1
|
Liu Y, Li G, Guo Z, Zhang H, Wei B, He D. Transcriptome analysis of sexual dimorphism in dorsal down coloration in goslings. BMC Genomics 2024; 25:505. [PMID: 38778258 PMCID: PMC11110362 DOI: 10.1186/s12864-024-10394-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND In day-old Hungarian white goose goslings, there is a noticeable difference in dorsal down coloration between males and females, with females having darker dorsal plumage and males having lighter plumage. The ability to autosex day-old goslings based on their dorsal down coloration is important for managing them efficiently and planning their nutrition in the poultry industry. The aim of this study was to determine the biological and genetic factors underlying this difference in dorsal down colorationthrough histological analysis, biochemical assays, transcriptomic profiling, and q‒PCR analysis. RESULTS Tissue analysis and biochemical assays revealed that compared with males, 17-day-old embryos and day-old goslings of female geese exhibited a greater density of melanin-containing feather follicles and a greater melanin concentration in these follicles during development. Both female and male goslings had lower melanin concentrations in their dorsal skin compared to 17-day-old embryos. Transcriptome analysis identified a set of differentially expressed genes (DEGs) (MC1R, TYR, TYRP1, DCT and MITF) associated with melanogenesis pathways that were downregulated or silenced specifically in the dorsal skin of day-old goslings compared to 17-day-old embryos, affecting melanin synthesis in feather follicles. Additionally, two key genes (MC1R and MITF) associated with feather coloration showed differences between males and females, with females having higher expression levels correlated with increased melanin synthesis and darker plumage. CONCLUSION The expression of multiple melanogenesis genes determines melanin synthesis in goose feather follicles. The dorsal down coloration of day-old Hungarian white goose goslings shows sexual dimorphism, likely due to differences in the expression of the MC1R and MITF genes between males and females. These results could help us better understand why male and female goslings exhibit different plumage patterns.
Collapse
Affiliation(s)
- Yi Liu
- Shanghai Academy of Agricultural Sciences, Institute of Animal Husbandry and Veterinary Science, Shanghai, China
| | - Guangquan Li
- Shanghai Academy of Agricultural Sciences, Institute of Animal Husbandry and Veterinary Science, Shanghai, China
| | - Zhanbao Guo
- Chinese Academy of Agricultural Sciences, Institute of Animal Sciences, Beijing, China
| | - Huiling Zhang
- Shandong Rongda Agricultural Development Co., Ltd, Shandong, China
| | - Baozhi Wei
- Shandong Rongda Agricultural Development Co., Ltd, Shandong, China
| | - Daqian He
- Shanghai Academy of Agricultural Sciences, Institute of Animal Husbandry and Veterinary Science, Shanghai, China.
| |
Collapse
|
2
|
Guo P, Chen J, Luo L, Zhang X, Li X, Huang Y, Wu Z, Tian Y. Identification of Differentially Expressed Genes and microRNAs in the Gray and White Feather Follicles of Shitou Geese. Animals (Basel) 2024; 14:1508. [PMID: 38791725 PMCID: PMC11117251 DOI: 10.3390/ani14101508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
The Shitou goose, a highly recognized indigenous breed with gray plumage originating from Chaozhou Raoping in Guangdong Province, China, is renowned for being the largest goose species in the country. Notably, during the pure breeding process of Shitou geese, approximately 2% of the offspring in each generation unexpectedly exhibited white plumage. To better understand the mechanisms underlying white plumage color formation in Shitou geese, we conducted a comparative transcriptome analysis between white and gray feather follicles, aiming to identify key genes and microRNAs that potentially regulate white plumage coloration in this unique goose breed. Our results revealed a number of pigmentation genes, encompassing TYR, TYRP1, EDNRB2, MLANA, SOX10, SLC45A2, GPR143, TRPM1, OCA2, ASIP, KIT, and SLC24A5, which were significantly down-regulated in the white feather follicles of Shitou geese. Among these genes, EDNRB2 and KIT emerged as the most promising candidate genes for white plumage coloration in Shitou geese. Additionally, our analysis also uncovered 46 differentially expressed miRNAs. Of these, miR-144-y may play crucial roles in the regulation of feather pigmentation. Furthermore, the expression of novel-m0086-5p, miR-489-y, miR-223-x, miR-7565-z, and miR-3535-z exhibits a significant negative correlation with the expression of pigmentation genes including TYRP1, EDNRB2, MLANA, SOX10, TRPM1, and KIT, suggesting these miRNAs may indirectly regulate the expression of these genes, thereby influencing feather color. Our findings provide valuable insights into the genetic mechanisms underlying white plumage coloration in Shitou geese and contribute to the broader understanding of avian genetics and coloration research.
Collapse
Affiliation(s)
- Pengyun Guo
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (P.G.); (L.L.); (X.Z.); (X.L.); (Y.H.); (Y.T.)
| | - Junpeng Chen
- Shantou Baisha Research Institute of Original Species of Poultry and Stock, Shantou 515800, China;
| | - Lei Luo
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (P.G.); (L.L.); (X.Z.); (X.L.); (Y.H.); (Y.T.)
| | - Xumeng Zhang
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (P.G.); (L.L.); (X.Z.); (X.L.); (Y.H.); (Y.T.)
| | - Xiujin Li
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (P.G.); (L.L.); (X.Z.); (X.L.); (Y.H.); (Y.T.)
| | - Yunmao Huang
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (P.G.); (L.L.); (X.Z.); (X.L.); (Y.H.); (Y.T.)
| | - Zhongping Wu
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (P.G.); (L.L.); (X.Z.); (X.L.); (Y.H.); (Y.T.)
| | - Yunbo Tian
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (P.G.); (L.L.); (X.Z.); (X.L.); (Y.H.); (Y.T.)
| |
Collapse
|
3
|
Vasu M, Ahlawat S, Chhabra P, Sharma U, Arora R, Sharma R, Mir MA, Singh MK. Genetic insights into fiber quality, coat color and adaptation in Changthangi and Muzzafarnagri sheep: A comparative skin transcriptome analysis. Gene 2024; 891:147826. [PMID: 37748630 DOI: 10.1016/j.gene.2023.147826] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/15/2023] [Accepted: 09/22/2023] [Indexed: 09/27/2023]
Abstract
Changthangi sheep, which inhabit the high-altitude regions of Ladakh, are known for their fine fiber production and are characterized by grey skin and either black or white coats. In contrast, Muzzafarnagri sheep from the plains of Uttar Pradesh produce coarse wool and have white skin and coats. We conducted comparative global gene expression profiling on four biological replicates of skin from each breed. Notably, our analysis identified 149 up-regulated genes and 2,139 down-regulated genes in Changthangi sheep compared to Muzzafarnagri sheep, with a p-adjusted value (padj) of ≤0.05 and a Log2 fold change of ≥1.5. Gene Ontology analysis of the up-regulated genes revealed an enrichment of terms related to melanin biosynthesis and developmental pigmentation. Additionally, enriched KEGG pathways included tyrosine metabolism and metabolic pathways. Among the melanogenesis-related genes that exhibited higher expression in Changthangi sheep were TYR, TYRP1, DCT, SLC45A2, PMEL, MLANA, and OCA2. These findings confirm melanin's role in both the animals' black coat color and UV protection at high-altitude. Furthermore, we observed more pronounced expression of genes related to fiber quality, namely KRTAP6, KRTAP7, KRTAP13, and KRTAP2, in the fine wool-producing sheep from Ladakh. The results of the RNA sequencing were validated using real-time PCR on 10 genes governing fiber quality and coat color, with ACTB and PPIB serving as reference genes. In conclusion, our comparative skin transcriptome analysis of Changthangi and Muzzafarnagri sheep sheds light on the genetic differences associated with distinct phenotypic traits and environmental adaptability, offering valuable insights into the underlying mechanisms.
Collapse
Affiliation(s)
- Mahanthi Vasu
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India; ICAR-National Dairy Research Institute, Karnal, India
| | - Sonika Ahlawat
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India.
| | - Pooja Chhabra
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Upasna Sharma
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Reena Arora
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Rekha Sharma
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - M A Mir
- Mountain Research Centre for Sheep and Goat, Shuhama (Aulestang), SKUAST-Kashmir, India
| | - Manoj Kumar Singh
- ICAR-Central Institute for Research on Goats, Makhdoom, Mathura, India
| |
Collapse
|
4
|
Maclary ET, Wauer R, Phillips B, Brown A, Boer EF, Samani AM, Shapiro MD. An allelic series at the EDNRB2 locus controls diverse piebalding patterns in the domestic pigeon. PLoS Genet 2023; 19:e1010880. [PMID: 37862332 PMCID: PMC10588866 DOI: 10.1371/journal.pgen.1010880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/25/2023] [Indexed: 10/22/2023] Open
Abstract
Variation in pigment patterns within and among vertebrate species reflects underlying changes in cell migration and function that can impact health, reproductive success, and survival. The domestic pigeon (Columba livia) is an exceptional model for understanding the genetic changes that give rise to diverse pigment patterns, as selective breeding has given rise to hundreds of breeds with extensive variation in plumage color and pattern. Here, we map the genetic architecture of a suite of pigmentation phenotypes known as piebalding. Piebalding is characterized by patches of pigmented and non-pigmented feathers, and these plumage patterns are often breed-specific and stable across generations. Using a combination of quantitative trait locus mapping in F2 laboratory crosses and genome-wide association analysis, we identify a locus associated with piebalding across many pigeon breeds. This shared locus harbors a candidate gene, EDNRB2, that is a known regulator of pigment cell migration, proliferation, and survival. We discover multiple distinct haplotypes at the EDNRB2 locus in piebald pigeons, which include a mix of protein-coding, noncoding, and structural variants that are associated with depigmentation in specific plumage regions. These results identify a role for EDNRB2 in pigment patterning in the domestic pigeon, and highlight how repeated selection at a single locus can generate a diverse array of stable and heritable pigment patterns.
Collapse
Affiliation(s)
- Emily T. Maclary
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, United States of America
| | - Ryan Wauer
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, United States of America
| | - Bridget Phillips
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, United States of America
| | - Audrey Brown
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, United States of America
| | - Elena F. Boer
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, United States of America
| | - Atoosa M. Samani
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, United States of America
| | - Michael D. Shapiro
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, United States of America
| |
Collapse
|
5
|
Elkin J, Martin A, Courtier-Orgogozo V, Santos ME. Analysis of the genetic loci of pigment pattern evolution in vertebrates. Biol Rev Camb Philos Soc 2023; 98:1250-1277. [PMID: 37017088 DOI: 10.1111/brv.12952] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/08/2023] [Accepted: 03/14/2023] [Indexed: 04/06/2023]
Abstract
Vertebrate pigmentation patterns are amongst the best characterised model systems for studying the genetic basis of adaptive evolution. The wealth of available data on the genetic basis for pigmentation evolution allows for analysis of trends and quantitative testing of evolutionary hypotheses. We employed Gephebase, a database of genetic variants associated with natural and domesticated trait variation, to examine trends in how cis-regulatory and coding mutations contribute to vertebrate pigmentation phenotypes, as well as factors that favour one mutation type over the other. We found that studies with lower ascertainment bias identified higher proportions of cis-regulatory mutations, and that cis-regulatory mutations were more common amongst animals harbouring a higher number of pigment cell classes. We classified pigmentation traits firstly according to their physiological basis and secondly according to whether they affect colour or pattern, and identified that carotenoid-based pigmentation and variation in pattern boundaries are preferentially associated with cis-regulatory change. We also classified genes according to their developmental, cellular, and molecular functions. We found a greater proportion of cis-regulatory mutations in genes implicated in upstream developmental processes compared to those involved in downstream cellular functions, and that ligands were associated with a higher proportion of cis-regulatory mutations than their respective receptors. Based on these trends, we discuss future directions for research in vertebrate pigmentation evolution.
Collapse
Affiliation(s)
- Joel Elkin
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
| | - Arnaud Martin
- Department of Biological Sciences, The George Washington University, 800 22nd St. NW, Suite 6000, Washington, DC, 20052, USA
| | | | - M Emília Santos
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
| |
Collapse
|
6
|
Maclary ET, Wauer R, Phillips B, Brown A, Boer EF, Samani AM, Shapiro MD. An allelic series at the EDNRB2 locus controls diverse piebalding patterns in the domestic pigeon. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.26.550625. [PMID: 37546953 PMCID: PMC10402103 DOI: 10.1101/2023.07.26.550625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Variation in pigment patterns within and among vertebrate species reflects underlying changes in cell migration and function that can impact health, reproductive success, and survival. The domestic pigeon (Columba livia) is an exceptional model for understanding the genetic changes that give rise to diverse pigment patterns, as selective breeding has given rise to hundreds of breeds with extensive variation in plumage color and pattern. Here, we map the genetic architecture of a suite of pigmentation phenotypes known as piebalding. Piebalding is characterized by patches of pigmented and non-pigmented feathers, and these plumage patterns are often breed-specific and stable across generations. Using a combination of quantitative trait locus mapping in F2 laboratory crosses and genome-wide association analysis, we identify a locus associated with piebalding across many pigeon breeds. This shared locus harbors a candidate gene, EDNRB2, that is a known regulator of pigment cell migration, proliferation, and survival. We discover multiple distinct haplotypes at the EDNRB2 locus in piebald pigeons, which include a mix of protein-coding, noncoding, and structural variants that are associated with depigmentation in specific plumage regions. These results identify a role for EDNRB2 in pigment patterning in the domestic pigeon, and highlight how repeated selection at a single locus can generate a diverse array of stable and heritable pigment patterns.
Collapse
Affiliation(s)
- Emily T. Maclary
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Ryan Wauer
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Bridget Phillips
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Audrey Brown
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Elena F. Boer
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Atoosa M. Samani
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Michael D. Shapiro
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
7
|
Dao UM, Lederer I, Tabor RL, Shahid B, Graves CW, Seidel HS. Stripes and loss of color in ball pythons (Python regius) are associated with variants affecting endothelin signaling. G3 (BETHESDA, MD.) 2023; 13:jkad063. [PMID: 37191439 PMCID: PMC10320763 DOI: 10.1093/g3journal/jkad063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 03/10/2023] [Indexed: 05/17/2023]
Abstract
Color patterns in nonavian reptiles are beautifully diverse, but little is known about the genetics and development of these patterns. Here, we investigated color patterning in pet ball pythons (Python regius), which have been bred to show color phenotypes that differ dramatically from the wildtype form. We report that several color phenotypes in pet animals are associated with putative loss-of-function variants in the gene encoding endothelin receptor EDNRB1: (1) frameshift variants in EDNRB1 are associated with conversion of the normal mottled color pattern to skin that is almost fully white, (2) missense variants affecting conserved sites of the EDNRB1 protein are associated with dorsal, longitudinal stripes, and (3) substitutions at EDNRB1 splice donors are associated with subtle changes in patterning compared to wildtype. We propose that these phenotypes are caused by loss of specialized color cells (chromatophores), with loss ranging from severe (fully white) to moderate (dorsal striping) to mild (subtle changes in patterning). Our study is the first to describe variants affecting endothelin signaling in a nonavian reptile and suggests that reductions in endothelin signaling in ball pythons can produce a variety of color phenotypes, depending on the degree of color cell loss.
Collapse
Affiliation(s)
- Uyen M Dao
- Department of Biology, Eastern Michigan University, Ypsilanti, MI 48197, USA
| | - Izabella Lederer
- Department of Biology, Eastern Michigan University, Ypsilanti, MI 48197, USA
| | - Ray L Tabor
- Department of Biology, Eastern Michigan University, Ypsilanti, MI 48197, USA
| | - Basmah Shahid
- Department of Biology, Eastern Michigan University, Ypsilanti, MI 48197, USA
| | - Chiron W Graves
- Department of Biology, Eastern Michigan University, Ypsilanti, MI 48197, USA
| | - Hannah S Seidel
- Department of Biology, Eastern Michigan University, Ypsilanti, MI 48197, USA
| |
Collapse
|
8
|
Sun Y, Wu Q, Lin R, Chen H, Zhang M, Jiang B, Wang Y, Xue P, Gan Q, Shen Y, Chen F, Liu J, Zhou C, Lan S, Pan H, Deng F, Yue W, Lu L, Jiang X, Li Y. Genome-wide association study for the primary feather color trait in a native Chinese duck. Front Genet 2023; 14:1065033. [PMID: 36936414 PMCID: PMC10020179 DOI: 10.3389/fgene.2023.1065033] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 02/23/2023] [Indexed: 03/06/2023] Open
Abstract
Background: To reveal candidate genes and the molecular genetic mechanism underlying primary feather color trait in ducks, a genome-wide association study (GWAS) for the primary feather color trait was performed based on the genotyping-by-sequencing (GBS) technology for a native Chinese female duck, Longyan Shan-ma ducks. Methods: Blood genomic DNA from 314 female Longyan Shan-ma duck were genotyped using GBS technology. A GWAS for the primary feather color trait with genome variations was performed using an univariate linear mixed model based on all SNPs in autosomes. Results: Seven genome-wide significant single nucleotide polymorphisms (SNPs, Bonferroni-adjusted p-value <8.03 × 10-7) within the introns of the genes STARD9, ZNF106, SLC7A5, and BANP genes were associated with the primary feather color trait. Twenty-two genome-wide suggestive SNPs (Bonferroni-adjusted p-value <1.61 × 10-5) of 17 genes (besides ZNF106 and SLC7A5) were also identified. Seven SNPs were located at one 0.22 Mb region (38.65-38.87 Mb) on chromosome 5, and six SNPs were located at one 0.31 Mb region (19.53-19.84 Mb) on chromosome 11. The functions of STARD9, SLC7A5, BANP, LOC101798015, and IPMK were involved pigmentation and follicle development, especially, STARD9 upregulated expression in black feather (haplotype-CCCC) bulb tissue compared with in pockmarked feather (haplotype-TGTT) bulb tissue, implicating these genes as candidate genes for primary feather color trait. Conclusion: The preliminarily findings suggested candidate genes and regions, and the genetic basis of primary feather color trait in a female duck.
Collapse
Affiliation(s)
- Yanfa Sun
- College of Life Sciences, Longyan University, Longyan, Fujian, China
- Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Longyan, Fujian, China
- Fujian Provincial Universities Key Laboratory of Preventive Veterinary Medicine and Biotechnology (Longyan University), Longyan, Fujian, China
| | - Qiong Wu
- College of Life Sciences, Longyan University, Longyan, Fujian, China
- Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Longyan, Fujian, China
- Fujian Provincial Universities Key Laboratory of Preventive Veterinary Medicine and Biotechnology (Longyan University), Longyan, Fujian, China
| | - Rulong Lin
- Longyan Shan-ma Duck Original Breeding Farm, Agricultural Bureau of Xinluo District, Longyan, Fujian, China
| | - Hongping Chen
- Longyan Shan-ma Duck Original Breeding Farm, Agricultural Bureau of Xinluo District, Longyan, Fujian, China
| | - Min Zhang
- College of Life Sciences, Longyan University, Longyan, Fujian, China
- Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Longyan, Fujian, China
- Fujian Provincial Universities Key Laboratory of Preventive Veterinary Medicine and Biotechnology (Longyan University), Longyan, Fujian, China
| | - Bingbing Jiang
- Institute of Animal Science and Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yaru Wang
- College of Life Sciences, Longyan University, Longyan, Fujian, China
| | - Pengfei Xue
- College of Life Sciences, Longyan University, Longyan, Fujian, China
| | - Qiuyun Gan
- College of Life Sciences, Longyan University, Longyan, Fujian, China
| | - Yue Shen
- College of Life Sciences, Longyan University, Longyan, Fujian, China
| | - Feifan Chen
- College of Life Sciences, Longyan University, Longyan, Fujian, China
| | - Jiantao Liu
- College of Life Sciences, Longyan University, Longyan, Fujian, China
| | - Chenxin Zhou
- College of Life Sciences, Longyan University, Longyan, Fujian, China
| | - Shishi Lan
- College of Life Sciences, Longyan University, Longyan, Fujian, China
| | - Haozhe Pan
- College of Life Sciences, Longyan University, Longyan, Fujian, China
| | - Fan Deng
- College of Life Sciences, Longyan University, Longyan, Fujian, China
| | - Wen Yue
- Longyan Shan-ma Duck Original Breeding Farm, Agricultural Bureau of Xinluo District, Longyan, Fujian, China
| | - Lizhi Lu
- Institute of Animal Science and Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xiaobing Jiang
- Fujian Provincial Animal Husbandry Headquarters, Fuzhou, Fujian, China
- *Correspondence: Xiaobing Jiang, ; Yan Li,
| | - Yan Li
- College of Life Sciences, Longyan University, Longyan, Fujian, China
- Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Longyan, Fujian, China
- Fujian Provincial Universities Key Laboratory of Preventive Veterinary Medicine and Biotechnology (Longyan University), Longyan, Fujian, China
- *Correspondence: Xiaobing Jiang, ; Yan Li,
| |
Collapse
|
9
|
Lin R, Li J, Yang Y, Yang Y, Chen J, Zhao F, Xiao T. Genome-Wide Population Structure Analysis and Genetic Diversity Detection of Four Chinese Indigenous Duck Breeds from Fujian Province. Animals (Basel) 2022; 12:ani12172302. [PMID: 36078022 PMCID: PMC9454422 DOI: 10.3390/ani12172302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/29/2022] [Accepted: 09/02/2022] [Indexed: 12/03/2022] Open
Abstract
Simple Summary The aim of this study was to conduct a genome-wide comparative analysis of four indigenous Chinese duck breeds (Jinding, Liancheng white, Putian black, and Shanma ducks) from Fujian Province, to understand their genetic diversity and population structure. Population parameters showed that the four indigenous breeds were separated groups. Five genomic regions are presented as hotspots of autozygosity among these indigenous duck breeds, with candidate genes involved in muscle growth, pigmentation, and neuroregulation. Genomic information may play a vital role in the improvement of conservation strategies. Abstract The assessment of population genetic structure is the basis for understanding the genetic information of indigenous breeds and is important for the protection and management of indigenous breeds. However, the population genetic differentiation of many local breeds still remains unclear. Here, we performed a genome-wide comparative analysis of Jinding, Liancheng white, Putian black, and Shanma ducks based on the genomic sequences using RAD sequencing to understand their population structure and genetic diversity. The population parameters showed that there were obvious genetic differences among the four indigenous breeds, which were separated groups. Among them, Liancheng white and Shanma ducks may come from the same ancestor because the phylogenetic tree forms three tree trunks. In addition, during the runs of homozygosity (ROH), we found that the average inbreeding coefficient of Liancheng white and Putian black ducks was the lowest and the highest, respectively. Five genomic regions were considered to be the hotspots of autozygosity among these indigenous duck breeds, and the candidate genes involved a variety of potential variations, such as muscle growth, pigmentation, and neuroregulation. These findings provide insights into the further improvement and conservation of Fujian duck breeds.
Collapse
|
10
|
Using comparative genomics to detect mutations regulating plumage variations in graylag (A. anser) and swan geese (A. cygnoides). Gene 2022; 834:146612. [PMID: 35618220 DOI: 10.1016/j.gene.2022.146612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 01/30/2023]
Abstract
Although graylag geese (A. anser) showed similar plumages of white, grey, and white with grey patches compared to those in swan geese (A. cygnoides), it was believed the substantial molecular mechanism for plumage variations were different. To date, studies on genes responsible for diverse plumages among graylag geese were limited and causal mutations remain unknown. In this study, genomes from 57 individuals belonging to six breeds showing different plumages were sequenced at ∼10X depth. Firstly, the allele frequency differences (AFD) of variants on the scaffold394 (NW_013185915.1) between grey and white goose breeds (A. anser) was calculated and a genomic region between 768,290-779,889 bp was detected to carry candidate variants associated with plumages, including one SNP (g. 775,151G > T, ∼18.6 kb upstream of EDNRB2) found to be fixed in white geese. This region was overlapped with the one detected by the haplotype-based sweep analysis, in which significant signals defined a candidate region of 736,610-820,622 bp on the same scaffold. Results from the transcriptomic data showed that expression levels of EDNRB2 and many other melanogenesis-related genes were significantly decreased among white geese compared to that in grey geese, especially at late embryonic stages (>E15). Modifications at transcriptional levels might result in abnormal melanocyte developments and thus the white plumages when they grow up. In addition, a frameshift mutation (C > -) in exon4 of MLANA gene on scaffold176 (NW_013185876.1) was suggested as the causal mutation for sex-linked dilution phenotype in graylag geese although this requires more demonstration experiments. Together with observed white plumages caused by EDNRB2 mutations in coding regions among swan geese and chicken, our study provided new examples to study the parallel evolution.
Collapse
|
11
|
Guo Q, Jiang Y, Wang Z, Bi Y, Chen G, Bai H, Chang G. Genome-Wide Association Study for Screening and Identifying Potential Shin Color Loci in Ducks. Genes (Basel) 2022; 13:genes13081391. [PMID: 36011302 PMCID: PMC9407491 DOI: 10.3390/genes13081391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 07/30/2022] [Accepted: 08/02/2022] [Indexed: 02/05/2023] Open
Abstract
Shin color diversity is a widespread phenomenon in birds. In this study, ducks were assessed to identify candidate genes for yellow, black, and spotted tibiae. For this purpose, we performed whole-genome resequencing of an F2 population consisting of 275 ducks crossed between Runzhou crested-white ducks and Cherry Valley ducks. We obtained 12.6 Mb of single nucleotide polymorphism (SNP) data, and the three shin colors were subsequently genotyped. Genome-wide association studies (GWASs) were performed to identify candidate and potential SNPs for the three shin colors. According to the results, 2947 and 3451 significant SNPs were associated with black and yellow shins, respectively, and six potential SNPs were associated with spotted shins. Based on the SNP annotations, the MITF, EDNRB2, POU family members, and the SLC superfamily were the candidate genes regulating pigmentation. In addition, the isoforms of EDNRB2, TYR, TYRP1, and MITF-M were significantly different between the black and yellow tibiae. MITF and EDNRB2 may have synergistic roles in the regulation of melanin synthesis, and their mutations may lead to phenotypic differences in the melanin deposition between individuals. This study provides new insights into the genetic factors that may influence tibia color diversity in birds.
Collapse
Affiliation(s)
- Qixin Guo
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yong Jiang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Zhixiu Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yulin Bi
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Guohong Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| | - Hao Bai
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Guobin Chang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
- Correspondence:
| |
Collapse
|
12
|
Lin R, Li J, Zhao F, Zhou M, Wang J, Xiao T. Transcriptome analysis of genes potentially associated with white and black plumage formation in Chinese indigenous ducks ( Anas platyrhynchos). Br Poult Sci 2022; 63:466-474. [PMID: 35094630 DOI: 10.1080/00071668.2022.2035676] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
1. Plumage colour is an important recognisable characteristic of duck (Anas platyrhynchos), but the coloration mechanisms remain largely unknown. To elucidate the molecular mechanisms underlying the formation of black and white plumage, the following study applied RNA sequencing (RNA-Seq) to catalogue the global gene expression profiles in the duck feather bulbs of black and white colours.2. Black feather bulbs were collected from Putian Black ducks (B-PTB) and black Longsheng Jade-green ducks (B-LS), while white feather bulbs were collected from Putian White ducks (W-PTW), Putian Black ducks (W-PTB) and Longsheng Jade-green ducks (W-LS). Sixteen cDNA libraries were constructed and sequenced for transcriptional analysis. Three comparison groups were employed to analyse differentially expressed genes (DEGs), including W-PTB versus B-PTB, W-PTW versus B-PTB and W-LS versus B-LS.3. The results showed 180 DEGs between W-PTB and B-PTB, 303 DEGs between W-PTW and B-PTB, and 108 DEGs between W-LS and B-LS. Further analysis showed that 18 DEGs were directly involved in the pigmentation process and melanogenesis signalling pathway. Additionally, the distribution of DEGs varied amongst groups whereby ASIP appeared only in the W-LS versus B-LS group, GNAI1 and ZEB2 appeared only in the W-PTW versus B-PTB group, and KITLG, EDN3 and FZD4 appeared only in W-PTB versus B-PTB.4. The findings suggested that the mechanism of feather albinism may differ between duck breeds. This study provided new information for discovering genes that are important for feather pigmentation and helps elucidate molecular mechanisms involved in black and white plumage in ducks.
Collapse
Affiliation(s)
- Ruiyi Lin
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jiaquan Li
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Fanglu Zhao
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mai Zhou
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Junhui Wang
- The Animal Husbandry Station in Fujian Province, Fuzhou, China
| | - Tianfang Xiao
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
13
|
Maclary ET, Phillips B, Wauer R, Boer EF, Bruders R, Gilvarry T, Holt C, Yandell M, Shapiro MD. Two Genomic Loci Control Three Eye Colors in the Domestic Pigeon (Columba livia). Mol Biol Evol 2021; 38:5376-5390. [PMID: 34459920 PMCID: PMC8662629 DOI: 10.1093/molbev/msab260] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The iris of the eye shows striking color variation across vertebrate species, and may play important roles in crypsis and communication. The domestic pigeon (Columba livia) has three common iris colors, orange, pearl (white), and bull (dark brown), segregating in a single species, thereby providing a unique opportunity to identify the genetic basis of iris coloration. We used comparative genomics and genetic mapping in laboratory crosses to identify two candidate genes that control variation in iris color in domestic pigeons. We identified a nonsense mutation in the solute carrier SLC2A11B that is shared among all pigeons with pearl eye color, and a locus associated with bull eye color that includes EDNRB2, a gene involved in neural crest migration and pigment development. However, bull eye is likely controlled by a heterogeneous collection of alleles across pigeon breeds. We also found that the EDNRB2 region is associated with regionalized plumage depigmentation (piebalding). Our study identifies two candidate genes for eye colors variation, and establishes a genetic link between iris and plumage color, two traits that vary widely in the evolution of birds and other vertebrates.
Collapse
Affiliation(s)
- Emily T Maclary
- School of Biological Sciences, University of Utah, Salt Lake City, UT, USA
| | - Bridget Phillips
- School of Biological Sciences, University of Utah, Salt Lake City, UT, USA
| | - Ryan Wauer
- School of Biological Sciences, University of Utah, Salt Lake City, UT, USA
| | - Elena F Boer
- School of Biological Sciences, University of Utah, Salt Lake City, UT, USA
| | - Rebecca Bruders
- School of Biological Sciences, University of Utah, Salt Lake City, UT, USA
| | - Tyler Gilvarry
- School of Biological Sciences, University of Utah, Salt Lake City, UT, USA
| | - Carson Holt
- Department of Human Genetics and Utah Center for Genetic Discovery, University of Utah, Salt Lake City, UT, USA
| | - Mark Yandell
- Department of Human Genetics and Utah Center for Genetic Discovery, University of Utah, Salt Lake City, UT, USA
| | - Michael D Shapiro
- School of Biological Sciences, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
14
|
Davoodi P, Ehsani A, Vaez Torshizi R, Masoudi AA. New insights into genetics underlying of plumage color. Anim Genet 2021; 53:80-93. [PMID: 34855995 DOI: 10.1111/age.13156] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2021] [Indexed: 01/12/2023]
Abstract
Plumage color can be considered as a social signal in chickens and a breeding identification tool among breeders. The relationship between plumage color and trait groups of immunity, growth and fertility is still a controversial issue. This research aimed to determine the genome-wide additive and epistatic variants affecting plumage color variation in chickens using the chicken Illumina 60k high-density SNP array. Two scenarios of genome-wide additive association studies using all SNPs and independent SNPs were carried out. To perform epistatic association analysis, the LD pruning approach was used to reduce the complexity of the analysis. We detected seven novel significant loci using all of the SNPs in the model and 14 SNPs using the LD pruning approach associated with plumage color. Moreover, 89 significantly associated SNP-SNP interactions (P-value <10-6 ) distributed in 25 chromosomes were identified, indicating that all of the signals together putatively influence the quantitative variation of plumage color. By annotating genes relevant to top SNPs, we have distinguished 18 potential candidate genes comprising HNF4beta, CKMT1B, TBC1D22A, RPL8, CACNA2D1, FZD4, SGMS1, IRF8, OPTN, LOC420362, TRABD, OvoDA1, DAD1, USP6, RBM12B, MIR1772, MIR1709 and MIR6696 and also 89 putative gene-gene combinations responsible for plumage color variation in chickens. Furthermore, several KEGG pathways including metabolic pathway, cytokine-cytokine receptor interaction, focal adhesion, melanogenesis, glycosaminoglycan biosynthesis-keratan sulfate and sphingolipid metabolism were enriched in the gene-set analysis. The results indicated that plumage color is a highly polygenic trait which, in turn, can be affected by multiple coding genes, regulatory genes and gene-gene epistasis interactions. In addition to genes with additive effects, epistatic genes with tiny individual effect sizes but significant effects in a pair have the potential to control plumage coloration in chickens.
Collapse
Affiliation(s)
- P Davoodi
- Department of Animal Science, Faculty of Agriculture, Tarbiat Modares University, 14115-336, Tehran, Iran
| | - A Ehsani
- Department of Animal Science, Faculty of Agriculture, Tarbiat Modares University, 14115-336, Tehran, Iran
| | - R Vaez Torshizi
- Department of Animal Science, Faculty of Agriculture, Tarbiat Modares University, 14115-336, Tehran, Iran
| | - A A Masoudi
- Department of Animal Science, Faculty of Agriculture, Tarbiat Modares University, 14115-336, Tehran, Iran
| |
Collapse
|
15
|
Kulikova IV. Molecular Mechanisms and Gene Regulation of Melanic Plumage Coloration in Birds. RUSS J GENET+ 2021. [DOI: 10.1134/s102279542108007x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Xi Y, Xu Q, Huang Q, Ma S, Wang Y, Han C, Zhang R, Wang J, Liu H, Li L. Genome-wide association analysis reveals that EDNRB2 causes a dose-dependent loss of pigmentation in ducks. BMC Genomics 2021; 22:381. [PMID: 34034661 PMCID: PMC8146663 DOI: 10.1186/s12864-021-07719-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 05/13/2021] [Indexed: 12/30/2022] Open
Abstract
Background Birds have various plumage color patterns, and spot is a common phenotype. Herein, we conducted genome-wide association studies (GWAS) in a population of 225 ducks with different sized black spots to reveal the genetic basis of this phenomenon. Results First, we quantified the black spot phenotype within the duck population. The results showed that the uncolored area of the body surface first appeared on the ventral side. With increasing duck age, the area of the black spots was highly conserved across the whole body surface. The GWAS results identified a 198 kb (Chr4: 10,149,651 bp to 10,348,068 bp) genetic region that was significantly associated with the black spot phenotype. The conditional GWAS and linkage disequilibrium (LD) analysis further narrowed the ultimate candidate region to 167 kb (Chr4: 10,180,939 bp to 10,348,068 bp). A key gene regulating melanoblast migration and differentiation, EDNRB2 (Endothelin B receptor-like), was found in the candidate region and having significant mRNA expression level changes in embryonic duck skin tissue with different spot sizes. The significant SNPs (single nucleotide polymorphisms) associated with the EDNRB2 gene were annotated, and two mutations (Chr4: 10,180,939 T > C and Chr4: 10,190,671 A > T) were found to result in the loss of binding sites for two trans-factors, XBP1 and cMYB. The phenotypic effect of these two mutations suggested that they can regulate the size of black spots in a dose-dependent manner, and Chr4: 10,180,939 T > C was the major allele locus. Conclusions Our results revealed that EDNRB2 was the gene responsible for the variation in duck body surface spot size. Chr4: 10,180,939 T > C was the major allele that explained 49.5 % (dorsal side) and 32.9 % (ventral side) of the variation in duck body surface spot size, while 32.1 % (dorsal side) and 19.1 % (ventral side) of the variation could be explained by Chr4: 10,190,671 A > T. The trans-factor prediction also suggested that XBP1 and cMYB have the potential to interact with EDNRB2, providing new insights into the mechanism of action of these genes. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07719-7.
Collapse
Affiliation(s)
- Yang Xi
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, People's Republic of China
| | - Qian Xu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, People's Republic of China
| | - Qin Huang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, People's Republic of China
| | - Shengchao Ma
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, People's Republic of China
| | - Yushi Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, People's Republic of China
| | - Chunchun Han
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, People's Republic of China
| | - Rongping Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, People's Republic of China
| | - Jiwen Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, People's Republic of China
| | - Hehe Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, People's Republic of China.
| | - Liang Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, People's Republic of China.
| |
Collapse
|
17
|
A complex genetic architecture in zebrafish relatives Danio quagga and D. kyathit underlies development of stripes and spots. PLoS Genet 2021; 17:e1009364. [PMID: 33901178 PMCID: PMC8102007 DOI: 10.1371/journal.pgen.1009364] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 05/06/2021] [Accepted: 04/08/2021] [Indexed: 02/07/2023] Open
Abstract
Vertebrate pigmentation is a fundamentally important, multifaceted phenotype. Zebrafish, Danio rerio, has been a valuable model for understanding genetics and development of pigment pattern formation due to its genetic and experimental tractability, advantages that are shared across several Danio species having a striking array of pigment patterns. Here, we use the sister species D. quagga and D. kyathit, with stripes and spots, respectively, to understand how natural genetic variation impacts phenotypes at cellular and organismal levels. We first show that D. quagga and D. kyathit phenotypes resemble those of wild-type D. rerio and several single locus mutants of D. rerio, respectively, in a morphospace defined by pattern variation along dorsoventral and anteroposterior axes. We then identify differences in patterning at the cellular level between D. quagga and D. kyathit by repeated daily imaging during pattern development and quantitative comparisons of adult phenotypes, revealing that patterns are similar initially but diverge ontogenetically. To assess the genetic architecture of these differences, we employ reduced-representation sequencing of second-generation hybrids. Despite the similarity of D. quagga to D. rerio, and D. kyathit to some D. rerio mutants, our analyses reveal a complex genetic basis for differences between D. quagga and D. kyathit, with several quantitative trait loci contributing to variation in overall pattern and cellular phenotypes, epistatic interactions between loci, and abundant segregating variation within species. Our findings provide a window into the evolutionary genetics of pattern-forming mechanisms in Danio and highlight the complexity of differences that can arise even between sister species. Further studies of natural genetic diversity underlying pattern variation in D. quagga and D. kyathit should provide insights complementary to those from zebrafish mutant phenotypes and more distant species comparisons. Pigment patterns of fishes are diverse and function in a wide range of behaviors. Common pattern themes include stripes and spots, exemplified by the closely related minnows Danio quagga and D. kyathit, respectively. We show that these patterns arise late in development owing to alterations in the development and arrangements of pigment cells. In the closely related model organism zebrafish (D. rerio) single genes can switch the pattern from stripes to spots. Yet, we show that pattern differences between D. quagga and D. kyathit have a more complex genetic basis, depending on multiple genes and interactions between these genes. Our findings illustrate the importance of characterizing naturally occurring genetic variants, in addition to laboratory induced mutations, for a more complete understanding of pigment pattern development and evolution.
Collapse
|
18
|
Xi Y, Liu H, Li L, Xu Q, Liu Y, Wang L, Ma S, Wang J, Bai L, Zhang R, Han C. Transcriptome Reveals Multi Pigmentation Genes Affecting Dorsoventral Pattern in Avian Body. Front Cell Dev Biol 2020; 8:560766. [PMID: 33117797 PMCID: PMC7559526 DOI: 10.3389/fcell.2020.560766] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/31/2020] [Indexed: 11/13/2022] Open
Abstract
Certain animals exhibit a special dorsoventral pattern with a lighter ventral side compared to the dorsal one and this phenomenon was preserved in the long-term evolution process. Birds also retain this trait. Recently, Inaba et al. (2019) found that ASIP (agouti signal protein) regulated interconversion between different melanocyte types leads to dorsal stripe pattern, which may partly explain the birds' dorsoventral plumage color difference. In this study, we used the embryo samples of LBM (light brown mottling) ducks (Anas platyrhynchos) with white ventral and dark dorsal body parts to investigate the mechanism of dorsoventral color variation. Firstly, melanin deposition process of duck embryos was investigated. The result indicated that E13 and E16 were the active stages of melanin synthesis. Moreover, the melanin deposition on the dorsum of LBM ducks was higher than that on the ventral side throughout. Then, RNA-seq was conducted for the dorsal and ventral skin tissues from E7 (early), E13 (middle) and E19 (late) of LBM ducks. Expression pattern analysis showed that the mRNA expression of most melanin synthesis related genes were at the highest level at E13, which was consistent with the section analysis. A correlation was found between melanogenesis pathway and dorsoventral color difference by co-expression analysis. In the DEG (differentially expressed gene) analysis, we added the dorsal skin transcriptome of embryonic white and black duck of same subspecies (Anas platyrhynchos domestica) for horizontal comparison. The results showed that 8 melanogenesis related genes (TYR, TYRP1, MLANA, RAB38, OCA2, TSPAN10, MC1R, and MSLN) were the common DEGs (Differential expressed genes) in the comparisons of body parts and breeds suggesting that the underlying molecular regulatory mechanism of dorsoventral plumage color difference may be similar to that of albino and melanic duck, which were caused by the different expression of multiple genes in melanin synthesis pathway. In addition, the molecular regulation of melanin synthesis pathway in the dorsal and ventral side of LBM ducks was analyzed. In this pathway, ASIP, MC1R, TYR, and TYRP1 have differential mRNA expression. ASIP, as an upstream gene in this pathway, was likely to play a decisive role in determining the dorsoventral plumage pattern.
Collapse
Affiliation(s)
| | - Hehe Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Wang X, Li D, Song S, Zhang Y, Li Y, Wang X, Liu D, Zhang C, Cao Y, Fu Y, Han R, Li W, Liu X, Sun G, Li G, Tian Y, Li Z, Kang X. Combined transcriptomics and proteomics forecast analysis for potential genes regulating the Columbian plumage color in chickens. PLoS One 2019; 14:e0210850. [PMID: 31693656 PMCID: PMC6834273 DOI: 10.1371/journal.pone.0210850] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 10/18/2019] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Coloration is one of the most recognizable characteristics in chickens, and clarifying the coloration mechanisms will help us understand feather color formation. "Yufen I" is a commercial egg-laying chicken breed in China that was developed by a three-line cross using lines H, N and D. Columbian plumage is a typical feather character of the "Yufen I" H line. To elucidate the molecular mechanism underlying the pigmentation of Columbian plumage, this study utilizes high-throughput sequencing technology to compare the transcriptome and proteome differences in the follicular tissue of different feathers, including the dorsal neck with black and white striped feather follicles (Group A) and the ventral neck with white feather follicles (Group B) in the "Yufen I" H line. RESULTS In this study, we identified a total of 21,306 genes and 5,203 proteins in chicken feather follicles. Among these, 209 genes and 382 proteins were differentially expressed in two locations, Group A and Group B, respectively. A total of 8 differentially expressed genes (DEGs) and 9 differentially expressed proteins (DEPs) were found to be involved in the melanogenesis pathway. Additionally, a specifically expressed MED23 gene and a differentially expressed GNAQ protein were involved in melanin synthesis. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis mapped 190 DEGs and 322 DEPs to 175 and 242 pathways, respectively, and there were 166 pathways correlated with both DEGs and DEPs. 49 DEPs/DEGs overlapped and were enriched for 12 pathways. Transcriptomic and proteomic analyses revealed that the following pathways were activated: melanogenesis, cardiomyocyte adrenergic, calcium and cGMP-PKG. The expression of DEGs was validated by real-time quantitative polymerase chain reaction (qRT-PCR) that produced results similar to those from RNA-seq. In addition, we found that the expression of the MED23, FZD10, WNT7B and WNT11 genes peaked at approximately 8 weeks in the "Yufen I" H line, which is consistent with the molting cycle. As both groups showed significant differences in terms of the expression of the studied genes, this work opens up avenues for research in the future to assess their exact function in determining plumage color. CONCLUSION Common DEGs and DEPs were enriched in the melanogenesis pathway. MED23 and GNAQ were also reported to play a crucial role in melanin synthesis. In addition, this study is the first to reveal gene and protein variations in in the "Yufen I" H line during Columbian feather color development and to discover principal genes and proteins that will aid in functional genomics studies in the future. The results of the present study provide a significant conceptual basis for the future breeding schemes with the "Yufen I" H line and provide a basis for research on the mechanisms of feather pigmentation.
Collapse
Affiliation(s)
- Xinlei Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China
| | - Donghua Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Sufang Song
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China
| | - Yanhua Zhang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Yuanfang Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Xiangnan Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Danli Liu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Chenxi Zhang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Yanfang Cao
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Yawei Fu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Ruili Han
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Wenting Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Xiaojun Liu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Guirong Sun
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Guoxi Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Yadong Tian
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Zhuanjian Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Xiangtao Kang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| |
Collapse
|
20
|
Li D, Wang X, Fu Y, Zhang C, Cao Y, Wang J, Zhang Y, Li Y, Chen Y, Li Z, Li W, Jiang R, Sun G, Tian Y, Li G, Kang X. Transcriptome Analysis of the Breast Muscle of Xichuan Black-Bone Chickens Under Tyrosine Supplementation Revealed the Mechanism of Tyrosine-Induced Melanin Deposition. Front Genet 2019; 10:457. [PMID: 31156710 PMCID: PMC6529781 DOI: 10.3389/fgene.2019.00457] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 04/30/2019] [Indexed: 01/18/2023] Open
Abstract
The Xichuan black-bone chicken, which is a rare local chicken species in China, is an important genetic resource of black-bone chickens. Tyrosine can affect melanin production, but the molecular mechanism underlying tyrosine-induced melanin deposition in Xichuan black-bone chickens is poorly understood. Here, the blackness degree and melanin content of the breast muscle of Xichuan black-bone chickens fed a basic diet with five levels of added tyrosine (i.e., 0.2, 0.4, 0.6, 0.8, and 1.0%; these groups were denoted test groups I-V, respectively) were assessed, and the results showed that 0.8% tyrosine was the optimal level of added tyrosine. Moreover, the effects of tyrosine supplementation on the proliferation and tyrosinase content of melanocytes in Xichuan black-bone chickens were evaluated. The results revealed a dose-dependent relationship between tyrosine supplementation and melanocyte proliferation. In addition, 417 differentially expressed genes (DEGs), including 160 upregulated genes and 257 downregulated genes, were identified in a comparative analysis of the transcriptome profiles constructed using the pooled total RNA from breast muscle tissues of the control group and test group IV, respectively (fold change ≥2.0, P < 0.05). These DEGs were mainly involved in melanogenesis, the calcium signaling pathway, the Wnt signaling pathway, the mTOR signaling pathway, and vascular smooth muscle contraction. The pathway analysis of the DEGs identified some key genes associated with pigmentation, such as DCT and EDNRB2. In summary, the melanin content of breast muscle could be markedly enhanced by adding an appropriate amount of tyrosine to the diet of Xichuan black-bone chickens, and the EDNRB2-mediated molecular regulatory network could play a key role in the biological process of tyrosine-induced melanin deposition. These results have deepened the understanding of the molecular regulatory mechanism of melanin deposition in black-bone chickens and provide a basis for the regulation of nutrition and genetic breeding associated with melanin deposition in Xichuan black-bone chickens.
Collapse
Affiliation(s)
- Donghua Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Xinlei Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Yawei Fu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Chenxi Zhang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Yanfang Cao
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Jie Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Yanhua Zhang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Yuanfang Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Yi Chen
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Zhuanjian Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Wenting Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Ruirui Jiang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Henan Agricultural University, Zhengzhou, China
| | - Guirong Sun
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Henan Agricultural University, Zhengzhou, China
| | - Yadong Tian
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Henan Agricultural University, Zhengzhou, China
| | - Guoxi Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Henan Agricultural University, Zhengzhou, China
| | - Xiangtao Kang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
21
|
Bhat B, Singh A, Iqbal Z, Kaushik JK, Rao AR, Ahmad SM, Bhat H, Ayaz A, Sheikh FD, Kalra S, Shanaz S, Mir MS, Agarwal PK, Mohapatra T, Ganai NA. Comparative transcriptome analysis reveals the genetic basis of coat color variation in Pashmina goat. Sci Rep 2019; 9:6361. [PMID: 31015528 PMCID: PMC6478727 DOI: 10.1038/s41598-019-42676-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 04/01/2019] [Indexed: 12/18/2022] Open
Abstract
The genetics of coat color variation remains a classic area. Earlier studies have focused on a limited number of genes involved in color determination; however, the complete set of trait determinants are still not well known. In this study, we used high-throughput sequencing technology to identify and characterize intricate interactions between genes that cause complex coat color variation in Changthangi Pashmina goats, producer of finest and costly commercial animal fiber. We systematically identified differentially expressed mRNAs and lncRNAs from black, brown and white Pashmina goat skin samples by using RNA-sequencing technique. A pairwise comparison of black, white and brown skin samples yielded 2479 significantly dysregulated genes (2422 mRNA and 57 lncRNAs). Differentially expressed genes were enriched in melanin biosynthesis, melanocyte differentiation, developmental pigmentation, melanosome transport activities GO terms. Our analysis suggested the potential role of lncRNAs on color coding mRNAs in cis and trans configuration. We have also developed online data repository as a component of the study to provide a central location for data access, visualization and interpretation accessible through http://pcd.skuastk.org/.
Collapse
Affiliation(s)
- Basharat Bhat
- Department of Life Science, Shiv Nadar University, Gautam Buddha Nagar, UP, 201314, India
| | - Ashutosh Singh
- Department of Life Science, Shiv Nadar University, Gautam Buddha Nagar, UP, 201314, India
| | - Zaffar Iqbal
- Division of Animal Genetics and Breeding, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shuhama, Jammu and Kashmir, 190016, India
| | - Jai K Kaushik
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India
| | - A R Rao
- Centre for Agricultural Bioinformatics, Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Syed Mudasir Ahmad
- Division of Animal Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shuhama, Jammu and Kashmir, 190016, India
| | - Hina Bhat
- Division of Animal Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shuhama, Jammu and Kashmir, 190016, India
| | - Aadil Ayaz
- Division of Animal Genetics and Breeding, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shuhama, Jammu and Kashmir, 190016, India
| | - F D Sheikh
- Division of Animal Genetics and Breeding, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shuhama, Jammu and Kashmir, 190016, India
| | - Shalini Kalra
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India
| | - Syed Shanaz
- Division of Animal Genetics and Breeding, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shuhama, Jammu and Kashmir, 190016, India
| | - Masood Salim Mir
- Division of Animal Genetics and Breeding, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shuhama, Jammu and Kashmir, 190016, India
| | | | | | - Nazir A Ganai
- Division of Animal Genetics and Breeding, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shuhama, Jammu and Kashmir, 190016, India.
| |
Collapse
|
22
|
Huang T, Ma J, Gong Y, Feng Y. Polymorphisms in the ovoinhibitor gene (OIH) and their association with egg quality of Xinhua E-strain chickens. Br Poult Sci 2019; 60:88-93. [DOI: 10.1080/00071668.2018.1564240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- T. Huang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - J. Ma
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Y. Gong
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Y. Feng
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei Province, China
| |
Collapse
|
23
|
Yang L, Mo C, Shen W, Du X, Akbar Bhuiyan A, Li L, Li N, Gong Y, Li S. The recessive C locus in the MITF gene plays a key regulatory role in the plumage colour pattern of duck (Anas platyrhynchos). Br Poult Sci 2019; 60:105-108. [PMID: 30595026 DOI: 10.1080/00071668.2018.1564237] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
1. The c/c alleles are responsible for the white plumage colour of ducks; however, the gene corresponding to this locus is still unclear. In order to identify the locus-related candidate gene associated with duck's plumage colour pattern, it was necessary to analyse the whole genome resequencing data. 2. A total of 929,465 SNPs in chromosome 13 and 1,688 SNPs in the region of the Microphthalmia-Associated Transcription Factor (MITF) gene were identified from whole genome resequencing data analysis. After construction of an FST plot from chromosome 13, MITF was highlighted as a candidate gene, possessing the highest FST value (0.811) on chromosome 13. 3. Six novel SNPs were discovered, located in the intronic region of the MITF gene. F2 progeny of Kaiya × Liancheng ducks (N = 1,061) were selected for genotyping by the Restriction Fragment Length Polymorphism (RFLP) technique. Association analysis using Haploview software was used for validation of the results. 4. Association results between SNPs and phenotypes showed significant association with corresponding phenotypes. All the significantly associated SNPs were located in the identified candidate gene. 5. The identified candidate gene provided novel information which is important in marker-assisted selection and breeding of duck and for the investigation of the C locus recessive white genetic mechanisms underlying plumage colour pattern.
Collapse
Affiliation(s)
- L Yang
- a Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education , Huazhong Agricultural University , Wuhan , Hubei Province , China
| | - C Mo
- a Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education , Huazhong Agricultural University , Wuhan , Hubei Province , China
| | - W Shen
- b Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics , Huazhong Agricultural University , Wuhan , China
| | - X Du
- b Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics , Huazhong Agricultural University , Wuhan , China
| | - A Akbar Bhuiyan
- a Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education , Huazhong Agricultural University , Wuhan , Hubei Province , China.,c Biotechnology Division , Bangladesh Livestock Research Institute , Dhaka , Bangladesh
| | - L Li
- d College of Biological Science and Technology , Hubei University for Nationalities , Enshi Hubei Province , China
| | - N Li
- a Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education , Huazhong Agricultural University , Wuhan , Hubei Province , China
| | - Y Gong
- a Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education , Huazhong Agricultural University , Wuhan , Hubei Province , China
| | - S Li
- a Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education , Huazhong Agricultural University , Wuhan , Hubei Province , China
| |
Collapse
|
24
|
Evolution of Endothelin signaling and diversification of adult pigment pattern in Danio fishes. PLoS Genet 2018; 14:e1007538. [PMID: 30226839 PMCID: PMC6161917 DOI: 10.1371/journal.pgen.1007538] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/28/2018] [Accepted: 08/13/2018] [Indexed: 12/13/2022] Open
Abstract
Fishes of the genus Danio exhibit diverse pigment patterns that serve as useful models for understanding the genes and cell behaviors underlying the evolution of adult form. Among these species, zebrafish D. rerio exhibit several dark stripes of melanophores with sparse iridophores that alternate with light interstripes of dense iridophores and xanthophores. By contrast, the closely related species D. nigrofasciatus has an attenuated pattern with fewer melanophores, stripes and interstripes. Here we demonstrate species differences in iridophore development that presage the fully formed patterns. Using genetic and transgenic approaches we identify the secreted peptide Endothelin-3 (Edn3)—a known melanogenic factor of tetrapods—as contributing to reduced iridophore proliferation and fewer stripes and interstripes in D. nigrofasciatus. We further show the locus encoding this factor is expressed at lower levels in D. nigrofasciatus owing to cis-regulatory differences between species. Finally, we show that functions of two paralogous loci encoding Edn3 have been partitioned between skin and non-skin iridophores. Our findings reveal genetic and cellular mechanisms contributing to pattern differences between these species and suggest a model for evolutionary changes in Edn3 requirements for pigment patterning and its diversification across vertebrates. Neural crest derived pigment cells generate the spectacular variation in skin pigment patterns among vertebrates. Mammals and birds have just a single skin pigment cell, the melanocyte, whereas ectothermic vertebrates have several pigment cells including melanophores, iridophores and xanthophores, that together organize into a diverse array of patterns. In the teleost zebrafish, Danio rerio, an adult pattern of stripes depends on interactions between pigment cell classes and between pigment cells and their tissue environment. The close relative D. nigrofasciatus has fewer stripes and prior analyses suggested a difference between these species that lies extrinsic to the pigment cells themselves. A candidate for mediating this difference is Endothelin-3 (Edn3), essential for melanocyte development in warm-blooded animals, and required by all three classes of pigment cells in an amphibian. We show that Edn3 specifically promotes iridophore development in Danio, and that differences in Edn3 expression contribute to differences in iridophore complements, and striping, between D. rerio and D. nigrofasciatus. Our study reveals a novel function for Edn3 and provides new insights into how changes in gene expression yield morphogenetic outcomes to effect diversification of adult form.
Collapse
|
25
|
Yang L, Du X, Wei S, Gu L, Li N, Gong Y, Li S. Genome-wide association analysis identifies potential regulatory genes for eumelanin pigmentation in chicken plumage. Anim Genet 2017. [PMID: 28639704 DOI: 10.1111/age.12573] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Plumage color in chicken is determined by the proportion of eumelanin and pheomelanin pigmentation. As the main ingredient in plumage melanin, eumelanin plays a key role in the dark black, brown and grey coloration. However, very few studies have been performed to identify the related genes and mutations on a genome-wide scale. Herein, a resource family consisting of one backcross population and two F2 cross populations between a black roster and Yukou Brown I parent stockbreed was constructed for identification of genes related to eumelanin pigmentation. Chickens with eumelanin in their plumage were classified as the case group, and the rest were considered the control group. A genome-wide association study of this phenotype and genotypes using Affymetrix 600K HD SNP arrays in this F2 family revealed 13 significantly associated SNPs and in 10 separate genes on chromosomes 1, 2, 3 and 5. Based on previous studies in model species, we inferred that genes, including NUAK family kinase 1 (NUAK1) and sonic hedgehog (SHH), may play roles in the development of neural crest cells or melanoblasts during the embryonic period, which may also affect the eumelanin pigmentation. Our results facilitate the understanding of the genetic basis of eumelanin pigmentation in chicken plumage.
Collapse
Affiliation(s)
- L Yang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China.,Collage of Life Science, Foshan University, Foshan, Guangdong, 528231, China
| | - X Du
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China
| | - S Wei
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China
| | - L Gu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China
| | - N Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China
| | - Y Gong
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China
| | - S Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China
| |
Collapse
|
26
|
Ahi EP, Sefc KM. A gene expression study of dorso-ventrally restricted pigment pattern in adult fins of Neolamprologus meeli, an African cichlid species. PeerJ 2017; 5:e2843. [PMID: 28097057 PMCID: PMC5228514 DOI: 10.7717/peerj.2843] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 11/29/2016] [Indexed: 01/04/2023] Open
Abstract
Fish color patterns are among the most diverse phenotypic traits found in the animal kingdom. Understanding the molecular and cellular mechanisms that control in chromatophore distribution and pigmentation underlying this diversity is a major goal in developmental and evolutionary biology, which has predominantly been pursued in the zebrafish model system. Here, we apply results from zebrafish work to study a naturally occurring color pattern phenotype in the fins of an African cichlid species from Lake Tanganyika. The cichlid fish Neolamprologus meeli displays a distinct dorsal color pattern, with black and white stripes along the edges of the dorsal fin and of the dorsal half of the caudal fin, corresponding with differences in melanophore density. To elucidate the molecular mechanisms controlling the differences in dorsal and ventral color patterning in the fins, we quantitatively assessed the expression of 15 candidate target genes involved in adult zebrafish pigmentation and stripe formation. For reference gene validation, we screened the expression stability of seven widely expressed genes across the investigated tissue samples and identified tbp as appropriate reference. Relative expression levels of the candidate target genes were compared between the dorsal, striped fin regions and the corresponding uniform, grey-colored regions in the anal and ventral caudal fin. Dorso-ventral expression differences, with elevated levels in both white and black stripes, were observed in two genes, the melanosome protein coding gene pmel and in igsf11, which affects melanophore adhesion, migration and survival. Next, we predicted potential shared upstream regulators of pmel and igsf11. Testing the expression patterns of six predicted transcriptions factors revealed dorso-ventral expression difference of irf1 and significant, negative expression correlation of irf1 with both pmel and igsf11. Based on these results, we propose pmel, igsf11 and irf1 as likely components of the genetic mechanism controlling distinct dorso-ventral color patterns in N. meeli fins.
Collapse
Affiliation(s)
- Ehsan Pashay Ahi
- Institute of Zoology, Universitätsplatz 2, Universität Graz , Graz , Austria
| | - Kristina M Sefc
- Institute of Zoology, Universitätsplatz 2, Universität Graz , Graz , Austria
| |
Collapse
|
27
|
Zhang J, Wang C, Liu Y, Liu J, Wang HY, Liu AF, He DQ. Agouti signalling protein (ASIP) gene: molecular cloning, sequence characterisation and tissue distribution in domestic goose. Br Poult Sci 2016; 57:288-94. [PMID: 26750999 DOI: 10.1080/00071668.2015.1113507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Agouti signalling protein (ASIP) is an endogenous antagonist of melanocortin-1 receptor (MC1R) and is involved in the regulation of pigmentation in mammals. The objective of this study was to identify and characterise the ASIP gene in domestic goose. The goose ASIP cDNA consisted of a 44-nucleotide 5'-terminal untranslated region (UTR), a 390-nucleotide open-reading frame (ORF) and a 45-nucleotide 3'-UTR. The length of goose ASIP genomic DNA was 6176 bp, including three coding exons and two introns. Bioinformatic analysis indicated that the ORF encodes a protein of 130 amino-acid residues with a molecular weight of 14.88 kDa and an isoelectric point of 9.73. Multiple sequence alignments and phylogenetic analysis showed that the amino-acid sequence of ASIP was conserved in vertebrates, especially in the avian species. RT-qPCR showed that the goose ASIP mRNA was differentially expressed in the pigment deposition tissues, including eye, foot, feather follicle, skin of the back, as well as in skin of the abdomen. The expression level of the ASIP gene in skin of the abdomen was higher than that in skin of the back. Those findings will contribute to further understanding the functions of the ASIP gene in geese plumage colouring.
Collapse
Affiliation(s)
- J Zhang
- a Institute of Animal Husbandry and Veterinary Science , Shanghai Academy of Agricultural Sciences , Shanghai , China.,b Department of Animal Science , Southwest University Rongchang Campus , Chongqing , China
| | - C Wang
- a Institute of Animal Husbandry and Veterinary Science , Shanghai Academy of Agricultural Sciences , Shanghai , China
| | - Y Liu
- a Institute of Animal Husbandry and Veterinary Science , Shanghai Academy of Agricultural Sciences , Shanghai , China
| | - J Liu
- b Department of Animal Science , Southwest University Rongchang Campus , Chongqing , China
| | - H Y Wang
- a Institute of Animal Husbandry and Veterinary Science , Shanghai Academy of Agricultural Sciences , Shanghai , China
| | - A F Liu
- b Department of Animal Science , Southwest University Rongchang Campus , Chongqing , China
| | - D Q He
- a Institute of Animal Husbandry and Veterinary Science , Shanghai Academy of Agricultural Sciences , Shanghai , China
| |
Collapse
|