1
|
Garg A, Alfatease A, Hani U, Haider N, Akbar MJ, Talath S, Angolkar M, Paramshetti S, Osmani RAM, Gundawar R. Drug eluting protein and polysaccharides-based biofunctionalized fabric textiles- pioneering a new frontier in tissue engineering: An extensive review. Int J Biol Macromol 2024; 268:131605. [PMID: 38641284 DOI: 10.1016/j.ijbiomac.2024.131605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 03/20/2024] [Accepted: 04/12/2024] [Indexed: 04/21/2024]
Abstract
In the ever-evolving landscape of tissue engineering, medicated biotextiles have emerged as a game-changer. These remarkable textiles have garnered significant attention for their ability to craft tissue scaffolds that closely mimic the properties of natural tissues. This comprehensive review delves into the realm of medicated protein and polysaccharide-based biotextiles, exploring a diverse array of fabric materials. We unravel the intricate web of fabrication methods, ranging from weft/warp knitting to plain/stain weaving and braiding, each lending its unique touch to the world of biotextiles creation. Fibre production techniques, such as melt spinning, wet/gel spinning, and multicomponent spinning, are demystified to shed light on the magic behind these ground-breaking textiles. The biotextiles thus crafted exhibit exceptional physical and chemical properties that hold immense promise in the field of tissue engineering (TE). Our review underscores the myriad applications of drug-eluting protein and polysaccharide-based textiles, including TE, tissue repair, regeneration, and wound healing. Additionally, we delve into commercially available products that harness the potential of medicated biotextiles, paving the way for a brighter future in healthcare and regenerative medicine. Step into the world of innovation with medicated biotextiles-where science meets the art of healing.
Collapse
Affiliation(s)
- Ankitha Garg
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysuru 570015, Karnataka, India
| | - Adel Alfatease
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia.
| | - Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia.
| | - Nazima Haider
- Department of Pathology, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia
| | - Mohammad J Akbar
- Department of Pharmaceutics, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia.
| | - Sirajunisa Talath
- Department of Pharmaceutical Chemistry, RAK College of Pharmacy, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates.
| | - Mohit Angolkar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysuru 570015, Karnataka, India
| | - Sharanya Paramshetti
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysuru 570015, Karnataka, India
| | - Riyaz Ali M Osmani
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysuru 570015, Karnataka, India.
| | - Ravi Gundawar
- Department of Pharmaceutical Quality Assurance, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India.
| |
Collapse
|
2
|
Ma L, Dong W, Lai E, Wang J. Silk fibroin-based scaffolds for tissue engineering. Front Bioeng Biotechnol 2024; 12:1381838. [PMID: 38737541 PMCID: PMC11084674 DOI: 10.3389/fbioe.2024.1381838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 04/12/2024] [Indexed: 05/14/2024] Open
Abstract
Silk fibroin is an important natural fibrous protein with excellent prospects for tissue engineering applications. With profound studies in recent years, its potential in tissue repair has been developed. A growing body of literature has investigated various fabricating methods of silk fibroin and their application in tissue repair. The purpose of this paper is to trace the latest developments of SF-based scaffolds for tissue engineering. In this review, we first presented the primary and secondary structures of silk fibroin. The processing methods of SF scaffolds were then summarized. Lastly, we examined the contribution of new studies applying SF as scaffolds in tissue regeneration applications. Overall, this review showed the latest progress in the fabrication and utilization of silk fibroin-based scaffolds.
Collapse
Affiliation(s)
- Li Ma
- National Innovation Center for Advanced Medical Devices, Shenzhen, China
| | - Wenyuan Dong
- National Innovation Center for Advanced Medical Devices, Shenzhen, China
| | - Enping Lai
- College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, China
| | - Jiamian Wang
- National Innovation Center for Advanced Medical Devices, Shenzhen, China
| |
Collapse
|
3
|
Pugliese E, Rossoni A, Zeugolis DI. Enthesis repair - State of play. BIOMATERIALS ADVANCES 2024; 157:213740. [PMID: 38183690 DOI: 10.1016/j.bioadv.2023.213740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/17/2023] [Accepted: 12/19/2023] [Indexed: 01/08/2024]
Abstract
The fibrocartilaginous enthesis is a highly specialised tissue interface that ensures a smooth mechanical transfer between tendon or ligament and bone through a fibrocartilage area. This tissue is prone to injury and often does not heal, even after surgical intervention. Enthesis augmentation approaches are challenging due to the complexity of the tissue that is characterised by the coexistence of a range of cellular and extracellular components, architectural features and mechanical properties within only hundreds of micrometres. Herein, we discuss enthesis repair and regeneration strategies, with particular focus on elegant interfacial and functionalised scaffold-based designs.
Collapse
Affiliation(s)
- Eugenia Pugliese
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), University of Galway, Galway, Ireland
| | - Andrea Rossoni
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Charles Institute of Dermatology, Conway Institute of Biomolecular & Biomedical Research and School of Mechanical & Materials Engineering, University College Dublin (UCD), Dublin, Ireland
| | - Dimitrios I Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), University of Galway, Galway, Ireland; Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Charles Institute of Dermatology, Conway Institute of Biomolecular & Biomedical Research and School of Mechanical & Materials Engineering, University College Dublin (UCD), Dublin, Ireland.
| |
Collapse
|
4
|
Han L, Wang C, Wang T, Hu Y, Wang H. Total flavonoids of Rhizoma drynariae improves tendon-bone healing for anterior cruciate ligament reconstruction in mice and promotes the osteogenic differentiation of bone mesenchymal stem cells by the ERR1/2-Gga1-TGF-β/MAPK pathway. ENVIRONMENTAL TOXICOLOGY 2024; 39:106-119. [PMID: 37665165 DOI: 10.1002/tox.23955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/24/2023] [Accepted: 08/20/2023] [Indexed: 09/05/2023]
Abstract
BACKGROUND Total flavonoids of Rhizoma drynariae (TFRD) is broadly used in the treatment of orthopedic diseases. Nevertheless, the effects and underlying mechanism of TFRD on tendon-bone healing after anterior cruciate ligament reconstruction (ACLR) remain unclear. METHODS The ACLR mouse model was established. Hematoxylin and Eosin (HE) staining was used for histological analysis of tendon-bone healing. Western blot was utilized to detect the levels of osteogenic related factors (ALP, OCN, RUNX2). The viability and alkaline phosphatase (ALP) activity of bone mesenchymal stem cells (BMSCs) were determined by Cell Counting Kit-8 (CCK-8) and ALP assays. The interaction of estrogen related receptor alpha (ESRRA), estrogen related receptor beta (ESRRB), and golgi-localized γ-ear containing ADP ribosylation factor-binding protein 1 (Gga1) was detected by luciferase reporter assays. The levels of important proteins on the TGF-β/MAPK pathway were measured by western blot. RESULTS TFRD improved tendon-bone healing, restored biomechanics of ACLR mice and activated the TGF-β/MAPK pathway. TFRD treatment also enhanced the viability and osteogenic differentiation of BMSCs in vitro. Then, we demonstrated that TFRD targeted ESRRA and ESRRB to transcriptionally activate Gga1 expression. Knockdown of ESRRA, ESRRB, or Gga1 suppressed the viability and osteogenic differentiation of TFRD-induced BMSCs, which was revealed to be restored by Gga1 overexpression. The overexpression of ESRRA, ESRRB, or Gga1 was demonstrated to promote the BMSC viability and osteogenic differentiation. TGF-β1 treatment can reverse the impact of Gga1 inhibition on osteogenic differentiation in TFRD-induced BMSCs. CONCLUSION TFRD improves tendon-bone healing in ACLR mouse models and facilitates the osteogenic differentiation of BMSCs through the ERR1/2-Gga1-TGF-β/MAPK pathway, which might deepen our understanding of the underlying mechanism of TFRD in tendon-bone healing.
Collapse
Affiliation(s)
- Lei Han
- Department of Orthopaedics Institute, Xiaoshan Traditional Chinese Medical Hospital, Hangzhou, China
| | - Canfeng Wang
- Department of Orthopaedics Institute, Xiaoshan Traditional Chinese Medical Hospital, Hangzhou, China
| | - Tuo Wang
- Department of Orthopaedics Institute, Xiaoshan Traditional Chinese Medical Hospital, Hangzhou, China
| | - Yungeng Hu
- Department of Orthopaedics Institute, Xiaoshan Traditional Chinese Medical Hospital, Hangzhou, China
| | - Hongshun Wang
- Department of Orthopaedics Institute, Xiaoshan Traditional Chinese Medical Hospital, Hangzhou, China
| |
Collapse
|
5
|
Liu S, Al-Danakh A, Wang H, Sun Y, Wang L. Advancements in scaffold for treating ligament injuries; in vitro evaluation. Biotechnol J 2024; 19:e2300251. [PMID: 37974555 DOI: 10.1002/biot.202300251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 11/07/2023] [Accepted: 11/15/2023] [Indexed: 11/19/2023]
Abstract
Tendon/ligament (T/L) injuries are a worldwide health problem that affects millions of people annually. Due to the characteristics of tendons, the natural rehabilitation of their injuries is a very complex and lengthy process. Surgical treatment of a T/L injury frequently necessitates using autologous or allogeneic grafts or synthetic materials. Nonetheless, these alternatives have limitations in terms of mechanical properties and histocompatibility, and they do not permit the restoration of the original biological function of the tissue, which can negatively impact the patient's quality of life. It is crucial to find biological materials that possess the necessary properties for the successful surgical treatment of tissues and organs. In recent years, the in vitro regeneration of tissues and organs from stem cells has emerged as a promising approach for preparing autologous tissue and organs, and cell culture scaffolds play a critical role in this process. However, the biological traits and serviceability of different materials used for cell culture scaffolds vary significantly, which can impact the properties of the cultured tissues. Therefore, this review aims to analyze the differences in the biological properties and suitability of various materials based on scaffold characteristics such as cell compatibility, degradability, textile technologies, fiber arrangement, pore size, and porosity. This comprehensive analysis provides valuable insights to aid in the selection of appropriate scaffolds for in vitro tissue and organ culture.
Collapse
Affiliation(s)
- Shuang Liu
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Abdullah Al-Danakh
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Haowen Wang
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yuan Sun
- Liaoning Laboratory of Cancer Genomics and Department of Cell Biology, Dalian Medical University, Dalian, China
| | - Lina Wang
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
6
|
Wang L, Wan F, Xu Y, Xie S, Zhao T, Zhang F, Yang H, Zhu J, Gao J, Shi X, Wang C, Lu L, Yang Y, Yu X, Chen S, Sun X, Ding J, Chen P, Ding C, Xu F, Yu H, Peng H. Hierarchical helical carbon nanotube fibre as a bone-integrating anterior cruciate ligament replacement. NATURE NANOTECHNOLOGY 2023; 18:1085-1093. [PMID: 37142709 DOI: 10.1038/s41565-023-01394-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 03/31/2023] [Indexed: 05/06/2023]
Abstract
High rates of ligament damage require replacements; however, current synthetic materials have issues with bone integration leading to implant failure. Here we introduce an artificial ligament that has the required mechanical properties and can integrate with the host bone and restore movement in animals. The ligament is assembled from aligned carbon nanotubes formed into hierarchical helical fibres bearing nanometre and micrometre channels. Osseointegration of the artificial ligament is observed in an anterior cruciate ligament replacement model where clinical polymer controls showed bone resorption. A higher pull-out force is found after a 13-week implantation in rabbit and ovine models, and animals can run and jump normally. The long-term safety of the artificial ligament is demonstrated, and the pathways involved in integration are studied.
Collapse
Affiliation(s)
- Liyuan Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University, Shanghai, China
| | - Fang Wan
- Department of Orthopedic Sports Medicine, Huashan Hospital, The Sports Medicine Institute, Fudan University, Shanghai, China
| | - Yifan Xu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University, Shanghai, China
| | - Songlin Xie
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University, Shanghai, China
| | - Tiancheng Zhao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University, Shanghai, China
| | - Fan Zhang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Han Yang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University, Shanghai, China
| | - Jiajun Zhu
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jingming Gao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University, Shanghai, China
| | - Xiang Shi
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University, Shanghai, China
| | - Chuang Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University, Shanghai, China
| | - Linwei Lu
- Department of Integrative Medicine, Huashan Hospital, The Academy of Integrative Medicine, Fudan University, Shanghai, China
| | - Yifan Yang
- Department of Aeronautics and Astronautics, Fudan University, Shanghai, China
| | - Xiaoye Yu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University, Shanghai, China
| | - Shiyi Chen
- Department of Orthopedic Sports Medicine, Huashan Hospital, The Sports Medicine Institute, Fudan University, Shanghai, China.
| | - Xuemei Sun
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University, Shanghai, China.
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University, Shanghai, China
| | - Peining Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University, Shanghai, China.
| | - Chen Ding
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Fan Xu
- Department of Aeronautics and Astronautics, Fudan University, Shanghai, China
| | - Hongbo Yu
- Vision Research Laboratory, School of Life Sciences, State Key Laboratory of Medical Neurobiology, Collaborative Innovation Centre for Brain Science, Fudan University, Shanghai, China
| | - Huisheng Peng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University, Shanghai, China.
| |
Collapse
|
7
|
Alexeev SO, Buckley SE, Hewitt MA, Hunt KJ. Publication trends in ligament augmentation techniques: current concepts. J ISAKOS 2023; 8:232-238. [PMID: 37105381 DOI: 10.1016/j.jisako.2023.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/23/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023]
Abstract
IMPORTANCE Ligament augmentation techniques (LATs) are surgical procedures, in which an anatomical ligament repair or reconstruction is strengthened with a synthetic material. During the last decade, LATs have increased in prevalence in clinical practice and academic literature. Observing the trends in LAT publications can be used to identify clusters of strong evidence for clinical practice and to highlight areas of the literature which need further development. OBJECTIVE This article aims to define ligament augmentation as a technique category, observe anatomical, procedural, and temporal trends in LAT publication, and report on the state of current research in this field. EVIDENCE REVIEW Primary literature in the English language, which describes ligament augmentation and reports on human, cadaveric, or biomechanical models, and published prior to May 24th, 2022, was targeted for analysis. PubMed, Embase, and Cochrane CENTRAL databases were explored using a focused keyword search strategy, and the resulting publications were reviewed in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Data were collected and analysed using descriptive statistics. FINDINGS Two hundred eighty-three publications reporting ligament augmentation techniques, published from May 1989 to May 2022, were included for final analysis. A wide technical and anatomical variety of procedures are reported. 36.8% of LAT publications describe knee ligaments, among which the anterior cruciate ligamenthas the highest focus in ligament augmentation publications (31.8% of articles). LAT literature has recently expanded in anatomical scope, with many contemporary articles describing the usage of a LAT in the ankle syndesmosis and coracoclavicular ligaments. 60.4% of LAT literature has been published since 2017. There has been an 11% average increase in the rate of LAT publication reports since 2015. Novel fixation devices-suture buttons and suture anchors-have gained wide popularity in the literature. CONCLUSIONS AND RELEVANCE In this review, we define LATs and quantitatively describe the expansion of LAT use reported in the literature. This data will provide physicians an overview of the history of these methods, as well as illustrate the broad range of applications available for the use of LATs. LEVEL OF EVIDENCE: 3
Collapse
Affiliation(s)
- Sergei O Alexeev
- University of South Carolina School of Medicine, Columbia, SC 29209, USA
| | - Sara E Buckley
- University of Colorado School of Medicine, Denver, CO 80045, USA
| | - Michael A Hewitt
- University of Colorado School of Medicine, Denver, CO 80045, USA
| | - Kenneth J Hunt
- University of Colorado School of Medicine, Denver, CO 80045, USA.
| |
Collapse
|
8
|
Govindaraju DT, Chen CH, Shalumon KT, Kao HH, Chen JP. Bioactive Nanostructured Scaffold-Based Approach for Tendon and Ligament Tissue Engineering. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1847. [PMID: 37368277 DOI: 10.3390/nano13121847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/05/2023] [Accepted: 06/09/2023] [Indexed: 06/28/2023]
Abstract
An effective therapeutic strategy to treat tendon or ligament injury continues to be a clinical challenge due to the limited natural healing capacity of these tissues. Furthermore, the repaired tendons or ligaments usually possess inferior mechanical properties and impaired functions. Tissue engineering can restore the physiological functions of tissues using biomaterials, cells, and suitable biochemical signals. It has produced encouraging clinical outcomes, forming tendon or ligament-like tissues with similar compositional, structural, and functional attributes to the native tissues. This paper starts by reviewing tendon/ligament structure and healing mechanisms, followed by describing the bioactive nanostructured scaffolds used in tendon and ligament tissue engineering, with emphasis on electrospun fibrous scaffolds. The natural and synthetic polymers for scaffold preparation, as well as the biological and physical cues offered by incorporating growth factors in the scaffolds or by dynamic cyclic stretching of the scaffolds, are also covered. It is expected to present a comprehensive clinical, biological, and biomaterial insight into advanced tissue engineering-based therapeutics for tendon and ligament repair.
Collapse
Affiliation(s)
- Darshan Tagadur Govindaraju
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan City 33302, Taiwan
| | - Chih-Hao Chen
- Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital at Keelung, Chang Gung University College of Medicine, Anle, Keelung 20401, Taiwan
- Craniofacial Research Center, Chang Gung Memorial Hospital at Linkou, Kwei-San, Taoyuan City 33305, Taiwan
| | - K T Shalumon
- Department of Chemistry, Sacred Heart College, Mahatma Gandhi University, Kochi 682013, India
| | - Hao-Hsi Kao
- Division of Nephrology, Chang Gung Memorial Hospital at Keelung, Chang Gung University College of Medicine, Anle, Keelung 20401, Taiwan
| | - Jyh-Ping Chen
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan City 33302, Taiwan
- Craniofacial Research Center, Chang Gung Memorial Hospital at Linkou, Kwei-San, Taoyuan City 33305, Taiwan
- Department of Neurosurgery, Chang Gung Memorial Hospital at Linkou, Kwei-San, Taoyuan City 33305, Taiwan
- Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Kwei-San, Taoyuan City 33305, Taiwan
- Department of Materials Engineering, Ming Chi University of Technology, Tai-Shan, New Taipei City 24301, Taiwan
| |
Collapse
|
9
|
Abdelhakiem MAH, Hussein A, Seleim SM, Abdelbaset AE, Abd-Elkareem M. Silver nanoparticles and platelet-rich fibrin accelerate tendon healing in donkey. Sci Rep 2023; 13:3421. [PMID: 36854886 PMCID: PMC9975180 DOI: 10.1038/s41598-023-30543-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 02/24/2023] [Indexed: 03/02/2023] Open
Abstract
This study investigated the effect of the silver nanoparticles (AgNPs) and platelet-rich fibrin (PRF) in the healing of the severed superficial digital flexor tendon in donkeys (SDFT). Twenty-seven adult donkeys were used in the study. The animals were divided into three equal groups. The first group (control group) in which the severed SDFT was sutured without the addition of any adjuvant. In the second group, there was a suture of severed SDFT with the addition of 1 ml of 1 mM silver nanoparticles (AgNPs group). The third group was subjected to the cutting of SDFT and then the addition of PRF after its suture. Each group of animals was divided into three equal subgroups that were examined after 1, 2, and 3 months. Each group of animals was clinically evaluated by assessing lameness. Gross and microscopic examinations of the healed tendons were performed after 1, 2, and 3 months of surgery. In comparison to the control group, the lameness degree decreased in the PRF and AgNPs groups, particularly in the third month after surgery. Furthermore, the lameness decreased significantly after the 3rd month relative to the 1st-month lameness in the AgNPs group. Interestingly, it was found that the PRF and AgNPs enhanced cell alignment and collagen deposition at the site of tendon injury, particularly among third-month subgroups. Therefore, it could be concluded that the PRF and AgNPs are effective materials for enhancing SDFT healing in donkeys.
Collapse
Affiliation(s)
- Mohammed A. H. Abdelhakiem
- grid.252487.e0000 0000 8632 679XDepartment of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526 Egypt
| | - Ayman Hussein
- grid.252487.e0000 0000 8632 679XDepartment of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526 Egypt
| | - Samia Moustafa Seleim
- grid.252487.e0000 0000 8632 679XDepartment of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526 Egypt
| | - Abdelbaset Eweda Abdelbaset
- grid.252487.e0000 0000 8632 679XClinical Laboratory Diagnosis, Department of Animal Medicine, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526 Egypt
| | - Mahmoud Abd-Elkareem
- Department of Cell and Tissues, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526, Egypt.
| |
Collapse
|
10
|
Abibe RB, Rahal SC, dos Reis Mesquita L, Doiche D, da Silva JP, Mamprim MJ, Pinho RH, Battazza A, Alves CEF, Saunders WB. Ligamentum teres reconstruction using autogenous semitendinosus tendon with toggle technique in rabbits. PeerJ 2023; 11:e14777. [PMID: 36987457 PMCID: PMC10040178 DOI: 10.7717/peerj.14777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 01/03/2023] [Indexed: 03/30/2023] Open
Abstract
Background Ligamentum teres (LT) has traditionally been considered a vestigial or redundant structure in humans; however, based on new studies and the evolution of hip arthroscopy, the LT injury has been viewed as a source of hip pain. Therefore, LT reconstruction can be beneficial in some cases. Rabbits have been frequently used as a model for cranial cruciate ligament reconstruction but few studies are available for ligamentum teres reconstruction. Objective To evaluate the semitendinosus tendon to replace ligamentum teres with the toggle technique, using rabbits as an experimental model. Methods Twenty-six female Norfolk rabbits with approximately 3 months of age were divided into two equal groups after excision of ligamentum teres (LT) from the right hip joint: G1-no reconstruction of LT and capsulorrhaphy; G2-double-bundle reconstruction of the LT using semitendinosus tendon autograft. In both groups, the LT was removed from the right hip joint. In G2 the autograft was harvested from the left hind limb of the same rabbit. The rabbits were evaluated clinically at different time intervals; before surgery (M1), 48 h (M2), 15 days (M3), 30 days (M4) and 90 days (M5) after surgery. Results The rabbits supported their limbs on the ground in both the groups. As complications of the procedure, four hip joints showed subluxations in the radiographic evaluation of G1; three at M4 and one at M5. In G2; two luxations of hip joints at M3 and one subluxation at M4 were seen. On ultrasound, irregular articular surface was seen in 30.8% of the rabbits that had subluxation of hip joints. Gross evaluation identified tendon graft integrity in 76.92% of the rabbits. Histological analysis revealed graft adhesion to the bone in the early phase comprised of sharpey-like collagen fibers. Conclusion The double-bundle reconstruction of the LT using autologous semitendinosus tendon associated with the toggle rod shows an early phase of tendon graft ligamentization at 90 days post-operatively in young rabbits, but biomechanical bias suffered by the tendon during gait must be considered.
Collapse
Affiliation(s)
- Rebeca Bastos Abibe
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, Universidade Estadual Paulista, Botucatu, São Paulo, Brazil
| | - Sheila Canevese Rahal
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, Universidade Estadual Paulista, Botucatu, São Paulo, Brazil
| | - Luciane dos Reis Mesquita
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, Universidade Estadual Paulista, Botucatu, São Paulo, Brazil
| | - Danuta Doiche
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, Universidade Estadual Paulista, Botucatu, São Paulo, Brazil
| | - Jeana Pereira da Silva
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, Universidade Estadual Paulista, Botucatu, São Paulo, Brazil
| | - Maria Jaqueline Mamprim
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, Universidade Estadual Paulista, Botucatu, São Paulo, Brazil
| | - Renata Haddad Pinho
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, Universidade Estadual Paulista, Botucatu, São Paulo, Brazil
| | - Alexandre Battazza
- Department of Veterinary Clinic, School of Veterinary Medicine and Animal Science, Universidade Estadual Paulista, Botucatu, São Paulo, Brazil
| | - Carlos Eduardo Fonseca Alves
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, Universidade Estadual Paulista, Botucatu, São Paulo, Brazil
| | - W. Brian Saunders
- Department of Small Animal Clinical Sciences, Texas A&M University, College Station, Texas, United States
| |
Collapse
|
11
|
Luo W, Wang Y, Han Q, Wang Z, Jiao J, Gong X, Liu Y, Zhang A, Zhang H, Chen H, Wang J, Wu M. Advanced strategies for constructing interfacial tissues of bone and tendon/ligament. J Tissue Eng 2022; 13:20417314221144714. [PMID: 36582940 PMCID: PMC9793068 DOI: 10.1177/20417314221144714] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 11/26/2022] [Indexed: 12/25/2022] Open
Abstract
Enthesis, the interfacial tissue between a tendon/ligament and bone, exhibits a complex histological transition from soft to hard tissue, which significantly complicates its repair and regeneration after injury. Because traditional surgical treatments for enthesis injury are not satisfactory, tissue engineering has emerged as a strategy for improving treatment success. Rapid advances in enthesis tissue engineering have led to the development of several strategies for promoting enthesis tissue regeneration, including biological scaffolds, cells, growth factors, and biophysical modulation. In this review, we discuss recent advances in enthesis tissue engineering, particularly the use of biological scaffolds, as well as perspectives on the future directions in enthesis tissue engineering.
Collapse
Affiliation(s)
- Wangwang Luo
- Department of Orthopedics, The Second
Hospital of Jilin University, Changchun, China
| | - Yang Wang
- Department of Orthopedics, The Second
Hospital of Jilin University, Changchun, China
| | - Qing Han
- Department of Orthopedics, The Second
Hospital of Jilin University, Changchun, China
| | - Zhonghan Wang
- Department of Orthopedics, The Second
Hospital of Jilin University, Changchun, China,Orthopaedic Research Institute of Jilin
Province, Changchun, China
| | - Jianhang Jiao
- Department of Orthopedics, The Second
Hospital of Jilin University, Changchun, China
| | - Xuqiang Gong
- Department of Orthopedics, The Second
Hospital of Jilin University, Changchun, China
| | - Yang Liu
- Department of Orthopedics, The Second
Hospital of Jilin University, Changchun, China
| | - Aobo Zhang
- Department of Orthopedics, The Second
Hospital of Jilin University, Changchun, China
| | - Han Zhang
- Department of Orthopedics, The Second
Hospital of Jilin University, Changchun, China
| | - Hao Chen
- Department of Orthopedics, The Second
Hospital of Jilin University, Changchun, China
| | - Jincheng Wang
- Department of Orthopedics, The Second
Hospital of Jilin University, Changchun, China
| | - Minfei Wu
- Department of Orthopedics, The Second
Hospital of Jilin University, Changchun, China,Minfei Wu, Department of Orthopedics, The
Second Hospital of Jilin University, 218 Ziqiang Sreet, Changchun 130041, China.
| |
Collapse
|
12
|
Amini M, Venkatesan JK, Liu W, Leroux A, Nguyen TN, Madry H, Migonney V, Cucchiarini M. Advanced Gene Therapy Strategies for the Repair of ACL Injuries. Int J Mol Sci 2022; 23:ijms232214467. [PMID: 36430947 PMCID: PMC9695211 DOI: 10.3390/ijms232214467] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/07/2022] [Accepted: 11/19/2022] [Indexed: 11/23/2022] Open
Abstract
The anterior cruciate ligament (ACL), the principal ligament for stabilization of the knee, is highly predisposed to injury in the human population. As a result of its poor intrinsic healing capacities, surgical intervention is generally necessary to repair ACL lesions, yet the outcomes are never fully satisfactory in terms of long-lasting, complete, and safe repair. Gene therapy, based on the transfer of therapeutic genetic sequences via a gene vector, is a potent tool to durably and adeptly enhance the processes of ACL repair and has been reported for its workability in various experimental models relevant to ACL injuries in vitro, in situ, and in vivo. As critical hurdles to the effective and safe translation of gene therapy for clinical applications still remain, including physiological barriers and host immune responses, biomaterial-guided gene therapy inspired by drug delivery systems has been further developed to protect and improve the classical procedures of gene transfer in the future treatment of ACL injuries in patients, as critically presented here.
Collapse
Affiliation(s)
- Mahnaz Amini
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, D-66421 Homburg, Germany
| | - Jagadeesh K. Venkatesan
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, D-66421 Homburg, Germany
| | - Wei Liu
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, D-66421 Homburg, Germany
| | - Amélie Leroux
- Laboratoire CSPBAT UMR CNRS 7244, Université Sorbonne Paris Nord, Avenue JB Clément, 93430 Villetaneuse, France
| | - Tuan Ngoc Nguyen
- Laboratoire CSPBAT UMR CNRS 7244, Université Sorbonne Paris Nord, Avenue JB Clément, 93430 Villetaneuse, France
| | - Henning Madry
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, D-66421 Homburg, Germany
| | - Véronique Migonney
- Laboratoire CSPBAT UMR CNRS 7244, Université Sorbonne Paris Nord, Avenue JB Clément, 93430 Villetaneuse, France
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, D-66421 Homburg, Germany
- Correspondence: or
| |
Collapse
|
13
|
Abdelhakiem MA, Hussein A, Seleim SM, Abdelbaset AE, Abd-elkareem M. The effect of the silver nanoparticles and platelet-rich fibrin in the healing of the severed superficial digital flexor tendon in donkeys (Equus asinus).. [DOI: 10.21203/rs.3.rs-2075827/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Abstract
This study investigated the effect of the silver nanoparticles (AgNPs) and platelet-rich fibrin (PRF) in the healing of the severed superficial digital flexor tendon in donkeys (SDFT). Twenty-seven adult donkeys were used in the study. The animals were divided into three equal groups. The 1st group (control group) in which the severed SDFT was sutured without the addition of any adjuvant. In the 2nd group, there was a suture of severed SDFT with the addition of 1ml of 1mM silver nanoparticles (AgNPs group). The 3rd group was subjected to the cutting of SDFT and then the addition of PRF after its suture. Each group of animals was divided into three equal subgroups that were examined after one, two, and three months, respectively. Each group of animals was clinically evaluated by assessing lameness. Gross and microscopic examinations of the healed tendons were performed after 1, 2, and 3 months of surgery. The results revealed that the lameness degree decreased in the PRF and AgNPs groups, in comparison to the control group, especially in the third month after surgery. As well as the lameness decreased significantly after the 3rd month relative to the 1st-month lameness in the AgNPs group. Interestingly, it was found that the PRF and AgNPs enhanced cell alignment and collagen deposition at the site of tendon injury, particularly among third-month subgroups. Therefore, it could be concluded that the PRF and AgNPs are effective materials for enhancing SDFT healing in donkeys.
Collapse
|
14
|
Cardona-Ramirez S, Cook JL, Stoker AM, Ma R. Small laboratory animal models of anterior cruciate ligament reconstruction. J Orthop Res 2022; 40:1967-1980. [PMID: 35689508 DOI: 10.1002/jor.25395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 04/19/2022] [Accepted: 06/08/2022] [Indexed: 02/04/2023]
Abstract
Anterior cruciate ligament (ACL) injuries are common knee ligament injuries. While generally successful, ACL reconstruction that uses a tendon graft to stabilize the knee is still associated with a notable percentage of failures and long-term morbidities. Preclinical research that uses small laboratory species (i.e., mice, rats, and rabbits) to model ACL reconstruction are important to evaluate factors that can impact graft incorporation or posttraumatic osteoarthritis after ACL reconstruction. Small animal ACL reconstruction models are also used for proof-of-concept studies for the development of emerging biological strategies aimed at improving ACL reconstruction healing. The objective of this review is to provide an overview on the use of common small animal laboratory species to model ACL reconstruction. The review includes a discussion on comparative knee anatomy, technical considerations including types of tendon grafts employed amongst the small laboratory species (i.e., mice, rats, and rabbits), and common laboratory evaluative methods used to study healing and outcomes after ACL reconstruction in small laboratory animals. The review will also highlight common research questions addressed with small animal models of ACL reconstruction.
Collapse
Affiliation(s)
- Sebastian Cardona-Ramirez
- Thompson Laboratory for Regenerative Orthopaedics, Missouri Orthopaedic Institute, University of Missouri, Columbia, Missouri, USA
| | - James L Cook
- Thompson Laboratory for Regenerative Orthopaedics, Missouri Orthopaedic Institute, University of Missouri, Columbia, Missouri, USA
| | - Aaron M Stoker
- Thompson Laboratory for Regenerative Orthopaedics, Missouri Orthopaedic Institute, University of Missouri, Columbia, Missouri, USA
| | - Richard Ma
- Thompson Laboratory for Regenerative Orthopaedics, Missouri Orthopaedic Institute, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
15
|
Pourjabbar B, Biazar E, Heidari Keshel S, Baradaran‐Rafii A. Improving the properties of fish skin collagen/silk fibroin dressing by chemical treatment for corneal wound healing. Int Wound J 2022; 20:484-498. [PMID: 35912793 PMCID: PMC9885469 DOI: 10.1111/iwj.13896] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/29/2022] [Accepted: 07/04/2022] [Indexed: 02/03/2023] Open
Abstract
Natural biomaterials are crucial in ocular tissue engineering because they allow cells to proliferate, differentiate, and stratify while maintaining the typical epithelial phenotype. In this study, membranes as dressings were formed from silk fibroin and collagen (Co) extracted from fish skin and then modified with carbodiimide chemical cross linker in different concentrations. The samples were evaluated by different analyses such as structural, physical (optical, swelling, denaturation temperature, degradation), mechanical, and biological (viability, cell adhesion, immunocytochemistry) assays. The results showed that all membranes have excellent transparency, especially with higher silk fibroin content. Increasing the cross linker concentration and the ratio of silk fibroin to Co increased the denaturation temperature and mechanical strength and, conversely, reduced the degradation rate and cell adhesion. The samples did not show a significant difference in toxicity with increasing cross linker and silk fibroin ratio. In general, samples with a low silk fibroin ratio combined with cross linker can provide desirable properties as a membrane for corneal wound healing.
Collapse
Affiliation(s)
- Bahareh Pourjabbar
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in MedicineShahid Beheshti University of Medical SciencesTehranIran
| | - Esmaeil Biazar
- Tissue Engineering Group, Department of Biomedical Engineering, Tonekabon BranchIslamic Azad UniversityTonekabonIran
| | - Saeed Heidari Keshel
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in MedicineShahid Beheshti University of Medical SciencesTehranIran,Medical Nanotechnology and Tissue Engineering Research CenterShahid Beheshti University of Medical SciencesTehranIran
| | - Alireza Baradaran‐Rafii
- Ophthalmic Research Center, Department of Ophthalmology, Labbafinejad Medical CenterShahid Beheshti University of Medical SciencesTehranIran
| |
Collapse
|
16
|
Wang H, Wang D, Luo B, Wang D, Jia H, Peng P, Shang Q, Mao J, Gao C, Peng Y, Gan L, Du J, Luo Z, Yang L. Decoding the annulus fibrosus cell atlas by scRNA-seq to develop an inducible composite hydrogel: A novel strategy for disc reconstruction. Bioact Mater 2022; 14:350-363. [PMID: 35386822 PMCID: PMC8964821 DOI: 10.1016/j.bioactmat.2022.01.040] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 01/22/2022] [Accepted: 01/23/2022] [Indexed: 02/08/2023] Open
Abstract
Low back pain is one of the most serious public health problems worldwide and the major clinical manifestation of intervertebral disc degeneration (IVDD). The key pathological change during IVDD is dysfunction of the annulus fibrosus (AF). However, due to the lack of an in-depth understanding of AF biology, the methods to reconstruct the AF are very limited. In this study, the mice AF cell atlas were decoded by single-cell RNA sequencing to provide a guide for AF reconstruction. The results first identify a new population of AF cells, fibrochondrocyte-like AF cells, which synthesize both collagen I and collagen II and are potential functional cells for AF reconstruction. According to the dual features of the AF extracellular matrix, a composite hydrogel based on the acylation of methacrylated silk fibroin with methacrylated hyaluronic acid was produced. To obtain the ability to stimulate differentiation, the composite hydrogels were combined with a fibrochondrocyte-inducing supplement. Finally, reconstruction of the AF defects, by the novel AF stem cell-loaded composite hydrogel, could be observed, its amount of chondroid matrices recovered to 31.7% of AF aera which is significantly higher than that in other control groups. In summary, this study decodes the AF cell atlas, based on which a novel strategy for AF reconstruction is proposed. There are 10 populations of cells in the annulus fibrosus (AF), as decoded by single cell RNA sequencing. Lineage tracing shows the route of migration and differentiation of annulus fibrosus-derived stem cells (AFSCs). A new population of AF cells, fibrochondrocyte-like AF cells, was identified. Both the fibrinoid and chondroid matrices of AF are reconstructed by the novel AFSCs-loaded composite hydrogel.
Collapse
|
17
|
Lopez Marquez A, Gareis IE, Dias FJ, Gerhard C, Lezcano MF. How Fiber Surface Topography Affects Interactions between Cells and Electrospun Scaffolds: A Systematic Review. Polymers (Basel) 2022; 14:polym14010209. [PMID: 35012232 PMCID: PMC8747153 DOI: 10.3390/polym14010209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/22/2021] [Accepted: 12/29/2021] [Indexed: 01/02/2023] Open
Abstract
Electrospun scaffolds have a 3D fibrous structure that attempts to imitate the extracellular matrix in order to be able to host cells. It has been reported in the literature that controlling fiber surface topography produces varying results regarding cell–scaffold interactions. This review analyzes the relevant literature concerning in vitro studies to provide a better understanding of the effect that controlling fiber surface topography has on cell–scaffold interactions. A systematic approach following PRISMA, GRADE, PICO, and other standard methodological frameworks for systematic reviews was used. Different topographic interventions and their effects on cell–scaffold interactions were analyzed. Results indicate that nanopores and roughness on fiber surfaces seem to improve proliferation and adhesion of cells. The quality of the evidence is different for each studied cell–scaffold interaction, and for each studied morphological attribute. The evidence points to improvements in cell–scaffold interactions on most morphologically complex fiber surfaces. The discussion includes an in-depth evaluation of the indirectness of the evidence, as well as the potentially involved publication bias. Insights and suggestions about dose-dependency relationship, as well as the effect on particular cell and polymer types, are presented. It is concluded that topographical alterations to the fiber surface should be further studied, since results so far are promising.
Collapse
Affiliation(s)
- Alex Lopez Marquez
- Faculty of Engineering and Health, University of Applied Sciences and Arts, 37085 Göttingen, Germany; (A.L.M.); (C.G.)
| | - Iván Emilio Gareis
- Laboratorio de Cibernética, Departamento de Bioingeniería, Facultad de Ingeniería, Universidad Nacional de Entre Ríos, Oro Verde 3100, Argentina;
| | - Fernando José Dias
- Research Centre for Dental Sciences CICO, Department of Integral Adults Dentistry, Dental School, Universidad de La Frontera, Temuco 4811230, Chile;
| | - Christoph Gerhard
- Faculty of Engineering and Health, University of Applied Sciences and Arts, 37085 Göttingen, Germany; (A.L.M.); (C.G.)
| | - María Florencia Lezcano
- Laboratorio de Cibernética, Departamento de Bioingeniería, Facultad de Ingeniería, Universidad Nacional de Entre Ríos, Oro Verde 3100, Argentina;
- Research Centre for Dental Sciences CICO, Department of Integral Adults Dentistry, Dental School, Universidad de La Frontera, Temuco 4811230, Chile;
- Correspondence:
| |
Collapse
|
18
|
Edwards JH, Jones GL, Herbert A, Fisher J, Ingham E. Integration and functional performance of a decellularised porcine superflexor tendon graft in an ovine model of anterior cruciate ligament reconstruction. Biomaterials 2021; 279:121204. [PMID: 34736146 PMCID: PMC8683753 DOI: 10.1016/j.biomaterials.2021.121204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 10/10/2021] [Accepted: 10/20/2021] [Indexed: 12/30/2022]
Abstract
The objective was to evaluate the performance of decellularised porcine superflexor tendon (pSFT) as an anterior cruciate ligament (ACL) reconstruction device. The ACL of adult sheep was reconstructed with decellularised pSFT or ovine allograft SFT and animals sacrificed at 4, 12 and 26 weeks (n = 4 per group) for biological evaluation and 26 weeks (n = 6) for biomechanical evaluation of the grafts. Both grafts showed good in vivo performance with no major differences at macroscopic evaluation post euthanasia. Histopathology revealed an inflammatory reaction to both grafts at 4 weeks, which reduced by 26 weeks. There was advanced cellular ingrowth from 12 weeks, ligamentisation of intra-articular grafts, ossification and formation of Sharpey's fibers at the graft/bone junctions. Immunohistochemistry showed that at 4 and 12 weeks, the host response was dominated by CD163+ M2 macrophages and a cell infiltrate comprising α-SMA + myofibroblasts, CD34+ and CD271+ progenitor cells. At 26 weeks the biomechanical properties of decellularised pSFT and oSFT grafts were comparable, with all grafts failing in the intra-articular region. This study provides new insight into constructive remodelling of tendons used for ACL replacement and evidence of integration and functional performance of a decellularised xenogeneic tendon with potential as an alternative for ACL reconstruction.
Collapse
Affiliation(s)
- Jennifer Helen Edwards
- Institute of Medical and Biological Engineering, School of Biomedical Sciences, University of Leeds, Leeds, LS2 9JT, UK; Institute of Medical and Biological Engineering, School of Mechanical Engineering, University of Leeds, Leeds, LS2 9JT, UK.
| | - Gemma Louise Jones
- Institute of Medical and Biological Engineering, School of Biomedical Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| | - Anthony Herbert
- Institute of Medical and Biological Engineering, School of Mechanical Engineering, University of Leeds, Leeds, LS2 9JT, UK.
| | - John Fisher
- Institute of Medical and Biological Engineering, School of Mechanical Engineering, University of Leeds, Leeds, LS2 9JT, UK.
| | - Eileen Ingham
- Institute of Medical and Biological Engineering, School of Biomedical Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
19
|
Rodríguez-Merchán EC. Anterior Cruciate Ligament Reconstruction: Is Biological Augmentation Beneficial? Int J Mol Sci 2021; 22:ijms222212566. [PMID: 34830448 PMCID: PMC8625610 DOI: 10.3390/ijms222212566] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/17/2021] [Accepted: 11/19/2021] [Indexed: 12/28/2022] Open
Abstract
Surgical reconstruction in anterior cruciate ligament (ACL) ruptures has proven to be a highly effective technique that usually provides satisfactory results. However, despite the majority of patients recovering their function after this procedure, ACL reconstruction (ACLR) is still imperfect. To improve these results, various biological augmentation (BA) techniques have been employed mostly in animal models. They include: (1) growth factors (bone morphogenetic protein, epidermal growth factor, granulocyte colony-stimulating factor, basic fibroblast growth factor, transforming growth factor-β, hepatocyte growth factor, vascular endothelial growth factor, and platelet concentrates such as platelet-rich plasma, fibrin clot, and autologous conditioned serum), (2) mesenchymal stem cells, (3) autologous tissue, (4) various pharmaceuticals (matrix metalloproteinase-inhibitor alpha-2-macroglobulin bisphosphonates), (5) biophysical/environmental methods (hyperbaric oxygen, low-intensity pulsed ultrasound, extracorporeal shockwave therapy), (6) biomaterials (fixation methods, biological coatings, biosynthetic bone substitutes, osteoconductive materials), and (7) gene therapy. All of them have shown good results in experimental studies; however, the clinical studies on BA published so far are highly heterogeneous and have a low degree of evidence. The most widely used technique to date is platelet-rich plasma. My position is that orthopedic surgeons must be very cautious when considering using PRP or other BA methods in ACLR.
Collapse
Affiliation(s)
- Emerito Carlos Rodríguez-Merchán
- Department of Orthopedic Surgery, La Paz University Hospital—IdiPaz, 28046 Madrid, Spain;
- Osteoarticular Surgery Research, Hospital La Paz Institute for Health Research—IdiPAZ (La Paz University Hospital—Autonomous University of Madrid), 28046 Madrid, Spain
| |
Collapse
|
20
|
Physicochemical Properties and Biocompatibility of Electrospun Polycaprolactone/Gelatin Nanofibers. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18094764. [PMID: 33947053 PMCID: PMC8125554 DOI: 10.3390/ijerph18094764] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 11/17/2022]
Abstract
Tissue-engineered substitutes have shown great promise as a potential replacement for current tissue grafts to treat tendon/ligament injury. Herein, we have fabricated aligned polycaprolactone (PCL) and gelatin (GT) nanofibers and further evaluated their physicochemical properties and biocompatibility. PCL and GT were mixed at a ratio of 100:0, 70:30, 50:50, 30:70, 0:100, and electrospun to generate aligned nanofibers. The PCL/GT nanofibers were assessed to determine the diameter, alignment, water contact angle, degradation, and surface chemical analysis. The effects on cells were evaluated through Wharton's jelly-derived mesenchymal stem cell (WJ-MSC) viability, alignment and tenogenic differentiation. The PCL/GT nanofibers were aligned and had a mean fiber diameter within 200-800 nm. Increasing the GT concentration reduced the water contact angle of the nanofibers. GT nanofibers alone degraded fastest, observed only within 2 days. Chemical composition analysis confirmed the presence of PCL and GT in the nanofibers. The WJ-MSCs were aligned and remained viable after 7 days with the PCL/GT nanofibers. Additionally, the PCL/GT nanofibers supported tenogenic differentiation of WJ-MSCs. The fabricated PCL/GT nanofibers have a diameter that closely resembles the native tissue's collagen fibrils and have good biocompatibility. Thus, our study demonstrated the suitability of PCL/GT nanofibers for tendon/ligament tissue engineering applications.
Collapse
|
21
|
Bone Mesenchymal Stem Cells Contribute to Ligament Regeneration and Graft-Bone Healing after Anterior Cruciate Ligament Reconstruction with Silk-Collagen Scaffold. Stem Cells Int 2021; 2021:6697969. [PMID: 33981343 PMCID: PMC8088362 DOI: 10.1155/2021/6697969] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/25/2021] [Accepted: 04/15/2021] [Indexed: 11/29/2022] Open
Abstract
Anterior cruciate ligament (ACL) reconstruction was realized using a combination of bone mesenchymal stem cells (BMSCs) and silk–collagen scaffold, and an in vivo evaluation of this combination was performed. By combining type I collagen and degummed silk fibroin mesh, silk–collagen scaffolds were prepared to simulate ligament components. BMSCs isolated from bone marrow of rabbits were cultured for a homogenous population and seeded on the silk–collagen scaffold. In the scaffold and BMSC (S/C) group, scaffolds were seeded with BMSCs for 72 h and then rolled and used to replace the ACL in 20 rabbits. In the scaffold (S) group, scaffolds immersed only in culture medium for 72 h were used for ACL reconstruction. Specimens were collected at 4 and 16 weeks postoperatively to assess ligament regeneration and bone integration. HE and immunohistochemical staining (IHC) were performed to assess ligament regeneration in the knee cavity. To assess bone integration at the graft–bone interface, HE, Russell–Movat staining, micro-CT, and biomechanical tests were performed. After 4 weeks, vigorous cell proliferation was observed in the core part of the scaffold in the S/C group, and a quantity of fibroblast-like cells and extracellular matrix (ECM) was observed in the center part of the graft at 16 weeks after surgery. At 4 and 16 weeks postoperatively, the tenascin-C expression in the S/C group was considerably higher than that in the S group (4 w, p < 0.01; 16 w, p < 0.01). Furthermore, bone integration was better in the S/C group than in the S group, with histological observation of trabecular bone growth into the graft and more mineralized tissue formation detected by micro-CT (4 w, bone volume fraction (BV/TV), p = 0.0169, bone mineral density (BMD), p = 0.0001; 16 w, BV/TV, p = 0.1233, BMD, p = 0.0494). These results indicate that BMSCs promote ligament regeneration in the knee cavity and bone integration at the graft–bone interface. Silk–collagen scaffolds and BMSCs will likely be combined for clinical practice in the future.
Collapse
|
22
|
Mao Z, Fan B, Wang X, Huang X, Guan J, Sun Z, Xu B, Yang M, Chen Z, Jiang D, Yu J. A Systematic Review of Tissue Engineering Scaffold in Tendon Bone Healing in vivo. Front Bioeng Biotechnol 2021; 9:621483. [PMID: 33791283 PMCID: PMC8005599 DOI: 10.3389/fbioe.2021.621483] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 02/03/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Tendon-bone healing is an important factor in determining the success of ligament reconstruction. With the development of biomaterials science, the tissue engineering scaffold plays an extremely important role in tendon-bone healing and bone tissue engineering. Materials and Methods: Electronic databases (PubMed, Embase, and the Web of Science) were systematically searched for relevant and qualitative studies published from 1 January 1990 to 31 December 2019. Only original articles that met eligibility criteria and evaluated the use of issue engineering scaffold especially biomaterials in tendon bone healing in vivo were selected for analysis. Results: The search strategy identified 506 articles, and 27 studies were included for full review including two human trials and 25 animal studies. Fifteen studies only used biomaterials like PLGA, collage, PCL, PLA, and PET as scaffolds to repair the tendon-bone defect, on this basis, the rest of the 11 studies using biological interventions like cells or cell factors to enhance the healing. The adverse events hardly ever occurred, and the tendon bone healing with tissue engineering scaffold was effective and superior, which could be enhanced by biological interventions. Conclusion: Although a number of tissue engineering scaffolds have been developed and applied in tendon bone healing, the researches are mainly focused on animal models which are with limitations in clinical application. Since the efficacy and safety of tissue engineering scaffold has been proved, and can be enhanced by biological interventions, substantial clinical trials remain to be done, continued progress in overcoming current tissue engineering challenges should allow for successful clinical practice.
Collapse
Affiliation(s)
- Zimu Mao
- Sports Medicine Department, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China
- Institute of Sports Medicine of Peking University, Beijing, China
| | - Baoshi Fan
- Sports Medicine Department, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China
- Institute of Sports Medicine of Peking University, Beijing, China
- School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Xinjie Wang
- Sports Medicine Department, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China
- Institute of Sports Medicine of Peking University, Beijing, China
| | - Ximeng Huang
- Sports Medicine Department, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China
- Institute of Sports Medicine of Peking University, Beijing, China
| | - Jian Guan
- Sports Medicine Department, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China
- Institute of Sports Medicine of Peking University, Beijing, China
| | - Zewen Sun
- Qingdao University, Qingdao, China
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Bingbing Xu
- Sports Medicine Department, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China
- Institute of Sports Medicine of Peking University, Beijing, China
| | - Meng Yang
- Sports Medicine Department, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China
- Institute of Sports Medicine of Peking University, Beijing, China
- School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Zeyi Chen
- Sports Medicine Department, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China
- Institute of Sports Medicine of Peking University, Beijing, China
| | - Dong Jiang
- Sports Medicine Department, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China
- Institute of Sports Medicine of Peking University, Beijing, China
| | - Jiakuo Yu
- Sports Medicine Department, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China
- Institute of Sports Medicine of Peking University, Beijing, China
| |
Collapse
|
23
|
Bi F, Chen Y, Liu J, Wang Y, Xu D, Tian K. Anterior cruciate ligament reconstruction in a rabbit model using a silk-collagen scaffold modified by hydroxyapatite at both ends: a histological and biomechanical study. J Orthop Surg Res 2021; 16:139. [PMID: 33593365 PMCID: PMC7885370 DOI: 10.1186/s13018-021-02281-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/04/2021] [Indexed: 12/13/2022] Open
Abstract
Background To investigate osteointegration at the graft-bone interface and the prevention of osteoarthritis after anterior cruciate ligament (ACL) reconstruction using a silk-collagen scaffold with both ends modified by hydroxyapatite (HA) in a rabbit model. Methods The HA/silk-collagen scaffold was fabricated using a degummed, knitted silk scaffold, collagen I matrix, and simulated body fluid (SBF). The HA/silk-collagen scaffold was rolled up to make a graft for replacing the native ACL in the experimental group (HA group), and the silk-collagen scaffold was used in the control (S group). All specimens were harvested at 16 weeks postoperatively to evaluate graft-bone healing and osteoarthritis prevention. Results Histological staining revealed the massive formation of more mature bone at the tendon-bone interface, and immunohistochemistry staining revealed more collagen I and osteocalcin deposition in the HA group than in the S group. Higher signals indicating more bone mineral formation were detected in the HA group than in the S group, which was consistent with the results of biomechanical testing. Better osteoarthritis prevention was also observed in the HA group, indicating a more stable knee joint in the HA group than in the S group. Conclusion The HA/silk-collagen scaffold promotes osteointegration at the tendon-bone interface after ACL reconstruction and has great potential for clinical applications. Supplementary Information The online version contains supplementary material available at 10.1186/s13018-021-02281-0.
Collapse
Affiliation(s)
- Fanggang Bi
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, NO.1 Jianshe East Road, Zhengzhou, 450001, China.
| | - Yangdi Chen
- Henan University of Chinese Medicine, NO.156 Jinshui East Road, Zhengzhou, 450001, China
| | - Junqi Liu
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, NO.1 Jianshe East Road, Zhengzhou, 450001, China
| | - Yafei Wang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, NO.1 Jianshe East Road, Zhengzhou, 450001, China
| | - Danfeng Xu
- Department of Orthopedic Surgery, Shaoxing Central Hospital, NO.1 Huayu Road, Shaoxing, 312000, China
| | - Ke Tian
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, NO.1 Jianshe East Road, Zhengzhou, 450001, China
| |
Collapse
|
24
|
Hevesi M, Crispim JF, Paggi CA, Dudakovic A, van Genechten W, Hewett T, Kakar S, Krych AJ, van Wijnen AJ, Saris DBF. A Versatile Protocol for Studying Anterior Cruciate Ligament Reconstruction in a Rabbit Model. Tissue Eng Part C Methods 2020; 25:191-196. [PMID: 30887885 DOI: 10.1089/ten.tec.2018.0357] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Anterior cruciate ligament (ACL) injuries are frequent, as >200,000 injuries occur in the United States alone each year. Owing to the risks for associated meniscus and cartilage damage, ACL injuries are a significant source of both orthopedic care and research. Given the extended recovery course after ACL injury, which often lasts 1-2 years, and is associated with limited participation in sports and activities of daily living for patients, there is a critical need for the evolution of new and improved methods for ACL repair. Subsequently, animal models of ACL reconstruction (ACLR) play a key role in the development and initial trialing of novel ACL interventions. This article provides a clear operative description and associated illustrations for a validated, institutional animal care and use committee, and veterinarian approved and facile model of ACLR to serve researchers investigating ACLR.
Collapse
Affiliation(s)
- Mario Hevesi
- 1 Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota
| | - João F Crispim
- 1 Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota
- 2 Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Carlo A Paggi
- 1 Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota
| | - Amel Dudakovic
- 1 Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota
| | | | - Timothy Hewett
- 1 Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota
| | - Sanjeev Kakar
- 1 Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota
| | - Aaron J Krych
- 1 Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota
| | | | - Daniel B F Saris
- 1 Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota
- 3 Department of Orthopaedics, University Medical Center, Utrecht, Netherlands
| |
Collapse
|
25
|
Miranda CS, Ribeiro ARM, Homem NC, Felgueiras HP. Spun Biotextiles in Tissue Engineering and Biomolecules Delivery Systems. Antibiotics (Basel) 2020; 9:E174. [PMID: 32290536 PMCID: PMC7235791 DOI: 10.3390/antibiotics9040174] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/03/2020] [Accepted: 04/10/2020] [Indexed: 11/24/2022] Open
Abstract
Nowadays, tissue engineering is described as an interdisciplinary field that combines engineering principles and life sciences to generate implantable devices to repair, restore and/or improve functions of injured tissues. Such devices are designed to induce the interaction and integration of tissue and cells within the implantable matrices and are manufactured to meet the appropriate physical, mechanical and physiological local demands. Biodegradable constructs based on polymeric fibers are desirable for tissue engineering due to their large surface area, interconnectivity, open pore structure, and controlled mechanical strength. Additionally, biodegradable constructs are also very sought-out for biomolecule delivery systems with a target-directed action. In the present review, we explore the properties of some of the most common biodegradable polymers used in tissue engineering applications and biomolecule delivery systems and highlight their most important uses.
Collapse
Affiliation(s)
| | | | | | - Helena P. Felgueiras
- Centre for Textile Science and Technology (2C2T), Department of Textile Engineering, University of Minho, Campus of Azurém, 4800-058 Guimarães, Portugal; (C.S.M.); (A.R.M.R.); (N.C.H.)
| |
Collapse
|
26
|
Silva M, Ferreira FN, Alves NM, Paiva MC. Biodegradable polymer nanocomposites for ligament/tendon tissue engineering. J Nanobiotechnology 2020; 18:23. [PMID: 32000800 PMCID: PMC6993465 DOI: 10.1186/s12951-019-0556-1] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 12/05/2019] [Indexed: 02/07/2023] Open
Abstract
Ligaments and tendons are fibrous tissues with poor vascularity and limited regeneration capacity. Currently, a ligament/tendon injury often require a surgical procedure using auto- or allografts that present some limitations. These inadequacies combined with the significant economic and health impact have prompted the development of tissue engineering approaches. Several natural and synthetic biodegradable polymers as well as composites, blends and hybrids based on such materials have been used to produce tendon and ligament scaffolds. Given the complex structure of native tissues, the production of fiber-based scaffolds has been the preferred option for tendon/ligament tissue engineering. Electrospinning and several textile methods such as twisting, braiding and knitting have been used to produce these scaffolds. This review focuses on the developments achieved in the preparation of tendon/ligament scaffolds based on different biodegradable polymers. Several examples are overviewed and their processing methodologies, as well as their biological and mechanical performances, are discussed.
Collapse
Affiliation(s)
- Magda Silva
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark-Parque de Ciência e Tecnologia, Barco, 4805-017, Guimarães, Portugal
- ICVS/3B's, Associate PT Government Laboratory, Braga/Guimarães, Portugal
- Department of Polymer Engineering, Institute for Polymers and Composites/i3N, University of Minho, 4800-058, Guimarães, Portugal
- 2C2T-Centre of Textile Science and Technology, University of Minho, 4800-058, Guimarães, Portugal
| | - Fernando N Ferreira
- 2C2T-Centre of Textile Science and Technology, University of Minho, 4800-058, Guimarães, Portugal
| | - Natália M Alves
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark-Parque de Ciência e Tecnologia, Barco, 4805-017, Guimarães, Portugal.
- ICVS/3B's, Associate PT Government Laboratory, Braga/Guimarães, Portugal.
| | - Maria C Paiva
- Department of Polymer Engineering, Institute for Polymers and Composites/i3N, University of Minho, 4800-058, Guimarães, Portugal.
| |
Collapse
|
27
|
Silk fibroin for skin injury repair: Where do things stand? Adv Drug Deliv Rev 2020; 153:28-53. [PMID: 31678360 DOI: 10.1016/j.addr.2019.09.003] [Citation(s) in RCA: 136] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 09/12/2019] [Accepted: 09/26/2019] [Indexed: 12/29/2022]
Abstract
Several synthetic and natural materials are used in soft tissue engineering and regenerative medicine with varying degrees of success. Among them, silkworm silk protein fibroin, a naturally occurring protein-based biomaterial, exhibits many promising characteristics such as biocompatibility, controllable biodegradability, tunable mechanical properties, aqueous preparation, minimal inflammation in host tissue, low cost and ease of use. Silk fibroin is often used alone or in combination with other materials in various formats and is also a promising delivery system for bioactive compounds as part of such repair scenarios. These properties make silk fibroin an excellent biomaterial for skin tissue engineering and repair applications. This review focuses on the promising characteristics and recent advances in the use of silk fibroin for skin wound healing and/or soft-tissue repair applications. The benefits and limitations of silk fibroin as a scaffolding biomaterial in this context are also discussed. STATEMENT OF SIGNIFICANCE: Silk protein fibroin is a natural biomaterial with important biological and mechanical properties for soft tissue engineering applications. Silk fibroin is obtained from silkworms and can be purified using alkali or enzyme based degumming (removal of glue protein sericin) procedures. Fibroin is used alone or in combination with other materials in different scaffold forms, such as nanofibrous mats, hydrogels, sponges or films tailored for specific applications. The investigations carried out using silk fibroin or its blends in skin tissue engineering have increased dramatically in recent years due to the advantages of this unique biomaterial. This review focuses on the promising characteristics of silk fibroin for skin wound healing and/or soft-tissue repair applications.
Collapse
|
28
|
Suryavanshi A, Khanna K, Sindhu KR, Bellare J, Srivastava R. Development of bone screw using novel biodegradable composite orthopedic biomaterial: from material design to
in vitro
biomechanical and
in vivo
biocompatibility evaluation. Biomed Mater 2019; 14:045020. [DOI: 10.1088/1748-605x/ab16be] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
29
|
Chen B, Zhang J, Nie D, Zhao G, Fu FH, Wang JHC. Characterization of the structure of rabbit anterior cruciate ligament and its stem/progenitor cells. J Cell Biochem 2019; 120:7446-7457. [PMID: 30387227 DOI: 10.1002/jcb.28019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 10/15/2018] [Indexed: 01/24/2023]
Abstract
BACKGROUND It is known that anterior cruciate ligament (ACL) of the knee joint is prone to injuries with poor healing potential. The healing capacity of a tissue-like ACL is dependent on its structural components and the properties of the stem cells (SCs). Therefore, this study aimed to characterize the structure of ACL tissue and the properties of the SCs derived from the tissue components. METHODS The tissue structure of rabbit ACL was determined using a scanning electron microscope, hematoxylin and eosin, and immunohistochemical staining. The biological properties of SCs derived from the structural components of ACL were studied by colony formation, cell proliferation assay, SC marker expression and collagen exhibition, and multidifferentiation potential. RESULTS The two distinct components of ACL are classified as sheath and core, which possess differential properties in terms of collagen type, organization, and presence of blood vessels. The sheath tissue contains vascular SCs and the core tissue contains ligamentous SCs, respectively. The two types of SCs differ in clonogenicity, proliferation, and multidifferentiation potential. CONCLUSION This study shows that ACL consists of sheath and core tissues, which contain sheath and core SCs with distinctive biological properties. These findings highlight the need for use of both sheath and core SCs to promote the repair of the complex structure of injured ACL.
Collapse
Affiliation(s)
- Biao Chen
- MechanoBiology Laboratory, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Orthopaedic Surgery, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Jianying Zhang
- MechanoBiology Laboratory, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Daibang Nie
- MechanoBiology Laboratory, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Guangyi Zhao
- MechanoBiology Laboratory, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Freddie H Fu
- MechanoBiology Laboratory, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - James H-C Wang
- MechanoBiology Laboratory, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
30
|
Abstract
PURPOSE OF REVIEW We reviewed the recent literature to identify and summarize new research surrounding anterior cruciate ligament reconstruction (ACLR) with augmentation in the form of additional soft tissue procedures or biologic augmentation. Specifically, we wanted to review the failure rates of these procedures in both the primary and revision settings. METHODS The databases Embase, PubMed, and Medline were searched on August 13, 2018, for English-language studies that reported on the use of anterior cruciate ligament reconstruction (primary and revision) in conjunction with either soft tissue or biologic augmentation. The studies were systematically screened and data abstracted in duplicates. RECENT FINDINGS Advancements in ACLR surgery, including soft tissue augmentation, may decrease primary and revision surgery failure rates for high-risk patients. The use of biological augmentation has shown histologic and radiographic improvements. These differences, however, have failed to be statistically significant and have not resulted in clinically significant improvements in outcome. The limited body of evidence has shown that the addition of soft tissue procedures may in fact lower the risk of graft re-rupture rates particularly in revision or in patients wishing to return to high-risk sports and activities. The use of biologic augmentation although promising in laboratory studies has yet to show any significant clinical results and therefore will require further studies to prove any efficacy.
Collapse
|
31
|
Seo YB, Lee OJ, Sultan MT, Lee JM, Park YR, Yeon YK, Lee JS, Lee YJ, Kim SH, Park CH. In vitro and in vivo evaluation of the duck's feet collagen sponge for hemostatic applications. J Biomater Appl 2019; 32:484-491. [PMID: 28992806 DOI: 10.1177/0885328217733338] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Recently different hemostatic agents have been developed, but most of them are ineffective in severe bleeding and expensive or cause safety concerns. In this study, we fabricated duck's feet collagen-based porous sponges and investigated its use as a hemostatic agent. We determined the sponge's physical and biological characteristics and compared with Avitene via scanning electron microscope analysis, water-uptake abilities and porosity test, and cytotoxicity assay. The duck's feet collagen/silk sponge showed a larger interconnected porous structure compared to others sponges. The duck's feet collagen/silk sponge also exhibited significantly higher porosity than Avitene. Hemostatic properties of the sponges were evaluated by whole blood clotting and rat femoral artery hemorrhage experiment. The addition of silk to duck's feet collagen showed better blood clotting ability than Avitene in vitro. However, rat femoral artery hemorrhage test showed a similar hemostatic property between the duck's feet collagen-based sponges and Avitene. We suggest that duck's feet collagen-based sponge can be effectively used for hemostatic applications.
Collapse
Affiliation(s)
- Ye Been Seo
- 1 Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Ok Joo Lee
- 1 Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Md Tipu Sultan
- 1 Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Jung Min Lee
- 1 Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Ye Ri Park
- 1 Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Yeung Kyu Yeon
- 1 Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Ji Seung Lee
- 1 Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Young Jin Lee
- 1 Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Soon Hee Kim
- 1 Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Chan Hum Park
- 1 Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, Chuncheon, Republic of Korea.,2 Department of Otorhinolaryngology-Head and Neck Surgery, Chuncheon Sacred Heart Hospital, Hallym University, College of Medicine, Chuncheon, Republic of Korea
| |
Collapse
|
32
|
Pagán A, Aznar‐Cervantes SD, Pérez‐Rigueiro J, Meseguer‐Olmo L, Cenis JL. Potential use of silkworm gut fiber braids as scaffolds for tendon and ligament tissue engineering. J Biomed Mater Res B Appl Biomater 2019; 107:2209-2215. [DOI: 10.1002/jbm.b.34300] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 10/22/2018] [Accepted: 12/09/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Ana Pagán
- Department of BiotechnologyInstituto Murciano de Investigación y Desarrollo Agrario y Alimentario (IMIDA) Murcia Spain
| | - Salvador D. Aznar‐Cervantes
- Department of BiotechnologyInstituto Murciano de Investigación y Desarrollo Agrario y Alimentario (IMIDA) Murcia Spain
| | - José Pérez‐Rigueiro
- Centro de Tecnología BiomédicaUniversidad Politécnica de Madrid Madrid Spain
- Departamento de Ciencia de MaterialesETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid Madrid Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER‐BBN) Madrid Spain
| | - Luis Meseguer‐Olmo
- Grupo de Regeneración y Reparacion de TejidosUniversidad Católica de Murcia Murcia Spain
| | - Jose L. Cenis
- Department of BiotechnologyInstituto Murciano de Investigación y Desarrollo Agrario y Alimentario (IMIDA) Murcia Spain
| |
Collapse
|
33
|
Chai F, Wan F, Jiang J, Chen S. Micro-scale assessment of the postoperative effect of anterior cruciate ligament reconstruction preclinical study using a 7.1T micro-magnetic resonance imaging. Exp Ther Med 2019; 17:214-220. [PMID: 30651785 PMCID: PMC6307410 DOI: 10.3892/etm.2018.6080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 03/01/2018] [Indexed: 11/26/2022] Open
Abstract
High-field micro-magnetic resonance imaging (MRI) scanning may provide additional information for quantitative analysis of graft bone healing processes, thus serving as a promising supplementary method in graft and bone healing evaluation following anterior cruciate ligament reconstruction (ACLR) surgery during preclinical studies. The present study included 12 New Zealand white rabbits that underwent ACLR with polyethylene terephthalate (PET) ligament. At 4, 8, and 16 weeks following surgery, 4 rabbits were euthanized and knee joint samples were harvested for a 7.1T micro-magnetic resonance imaging (MRI) scan. The graft bone tunnel diameter and signal noise ratio (SNR) at the region of interest (ROI) were measured. Hematoxylin-eosin staining was performed at each time point to verify the graft bone healing process in histology. The bone tunnel diameter at the graft tunnel interface decreased over time in both femoral and tibial parts. Notably, the tunnel size was smaller than the diameter of the drilling Kirschner wire that was used to observe the femoral part and proximal site of the tibial part at 16 weeks following surgery. SNR research demonstrated that both the femoral and tibial part PET ligaments selected in the ROI exhibited a marked increase in SNR from the initial 4-week results. The micro-MRI result was consistent with that of histological analysis. Micro-MRI scanning was applied in an animal model that underwent ACL reconstruction surgery with PET ligament, and it was determined that micro-MRI is promising in quantitatively observing graft bone healing processes directly with a focus on graft tunnel distances and SNRs.
Collapse
Affiliation(s)
- Fang Chai
- Department of Orthopedics, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310003, P.R. China.,Department of Sports Medicine and Arthroscopic Surgery, Huashan Hospital, Sports Medicine Center, Fudan University, Shanghai 200040, P.R. China
| | - Fang Wan
- Department of Sports Medicine and Arthroscopic Surgery, Huashan Hospital, Sports Medicine Center, Fudan University, Shanghai 200040, P.R. China
| | - Jia Jiang
- Department of Sports Medicine and Arthroscopic Surgery, Huashan Hospital, Sports Medicine Center, Fudan University, Shanghai 200040, P.R. China
| | - Shiyi Chen
- Department of Sports Medicine and Arthroscopic Surgery, Huashan Hospital, Sports Medicine Center, Fudan University, Shanghai 200040, P.R. China
| |
Collapse
|
34
|
Qian S, Wang Z, Zheng Z, Ran J, Zhu J, Chen W. A Collagen and Silk Scaffold for Improved Healing of the Tendon and Bone Interface in a Rabbit Model. Med Sci Monit 2019; 25:269-278. [PMID: 30622234 PMCID: PMC6338012 DOI: 10.12659/msm.912038] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Background The study aimed to develop a novel orthopedic surgical scaffold made of collagen and silk to repair the tendon and bone interface, and to investigate its influence on tendon and bone healing in a rabbit model. Material/Methods Four types of surgical scaffold were prepared, including a random collagen scaffold (RCS), an aligned collagen scaffold (ACS), a random collagen scaffold combined with knitted silk (RCSS), and an aligned collagen scaffold combined with knitted silk (ACSS). Rabbit bone marrow stem cells (BMSCs) were cultured and seeded onto the RCS and ACS scaffold. The animal model included four-month-old female New Zealand White rabbits (N=20) that underwent drilling into the rotator cuff of the left supraspinatus muscle tendon, randomized into the ACSS and RCSS groups. Results Rabbit BMSCs adhered to and proliferated on the RCS and ACS in vitro. Transcription levels of the COL I, COL III, and tenascin (TCN) genes were significantly increased in the ACS group compared with the RCS group. Transcription levels of COL I, runt-related transcription factor-2 (RUNX-2) and bone morphogenetic protein-2 (BMP-2) were significantly increased in the RCS group compared with the ACS group. RCSS and ACSS implanted in the rabbit models for eight weeks resulted in more regenerative tissue in the RCSS group compared with the ACSS group, with new cartilage at the tendon and bone interface at 12 weeks. Conclusions A collagen and silk scaffold improved healing of the tendon and bone interface in a rabbit model.
Collapse
Affiliation(s)
- Shengjun Qian
- Centre for Orthopedic Research, Orthopedics Research Institute of Zhejiang University, Department of Orthopedics, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China (mainland)
| | - Zhan Wang
- Centre for Orthopedic Research, Orthopedics Research Institute of Zhejiang University, Department of Orthopedics, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China (mainland)
| | - Zefeng Zheng
- Centre for Orthopedic Research, Orthopedics Research Institute of Zhejiang University, Department of Orthopedics, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China (mainland)
| | - Jisheng Ran
- Centre for Orthopedic Research, Orthopedics Research Institute of Zhejiang University, Department of Orthopedics, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China (mainland)
| | - Junfeng Zhu
- Department of Orthopedics, Suichang Peoples' Hospital, Lishui, Zhejiang, China (mainland)
| | - Weishan Chen
- Centre for Orthopedic Research, Orthopedics Research Institute of Zhejiang University, Department of Orthopedics, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China (mainland)
| |
Collapse
|
35
|
Zhi Y, Jiang J, Zhang P, Chen S. Silk enhances the ligamentization of the polyethylene terephthalate artificial ligament in a canine anterior cruciate ligament reconstruction model. Artif Organs 2018; 43:E94-E108. [PMID: 30412273 DOI: 10.1111/aor.13389] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 10/29/2018] [Accepted: 11/02/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Yunlong Zhi
- Department of Sports Medicine Huashan Hospital, Fudan University Shanghai China
| | - Jia Jiang
- Department of Sports Medicine Huashan Hospital, Fudan University Shanghai China
| | - Peng Zhang
- Department of Sports Medicine Huashan Hospital, Fudan University Shanghai China
| | - Shiyi Chen
- Department of Sports Medicine Huashan Hospital, Fudan University Shanghai China
| |
Collapse
|
36
|
Lopes D, Martins-Cruz C, Oliveira MB, Mano JF. Bone physiology as inspiration for tissue regenerative therapies. Biomaterials 2018; 185:240-275. [PMID: 30261426 PMCID: PMC6445367 DOI: 10.1016/j.biomaterials.2018.09.028] [Citation(s) in RCA: 209] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 09/15/2018] [Accepted: 09/17/2018] [Indexed: 12/14/2022]
Abstract
The development, maintenance of healthy bone and regeneration of injured tissue in the human body comprise a set of intricate and finely coordinated processes. However, an analysis of current bone regeneration strategies shows that only a small fraction of well-reported bone biology aspects has been used as inspiration and transposed into the development of therapeutic products. Specific topics that include inter-scale bone structural organization, developmental aspects of bone morphogenesis, bone repair mechanisms, role of specific cells and heterotypic cell contact in the bone niche (including vascularization networks and immune system cells), cell-cell direct and soluble-mediated contact, extracellular matrix composition (with particular focus on the non-soluble fraction of proteins), as well as mechanical aspects of native bone will be the main reviewed topics. In this Review we suggest a systematic parallelization of (i) fundamental well-established biology of bone, (ii) updated and recent advances on the understanding of biological phenomena occurring in native and injured tissue, and (iii) critical discussion of how those individual aspects have been translated into tissue regeneration strategies using biomaterials and other tissue engineering approaches. We aim at presenting a perspective on unexplored aspects of bone physiology and how they could be translated into innovative regeneration-driven concepts.
Collapse
Affiliation(s)
- Diana Lopes
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago,, 3810 193 Aveiro, Portugal
| | - Cláudia Martins-Cruz
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago,, 3810 193 Aveiro, Portugal
| | - Mariana B Oliveira
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago,, 3810 193 Aveiro, Portugal.
| | - João F Mano
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago,, 3810 193 Aveiro, Portugal.
| |
Collapse
|
37
|
Liu S, Sun Y, Wan F, Ding Z, Chen S, Chen J. Advantages of an Attached Semitendinosus Tendon Graft in Anterior Cruciate Ligament Reconstruction in a Rabbit Model. Am J Sports Med 2018; 46:3227-3236. [PMID: 30285459 DOI: 10.1177/0363546518799357] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND The semitendinosus tendon graft with an intact tibial insertion has a sustainable blood supply and might be beneficial for graft maturation after anterior cruciate ligament reconstruction (ACLR); however, its potential advantages for graft tendon-bone healing is still unclear. HYPOTHESIS Intact tibial insertion of the hamstring tendon can preserve enough blood supply to keep the harvested tendon alive, which can improve tendon-bone healing and the biomechanical strength of the graft. STUDY DESIGN Controlled laboratory study. METHODS Sixty-four healthy New Zealand White rabbits underwent unilateral ACLR with a semitendinosus tendon autograft after random enrollment into 2 groups (study group, n = 32 rabbits with semitendinosus tendon-preserved tibial insertions; control group, n = 32 rabbits with free semitendinosus tendons). At weeks 3, 6, 12, and 24, 8 rabbits in each group were sacrificed to evaluate tendon-bone healing by histologic staining, micro-computed tomography (micro-CT) examination, and biomechanical test. RESULTS The grafts in the study group maintained a similar cell count with no signs of necrosis or hypocellularity across all time points, but the grafts in the control group underwent a characteristic stage of necrosis at weeks 3 and 6. Sharpey-like fibers were observed from postoperative 3 weeks at the tendon-bone interface in the study group, and a normal insertion-like structure was formed at week 12, which became more mature at week 24. In the control group, however, Sharpey-like fibers could not be observed until week 12, and a normal transition through cartilage from bone to tendon was not observed at any time point. Histologic scores of the tendon-bone interface in the study group were significantly higher than those in the control group at week 6 ( P = .04), week 12 ( P < .001), and week 24 ( P = .04). As compared with the control group via micro-CT, the study group had a significantly smaller bone tunnel area at week 6 ( P = .01) and larger bone volume/total volume at week 3 ( P = .0026) and week 6 ( P = .01). Also, the study group had a significantly higher failure load at weeks 12 and 24 (both P = .03) and a significantly higher stiffness at week 24 ( P < .001) versus the control group. CONCLUSION The semitendinosus tendon graft with an intact tibial insertion in ACLR would bypass the graft avascular necrosis stage, which improves tendon-bone healing and biomechanical strength. CLINICAL RELEVANCE An alive graft in ACLR could improve tendon-bone healing and the biomechanical strength of the graft, which might be beneficial to early and intensive rehabilitation after ACLR.
Collapse
Affiliation(s)
- Shaohua Liu
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yaying Sun
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Fang Wan
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Zheci Ding
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Shiyi Chen
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jiwu Chen
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
38
|
Zhang C, Pan J, Chen JD, Zhang YJ, Gu PC, Lin XJ, Cai YZ. The Effect of Cartilage Fragments on Femoral Tunnel Widening After Anterior Cruciate Ligament Reconstruction: A Prospective Randomized Controlled Study. Arthroscopy 2018; 34:2218-2227. [PMID: 29730208 DOI: 10.1016/j.arthro.2018.03.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 02/25/2018] [Accepted: 03/02/2018] [Indexed: 02/02/2023]
Abstract
PURPOSE To analyze the effect of cartilage fragments on tunnel widening and tendon-bone integration at 2 years' follow-up after anterior cruciate ligament reconstruction (ACLR). METHODS A prospective randomized controlled study was performed in 116 patients who underwent ACLR with autologous hamstring tendons augmented with cartilage fragments (study group, n = 56) or without any augmentation (control group, n = 60). All patients were followed up for 25.6 months (range, 24-28 months), and the International Knee Documentation Committee score, Lysholm score, and visual analog scale score were determined. Computed tomography scans of all patients were obtained 2 years after surgery to evaluate the diameter of the femoral tunnel and thereby assess the amount of tunnel widening. Magnetic resonance imaging evaluation was performed 2 years postoperatively to evaluate the status of the graft in the femoral tunnel. In addition, 5 patients underwent biopsy of the tendon-bone interface at 24 months postoperatively with histologic assessment and transmission electron microscopy. RESULTS A total of 107 patients completed the follow-up. There were no significant differences between the 2 groups in terms of International Knee Documentation Committee score (P = .07), Lysholm score (P = .10), and visual analog scale score (P = .57) at 24 months' follow-up. The femoral tunnel diameter and the tunnel widening percentage in the study group were significantly smaller than those in the control group (P < .001). The signal-noise quotient value of the graft in the femoral tunnel was 10.4 ± 7.0 in the study group, which was significantly lower than that in the control group (19.5 ± 9.2, P < .001). Histologic studies of the tendon-bone interface showed that there were more bone formations containing chondroid cells with aligned connective tissue in the study group compared with the control group; in addition, the diameter of the collagen fibrils in the study group was considerably thicker than that in the control group (P < .05). CONCLUSIONS The use of cartilage fragments was effective in preventing femoral tunnel widening and seemed to promote the tendon-bone integration process after ACLR. LEVEL OF EVIDENCE Level II, prospective randomized controlled study.
Collapse
Affiliation(s)
- Chi Zhang
- Center for Sport Medicine, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jun Pan
- Center for Sport Medicine, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jian-De Chen
- Department of Orthopedics, Traditional Chinese Medicine of Shaoxing Hospital, Shaoxing, China
| | - Yi-Jun Zhang
- Center for Sport Medicine, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Peng-Cheng Gu
- Center for Sport Medicine, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xiang-Jin Lin
- Center for Sport Medicine, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - You-Zhi Cai
- Center for Sport Medicine, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
39
|
Hu Y, Ran J, Zheng Z, Jin Z, Chen X, Yin Z, Tang C, Chen Y, Huang J, Le H, Yan R, Zhu T, Wang J, Lin J, Xu K, Zhou Y, Zhang W, Cai Y, Dominique P, Heng BC, Chen W, Shen W, Ouyang HW. Exogenous stromal derived factor-1 releasing silk scaffold combined with intra-articular injection of progenitor cells promotes bone-ligament-bone regeneration. Acta Biomater 2018. [PMID: 29524675 DOI: 10.1016/j.actbio.2018.02.019] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Anterior cruciate ligament (ACL) is one of the most difficult tissues to heal once injured. Ligament regeneration and tendon-bone junction healing are two major goals of ACL reconstruction. This study aimed to investigate the synergistic therapeutic effects of Stromal cell-derived factor 1 (SDF-1)-releasing collagen-silk (CSF) scaffold combined with intra-articular injection of ligament-derived stem/progenitor cells (LSPCs) for ACL regeneration and the amelioration in the long-term complication of osteoarthritis (OA). The stem cell recruitment ability of CSF scaffold and the multipotency, particularly the tendon forming ability of LSPCs from rabbits were characterized in vitro, while the synergistic effect of the CSF scaffold and LSPCs for ACL regeneration and OA amelioration were investigated in vivo at 1, 3, and 6 months with a rabbit ACL reconstruction model. The CSF scaffold was used as a substitute for the ACL, and LSPCs were injected into the joint cavity after 7 days of the ACL reconstruction. CSF scaffold displayed a controlled release pattern for the encapsulated protein for up to 7 days with an increased stiffness in the mechanical property. LSPCs, which exhibited highly I Collagen and CXCR4 expression, were attracted by SDF-1 and successfully relocated into the CSF scaffold at 1 month in vivo. At 3 and 6 months post-treatment, the CSF scaffold combined with LSPCs (CSFL group) enhanced the regeneration of ACL tissue, and promoted bone tunnel healing. Furthermore, the OA progression was impeded efficiently. Our findings here provided a new strategy that using stem cell recruiting CSF scaffold with tissue-specific stem cells, could be a promising solution for ACL regeneration. STATEMENT OF SIGNIFICANCE In this study, we developed a silk scaffold with increased stiffness and SDF-1 controlled release capacity for ligament repair. This advanced scaffold transplantation combined with intra-articular injection of LSPCs (which was isolated from rabbit ligament for the first time in this study) promoted the regeneration of both the tendinous and bone tunnel portion of ACL. This therapeutic strategy also ameliorated cartilage degeneration and reduced the severity of arthrofibrosis. Hence, combining LSPCs injection with SDF-1-releasing silk scaffold is demonstrated as a therapeutic strategy for ACL regeneration and OA treatment in the clinic.
Collapse
|
40
|
Hexter AT, Thangarajah T, Blunn G, Haddad FS. Biological augmentation of graft healing in anterior cruciate ligament reconstruction: a systematic review. Bone Joint J 2018; 100-B:271-284. [PMID: 29589505 DOI: 10.1302/0301-620x.100b3.bjj-2017-0733.r2] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Aims The success of anterior cruciate ligament reconstruction (ACLR) depends on osseointegration at the graft-tunnel interface and intra-articular ligamentization. Our aim was to conduct a systematic review of clinical and preclinical studies that evaluated biological augmentation of graft healing in ACLR. Materials and Methods In all, 1879 studies were identified across three databases. Following assessment against strict criteria, 112 studies were included (20 clinical studies; 92 animal studies). Results Seven categories of biological interventions were identified: growth factors, biomaterials, stem cells, gene therapy, autologous tissue, biophysical/environmental, and pharmaceuticals. The methodological quality of animal studies was moderate in 97%, but only 10% used clinically relevant outcome measures. The most interventions in clinical trials target the graft-tunnel interface and are applied intraoperatively. Platelet-rich plasma is the most studied intervention, but the clinical outcomes are mixed, and the methodological quality of studies was suboptimal. Other biological therapies investigated in clinical trials include: remnant-augmented ACLR; bone substitutes; calcium phosphate-hybridized grafts; extracorporeal shockwave therapy; and adult autologus non-cultivated stem cells. Conclusion There is extensive preclinical research supporting the use of biological therapies to augment ACLR. Further clinical studies that meet the minimum standards of reporting are required to determine whether emerging biological strategies will provide tangible benefits in patients undergoing ACLR. Cite this article: Bone Joint J 2018;100-B:271-84.
Collapse
Affiliation(s)
- A T Hexter
- Institute of Orthopaedics and Musculoskeletal Science, Division of Surgery and Interventional Science, University College London, and Royal National Orthopaedic Hospital Brockley Hill, Stanmore, Middlesex HA7 4LP, UK
| | - T Thangarajah
- Institute of Orthopaedics and Musculoskeletal Science, Division of Surgery and Interventional Science, University College London, and Royal National Orthopaedic Hospital Brockley Hill, Stanmore, Middlesex HA7 4LP, UK
| | - G Blunn
- Institute of Orthopaedics and Musculoskeletal Science, Division of Surgery and Interventional Science, University College London, and Royal National Orthopaedic Hospital Brockley Hill, Stanmore, Middlesex HA7 4LP, UK
| | - F S Haddad
- University College London Hospitals, 235 Euston Road, London, NW1 2BU, UK and NIHR University College London Hospitals Biomedical Research Centre, UK
| |
Collapse
|
41
|
Parry JA, Wagner ER, Kok PL, Dadsetan M, Yaszemski MJ, van Wijnen AJ, Kakar S. A Combination of a Polycaprolactone Fumarate Scaffold with Polyethylene Terephthalate Sutures for Intra-Articular Ligament Regeneration. Tissue Eng Part A 2018; 24:245-253. [DOI: 10.1089/ten.tea.2016.0531] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Joshua A. Parry
- Tissue Engineering and Biomaterials Laboratory, Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota
| | - Eric R. Wagner
- Tissue Engineering and Biomaterials Laboratory, Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota
| | - Peter L. Kok
- Tissue Engineering and Biomaterials Laboratory, Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota
| | - Mahrokh Dadsetan
- Tissue Engineering and Biomaterials Laboratory, Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota
| | - Michael J. Yaszemski
- Tissue Engineering and Biomaterials Laboratory, Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota
| | - Andre J. van Wijnen
- Tissue Engineering and Biomaterials Laboratory, Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota
| | - Sanjeev Kakar
- Tissue Engineering and Biomaterials Laboratory, Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
42
|
Maghdouri-White Y, Petrova S, Sori N, Polk S, Wriggers H, Ogle R, Ogle R, Francis M. Electrospun silk–collagen scaffolds and BMP-13 for ligament and tendon repair and regeneration. Biomed Phys Eng Express 2018. [DOI: 10.1088/2057-1976/aa9c6f] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
43
|
Development of Multilayered Chlorogenate-Peptide Based Biocomposite Scaffolds for Potential Applications in Ligament Tissue Engineering - An <i>In Vitro</i> Study. JOURNAL OF BIOMIMETICS BIOMATERIALS AND BIOMEDICAL ENGINEERING 2017. [DOI: 10.4028/www.scientific.net/jbbbe.34.37] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, for the first time, chlorogenic acid, a natural phytochemical, was conjugated to a lactoferrin derived antimicrobial peptide sequence RRWQWRMKKLG to develop a self-assembled template. To mimic the components of extracellular matrix, we then incorporated Type I Collagen, followed by a sequence of aggrecan peptide (ATEGQVRVNSIYQDKVSL) onto the self-assembled templates for potential applications in ligament tissue regeneration. Mechanical properties and surface roughness were studied and the scaffolds displayed a Young’s Modulus of 169 MP and an average roughness of 72 nm respectively. Thermal phase changes were studied by DSC analysis. Results showed short endothermic peaks due to water loss and an exothermic peak due to crystallization of the scaffold caused by rearrangement of the components. Biodegradability studies indicated a percent weight loss of 27.5 % over a period of 37 days. Furthermore, the scaffolds were found to adhere to fibroblasts, the main cellular component of ligament tissue. The scaffolds promoted cell proliferation and displayed actin stress fibers indicative of cell motility and attachment. Collagen and proteoglycan synthesis were also promoted, demonstrating increased expression and deposition of collagen and proteoglycans. Additionally, the scaffolds exhibited antimicrobial activity against Staphylococcus epidermis bacteria, which is beneficial for minimizing biofilm formation if potentially used as implants. Thus, we have developed a novel biocomposite that may open new avenues to enhance ligament tissue regeneration.
Collapse
|
44
|
Wang W, Deng D, Wang B, Zhou G, Zhang W, Cao Y, Zhang P, Liu W. Comparison of Autologous, Allogeneic, and Cell-Free Scaffold Approaches for Engineered Tendon Repair in a Rabbit Model-A Pilot Study. Tissue Eng Part A 2017; 23:750-761. [PMID: 28358280 DOI: 10.1089/ten.tea.2016.0447] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Wenbo Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering Research, Shanghai Ninth People's Hospital, National Tissue Engineering Center of China, Shanghai, P.R. China
| | - Dan Deng
- Department of Dermatology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Bin Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering Research, Shanghai Ninth People's Hospital, National Tissue Engineering Center of China, Shanghai, P.R. China
| | - Guangdong Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering Research, Shanghai Ninth People's Hospital, National Tissue Engineering Center of China, Shanghai, P.R. China
| | - WenJie Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering Research, Shanghai Ninth People's Hospital, National Tissue Engineering Center of China, Shanghai, P.R. China
| | - Yilin Cao
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering Research, Shanghai Ninth People's Hospital, National Tissue Engineering Center of China, Shanghai, P.R. China
| | - Peihua Zhang
- College of Textiles, Donghua University, Shanghai, P.R. China
| | - Wei Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering Research, Shanghai Ninth People's Hospital, National Tissue Engineering Center of China, Shanghai, P.R. China
| |
Collapse
|
45
|
Gulati K, Meher MK, Poluri KM. Glycosaminoglycan-based resorbable polymer composites in tissue refurbishment. Regen Med 2017. [DOI: 10.2217/rme-2017-0012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Regeneration of tissue structure with the aid of bioactive polymer matrices/composites and scaffolds for respective applications is one of the emerging areas of biomedical engineering. Recent advances in conjugated glycosaminoglycan (GAG) hybrids using natural and synthetic polymers have opened new avenues for producing a wide variety of resorbable polymer matrices. These hybrid scaffolds are low-immunogenic, highly biocompatible and biodegradable with incredible mechanical and tensile properties. GAG-based resorbable polymeric matrices are being exploited in migration of stem cells, cartilage and bone replacement/regeneration and production of scaffolds for various tissue engineering applications. In the current review, we will discuss the role of GAG-based resorbable polymer matrices in the field of regenerative medicine.
Collapse
Affiliation(s)
- Khushboo Gulati
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Mukesh Kumar Meher
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Krishna Mohan Poluri
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| |
Collapse
|
46
|
Boonrungsiman S, Thongtham N, Suwantong O, Wutikhun T, Soykeabkaew N, Nimmannit U. An improvement of silk-based scaffold properties using collagen type I for skin tissue engineering applications. Polym Bull (Berl) 2017. [DOI: 10.1007/s00289-017-2063-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
47
|
Sha Y, Afandi R, Zhang B, Yang L, Lv Y. MGF E peptide pretreatment improves collagen synthesis and cell proliferation of injured human ACL fibroblasts via MEK-ERK1/2 signaling pathway. Growth Factors 2017; 35:29-38. [PMID: 28553731 DOI: 10.1080/08977194.2017.1327856] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Injured anterior cruciate ligament (ACL) is hard to heal due to the poor proliferative potential of ACL fibroblasts. To verify whether mechano-growth factor (MGF) E peptide can restore the cell proliferation of injured ACL fibroblasts, ACL fibroblasts pretreated with MGF E peptide were subjected to injurious stretch and the outcomes were evaluated at 0 and 24 h. After injured, the type III collagen synthesis was increased at 0 h while inhibited at 24 h. The matrix metalloproteinase-2 (MMP-2) activity/expression was up-regulated, but the cell proliferation was inhibited. Fortunately, exogenous MGF E peptide decreased the type I/III collagen synthesis at 0 h but improved the type III collagen synthesis at 24 h. It decreased the MMP-2 activity/expression of injured ACL fibroblasts. Besides, MGF E peptide accelerated the cell proliferation via MEK-ERK1/2 signaling pathway. Our results implied that MGF E peptide pretreatment could provide a new efficient approach for ACL regeneration.
Collapse
Affiliation(s)
- Yongqiang Sha
- a Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University , Chongqing , China and
- b Mechanobiology and Regenerative Medicine Laboratory, Bioengineering College, Chongqing University , Chongqing , China
| | - Ruli Afandi
- a Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University , Chongqing , China and
- b Mechanobiology and Regenerative Medicine Laboratory, Bioengineering College, Chongqing University , Chongqing , China
| | - Bingbing Zhang
- a Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University , Chongqing , China and
- b Mechanobiology and Regenerative Medicine Laboratory, Bioengineering College, Chongqing University , Chongqing , China
| | - Li Yang
- a Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University , Chongqing , China and
- b Mechanobiology and Regenerative Medicine Laboratory, Bioengineering College, Chongqing University , Chongqing , China
| | - Yonggang Lv
- a Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University , Chongqing , China and
- b Mechanobiology and Regenerative Medicine Laboratory, Bioengineering College, Chongqing University , Chongqing , China
| |
Collapse
|
48
|
Locke RC, Abraham AC, Killian ML. Orthopedic Interface Repair Strategies Based on Native Structural and Mechanical Features of the Multiscale Enthesis. ACS Biomater Sci Eng 2016; 3:2633-2643. [PMID: 32832593 DOI: 10.1021/acsbiomaterials.6b00599] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The enthesis is an organ that connects a soft, aligned tissue (tendon/ligament) to a hard, amorphous tissue (bone) via a fibrocartilage interface. Mechanically, the enthesis sustains a dynamic loading environment that includes tensile, compressive, and shear forces. The structural components of the enthesis act to minimize stress concentrations and control stretch at the interface. Current surgical repair of the enthesis, such as in rotator cuff repair and anterior cruciate ligament reconstruction, aim to bridge the gap between the injured ends via reattachment of soft-to-hard tissues or graft replacement. In this review, we discuss the multiscale, morphological, and mechanical characteristics of the fibrocartilage attachment. Additionally, we review historical and recent clinical approaches to treating enthesis injury. Lastly, we explore new technological advancements in tissue-engineered biomaterials that have shown promise in preclinical studies.
Collapse
Affiliation(s)
- Ryan C Locke
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Adam C Abraham
- Department of Orthopedic Surgery, Columbia University Medical Center, New York, New York 10032, United States
| | - Megan L Killian
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
49
|
Duan L, Yuan J, Yang X, Cheng X, Li J. Interaction study of collagen and sericin in blending solution. Int J Biol Macromol 2016; 93:468-475. [PMID: 27601133 DOI: 10.1016/j.ijbiomac.2016.09.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 06/29/2016] [Accepted: 09/01/2016] [Indexed: 11/28/2022]
Abstract
The interactions of collagen and sericin were studied by fluorescence spectra, ultraviolet spectra, FTIR spectra and dynamic light scattering. The fluorescence quenching in emission spectra and red-shift (283-330nm) in synchronous fluorescence spectra suggested the Tyr of collagen and sericin overlapped with a distance of 3Å, generating excimer. The overlapped Tyr of collagen and sericin decreased the hydrophobicity of collagen, which resulted in the red-shifts (233-240nm) in ultraviolet spectra. Moreover, the red-shifts of amide bands of collagen in FTIR spectra indicated the hydrogen bonds of collagen were weaken and it could also be explained by the overlapped Tyr. The results of 2D-FTIR spectra demonstrated the backbone of collagen molecule was varied and the most susceptible structure of collagen was the triple helix with the presence of sericin. Based on dynamic light scattering, we conjectured large pure collagen aggregates were replaced by hybrid aggregates of collagen and sericin particles after the addition of sericin. With ascending sericin ratio, the diameters of the hybrid aggregates increased and attained maximum with 60% ratio of sericin, which were on account of the increasing excimer number. The results of DSC demonstrated the presence of sericin enhanced the thermal stability of collagen.
Collapse
Affiliation(s)
- Lian Duan
- College of Textiles and Garments, Southwest University, Chongqing 400715, PR China
| | - Jingjie Yuan
- Chongqing Special Equipment Inspection and Research Institute, Chongqing 401121, PR China
| | - Xiao Yang
- College of Textiles and Garments, Southwest University, Chongqing 400715, PR China
| | - Xinjian Cheng
- College of Textiles and Garments, Southwest University, Chongqing 400715, PR China
| | - Jiao Li
- College of Textiles and Garments, Southwest University, Chongqing 400715, PR China; The Affiliated Stomatology Hospital, Chongqing Medical University, Chongqing 401147, PR China.
| |
Collapse
|
50
|
Abstract
Urologic tissue engineering efforts have been largely focused on bladder and urethral defect repair. The current surgical gold standard for treatment of poorly compliant pathological bladders and severe urethral stricture disease is enterocystoplasty and onlay urethroplasty with autologous tissue, respectively. The complications associated with autologous tissue use and harvesting have led to efforts to develop tissue-engineered alternatives. Natural and synthetic materials have been used with varying degrees of success, but none has proved consistently reliable for urologic tissue defect repair in humans. Silk fibroin (SF) scaffolds have been tested in bladder and urethral repair because of their favorable biomechanical properties including structural strength, elasticity, biodegradability, and biocompatibility. SF scaffolds have been used in multiple animal models and have demonstrated robust regeneration of smooth muscle and urothelium. The pre-clinical data involving SF scaffolds in urologic defect repair are encouraging and suggest that they hold potential for future clinical use.
Collapse
Affiliation(s)
- Bryan S Sack
- Urological Diseases Research Center, Boston Children's Hospital, Boston, MA, 02115, USA. .,Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA.
| | - Joshua R Mauney
- Urological Diseases Research Center, Boston Children's Hospital, Boston, MA, 02115, USA. .,Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA. .,Department of Urology, John F. Enders Research Laboratories, Boston Children's Hospital, 300 Longwood Ave., Rm. 1009, Boston, MA, 02115, USA.
| | - Carlos R Estrada
- Urological Diseases Research Center, Boston Children's Hospital, Boston, MA, 02115, USA. .,Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA. .,Department of Urology, Boston Children's Hospital, 300 Longwood Ave., Hunnewell 3, Boston, MA, 02115, USA.
| |
Collapse
|