netherlands
| | | | | | | | | | | | | | - Tashi Dorji
- International Centre for Integrated Mountain Development, Kathmandu, Nepal
| | | | | | | | - Simon Horvat
- Univ. Ljubljana, Biotechnical Faculty, Ljubljana, Slovenia
| | - Juha Kantanen
- Natural Resources Institute Finland (Luke), Jokioinen, Finland
| | | | | | | | - Namshin Kim
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
| | | | - Yuying Liao
- Guangxi Key Laboratory of Livestock Genetic Improvement, Guangxi, China
| | | | | | | | - Raffaele Mazza
- Laboratorio Genetica e Servizi, Agrotis srl, Cremona, Italy
| | - John McEwan
- AgResearch, Invermay Agricultural Centre, Mosgiel, New Zealand
| | | | | | | | | | - Filipe Pereira
- IDENTIFICA Genetic Testing Maia & Centre for Functional Ecology, Porto, Portugal
| | | | | | | | | | - Mojca Simčič
- Univ. Ljubljana, Biotechnical Faculty, Ljubljana, Slovenia
| | | | | | | | | | | | - Paolo Ajmone-Marsan
- Univ. Cattolica del S. Cuore di Piacenza and BioDNA Biodiversity and Ancient DNA Res. Centre, Piacenza, Italy.,UCSC PRONUTRIGEN Nutrigenomics Res. Centre, Piacenza, Italy
| | | | - Licia Colli
- Univ. Cattolica del S. Cuore di Piacenza and BioDNA Biodiversity and Ancient DNA Res. Centre, Piacenza, Italy.,UCSC BioDNA Biodiversity and Ancient DNA Res. Centre, Piacenza, Italy
| | | | - Yu Jiang
- College of Animal Science & Technology, Northwest A&F Univ., Yangling, China
| | - Chuzhao Lei
- College of Animal Science & Technology, Northwest A&F Univ., Yangling, China
| | | | - François Pompanon
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, LECA, Grenoble, France
| | | | | |
Collapse
|
6
|
Broccard N, Silva NM, Currat M. Simulated patterns of mitochondrial diversity are consistent with partial population turnover in Bronze Age Central Europe. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2022; 177:134-146. [PMID: 36787792 PMCID: PMC9298224 DOI: 10.1002/ajpa.24431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 08/03/2021] [Accepted: 09/24/2021] [Indexed: 11/09/2022]
Abstract
OBJECTIVES The analysis of ancient mitochondrial DNA from osteological remains has challenged previous conclusions drawn from the analysis of mitochondrial DNA from present populations, notably by revealing an absence of genetic continuity between the Neolithic and modern populations in Central Europe. Our study investigates how to reconcile these contradictions at the mitochondrial level using a modeling approach. MATERIALS AND METHODS We used a spatially explicit computational framework to simulate ancient and modern DNA sequences under various evolutionary scenarios of post Neolithic demographic events and compared the genetic diversity of the simulated and observed mitochondrial sequences. We investigated which-if any-scenarios were able to reproduce statistics of genetic diversity similar to those observed, with a focus on the haplogroup N1a, associated with the spread of early Neolithic farmers. RESULTS Demographic fluctuations during the Neolithic transition or subsequent demographic collapses after this period, that is, due to epidemics such as plague, are not sufficient to explain the signal of population discontinuity detected on the mitochondrial DNA in Central Europe. Only a scenario involving a substantial genetic input due to the arrival of migrants after the Neolithic transition, possibly during the Bronze Age, is compatible with observed patterns of genetic diversity. DISCUSSION Our results corroborate paleogenomic studies, since out of the alternative hypotheses tested, the best one that was able to recover observed patterns of mitochondrial diversity in modern and ancient Central European populations was one were immigration of populations from the Pontic steppes during the Bronze Age was explicitly simulated.
Collapse
Affiliation(s)
- Nicolas Broccard
- Laboratory of Anthropology, Genetics and Peopling History, Department of Genetics and Evolution – Anthropology UnitUniversity of GenevaGenevaSwitzerland
| | - Nuno Miguel Silva
- Laboratory of Anthropology, Genetics and Peopling History, Department of Genetics and Evolution – Anthropology UnitUniversity of GenevaGenevaSwitzerland
| | - Mathias Currat
- Laboratory of Anthropology, Genetics and Peopling History, Department of Genetics and Evolution – Anthropology UnitUniversity of GenevaGenevaSwitzerland
- Institute of Genetics and Genomics in Geneva (IGE3)University of GenevaGenevaSwitzerland
| |
Collapse
|
7
|
Kocher A, Papac L, Barquera R, Key FM, Spyrou MA, Hübler R, Rohrlach AB, Aron F, Stahl R, Wissgott A, van Bömmel F, Pfefferkorn M, Mittnik A, Villalba-Mouco V, Neumann GU, Rivollat M, van de Loosdrecht MS, Majander K, Tukhbatova RI, Musralina L, Ghalichi A, Penske S, Sabin S, Michel M, Gretzinger J, Nelson EA, Ferraz T, Nägele K, Parker C, Keller M, Guevara EK, Feldman M, Eisenmann S, Skourtanioti E, Giffin K, Gnecchi-Ruscone GA, Friederich S, Schimmenti V, Khartanovich V, Karapetian MK, Chaplygin MS, Kufterin VV, Khokhlov AA, Chizhevsky AA, Stashenkov DA, Kochkina AF, Tejedor-Rodríguez C, de Lagrán ÍGM, Arcusa-Magallón H, Garrido-Pena R, Royo-Guillén JI, Nováček J, Rottier S, Kacki S, Saintot S, Kaverzneva E, Belinskiy AB, Velemínský P, Limburský P, Kostka M, Loe L, Popescu E, Clarke R, Lyons A, Mortimer R, Sajantila A, de Armas YC, Hernandez Godoy ST, Hernández-Zaragoza DI, Pearson J, Binder D, Lefranc P, Kantorovich AR, Maslov VE, Lai L, Zoledziewska M, Beckett JF, Langová M, Danielisová A, Ingman T, Atiénzar GG, de Miguel Ibáñez MP, Romero A, Sperduti A, Beckett S, Salter SJ, Zilivinskaya ED, Vasil'ev DV, von Heyking K, Burger RL, Salazar LC, Amkreutz L, Navruzbekov M, Rosenstock E, Alonso-Fernández C, Slavchev V, Kalmykov AA, Atabiev BC, Batieva E, Calmet MA, Llamas B, Schultz M, Krauß R, Jiménez-Echevarría J, Francken M, Shnaider S, de Knijff P, Altena E, Van de Vijver K, Fehren-Schmitz L, Tung TA, Lösch S, Dobrovolskaya M, Makarov N, Read C, Van Twest M, Sagona C, Ramsl PC, Akar M, Yener KA, Ballestero EC, Cucca F, Mazzarello V, Utrilla P, Rademaker K, Fernández-Domínguez E, Baird D, Semal P, Márquez-Morfín L, Roksandic M, Steiner H, Salazar-García DC, Shishlina N, Erdal YS, Hallgren F, Boyadzhiev Y, Boyadzhiev K, Küßner M, Sayer D, Onkamo P, Skeates R, Rojo-Guerra M, Buzhilova A, Khussainova E, Djansugurova LB, Beisenov AZ, Samashev Z, Massy K, Mannino M, Moiseyev V, Mannermaa K, Balanovsky O, Deguilloux MF, Reinhold S, Hansen S, Kitov EP, Dobeš M, Ernée M, Meller H, Alt KW, Prüfer K, Warinner C, Schiffels S, Stockhammer PW, Bos K, Posth C, Herbig A, Haak W, Krause J, Kühnert D. Ten millennia of hepatitis B virus evolution. Science 2021; 374:182-188. [PMID: 34618559 DOI: 10.1126/science.abi5658] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Arthur Kocher
- Transmission, Infection, Diversification and Evolution Group, Max Planck Institute for the Science of Human History, 07745 Jena, Germany.,Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany.,Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Luka Papac
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany.,Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Rodrigo Barquera
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany.,Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Felix M Key
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany.,Max Planck Institute for Infection Biology, 10117 Berlin, Germany
| | - Maria A Spyrou
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany.,Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany.,Archaeo- and Palaeogenetics group, Institute for Archaeological Sciences, Eberhard Karls University Tübingen, 72070 Tübingen, Germany
| | - Ron Hübler
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany
| | - Adam B Rohrlach
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany.,Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany.,ARC Centre of Excellence for Mathematical and Statistical Frontiers, School of Mathematical Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Franziska Aron
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany
| | - Raphaela Stahl
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany
| | - Antje Wissgott
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany
| | - Florian van Bömmel
- Division of Hepatology, Department of Medicine II, Leipzig University Medical Center, Leipzig, Germany
| | - Maria Pfefferkorn
- Division of Hepatology, Department of Medicine II, Leipzig University Medical Center, Leipzig, Germany
| | - Alissa Mittnik
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany.,Department of Genetics, Harvard Medical School, Boston, MA, USA.,Department of Human Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Vanessa Villalba-Mouco
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany.,Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, Barcelona, Spain
| | - Gunnar U Neumann
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany.,Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Maïté Rivollat
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany.,Université de Bordeaux, CNRS, PACEA UMR 5199, Pessac, France
| | | | - Kerttu Majander
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany.,Institute of Evolutionary Medicine (IEM), University of Zürich, 8057 Zürich, Switzerland
| | - Rezeda I Tukhbatova
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany.,Laboratory of Structural Biology, Kazan Federal University, Kazan, Russia
| | - Lyazzat Musralina
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany.,Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany.,Al-Farabi Kazakh National University, Almaty, Kazakhstan.,Institute of Genetics and Physiology, 050060 Almaty, Kazakhstan
| | - Ayshin Ghalichi
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany.,Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Sandra Penske
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany.,Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Susanna Sabin
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany
| | - Megan Michel
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany.,Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany.,Department of Human Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Joscha Gretzinger
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany.,Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Elizabeth A Nelson
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany
| | - Tiago Ferraz
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany.,Departmento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Kathrin Nägele
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany.,Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Cody Parker
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany.,Arizona State University School of Human Evolution and Social Change, Tempe Arizona, USA
| | - Marcel Keller
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany.,Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Evelyn K Guevara
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany.,Department of Forensic Medicine, University of Helsinki, Helsinki, Finland
| | - Michal Feldman
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany.,Archaeo- and Palaeogenetics group, Institute for Archaeological Sciences, Eberhard Karls University Tübingen, 72070 Tübingen, Germany
| | - Stefanie Eisenmann
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany.,Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Eirini Skourtanioti
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany.,Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Karen Giffin
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany.,Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Guido Alberto Gnecchi-Ruscone
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany.,Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Susanne Friederich
- State Office for Heritage Management and Archaeology Saxony-Anhalt and State Museum of Prehistory, D-06114 Halle, Germany
| | | | - Valery Khartanovich
- Peter the Great Museum of Anthropology and Ethnography (Kunstkamera) RAS, 199034 St. Petersburg, Russia
| | - Marina K Karapetian
- Anuchin Research Institute and Museum of Anthropology, Lomonosov Moscow State University, Moscow, Russia
| | | | - Vladimir V Kufterin
- Institute of Ethnology and Anthropology, Russian Academy of Sciences, Moscow, Russia
| | | | - Andrey A Chizhevsky
- Institute of Archaeology named after A. Kh. Khalikov, Tatarstan Academy of Sciences, Kazan, Russia
| | - Dmitry A Stashenkov
- Samara Museum for Historical and Regional Studies named after P. V. Alabin, Samara, Russia
| | - Anna F Kochkina
- Samara Museum for Historical and Regional Studies named after P. V. Alabin, Samara, Russia
| | - Cristina Tejedor-Rodríguez
- Department of Prehistory and Archaeology, Faculty of Philosophy and Letters, University of Valladolid, Spain
| | | | | | - Rafael Garrido-Pena
- Department of Prehistory and Archaeology, Faculty of Philosophy and Letters, Autonomous University of Madrid, Spain
| | | | - Jan Nováček
- Thuringian State Office for Heritage Management and Archaeology, 99423 Weimar, Germany.,University Medical School Göttingen, Institute of Anatomy and Cell Biology, 37075 Göttingen, Germany
| | | | - Sacha Kacki
- Université de Bordeaux, CNRS, PACEA UMR 5199, Pessac, France.,Department of Archaeology, Durham University, South Road, Durham. DH1 3LE. UK
| | - Sylvie Saintot
- INRAP, ARAR UMR 5138, Maison de l'Orient et de la Méditerranée, Lyon, France
| | | | | | - Petr Velemínský
- Department of Anthropology, The National Museum, Prague, Czech Republic
| | - Petr Limburský
- Institute of Archaeology of the Czech Academy of Sciences, Prague, Czech Republic
| | | | - Louise Loe
- Oxford Archaeology South, Janus House, Osney Mead, Oxford, OX2 0ES, UK
| | | | - Rachel Clarke
- Oxford Archaeology East, Bar Hill, Cambridge, CB23 8SQ, UK
| | - Alice Lyons
- Oxford Archaeology East, Bar Hill, Cambridge, CB23 8SQ, UK
| | | | - Antti Sajantila
- Department of Forensic Medicine, University of Helsinki, Helsinki, Finland.,Forensic Medicine Unit, Finnish Institute of Health and Welfare, Helsinki, Finland
| | | | - Silvia Teresita Hernandez Godoy
- Grupo de Investigación y Desarrollo, Dirección Provincial de Cultura, Matanzas, Cuba.,Universidad de Matanzas, Matanzas, Cuba
| | - Diana I Hernández-Zaragoza
- Molecular Genetics Laboratory, Escuela Nacional de Antropología e Historia (ENAH), Mexico City, Mexico.,Immunogenetics Unit, Técnicas Genéticas Aplicadas a la Clínica (TGAC), Mexico City, Mexico
| | - Jessica Pearson
- Department of Archaeology, Classics and Egyptology, University of Liverpool, Liverpool L69 7WZ, UK
| | - Didier Binder
- Université Côte d'Azur, CNRS, CEPAM UMR 7264, Nice, France
| | - Philippe Lefranc
- Université de Strasbourg, CNRS, Archimède UMR 7044, Strasbourg, France
| | - Anatoly R Kantorovich
- Department of Archaeology, Faculty of History, Lomonosov Moscow State University, 119192 Moscow, Russia
| | - Vladimir E Maslov
- Institute of Archaeology, Russian Academy of Sciences, , Moscow 117292, Russia
| | - Luca Lai
- Department of Anthropology, University of South Florida, Tampa, FL, USA.,Department of Anthropology, University of North Carolina at Charlotte, Charlotte, NC, USA
| | | | | | - Michaela Langová
- Institute of Archaeology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Alžběta Danielisová
- Institute of Archaeology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Tara Ingman
- Koç University, Research Center for Anatolian Civilizations, Istanbul 34433, Turkey
| | - Gabriel García Atiénzar
- Institute for Research in Archaeology and Historical Heritage (INAPH), University of Alicante, 03690, Alicante, Spain
| | - Maria Paz de Miguel Ibáñez
- Institute for Research in Archaeology and Historical Heritage (INAPH), University of Alicante, 03690, Alicante, Spain
| | - Alejandro Romero
- Institute for Research in Archaeology and Historical Heritage (INAPH), University of Alicante, 03690, Alicante, Spain.,Departamento de Biotecnología, Facultad de Ciencias, Universidad de Alicante, 03690, Alicante, Spain
| | - Alessandra Sperduti
- Bioarchaeology Service, Museum of Civilizations, Rome, Italy.,Dipartimento Asia Africa e Mediterraneo, Università di Napoli L'Orientale, Napoli, Italy
| | - Sophie Beckett
- Sedgeford Historical and Archaeological Research Project, Old Village Hall, Sedgeford, Hunstanton PE36 5LS, UK.,Melbourne Dental School, University of Melbourne, Victoria 3010 Australia.,Cranfield Forensic Institute, Cranfield Defence and Security, Cranfield University, College Road, Cranfield, MK43 0AL, UK
| | - Susannah J Salter
- Sedgeford Historical and Archaeological Research Project, Old Village Hall, Sedgeford, Hunstanton PE36 5LS, UK.,Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| | - Emma D Zilivinskaya
- Institute of Ethnology and Anthropology, Russian Academy of Sciences, Moscow, Russia
| | | | - Kristin von Heyking
- SNSB, State Collection for Anthropology and Palaeoanatomy, 80333 Munich, Germany
| | - Richard L Burger
- Department of Anthropology, Yale University, New Haven, CT 06511, USA
| | - Lucy C Salazar
- Department of Anthropology, Yale University, New Haven, CT 06511, USA
| | - Luc Amkreutz
- National Museum of Antiquities, 2301 EC Leiden, Netherlands
| | | | - Eva Rosenstock
- Freie Universität Berlin, Einstein Center Chronoi, 14195 Berlin, Germany
| | | | | | | | - Biaslan Ch Atabiev
- Institute for Caucasus Archaeology, 361401 Nalchik, Republic Kabardino-Balkaria, Russia
| | - Elena Batieva
- Azov History, Archaeology and Palaeontology Museum-Reserve, Azov 346780, Russia
| | | | - Bastien Llamas
- Australian Centre for Ancient DNA, School of Biological Sciences and The Environment Institute, Adelaide University, Adelaide, SA 5005, Australia.,Centre of Excellence for Australian Biodiversity and Heritage (CABAH), University of Adelaide, Adelaide, SA 5005, Australia.,National Centre for Indigenous Genomics, Australian National University, Canberra, ACT 0200, Australia
| | - Michael Schultz
- University Medical School Göttingen, Institute of Anatomy and Embryology, 37075 Göttingen, Germany.,Institute of Biology, University of Hildeshein, Germany
| | - Raiko Krauß
- Institute for Prehistory, Early History and Medieval Archaeology, University of Tübingen, 72070 Tübingen, Germany
| | | | - Michael Francken
- State Office for Cultural Heritage Baden-Württemberg, 78467 Konstanz, Germany
| | - Svetlana Shnaider
- ArchaeoZoology in Siberia and Central Asia-ZooSCAn, CNRS-IAET SB RAS International Research Laboratory, IRL 2013, Novosibirsk, Russia
| | - Peter de Knijff
- Department of Human Genetics, Leiden University Medical Center, Leiden, 2333 ZC, Netherlands
| | - Eveline Altena
- Department of Human Genetics, Leiden University Medical Center, Leiden, 2333 ZC, Netherlands
| | - Katrien Van de Vijver
- Royal Belgian Institute of Natural Sciences, Brussels, Belgium.,Center for Archaeological Sciences, University of Leuven, Belgium.,Dienst Archeologie-Stad Mechelen, Belgium
| | - Lars Fehren-Schmitz
- UCSC Paleogenomics Laboratory, Department of Anthropology, University of California at Santa Cruz, Santa Cruz, CA 95064, USA.,UCSC Genomics Institute, University of California at Santa Cruz, Santa Cruz, CA 95064, USA
| | - Tiffiny A Tung
- Department of Anthropology, Vanderbilt University, Nashville, TN 37235, USA
| | - Sandra Lösch
- Department of Physical Anthropology, Institute of Forensic Medicine, University of Bern, Bern, Switzerland
| | - Maria Dobrovolskaya
- Institute of Archaeology, Russian Academy of Sciences, , Moscow 117292, Russia
| | - Nikolaj Makarov
- Institute of Archaeology, Russian Academy of Sciences, , Moscow 117292, Russia
| | - Chris Read
- Applied Archaeology School of Science, Institute of Technology Sligo, Ireland
| | - Melanie Van Twest
- Sedgeford Historical and Archaeological Research Project, Old Village Hall, Sedgeford, Hunstanton PE36 5LS, UK
| | - Claudia Sagona
- School of Historical and Philosophical Studies, University of Melbourne, Victoria 3010, Australia
| | - Peter C Ramsl
- Institute of Prehistoric and Historical Archaeology, University of Vienna, Austria
| | - Murat Akar
- Department of Archaeology, Hatay Mustafa Kemal University, Alahan-Antakya, Hatay 31060, Turkey
| | - K Aslihan Yener
- Institute for the Study of the Ancient World (ISAW), New York University, New York, NY 10028, USA
| | - Eduardo Carmona Ballestero
- Territorial Service of Culture and Tourism from Valladolid, Castilla y León Regional Government, C/ San Lorenzo, 5, 47001, Valladolid, Spain.,Department of History, Geography and Comunication, University of Burgos, Paseo de Comendadores, s/n 09001 Burgos (Burgos), Spain
| | - Francesco Cucca
- Istituto di Ricerca Genetica e Biomedica-CNR, Monserrato, Italy.,Dipartimento di Scienze Biomediche, Università di Sassari, Sassari, Italy
| | | | - Pilar Utrilla
- Área de Prehistoria, P3A DGA Research Group, IPH, University of Zaragoza, C/ Pedro Cerbuna 12, 50009, Zaragoza, Spain
| | - Kurt Rademaker
- Department of Anthropology, Michigan State University, East Lansing, MI 48824, USA
| | | | - Douglas Baird
- Department of Archaeology, Classics and Egyptology, University of Liverpool, Liverpool L69 7WZ, UK
| | - Patrick Semal
- Royal Belgian Institute of Natural Sciences, Brussels, Belgium
| | - Lourdes Márquez-Morfín
- Osteology Laboratory, Post Graduate Studies Division, Escuela Nacional de Antropología e Historia (ENAH), Mexico City, Mexico
| | - Mirjana Roksandic
- Department of Anthropology, University of Winnipeg, Winnipeg, MB, Canada.,Caribbean Research Institute, Univeristy of Winnipeg, Winnipeg, MB, Canada.,DFG Center for Advanced Studies "Words, Bones, Genes, Tools," University of Tübingen, Tübingen, Germany
| | - Hubert Steiner
- South Tyrol Provincial Heritage Service, South Tyrol, Italy
| | - Domingo Carlos Salazar-García
- Grupo de Investigación en Prehistoria IT-1223-19 (UPV-EHU)/IKERBASQUE-Basque Foundation for Science, Vitoria, Spain.,Departament de Prehistòria, Arqueologia i Història Antiga, Universitat de València, València, Spain.,Department of Geological Sciences, University of Cape Town, Cape Town, South Africa
| | - Natalia Shishlina
- Peter the Great Museum of Anthropology and Ethnography (Kunstkamera) RAS, 199034 St. Petersburg, Russia.,State Historical Museum, Moscow, Russia
| | - Yilmaz Selim Erdal
- Human_G Laboratory, Department of Anthropology, Hacettepe University, Ankara 06800, Turkey
| | | | - Yavor Boyadzhiev
- National Archaeological Institute with Museum at the Bulgarian Academy of Sciences, Sofia 1000, Bulgaria
| | - Kamen Boyadzhiev
- National Archaeological Institute with Museum at the Bulgarian Academy of Sciences, Sofia 1000, Bulgaria
| | - Mario Küßner
- Thuringian State Office for Heritage Management and Archaeology, 99423 Weimar, Germany
| | - Duncan Sayer
- School of Natural Sciences, University of Central Lancashire, Preston, UK
| | - Päivi Onkamo
- Department of Biosciences, University of Helsinki, 00014 Helsinki, Finland.,Department of Biology, University of Turku, 20500 Turku, Finland
| | - Robin Skeates
- Department of Archaeology, Durham University, South Road, Durham. DH1 3LE. UK
| | - Manuel Rojo-Guerra
- Department of Prehistory and Archaeology, Faculty of Philosophy and Letters, University of Valladolid, Spain
| | - Alexandra Buzhilova
- Anuchin Research Institute and Museum of Anthropology, Lomonosov Moscow State University, Moscow, Russia
| | | | | | - Arman Z Beisenov
- Institute of archaeology named after A. Kh. Margulan, 44 Almaty, Kazakhstan
| | - Zainolla Samashev
- Branch of Institute of Archaeology named after A.Kh. Margulan, 24 of 511 Nur-Sultan, Kazakhstan.,State Historical and Cultural Museum-Reserve "Berel," Katon-Karagay district, East Kazakhstan region, Kazakhstan
| | - Ken Massy
- Institut für Vor- und Frühgeschichtliche Archäologie und Provinzialrömische Archäologie, Ludwig-Maximilians-Universität München, 80539 Munich, Germany
| | - Marcello Mannino
- Department of Archeology and Heritage Studies, Aarhus University, 8270 Højbjerg, Denmark.,Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig Germany
| | - Vyacheslav Moiseyev
- Peter the Great Museum of Anthropology and Ethnography (Kunstkamera) RAS, 199034 St. Petersburg, Russia
| | | | - Oleg Balanovsky
- Research Centre for Medical Genetics, Moscow, Russia.,Biobank of North Eurasia, Moscow, Russia.,Vavilov Institute of General Genetics, Moscow, Russia
| | | | - Sabine Reinhold
- Eurasia Department, German Archaeological Institute, Berlin, Germany
| | - Svend Hansen
- Eurasia Department, German Archaeological Institute, Berlin, Germany
| | - Egor P Kitov
- Institute of Ethnology and Anthropology, Russian Academy of Sciences, Moscow, Russia.,Institute of archaeology named after A. Kh. Margulan, 44 Almaty, Kazakhstan
| | - Miroslav Dobeš
- Institute of Archaeology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Michal Ernée
- Institute of Archaeology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Harald Meller
- State Office for Heritage Management and Archaeology Saxony-Anhalt and State Museum of Prehistory, D-06114 Halle, Germany
| | - Kurt W Alt
- Danube Private University, Center of Natural and Cultural Human History, A - 3500 Krems-Stein, Austria.,Integrative Prehistory and Archaeological Science, Spalenring 145, CH-4055 Basel, Switzerland.,Department of Biomedical Engineering (DBE), Universitätsspital Basel (HFZ), CH-4123 Allschwil, Switzerland
| | - Kay Prüfer
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany.,Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Christina Warinner
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany.,Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany.,Department of Anthropology, Harvard University, Cambridge, MA 02138, USA
| | - Stephan Schiffels
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany.,Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Philipp W Stockhammer
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany.,Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany.,Institut für Vor- und Frühgeschichtliche Archäologie und Provinzialrömische Archäologie, Ludwig-Maximilians-Universität München, 80539 Munich, Germany
| | - Kirsten Bos
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany.,Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Cosimo Posth
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany.,Archaeo- and Palaeogenetics group, Institute for Archaeological Sciences, Eberhard Karls University Tübingen, 72070 Tübingen, Germany
| | - Alexander Herbig
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany.,Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Wolfgang Haak
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany.,Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany.,School of Biological Sciences, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Johannes Krause
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany.,Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Denise Kühnert
- Transmission, Infection, Diversification and Evolution Group, Max Planck Institute for the Science of Human History, 07745 Jena, Germany.,Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany.,Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany.,European Virus Bioinformatics Center (EVBC), Jena, Germany
| |
Collapse
|
8
|
Perrin T, Manen C. Potential interactions between Mesolithic hunter-gatherers and Neolithic farmers in the Western Mediterranean: The geochronological data revisited. PLoS One 2021; 16:e0246964. [PMID: 33657127 PMCID: PMC7928471 DOI: 10.1371/journal.pone.0246964] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 01/28/2021] [Indexed: 11/23/2022] Open
Abstract
In the Western Mediterranean, the Neolithic mainly developed and expanded during the sixth millennium BCE. In these early phases, it generally spread through the displacement of human groups, sometimes over long distances, as shown, for example, by the Impressa sites documented on the northern shores. These groups then settled new territories which they gradually appropriated and exploited. The question of their potential interaction with groups of Late Mesolithic hunter-gatherers living in the area prior to their arrival is therefore crucial. Were their encounters based on conflict and resistance or, on the contrary, on exchange and reciprocity? Many hypotheses have been put forward on this matter and many papers written. Before we can consider these potential interactions however, we must first ascertain that these different human groups really did meet—an implicit assumption in all these studies, which is, in reality, much less certain than one might think. The population density of the Late Mesolithic groups varied greatly throughout the Mediterranean, and it is possible that some areas were relatively devoid of human presence. Before any Neolithization scenarios can be considered, we must therefore first determine exactly which human groups were present in a given territory at a given time. The precise mapping of sites and the chronological modeling of their occupation enriches our understanding of the Neolithization process by allowing high-resolution regional models to be developed, which alone can determine the timing of potential interactions between Mesolithic and Neolithic groups. Various international research programs have recently produced several hundred new radiocarbon dates, based on selected samples from controlled contexts. The geochronological modelling of these data at the scale of the Western Mediterranean shows contrasting situations, probably related to different social and environmental processes. These results suggest that we should consider a varied range of Neolithization mechanisms, rather than uniform or even binary models.
Collapse
Affiliation(s)
- Thomas Perrin
- UMR5608 TRACES, CNRS, Toulouse Jean-Jaurès University, Toulouse, France
- * E-mail:
| | - Claire Manen
- UMR5608 TRACES, CNRS, Toulouse Jean-Jaurès University, Toulouse, France
| |
Collapse
|
9
|
Parker C, Rohrlach AB, Friederich S, Nagel S, Meyer M, Krause J, Bos KI, Haak W. A systematic investigation of human DNA preservation in medieval skeletons. Sci Rep 2020; 10:18225. [PMID: 33106554 PMCID: PMC7588426 DOI: 10.1038/s41598-020-75163-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 10/07/2020] [Indexed: 12/14/2022] Open
Abstract
Ancient DNA (aDNA) analyses necessitate the destructive sampling of archaeological material. Currently, the cochlea, part of the osseous inner ear located inside the petrous pyramid, is the most sought after skeletal element for molecular analyses of ancient humans as it has been shown to yield high amounts of endogenous DNA. However, destructive sampling of the petrous pyramid may not always be possible, particularly in cases where preservation of skeletal morphology is of top priority. To investigate alternatives, we present a survey of human aDNA preservation for each of ten skeletal elements in a skeletal collection from Medieval Germany. Through comparison of human DNA content and quality we confirm best performance of the petrous pyramid and identify seven additional sampling locations across four skeletal elements that yield adequate aDNA for most applications in human palaeogenetics. Our study provides a better perspective on DNA preservation across the human skeleton and takes a further step toward the more responsible use of ancient materials in human aDNA studies.
Collapse
Affiliation(s)
- Cody Parker
- Max Planck Institute for the Science of Human History, Jena, Germany.
| | - Adam B Rohrlach
- Max Planck Institute for the Science of Human History, Jena, Germany
- ARC Centre of Excellence for Mathematical and Statistical Frontiers, The University of Adelaide, Adelaide, SA, Australia
| | - Susanne Friederich
- Landesamt für Denkmalpflege und Archäologie, Sachsen-Anhalt, Halle (Saale), Germany
| | - Sarah Nagel
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Matthias Meyer
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Johannes Krause
- Max Planck Institute for the Science of Human History, Jena, Germany.
| | - Kirsten I Bos
- Max Planck Institute for the Science of Human History, Jena, Germany
| | - Wolfgang Haak
- Max Planck Institute for the Science of Human History, Jena, Germany.
| |
Collapse
|
10
|
Goude G, Salazar-García DC, Power RC, Rivollat M, Gourichon L, Deguilloux MF, Pemonge MH, Bouby L, Binder D. New insights on Neolithic food and mobility patterns in Mediterranean coastal populations. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2020; 173:218-235. [PMID: 32557548 DOI: 10.1002/ajpa.24089] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 05/12/2020] [Accepted: 05/14/2020] [Indexed: 12/22/2022]
Abstract
OBJECTIVES The aims of this research are to explore the diet, mobility, social organization, and environmental exploitation patterns of early Mediterranean farmers, particularly the role of marine and plant resources in these foodways. In addition, this work strives to document possible gendered patterns of behavior linked to the neolithization of this ecologically rich area. To achieve this, a set of multiproxy analyses (isotopic analyses, dental calculus, microremains analysis, ancient DNA) were performed on an exceptional deposit (n = 61) of human remains from the Les Bréguières site (France), dating to the transition of the sixth to the fifth millennium BCE. MATERIALS AND METHODS The samples used in this study were excavated from the Les Bréguières site (Mougins, Alpes-Maritimes, France), located along the southeastern Mediterranean coastline of France. Stable isotope analyses (C, N) on bone collagen (17 coxal bones, 35 craniofacial elements) were performed as a means to infer protein intake during tissue development. Sulfur isotope ratios were used as indicators of geographical and environmental points of origin. The study of ancient dental calculus helped document the consumption of plants. Strontium isotope analysis on tooth enamel (n = 56) was conducted to infer human provenance and territorial mobility. Finally, ancient DNA analysis was performed to study maternal versus paternal diversity within this Neolithic group (n = 30). RESULTS Stable isotope ratios for human bones range from -20.3 to -18.1‰ for C, from 8.9 to 11.1‰ for N and from 6.4 to 15‰ for S. Domestic animal data range from -22.0 to -20.2‰ for C, from 4.1 to 6.9‰ for N, and from 10.2 to 12.5‰ for S. Human enamel 87 Sr/86 Sr range from 0.7081 to 0.7102, slightly wider than the animal range (between 0.7087 and 0.7096). Starch and phytolith microremains were recovered as well as other types of remains (e.g., hairs, diatoms, fungal spores). Starch grains include Triticeae type and phytolith includes dicotyledons and monocot types as panicoid grasses. Mitochondrial DNA characterized eight different maternal lineages: H1, H3, HV (5.26%), J (10.53%), J1, K, T (5.2%), and U5 (10.53%) but no sample yielded reproducible Y chromosome SNPs, preventing paternal lineage characterization. DISCUSSION Carbon and nitrogen stable isotope ratios indicate a consumption of protein by humans mainly focused on terrestrial animals and possible exploitation of marine resources for one male and one undetermined adult. Sulfur stable isotope ratios allowed distinguishing groups with different geographical origins, including two females possibly more exposed to the sea spray effect. While strontium isotope data do not indicate different origins for the individuals, mitochondrial lineage diversity from petrous bone DNA suggests the burial includes genetically differentiated groups or a group practicing patrilocality. Moreover, the diversity of plant microremains recorded in dental calculus provide the first evidence that the groups of Les Bréguières consumed a wide breadth of plant foods (as cereals and wild taxa) that required access to diverse environments. This transdisciplinary research paves the way for new perspectives and highlights the relevance for novel research of contexts (whether recently discovered or in museum collections) excavated near shorelines, due to the richness of the biodiversity and the wide range of edible resources available.
Collapse
Affiliation(s)
- Gwenaëlle Goude
- Aix Marseille Univ, CNRS, Minist. Culture, LAMPEA, Aix-en-Provence, France
| | - Domingo C Salazar-García
- Grupo de Investigación en Prehistoria IT-1223-19 (UPV-EHU)/IKERBASQUE-Basque Foundation for Science, Vitoria, Spain.,Aix Marseille Univ, IMERA, Marseille, France.,Department of Geological Sciences, University of Cape Town, Cape Town, South Africa.,Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.,Departament de Prehistòria, Arqueologia i Història Antiga, Universitat de València, València, Spain
| | - Robert C Power
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Maïté Rivollat
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany.,Bordeaux University, Pessac, France
| | | | | | | | - Laurent Bouby
- ISEM-Université Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | | |
Collapse
|
11
|
Ancient genomes from present-day France unveil 7,000 years of its demographic history. Proc Natl Acad Sci U S A 2020; 117:12791-12798. [PMID: 32457149 DOI: 10.1073/pnas.1918034117] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Genomic studies conducted on ancient individuals across Europe have revealed how migrations have contributed to its present genetic landscape, but the territory of present-day France has yet to be connected to the broader European picture. We generated a large dataset comprising the complete mitochondrial genomes, Y-chromosome markers, and genotypes of a number of nuclear loci of interest of 243 individuals sampled across present-day France over a period spanning 7,000 y, complemented with a partially overlapping dataset of 58 low-coverage genomes. This panel provides a high-resolution transect of the dynamics of maternal and paternal lineages in France as well as of autosomal genotypes. Parental lineages and genomic data both revealed demographic patterns in France for the Neolithic and Bronze Age transitions consistent with neighboring regions, first with a migration wave of Anatolian farmers followed by varying degrees of admixture with autochthonous hunter-gatherers, and then substantial gene flow from individuals deriving part of their ancestry from the Pontic steppe at the onset of the Bronze Age. Our data have also highlighted the persistence of Magdalenian-associated ancestry in hunter-gatherer populations outside of Spain and thus provide arguments for an expansion of these populations at the end of the Paleolithic Period more northerly than what has been described so far. Finally, no major demographic changes were detected during the transition between the Bronze and Iron Ages.
Collapse
|
12
|
Ciani E, Mastrangelo S, Da Silva A, Marroni F, Ferenčaković M, Ajmone-Marsan P, Baird H, Barbato M, Colli L, Delvento C, Dovenski T, Gorjanc G, Hall SJG, Hoda A, Li MH, Marković B, McEwan J, Moradi MH, Ruiz-Larrañaga O, Ružić-Muslić D, Šalamon D, Simčič M, Stepanek O, Curik I, Cubric-Curik V, Lenstra JA. On the origin of European sheep as revealed by the diversity of the Balkan breeds and by optimizing population-genetic analysis tools. Genet Sel Evol 2020; 52:25. [PMID: 32408891 PMCID: PMC7227234 DOI: 10.1186/s12711-020-00545-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 04/30/2020] [Indexed: 11/26/2022] Open
Abstract
Background In the Neolithic, domestic sheep migrated into Europe and subsequently spread in westerly and northwesterly directions. Reconstruction of these migrations and subsequent genetic events requires a more detailed characterization of the current phylogeographic differentiation. Results We collected 50 K single nucleotide polymorphism (SNP) profiles of Balkan sheep that are currently found near the major Neolithic point of entry into Europe, and combined these data with published genotypes from southwest-Asian, Mediterranean, central-European and north-European sheep and from Asian and European mouflons. We detected clines, ancestral components and admixture by using variants of common analysis tools: geography-informative supervised principal component analysis (PCA), breed-specific admixture analysis, across-breed \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$f_{4}$$\end{document}f4 profiles and phylogenetic analysis of regional pools of breeds. The regional Balkan sheep populations exhibit considerable genetic overlap, but are clearly distinct from the breeds in surrounding regions. The Asian mouflon did not influence the differentiation of the European domestic sheep and is only distantly related to present-day sheep, including those from Iran where the mouflons were sampled. We demonstrate the occurrence, from southeast to northwest Europe, of a continuously increasing ancestral component of up to 20% contributed by the European mouflon, which is assumed to descend from the original Neolithic domesticates. The overall patterns indicate that the Balkan region and Italy served as post-domestication migration hubs, from which wool sheep reached Spain and north Italy with subsequent migrations northwards. The documented dispersal of Tarentine wool sheep during the Roman period may have been part of this process. Our results also reproduce the documented 18th century admixture of Spanish Merino sheep into several central-European breeds. Conclusions Our results contribute to a better understanding of the events that have created the present diversity pattern, which is relevant for the management of the genetic resources represented by the European sheep population.
Collapse
Affiliation(s)
- Elena Ciani
- Dipartamento Bioscienze, Biotecnologie, Biofarmaceutica, Universita. degli Studi di Bari "Aldo Moro", Bari, Italy
| | - Salvatore Mastrangelo
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Universita Studi di Palermo, Palermo, Italy
| | - Anne Da Silva
- Université de Limoges, INRAE, Pereine EA7500, USC1061 Gamaa, 87000, Limoges, France
| | - Fabio Marroni
- Dipartamento Scienze Agroalimentari, Ambientali e Animali, Universita Udine, Udine, Italy
| | | | - Paolo Ajmone-Marsan
- Dipartimento di Scienze Animali, della Nutrizione e degli Alimenti, Universita Cattolica del S. Cuore di Piacenza, Piacenza, Italy
| | - Hayley Baird
- AgResearch, Invermay Agricultural Centre, Mosgiel, New Zealand
| | - Mario Barbato
- Dipartimento di Scienze Animali, della Nutrizione e degli Alimenti, Universita Cattolica del S. Cuore di Piacenza, Piacenza, Italy
| | - Licia Colli
- Dipartimento di Scienze Animali, della Nutrizione e degli Alimenti, Universita Cattolica del S. Cuore di Piacenza, Piacenza, Italy
| | - Chiara Delvento
- Dipartamento Bioscienze, Biotecnologie, Biofarmaceutica, Universita. degli Studi di Bari "Aldo Moro", Bari, Italy
| | - Toni Dovenski
- Department of Reproduction and Biomedicine, Faculty of Veterinary Medicine, Ss. Cyril and Methodius University, Skopje, North Macedonia
| | - Gregor Gorjanc
- Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, Scotland, UK
| | | | - Anila Hoda
- Department of Animal Production, Faculty of Agriculture and Environment, Agricultural University ofTirana, Tirana, Albania
| | - Meng-Hua Li
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | | | - John McEwan
- Dipartimento di Scienze Animali, della Nutrizione e degli Alimenti, Universita Cattolica del S. Cuore di Piacenza, Piacenza, Italy
| | - Mohammad H Moradi
- Faculty of Agriculture and Natural Resources, Arak University, Arak, Iran
| | - Otsanda Ruiz-Larrañaga
- Department of Genetics, Physical Anthropology and Animal Physiology, University of Basque Country, Leioa, Spain
| | | | - Dragica Šalamon
- Department of Animal Science, University of Zagreb, Zagreb, Croatia
| | - Mojca Simčič
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | | | | | | | - Ino Curik
- Department of Animal Science, University of Zagreb, Zagreb, Croatia
| | | | - Johannes A Lenstra
- Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
13
|
Rivollat M, Jeong C, Schiffels S, Küçükkalıpçı İ, Pemonge MH, Rohrlach AB, Alt KW, Binder D, Friederich S, Ghesquière E, Gronenborn D, Laporte L, Lefranc P, Meller H, Réveillas H, Rosenstock E, Rottier S, Scarre C, Soler L, Wahl J, Krause J, Deguilloux MF, Haak W. Ancient genome-wide DNA from France highlights the complexity of interactions between Mesolithic hunter-gatherers and Neolithic farmers. SCIENCE ADVANCES 2020; 6:eaaz5344. [PMID: 32523989 PMCID: PMC7259947 DOI: 10.1126/sciadv.aaz5344] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 03/23/2020] [Indexed: 05/10/2023]
Abstract
Starting from 12,000 years ago in the Middle East, the Neolithic lifestyle spread across Europe via separate continental and Mediterranean routes. Genomes from early European farmers have shown a clear Near Eastern/Anatolian genetic affinity with limited contribution from hunter-gatherers. However, no genomic data are available from modern-day France, where both routes converged, as evidenced by a mosaic cultural pattern. Here, we present genome-wide data from 101 individuals from 12 sites covering today's France and Germany from the Mesolithic (N = 3) to the Neolithic (N = 98) (7000-3000 BCE). Using the genetic substructure observed in European hunter-gatherers, we characterize diverse patterns of admixture in different regions, consistent with both routes of expansion. Early western European farmers show a higher proportion of distinctly western hunter-gatherer ancestry compared to central/southeastern farmers. Our data highlight the complexity of the biological interactions during the Neolithic expansion by revealing major regional variations.
Collapse
Affiliation(s)
- Maïté Rivollat
- Université de Bordeaux, CNRS, PACEA-UMR, 5199 Pessac, France
- Max Planck Institute for the Science of Human History, Department of Archaeogenetics, Jena, Germany
| | - Choongwon Jeong
- Max Planck Institute for the Science of Human History, Department of Archaeogenetics, Jena, Germany
- Seoul National University, School of Biological Sciences, Seoul, Republic of Korea
| | - Stephan Schiffels
- Max Planck Institute for the Science of Human History, Department of Archaeogenetics, Jena, Germany
| | - İşil Küçükkalıpçı
- Max Planck Institute for the Science of Human History, Department of Archaeogenetics, Jena, Germany
| | | | - Adam Benjamin Rohrlach
- Max Planck Institute for the Science of Human History, Department of Archaeogenetics, Jena, Germany
- ARC Centre of Excellence for Mathematical and Statistical Frontiers, University of Adelaide, Adelaide, South Australia, Australia
| | - Kurt W. Alt
- Danube Private University, Krems, Austria
- Integrative Prähistorische und Naturwissenschaftliche Archäologie, Basel, Switzerland
| | - Didier Binder
- Université Côte d’Azur, CNRS, CEPAM-UMR, 7264 Nice, France
| | - Susanne Friederich
- State Office for Heritage Management and Archaeology Saxony-Anhalt—State Museum of Prehistory, Halle (Saale), Germany
| | - Emmanuel Ghesquière
- Inrap Grand Ouest, Bourguébus, France
- Université de Rennes 1, CNRS, CReAAH-UMR, 6566 Rennes, France
| | - Detlef Gronenborn
- Römisch-Germanisches Zentralmuseum, Leibniz-Forschungsinstitut für Archäologie, Ernst-Ludwig-Platz 2, 55116 Mainz, Germany
| | - Luc Laporte
- Université de Rennes 1, CNRS, CReAAH-UMR, 6566 Rennes, France
| | - Philippe Lefranc
- Inrap Grand Est Sud, Strasbourg, France
- Université de Strasbourg, CNRS, Archimède-UMR, 7044 Strasbourg, France
| | - Harald Meller
- State Office for Heritage Management and Archaeology Saxony-Anhalt—State Museum of Prehistory, Halle (Saale), Germany
| | - Hélène Réveillas
- Université de Bordeaux, CNRS, PACEA-UMR, 5199 Pessac, France
- Centre Archéologie préventive de Bordeaux Métropole, Bordeaux, France
| | - Eva Rosenstock
- Freie Universität Berlin, Institut für Prähistorische Archäologie, Berlin, Germany
- Freie Universität Berlin, Einstein Center Chronoi, Berlin, Germany
| | | | - Chris Scarre
- Department of Archaeology, Durham University, Durham, UK
| | - Ludovic Soler
- Université de Bordeaux, CNRS, PACEA-UMR, 5199 Pessac, France
- Service départemental d’archéologie de Charente-Maritime, Saintes, France
| | - Joachim Wahl
- State Office for Cultural Heritage Management Baden-Württemberg, Osteology, Konstanz, Germany
- Universität Tübingen, Mathematisch-Naturwissenschaftliche Fakultät, Tübingen, Germany
| | - Johannes Krause
- Max Planck Institute for the Science of Human History, Department of Archaeogenetics, Jena, Germany
| | | | - Wolfgang Haak
- Max Planck Institute for the Science of Human History, Department of Archaeogenetics, Jena, Germany
| |
Collapse
|
14
|
Alt KW, Tejedor Rodríguez C, Nicklisch N, Roth D, Szécsényi Nagy A, Knipper C, Lindauer S, Held P, de Lagrán ÍGM, Schulz G, Schuerch T, Thieringer F, Brantner P, Brandt G, Israel N, Arcusa Magallón H, Meyer C, Mende BG, Enzmann F, Dresely V, Ramsthaler F, Guillén JIR, Scheurer E, López Montalvo E, Garrido Pena R, Pichler SL, Guerra MAR. A massacre of early Neolithic farmers in the high Pyrenees at Els Trocs, Spain. Sci Rep 2020; 10:2131. [PMID: 32034181 PMCID: PMC7005801 DOI: 10.1038/s41598-020-58483-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 01/14/2020] [Indexed: 11/15/2022] Open
Abstract
Violence seems deeply rooted in human nature and an endemic potential for such is today frequently associated with differing ethnic, religious or socio-economic backgrounds. Ethnic nepotism is believed to be one of the main causes of inter-group violence in multi-ethnic societies. At the site of Els Trocs in the Spanish Pyrenees, rivalling groups of either migrating early farmers or farmers and indigenous hunter-gatherers collided violently around 5300 BCE. This clash apparently resulted in a massacre of the Els Trocs farmers. The overkill reaction was possibly triggered by xenophobia or massive disputes over resources or privileges. In the present, violence and xenophobia are controlled and sanctioned through social codes of conduct and institutions. So that, rather than representing an insurmountable evolutionary inheritance, violence and ethnic nepotism can be overcome and a sustainable future achieved through mutual respect, tolerance and openness to multi-ethnic societies.
Collapse
Affiliation(s)
- Kurt W Alt
- Center of Natural and Cultural Human History, Danube Private University, Krems, Austria. .,Department of Biomedical Engineering, University of Basel, Basel, Switzerland. .,Integrative Prehistory and Archaeological Science, University of Basel, Basel, Switzerland.
| | - Cristina Tejedor Rodríguez
- Juan de la Cierva-Formación Programme. Institute of Heritage Sciences, Spanish National Research Council (Incpit-CSIC) Spain, Valladolid, Spain
| | - Nicole Nicklisch
- Center of Natural and Cultural Human History, Danube Private University, Krems, Austria.,State Office for Heritage Management and Archaeology, Halle State Museum of Prehistory, Halle, Germany
| | - David Roth
- Integrative Prehistory and Archaeological Science, University of Basel, Basel, Switzerland
| | - Anna Szécsényi Nagy
- Institute of Archaeology, Research Centre for the Humanities, Hungarian Academy of Sciences, Budapest, Hungary
| | - Corina Knipper
- Curt-Engelhorn-Zentrum Archaeometrie gGmbH, Mannheim, Germany
| | | | - Petra Held
- Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Íñigo García Martínez de Lagrán
- Juan de la Cierva-Incorporación Programme, Department of Prehistory and Archaeology, Faculty of Philosophy and Letters, University of Valladolid, Valladolid, Spain
| | - Georg Schulz
- Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Thomas Schuerch
- Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Florian Thieringer
- Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Philipp Brantner
- Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Guido Brandt
- Max Planck Institute for the Science of Human History, Jena, Germany
| | - Nicole Israel
- Friedrich-Loeffler-Institute for Medical Microbiology, University of Greifswald, Greifswald, Germany
| | | | - Christian Meyer
- OsteoARC - OsteoArchaeological Research Center, Goslar, Germany
| | - Balazs G Mende
- Institute of Archaeology, Research Centre for the Humanities, Hungarian Academy of Sciences, Budapest, Hungary
| | - Frieder Enzmann
- Computer Tomography Lab of the Institute of Hydrogeochemistry, University of Mainz, Mainz, Germany
| | - Veit Dresely
- State Office for Heritage Management and Archaeology, Halle State Museum of Prehistory, Halle, Germany
| | - Frank Ramsthaler
- Institute of Forensic Medicine, University of Saarland, Homburg, Germany
| | | | - Eva Scheurer
- Institute of Forensic Medicine, University of Basel, Basel, Switzerland
| | - Esther López Montalvo
- Chargée de recherche CNRS, Laboratoire TRACES UMR 5608, Université de Toulouse II-Jean Jaurès, Toulouse, France
| | - Rafael Garrido Pena
- Department of Prehistory and Archaeology, Faculty of Philosophy and Letters, Atonomous University of Madrid, Madrid, Spain
| | - Sandra L Pichler
- Integrative Prehistory and Archaeological Science, University of Basel, Basel, Switzerland
| | - Manuel A Rojo Guerra
- Department of Prehistory and Archaeology, Faculty of Philosophy and Letters, Valladolid University, Valladolid, Spain
| |
Collapse
|
15
|
Megalithic tombs in western and northern Neolithic Europe were linked to a kindred society. Proc Natl Acad Sci U S A 2019; 116:9469-9474. [PMID: 30988179 PMCID: PMC6511028 DOI: 10.1073/pnas.1818037116] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
A new phenomenon of constructing distinctive funerary monuments, collectively known as megalithic tombs, emerged around 4500 BCE along the Atlantic façade. The megalithic phenomenon has attracted interest and speculation since medieval times. In particular, the origin, dispersal dynamics, and the role of these constructions within the societies that built them have been debated. We generate genome sequence data from 24 individuals buried in five megaliths and investigate the population history and social dynamics of the groups that buried their dead in megalithic monuments across northwestern Europe in the fourth millennium BCE. Our results show kin relations among the buried individuals and an overrepresentation of males, suggesting that at least some of these funerary monuments were used by patrilineal societies. Paleogenomic and archaeological studies show that Neolithic lifeways spread from the Fertile Crescent into Europe around 9000 BCE, reaching northwestern Europe by 4000 BCE. Starting around 4500 BCE, a new phenomenon of constructing megalithic monuments, particularly for funerary practices, emerged along the Atlantic façade. While it has been suggested that the emergence of megaliths was associated with the territories of farming communities, the origin and social structure of the groups that erected them has remained largely unknown. We generated genome sequence data from human remains, corresponding to 24 individuals from five megalithic burial sites, encompassing the widespread tradition of megalithic construction in northern and western Europe, and analyzed our results in relation to the existing European paleogenomic data. The various individuals buried in megaliths show genetic affinities with local farming groups within their different chronological contexts. Individuals buried in megaliths display (past) admixture with local hunter-gatherers, similar to that seen in other Neolithic individuals in Europe. In relation to the tomb populations, we find significantly more males than females buried in the megaliths of the British Isles. The genetic data show close kin relationships among the individuals buried within the megaliths, and for the Irish megaliths, we found a kin relation between individuals buried in different megaliths. We also see paternal continuity through time, including the same Y-chromosome haplotypes reoccurring. These observations suggest that the investigated funerary monuments were associated with patrilineal kindred groups. Our genomic investigation provides insight into the people associated with this long-standing megalith funerary tradition, including their social dynamics.
Collapse
|
16
|
Fischer CE, Lefort A, Pemonge MH, Couture-Veschambre C, Rottier S, Deguilloux MF. The multiple maternal legacy of the Late Iron Age group of Urville-Nacqueville (France, Normandy) documents a long-standing genetic contact zone in northwestern France. PLoS One 2018; 13:e0207459. [PMID: 30521562 PMCID: PMC6283558 DOI: 10.1371/journal.pone.0207459] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 10/31/2018] [Indexed: 11/18/2022] Open
Abstract
The compilation of archaeological and genetic data for ancient European human groups has provided persuasive evidence for a complex series of migrations, population replacements and admixture until the Bronze Age. If the Bronze-to-Iron Age transition has been well documented archaeologically, ancient DNA (aDNA) remains rare for the latter period and does not precisely reflect the genetic diversity of European Celtic groups. In order to document the evolution of European communities, we analysed 45 individuals from the Late Iron Age (La Tène) Urville-Nacqueville necropolis in northwestern France, a region recognized as a major cultural contact zone between groups from both sides of the Channel. The characterization of 37 HVS-I mitochondrial sequences and 40 haplogroups provided the largest maternal gene pool yet recovered for the European Iron Age. First, descriptive analyses allowed us to demonstrate the presence of substantial amounts of steppe-related mitochondrial ancestry in the community, which is consistent with the expansion of Bell Beaker groups bearing an important steppe legacy in northwestern Europe at approximately 2500 BC. Second, maternal genetic affinities highlighted with Bronze Age groups from Great Britain and the Iberian Peninsula regions tends to support the idea that the continuous cultural exchanges documented archaeologically across the Channel and along the Atlantic coast (during and after the Bronze Age period) were accompanied by significant gene flow. Lastly, our results suggest a maternal genetic continuity between Bronze Age and Iron Age groups that would argue in favour of a cultural transition linked to progressive local economic changes rather than to a massive influx of allochthone groups. The palaeogenetic data gathered for the Urville-Nacqueville group constitute an important step in the biological characterization of European Iron age groups. Clearly, more numerous and diachronic aDNA data are needed to fully understand the complex relationship between the cultural and biological evolution of groups from the period.
Collapse
Affiliation(s)
- Claire-Elise Fischer
- De la Préhistoire à l’Actuel, Culture, Environnement, Anthropologie–UMR 5199, CNRS, Université de Bordeaux, Allée Geoffroy Saint-Hilaire, CS, Pessac Cedex, France
- * E-mail:
| | - Anthony Lefort
- Inrap Grand-Ouest, Boulevard de l’Europe, Bourguébus, France
| | - Marie-Hélène Pemonge
- De la Préhistoire à l’Actuel, Culture, Environnement, Anthropologie–UMR 5199, CNRS, Université de Bordeaux, Allée Geoffroy Saint-Hilaire, CS, Pessac Cedex, France
| | - Christine Couture-Veschambre
- De la Préhistoire à l’Actuel, Culture, Environnement, Anthropologie–UMR 5199, CNRS, Université de Bordeaux, Allée Geoffroy Saint-Hilaire, CS, Pessac Cedex, France
| | - Stéphane Rottier
- De la Préhistoire à l’Actuel, Culture, Environnement, Anthropologie–UMR 5199, CNRS, Université de Bordeaux, Allée Geoffroy Saint-Hilaire, CS, Pessac Cedex, France
| | - Marie-France Deguilloux
- De la Préhistoire à l’Actuel, Culture, Environnement, Anthropologie–UMR 5199, CNRS, Université de Bordeaux, Allée Geoffroy Saint-Hilaire, CS, Pessac Cedex, France
| |
Collapse
|
17
|
Serventi P, Panicucci C, Bodega R, De Fanti S, Sarno S, Fondevila Alvarez M, Brisighelli F, Trombetta B, Anagnostou P, Ferri G, Vazzana A, Delpino C, Gruppioni G, Luiselli D, Cilli E. Iron Age Italic population genetics: the Piceni from Novilara (8th-7th century BC). Ann Hum Biol 2018; 45:34-43. [PMID: 29216758 DOI: 10.1080/03014460.2017.1414876] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND Archaeological data provide evidence that Italy, during the Iron Age, witnessed the appearance of the first communities with well defined cultural identities. To date, only a few studies report genetic data about these populations and, in particular, the Piceni have never been analysed. AIMS To provide new data about mitochondrial DNA (mtDNA) variability of an Iron Age Italic population, to understand the contribution of the Piceni in shaping the modern Italian gene pool and to ascertain the kinship between some individuals buried in the same grave within the Novilara necropolis. SUBJECTS AND METHODS In a first set of 10 individuals from Novilara, we performed deep sequencing of the HVS-I region of the mtDNA, combined with the genotyping of 22 SNPs in the coding region and the analysis of several autosomal markers. RESULTS The results show a low nucleotide diversity for the inhabitants of Novilara and highlight a genetic affinity of this ancient population with the current inhabitants of central Italy. No family relationship was observed between the individuals analysed here. CONCLUSIONS This study provides a preliminary characterisation of the mtDNA variability of the Piceni of Novilara, as well as a kinship assessment of two peculiar burials.
Collapse
Affiliation(s)
- Patrizia Serventi
- a Department of Biological, Geological and Environmental Sciences , University of Bologna , Bologna , Italy.,b Department of Cultural Heritage , University of Bologna , Ravenna , Italy
| | - Chiara Panicucci
- b Department of Cultural Heritage , University of Bologna , Ravenna , Italy
| | - Roberta Bodega
- a Department of Biological, Geological and Environmental Sciences , University of Bologna , Bologna , Italy
| | - Sara De Fanti
- a Department of Biological, Geological and Environmental Sciences , University of Bologna , Bologna , Italy
| | - Stefania Sarno
- a Department of Biological, Geological and Environmental Sciences , University of Bologna , Bologna , Italy
| | - Manuel Fondevila Alvarez
- c Instituto de Ciencias Forenses 'Luis Concheiro' , University of Santiago de Compostela, Santiago de Compostela , Galicia , Spain
| | - Francesca Brisighelli
- d Sezione di Medicina Legale-Istituto di Sanità Pubblica , Università Cattolica del Sacro Cuore , Roma , Italy
| | - Beniamino Trombetta
- e Department of Biology and Biotechnology 'Charles Darwin' , Sapienza University , Rome , Italy
| | - Paolo Anagnostou
- f Department of Environmental Biology , University of Rome 'La Sapienza' , Rome , Italy.,g ISItA, Istituto Italiano di Antropologia , Rome , Italy
| | - Gianmarco Ferri
- h Department of Diagnostic and Clinical Medicine and Public Health , University of Modena and Reggio Emilia , Modena , Italy
| | - Antonino Vazzana
- b Department of Cultural Heritage , University of Bologna , Ravenna , Italy
| | - Chiara Delpino
- i Superintendence of Archaeological Heritage of Marche Region , Ancona , Italy
| | - Giorgio Gruppioni
- b Department of Cultural Heritage , University of Bologna , Ravenna , Italy
| | - Donata Luiselli
- a Department of Biological, Geological and Environmental Sciences , University of Bologna , Bologna , Italy
| | - Elisabetta Cilli
- b Department of Cultural Heritage , University of Bologna , Ravenna , Italy
| |
Collapse
|
18
|
Silva NM, Rio J, Currat M. Investigating population continuity with ancient DNA under a spatially explicit simulation framework. BMC Genet 2017; 18:114. [PMID: 29246100 PMCID: PMC5731203 DOI: 10.1186/s12863-017-0575-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 11/29/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Recent advances in sequencing technologies have allowed for the retrieval of ancient DNA data (aDNA) from skeletal remains, providing direct genetic snapshots from diverse periods of human prehistory. Comparing samples taken in the same region but at different times, hereafter called "serial samples", may indicate whether there is continuity in the peopling history of that area or whether an immigration of a genetically different population has occurred between the two sampling times. However, the exploration of genetic relationships between serial samples generally ignores their geographical locations and the spatiotemporal dynamics of populations. Here, we present a new coalescent-based, spatially explicit modelling approach to investigate population continuity using aDNA, which includes two fundamental elements neglected in previous methods: population structure and migration. The approach also considers the extensive temporal and geographical variance that is commonly found in aDNA population samples. RESULTS We first showed that our spatially explicit approach is more conservative than the previous (panmictic) approach and should be preferred to test for population continuity, especially when small and isolated populations are considered. We then applied our method to two mitochondrial datasets from Germany and France, both including modern and ancient lineages dating from the early Neolithic. The results clearly reject population continuity for the maternal line over the last 7500 years for the German dataset but not for the French dataset, suggesting regional heterogeneity in post-Neolithic migratory processes. CONCLUSIONS Here, we demonstrate the benefits of using a spatially explicit method when investigating population continuity with aDNA. It constitutes an improvement over panmictic methods by considering the spatiotemporal dynamics of genetic lineages and the precise location of ancient samples. The method can be used to investigate population continuity between any pair of serial samples (ancient-ancient or ancient-modern) and to investigate more complex evolutionary scenarios. Although we based our study on mitochondrial DNA sequences, diploid molecular markers of different types (DNA, SNP, STR) can also be simulated with our approach. It thus constitutes a promising tool for the analysis of the numerous aDNA datasets being produced, including genome wide data, in humans but also in many other species.
Collapse
Affiliation(s)
- Nuno Miguel Silva
- AGP lab, Department of Genetics & Evolution - Anthropology Unit, University of Geneva, Geneva, Switzerland
| | - Jeremy Rio
- AGP lab, Department of Genetics & Evolution - Anthropology Unit, University of Geneva, Geneva, Switzerland
| | - Mathias Currat
- AGP lab, Department of Genetics & Evolution - Anthropology Unit, University of Geneva, Geneva, Switzerland. .,Institute of Genetics and Genomics in Geneva (IGE3), University of Geneva, Geneva, Switzerland.
| |
Collapse
|
19
|
Comparison of two Neolithic mtDNA haplotypes from a Czech excavation site with the results of mitochondrial DNA studies on European Neolithic and Mesolithic individuals. FORENSIC SCIENCE INTERNATIONAL GENETICS SUPPLEMENT SERIES 2017. [DOI: 10.1016/j.fsigss.2017.09.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
The maternal genetic make-up of the Iberian Peninsula between the Neolithic and the Early Bronze Age. Sci Rep 2017; 7:15644. [PMID: 29142317 PMCID: PMC5688114 DOI: 10.1038/s41598-017-15480-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 10/27/2017] [Indexed: 01/01/2023] Open
Abstract
Agriculture first reached the Iberian Peninsula around 5700 BCE. However, little is known about the genetic structure and changes of prehistoric populations in different geographic areas of Iberia. In our study, we focus on the maternal genetic makeup of the Neolithic (~ 5500–3000 BCE), Chalcolithic (~ 3000–2200 BCE) and Early Bronze Age (~ 2200–1500 BCE). We report ancient mitochondrial DNA results of 213 individuals (151 HVS-I sequences) from the northeast, central, southeast and southwest regions and thus on the largest archaeogenetic dataset from the Peninsula to date. Similar to other parts of Europe, we observe a discontinuity between hunter-gatherers and the first farmers of the Neolithic. During the subsequent periods, we detect regional continuity of Early Neolithic lineages across Iberia, however the genetic contribution of hunter-gatherers is generally higher than in other parts of Europe and varies regionally. In contrast to ancient DNA findings from Central Europe, we do not observe a major turnover in the mtDNA record of the Iberian Late Chalcolithic and Early Bronze Age, suggesting that the population history of the Iberian Peninsula is distinct in character.
Collapse
|
21
|
Amplitude of travelling front as inferred from 14C predicts levels of genetic admixture among European early farmers. Sci Rep 2017; 7:11985. [PMID: 28931884 PMCID: PMC5607300 DOI: 10.1038/s41598-017-12318-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 09/07/2017] [Indexed: 01/09/2023] Open
Abstract
Large radiocarbon datasets have been analysed statistically to identify, on the one hand, the dynamics and tempo of dispersal processes and, on the other, demographic change. This is particularly true for the spread of farming practices in Neolithic Europe. Here we combine the two approaches and apply them to a new, extensive dataset of 14,535 radiocarbon dates for the Mesolithic and Neolithic periods across the Near East and Europe. The results indicate three distinct demographic regimes: one observed in or around the centre of farming innovation and involving a boost in carrying capacity; a second appearing in regions where Mesolithic populations were well established; and a third corresponding to large-scale migrations into previously essentially unoccupied territories, where the travelling front is readily identified. This spatio-temporal patterning linking demographic change with dispersal dynamics, as displayed in the amplitude of the travelling front, correlates and predicts levels of genetic admixture among European early farmers.
Collapse
|
22
|
Beau A, Rivollat M, Réveillas H, Pemonge MH, Mendisco F, Thomas Y, Lefranc P, Deguilloux MF. Multi-scale ancient DNA analyses confirm the western origin of Michelsberg farmers and document probable practices of human sacrifice. PLoS One 2017; 12:e0179742. [PMID: 28678860 PMCID: PMC5497962 DOI: 10.1371/journal.pone.0179742] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 06/02/2017] [Indexed: 02/05/2023] Open
Abstract
In Europe, the Middle Neolithic is characterized by an important diversification of cultures. In northeastern France, the appearance of the Michelsberg culture has been correlated with major cultural changes and interpreted as the result of the settlement of new groups originating from the Paris Basin. This cultural transition has been accompanied by the expansion of particular funerary practices involving inhumations within circular pits and individuals in “non-conventional” positions (deposited in the pits without any particular treatment). If the status of such individuals has been highly debated, the sacrifice hypothesis has been retained for the site of Gougenheim (Alsace). At the regional level, the analysis of the Gougenheim mitochondrial gene pool (SNPs and HVR-I sequence analyses) permitted us to highlight a major genetic break associated with the emergence of the Michelsberg in the region. This genetic discontinuity appeared to be linked to new affinities with farmers from the Paris Basin, correlated to a noticeable hunter-gatherer legacy. All of the evidence gathered supports (i) the occidental origin of the Michelsberg groups and (ii) the potential implication of this migration in the progression of the hunter-gatherer legacy from the Paris Basin to Alsace / Western Germany at the beginning of the Late Neolithic. At the local level, we noted some differences in the maternal gene pool of individuals in "conventional" vs. "non-conventional" positions. The relative genetic isolation of these sub-groups nicely echoes both their social distinction and the hypothesis of sacrifices retained for the site. Our investigation demonstrates that a multi-scale aDNA study of ancient communities offers a unique opportunity to disentangle the complex relationships between cultural and biological evolution.
Collapse
Affiliation(s)
- Alice Beau
- De la Préhistoire à l’Actuel, Culture, Environnement, Anthropologie—UMR 5199, CNRS, Université de Bordeaux, Allée Geoffroy Saint-Hilaire, CS, Pessac cedex, France
| | - Maïté Rivollat
- De la Préhistoire à l’Actuel, Culture, Environnement, Anthropologie—UMR 5199, CNRS, Université de Bordeaux, Allée Geoffroy Saint-Hilaire, CS, Pessac cedex, France
- * E-mail: (MR); (PL)
| | - Hélène Réveillas
- De la Préhistoire à l’Actuel, Culture, Environnement, Anthropologie—UMR 5199, CNRS, Université de Bordeaux, Allée Geoffroy Saint-Hilaire, CS, Pessac cedex, France
- Centre d’Archéologie Préventive de Bordeaux Métropole, Direction des Bâtiments et Moyens, Esplanade Charles-de-Gaulle, Bordeaux cedex, France
- Institut National de Recherche en Archéologie Préventive, Centre Archéologique de Strasbourg, 10 rue d’Altkirch, Strasbourg, France
| | - Marie-Hélène Pemonge
- De la Préhistoire à l’Actuel, Culture, Environnement, Anthropologie—UMR 5199, CNRS, Université de Bordeaux, Allée Geoffroy Saint-Hilaire, CS, Pessac cedex, France
| | - Fanny Mendisco
- De la Préhistoire à l’Actuel, Culture, Environnement, Anthropologie—UMR 5199, CNRS, Université de Bordeaux, Allée Geoffroy Saint-Hilaire, CS, Pessac cedex, France
| | - Yohann Thomas
- Institut National de Recherche en Archéologie Préventive, Centre Archéologique de Strasbourg, 10 rue d’Altkirch, Strasbourg, France
| | - Philippe Lefranc
- Institut National de Recherche en Archéologie Préventive, Centre Archéologique de Strasbourg, 10 rue d’Altkirch, Strasbourg, France
- Archéologie et Histoire Ancienne: Méditerranée/Europe–UMR 7044, Université de Strasbourg, Maison Interuniversitaire des Sciences de l’Homme d’Alsace, 5 Allée du Général Rouvillois, CS, Strasbourg cedex, France
- * E-mail: (MR); (PL)
| | - Marie-France Deguilloux
- De la Préhistoire à l’Actuel, Culture, Environnement, Anthropologie—UMR 5199, CNRS, Université de Bordeaux, Allée Geoffroy Saint-Hilaire, CS, Pessac cedex, France
| |
Collapse
|
23
|
Investigating mitochondrial DNA relationships in Neolithic Western Europe through serial coalescent simulations. Eur J Hum Genet 2016; 25:388-392. [PMID: 28029148 DOI: 10.1038/ejhg.2016.180] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 11/18/2016] [Accepted: 11/24/2016] [Indexed: 11/09/2022] Open
Abstract
Recent ancient DNA studies on European Neolithic human populations have provided persuasive evidence of a major migration of farmers originating from the Aegean, accompanied by sporadic hunter-gatherer admixture into early Neolithic populations, but increasing toward the Late Neolithic. In this context, ancient mitochondrial DNA data collected from the Neolithic necropolis of Gurgy (Paris Basin, France), the largest mitochondrial DNA sample obtained from a single archeological site for the Early/Middle Neolithic period, indicate little differentiation from farmers associated to both the Danubian and Mediterranean Neolithic migration routes, as well as from Western European hunter-gatherers. To test whether this pattern of differentiation could arise in a single unstructured population by genetic drift alone, we used serial coalescent simulations. We explore female effective population size parameter combinations at the time of the colonization of Europe 45000 years ago and the most recent of the Neolithic samples analyzed in this study 5900 years ago, and identify conditions under which population panmixia between hunter-gatherers/Early-Middle Neolithic farmers and Gurgy cannot be rejected. In relation to other studies on the current debate of the origins of Europeans, these results suggest increasing hunter-gatherer admixture into farmers' group migrating farther west in Europe.
Collapse
|
24
|
Rey L, Goude G, Rottier S. Comportements alimentaires au Néolithique : nouveaux résultats dans le Bassin parisien à partir de l'étude isotopique (δ13C, δ15N) de la nécropole de Gurgy « Les Noisats » (Yonne, Vemillénaire av. J.-C.). ACTA ACUST UNITED AC 2016. [DOI: 10.1007/s13219-016-0170-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Les comportements alimentaires de la population néolithique de Gurgy « Les Noisats » (Yonne, Vemillénaire av. J.-C.) sont étudiés à travers l'analyse des ratios isotopiques du collagène osseux de 40 sujets. Cette nécropole correspond à l'une des plus importantes du Néolithique français : elle compte 126 inhumations primaires sur une période d'occupation de près d'un millénaire. Au cœur d'une région située à l'intersection entre plusieurs cultures, la grande diversité des dispositifs funéraires et du mobilier atteste des multiples influences alentour. Les résultats isotopiques (δ13C et δ15N) des humains comparés à la faune régionale soulignent l'importance des protéines animales issues de l'élevage (viande ou produits laitiers) — voire de poissons d'eau douce — dans le régime alimentaire. La très faible variation des valeurs enregistrée au sein de la population montre une grande homogénéité, rarement mise en évidence pour cette période, indiquant la consommation de ressources similaires pour l'ensemble des individus étudiés. La comparaison de ces données avec les paramètres biologiques et funéraires dégage toutefois quelques tendances, notamment en fonction de l'âge et du sexe des défunts, ainsi que de la chronologie.
Collapse
|
25
|
Rivollat M, Réveillas H, Mendisco F, Pemonge MH, Justeau P, Couture C, Lefranc P, Féliu C, Deguilloux MF. Ancient mitochondrial DNA from the middle neolithic necropolis of Obernai extends the genetic influence of the LBK to west of the Rhine. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2016; 161:522-529. [PMID: 27447353 DOI: 10.1002/ajpa.23055] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Revised: 07/04/2016] [Accepted: 07/06/2016] [Indexed: 11/10/2022]
Abstract
OBJECTIVES The arrival of Neolithic farmers in Europe was the source of major cultural and genetic transitions. Neolithic settlers brought a new set of maternal lineages (mitochondrial DNA), recently well-characterized on the continental road, from the Balkans to West Germany (Rhine River). In the present study, the first mitochondrial DNA data from groups associated with this continental expansion wave located west of the Rhine River has been provided and their genetic affinities with contemporary groups have been discussed. MATERIAL AND METHODS The mitochondrial DNA analysis of 27 human remains originating from Obernai (5,000-4,400 cal. BC), a necropolis located in French Alsace Region and attributed to Grossgartach, Planig-Friedberg, and Roessen cultures was conducted. RESULTS AND DISCUSSION Among the 27 individuals studied, 15 HVR-I sequences and 17 mitochondrial haplogroups could be determined. The analysis of the Obernai gene pool clearly confirmed the genetic homogeneity of Linearbandkeramik (LBK) groups on both sides of the Rhine River. Notably, one N1a sequence found in Obernai is shared with LBK farmers from Central Europe, including one individual from the Flomborn site located approximately 200 km north-east of Obernai. On the whole, data gathered so far showed major genetic influence of the Danubian wave from Transdanubia to Atlantic French Coast, going by Alsace Region. However, the genetic influence of descendants from the Mediterranean Neolithic expansion and the significant hunter-gatherer admixture detected further west in the Paris Basin were not perceived in the Obernai necropolis. CONCLUSIONS Genetic homogeneity and continuity within LBK groups can be proposed on both sides of the Rhine River for the middle Neolithic groups. Nevertheless, mitochondrial data gathered so far for Neolithic groups from the entire extant French Territory clearly point out the complexity and the variability of Neolithic communities interactions that is worthy of further investigation.
Collapse
Affiliation(s)
- Maïté Rivollat
- De la Préhistoire à l'Actuel, Culture, Environnement, Anthropologie - UMR 5199, CNRS, Université de Bordeaux, Allée Geoffroy Saint-Hilaire, CS 50023, Pessac Cedex, 33615, France. ,
| | - Hélène Réveillas
- De la Préhistoire à l'Actuel, Culture, Environnement, Anthropologie - UMR 5199, CNRS, Université de Bordeaux, Allée Geoffroy Saint-Hilaire, CS 50023, Pessac Cedex, 33615, France.,Centre d'Archéologie Préventive de Bordeaux Métropole, direction des Bâtiments et Moyens, Esplanade Charles-de-Gaulle, Bordeaux Cedex, 33 076, France.,Institut National de Recherche en Archéologie Préventive, Centre Archéologique de Strasbourg, 10 rue d'Altkirch, Strasbourg, 67000, France
| | - Fanny Mendisco
- De la Préhistoire à l'Actuel, Culture, Environnement, Anthropologie - UMR 5199, CNRS, Université de Bordeaux, Allée Geoffroy Saint-Hilaire, CS 50023, Pessac Cedex, 33615, France
| | - Marie-Hélène Pemonge
- De la Préhistoire à l'Actuel, Culture, Environnement, Anthropologie - UMR 5199, CNRS, Université de Bordeaux, Allée Geoffroy Saint-Hilaire, CS 50023, Pessac Cedex, 33615, France
| | - Pierre Justeau
- De la Préhistoire à l'Actuel, Culture, Environnement, Anthropologie - UMR 5199, CNRS, Université de Bordeaux, Allée Geoffroy Saint-Hilaire, CS 50023, Pessac Cedex, 33615, France
| | - Christine Couture
- De la Préhistoire à l'Actuel, Culture, Environnement, Anthropologie - UMR 5199, CNRS, Université de Bordeaux, Allée Geoffroy Saint-Hilaire, CS 50023, Pessac Cedex, 33615, France
| | - Philippe Lefranc
- Institut National de Recherche en Archéologie Préventive, Centre Archéologique de Strasbourg, 10 rue d'Altkirch, Strasbourg, 67000, France.,Archéologie et Histoire Ancienne: Méditerranée/Europe - UMR 7044, Université de Strasbourg, Maison Interuniversitaire des Sciences de l'Homme d'Alsace, 5 allée du Général Rouvillois, CS 50008, Strasbourg Cedex, 67083, France
| | - Clément Féliu
- Institut National de Recherche en Archéologie Préventive, Centre Archéologique de Strasbourg, 10 rue d'Altkirch, Strasbourg, 67000, France.,Archéologie et Histoire Ancienne: Méditerranée/Europe - UMR 7044, Université de Strasbourg, Maison Interuniversitaire des Sciences de l'Homme d'Alsace, 5 allée du Général Rouvillois, CS 50008, Strasbourg Cedex, 67083, France
| | - Marie-France Deguilloux
- De la Préhistoire à l'Actuel, Culture, Environnement, Anthropologie - UMR 5199, CNRS, Université de Bordeaux, Allée Geoffroy Saint-Hilaire, CS 50023, Pessac Cedex, 33615, France
| |
Collapse
|
26
|
Le Luyer M, Coquerelle M, Rottier S, Bayle P. Internal Tooth Structure and Burial Practices: Insights into the Neolithic Necropolis of Gurgy (France, 5100-4000 cal. BC). PLoS One 2016; 11:e0159688. [PMID: 27447183 PMCID: PMC4957824 DOI: 10.1371/journal.pone.0159688] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 07/05/2016] [Indexed: 02/01/2023] Open
Abstract
Variations in the dental crown form are widely studied to interpret evolutionary changes in primates as well as to assess affinities among human archeological populations. Compared to external metrics of dental crown size and shape, variables including the internal structures such as enamel thickness, tissue proportions, and the three-dimensional shape of enamel-dentin junction (EDJ), have been described as powerful measurements to study taxonomy, phylogenetic relationships, dietary, and/or developmental patterns. In addition to providing good estimate of phenotypic distances within/across archeological samples, these internal tooth variables may help to understand phylogenetic, functional, and developmental underlying causes of variation. In this study, a high resolution microtomographic-based record of upper permanent second molars from 20 Neolithic individuals of the necropolis of Gurgy (France) was applied to evaluate the intrasite phenotypic variation in crown tissue proportions, thickness and distribution of enamel, and EDJ shape. The study aims to compare interindividual dental variations with burial practices and chronocultural parameters, and suggest underlying causes of these dental variations. From the non-invasive characterization of internal tooth structure, differences have been found between individuals buried in pits with alcove and those buried in pits with container and pits with wattling. Additionally, individuals from early and recent phases of the necropolis have been distinguished from those of the principal phase from their crown tissue proportions and EDJ shape. The results suggest that the internal tooth structure may be a reliable proxy to track groups sharing similar chronocultural and burial practices. In particular, from the EDJ shape analysis, individuals buried in an alcove shared a reduction of the distolingual dentin horn tip (corresponding to the hypocone). Environmental, developmental and/or functional underlying causes might be suggested for the origin of phenotypic differences shared by these individuals buried in alcoves.
Collapse
Affiliation(s)
- Mona Le Luyer
- Unité Mixte de Recherche 5199, de la Préhistoire à l’Actuel: Culture, Environnement, Anthropologie (UMR 5199 PACEA), Université de Bordeaux, Pessac, France
- * E-mail:
| | | | - Stéphane Rottier
- Unité Mixte de Recherche 5199, de la Préhistoire à l’Actuel: Culture, Environnement, Anthropologie (UMR 5199 PACEA), Université de Bordeaux, Pessac, France
| | - Priscilla Bayle
- Unité Mixte de Recherche 5199, de la Préhistoire à l’Actuel: Culture, Environnement, Anthropologie (UMR 5199 PACEA), Université de Bordeaux, Pessac, France
| |
Collapse
|
27
|
Morozova I, Flegontov P, Mikheyev AS, Bruskin S, Asgharian H, Ponomarenko P, Klyuchnikov V, ArunKumar G, Prokhortchouk E, Gankin Y, Rogaev E, Nikolsky Y, Baranova A, Elhaik E, Tatarinova TV. Toward high-resolution population genomics using archaeological samples. DNA Res 2016; 23:295-310. [PMID: 27436340 PMCID: PMC4991838 DOI: 10.1093/dnares/dsw029] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Accepted: 05/22/2016] [Indexed: 12/30/2022] Open
Abstract
The term ‘ancient DNA’ (aDNA) is coming of age, with over 1,200 hits in the PubMed database, beginning in the early 1980s with the studies of ‘molecular paleontology’. Rooted in cloning and limited sequencing of DNA from ancient remains during the pre-PCR era, the field has made incredible progress since the introduction of PCR and next-generation sequencing. Over the last decade, aDNA analysis ushered in a new era in genomics and became the method of choice for reconstructing the history of organisms, their biogeography, and migration routes, with applications in evolutionary biology, population genetics, archaeogenetics, paleo-epidemiology, and many other areas. This change was brought by development of new strategies for coping with the challenges in studying aDNA due to damage and fragmentation, scarce samples, significant historical gaps, and limited applicability of population genetics methods. In this review, we describe the state-of-the-art achievements in aDNA studies, with particular focus on human evolution and demographic history. We present the current experimental and theoretical procedures for handling and analysing highly degraded aDNA. We also review the challenges in the rapidly growing field of ancient epigenomics. Advancement of aDNA tools and methods signifies a new era in population genetics and evolutionary medicine research.
Collapse
Affiliation(s)
- Irina Morozova
- Institute of Evolutionary Medicine, University of Zurich, Zurich, Switzerland
| | - Pavel Flegontov
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic Bioinformatics Center, A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russian Federation
| | - Alexander S Mikheyev
- Ecology and Evolution Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Sergey Bruskin
- Vavilov Institute of General Genetics RAS, Moscow, Russia
| | - Hosseinali Asgharian
- Department of Computational and Molecular Biology, University of Southern California, Los Angeles, CA, USA
| | - Petr Ponomarenko
- Center for Personalized Medicine, Children's Hospital Los Angeles, Los Angeles, CA, USA Spatial Sciences Institute, University of Southern California, Los Angeles, CA, USA
| | | | | | - Egor Prokhortchouk
- Research Center of Biotechnology RAS, Moscow, Russia Department of Biology, Lomonosov Moscow State University, Russia
| | | | - Evgeny Rogaev
- Vavilov Institute of General Genetics RAS, Moscow, Russia University of Massachusetts Medical School, Worcester, MA, USA
| | - Yuri Nikolsky
- Vavilov Institute of General Genetics RAS, Moscow, Russia F1 Genomics, San Diego, CA, USA School of Systems Biology, George Mason University, VA, USA
| | - Ancha Baranova
- School of Systems Biology, George Mason University, VA, USA Research Centre for Medical Genetics, Moscow, Russia Atlas Biomed Group, Moscow, Russia
| | - Eran Elhaik
- Department of Animal & Plant Sciences, University of Sheffield, Sheffield, South Yorkshire, UK
| | - Tatiana V Tatarinova
- Bioinformatics Center, A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russian Federation Center for Personalized Medicine, Children's Hospital Los Angeles, Los Angeles, CA, USA Spatial Sciences Institute, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|