1
|
Liu T, Rahim F, Yang ML, Uddin M, Ye JW, Ali I, Raza Y, Mansoor A, Shoaib M, Hussain M, Khan I, Shah B, Khan A, Nisar A, Ma H, Xu B, Shah W, Shi QH. Novel homozygous SPAG17 variants cause human male infertility through multiple morphological abnormalities of spermatozoal flagella related to axonemal microtubule doublets. Asian J Androl 2024:00129336-990000000-00269. [PMID: 39686771 DOI: 10.4103/aja202496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 10/05/2024] [Indexed: 12/18/2024] Open
Abstract
ABSTRACT Male infertility can result from impaired sperm motility caused by multiple morphological abnormalities of the flagella (MMAF). Distinct projections encircling the central microtubules of the spermatozoal axoneme play pivotal roles in flagellar bending and spermatozoal movement. Mammalian sperm-associated antigen 17 (SPAG17) encodes a conserved axonemal protein of cilia and flagella, forming part of the C1a projection of the central apparatus, with functions related to ciliary/flagellar motility, skeletal growth, and male fertility. This study investigated two novel homozygous SPAG17 mutations (M1: NM_206996.2, c.829+1G>T, p.Asp212_Glu276del; and M2: c.2120del, p.Leu707*) identified in four infertile patients from two consanguineous Pakistani families. These patients displayed the MMAF phenotype confirmed by Papanicolaou staining and scanning electron microscopy assays of spermatozoa. Quantitative real-time polymerase chain reaction (PCR) of patients' spermatozoa also revealed a significant decrease in SPAG17 mRNA expression, and immunofluorescence staining showed the absence of SPAG17 protein signals along the flagella. However, no apparent ciliary-related symptoms or skeletal malformations were observed in the chest X-rays of any of the patients. Transmission electron microscopy of axoneme cross-sections from the patients showed incomplete C1a projection and a higher frequency of missing microtubule doublets 1 and 9 compared with those from fertile controls. Immunofluorescence staining and Western blot analyses of spermatogenesis-associated protein 17 (SPATA17), a component of the C1a projection, and sperm-associated antigen 6 (SPAG6), a marker of the spring layer, revealed disrupted expression of both proteins in the patients' spermatozoa. Altogether, these findings demonstrated that SPAG17 maintains the integrity of spermatozoal flagellar axoneme, expanding the phenotypic spectrum of SPAG17 mutations in humans.
Collapse
Affiliation(s)
- Tao Liu
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Center for Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei 230027, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Fassad MR, Rumman N, Junger K, Patel MP, Thompson J, Goggin P, Ueffing M, Beyer T, Boldt K, Lucas JS, Mitchison HM. Defective airway intraflagellar transport underlies a combined motile and primary ciliopathy syndrome caused by IFT74 mutations. Hum Mol Genet 2023; 32:3090-3104. [PMID: 37555648 PMCID: PMC10586200 DOI: 10.1093/hmg/ddad132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/01/2023] [Indexed: 08/10/2023] Open
Abstract
Ciliopathies are inherited disorders caused by defective cilia. Mutations affecting motile cilia usually cause the chronic muco-obstructive sinopulmonary disease primary ciliary dyskinesia (PCD) and are associated with laterality defects, while a broad spectrum of early developmental as well as degenerative syndromes arise from mutations affecting signalling of primary (non-motile) cilia. Cilia assembly and functioning requires intraflagellar transport (IFT) of cargos assisted by IFT-B and IFT-A adaptor complexes. Within IFT-B, the N-termini of partner proteins IFT74 and IFT81 govern tubulin transport to build the ciliary microtubular cytoskeleton. We detected a homozygous 3-kb intragenic IFT74 deletion removing the exon 2 initiation codon and 40 N-terminal amino acids in two affected siblings. Both had clinical features of PCD with bronchiectasis, but no laterality defects. They also had retinal dysplasia and abnormal bone growth, with a narrowed thorax and short ribs, shortened long bones and digits, and abnormal skull shape. This resembles short-rib thoracic dysplasia, a skeletal ciliopathy previously linked to IFT defects in primary cilia, not motile cilia. Ciliated nasal epithelial cells collected from affected individuals had reduced numbers of shortened motile cilia with disarranged microtubules, some misorientation of the basal feet, and disrupted cilia structural and IFT protein distributions. No full-length IFT74 was expressed, only truncated forms that were consistent with N-terminal deletion and inframe translation from downstream initiation codons. In affinity purification mass spectrometry, exon 2-deleted IFT74 initiated from the nearest inframe downstream methionine 41 still interacts as part of the IFT-B complex, but only with reduced interaction levels and not with all its usual IFT-B partners. We propose that this is a hypomorphic mutation with some residual protein function retained, which gives rise to a primary skeletal ciliopathy combined with defective motile cilia and PCD.
Collapse
Affiliation(s)
- Mahmoud R Fassad
- Genetics and Genomic Medicine Research and Teaching Department, University College London, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, United Kingdom
- Department of Human Genetics, Medical Research Institute, Alexandria University, 22 El-Guish Road, El-Shatby, Alexandria 21526, Egypt
| | - Nisreen Rumman
- Department of Pediatrics, Faculty of Medicine, Makassed Hospital and Al-Quds University, East Jerusalem 91220, Palestine
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale University School of Medicine, 300 Cedar St #441, New Haven, CT 06520, United States
| | - Katrin Junger
- Institute for Ophthalmic Research, Eberhard Karl University of Tübingen, Elfreide-Alhorn-Strasse 5-7, Tübingen 72076, Germany
| | - Mitali P Patel
- Genetics and Genomic Medicine Research and Teaching Department, University College London, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, United Kingdom
- MRC Prion Unit at UCL, Institute of Prion Diseases, University College London, 33 Cleveland Street, London W1W 7FF, United Kingdom
| | - James Thompson
- Primary Ciliary Dyskinesia Centre, NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, United Kingdom
- School of Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, University Road, Southampton SO17 1BJ, United Kingdom
- Biomedical Imaging Unit, University of Southampton Faculty of Medicine, University Road, Southampton SO17 1BJ, United Kingdom
| | - Patricia Goggin
- Primary Ciliary Dyskinesia Centre, NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, United Kingdom
- Biomedical Imaging Unit, University of Southampton Faculty of Medicine, University Road, Southampton SO17 1BJ, United Kingdom
| | - Marius Ueffing
- Institute for Ophthalmic Research, Eberhard Karl University of Tübingen, Elfreide-Alhorn-Strasse 5-7, Tübingen 72076, Germany
| | - Tina Beyer
- Institute for Ophthalmic Research, Eberhard Karl University of Tübingen, Elfreide-Alhorn-Strasse 5-7, Tübingen 72076, Germany
| | - Karsten Boldt
- Institute for Ophthalmic Research, Eberhard Karl University of Tübingen, Elfreide-Alhorn-Strasse 5-7, Tübingen 72076, Germany
| | - Jane S Lucas
- Primary Ciliary Dyskinesia Centre, NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, United Kingdom
- School of Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, University Road, Southampton SO17 1BJ, United Kingdom
| | - Hannah M Mitchison
- Genetics and Genomic Medicine Research and Teaching Department, University College London, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, United Kingdom
| |
Collapse
|
3
|
Agudo-Rios C, Rogers A, King I, Bhagat V, Nguyen LMT, Córdova-Fletes C, Krapf D, Strauss JF, Arévalo L, Merges GE, Schorle H, Roldan ERS, Teves ME. SPAG17 mediates nuclear translocation of protamines during spermiogenesis. Front Cell Dev Biol 2023; 11:1125096. [PMID: 37766963 PMCID: PMC10520709 DOI: 10.3389/fcell.2023.1125096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Protamines (PRM1 and PRM2) are small, arginine-rich, nuclear proteins that replace histones in the final stages of spermiogenesis, ensuring chromatin compaction and nuclear remodeling. Defects in protamination lead to increased DNA fragmentation and reduced male fertility. Since efficient sperm production requires the translocation of protamines from the cytoplasm to the nucleus, we investigated whether SPAG17, a protein crucial for intracellular protein trafficking during spermiogenesis, participates in protamine transport. Initially, we assessed the protein-protein interaction between SPAG17 and protamines using proximity ligation assays, revealing a significant interaction originating in the cytoplasm and persisting within the nucleus. Subsequently, immunoprecipitation and mass spectrometry (IP/MS) assays validated this initial observation. Sperm and spermatids from Spag17 knockout mice exhibited abnormal protamination, as revealed by chromomycin A3 staining, suggesting defects in protamine content. However, no differences were observed in the expression of Prm1 and Prm2 mRNA or in protein levels between testes of wild-type and Spag17 knockout mice. Conversely, immunofluorescence studies conducted on isolated mouse spermatids unveiled reduced nuclear/cytoplasm ratios of protamines in Spag17 knockout spermatids compared to wild-type controls, implying transport defects of protamines into the spermatid nucleus. In alignment with these findings, in vitro experiments involving somatic cells, including mouse embryonic fibroblasts, exhibited compromised nuclear translocation of PRM1 and PRM2 in the absence of SPAG17. Collectively, our results present compelling evidence that SPAG17 facilitates the transport of protamines from the cytoplasm to the nucleus.
Collapse
Affiliation(s)
- Clara Agudo-Rios
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, VA, United States
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain
| | - Amber Rogers
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, VA, United States
| | - Isaiah King
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, VA, United States
| | - Virali Bhagat
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, VA, United States
| | - Le My Tu Nguyen
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, VA, United States
| | - Carlos Córdova-Fletes
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, Mexico
| | - Diego Krapf
- Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, CO, United States
| | - Jerome F. Strauss
- Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Lena Arévalo
- Department of Developmental Pathology, Institute of Pathology, University Hospital Bonn, Bonn, Germany
| | - Gina Esther Merges
- Department of Developmental Pathology, Institute of Pathology, University Hospital Bonn, Bonn, Germany
| | - Hubert Schorle
- Department of Developmental Pathology, Institute of Pathology, University Hospital Bonn, Bonn, Germany
| | - Eduardo R. S. Roldan
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain
| | - Maria Eugenia Teves
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
4
|
Sapao P, Roberson EDO, Shi B, Assassi S, Skaug B, Lee F, Naba A, Perez White BE, Córdova-Fletes C, Tsou PS, Sawalha AH, Gudjonsson JE, Ma F, Verma P, Bhattacharyya D, Carns M, Strauss JF, Sicard D, Tschumperlin DJ, Champer MI, Campagnola PJ, Teves ME, Varga J. Reduced SPAG17 Expression in Systemic Sclerosis Triggers Myofibroblast Transition and Drives Fibrosis. J Invest Dermatol 2023; 143:284-293. [PMID: 36116512 PMCID: PMC10097410 DOI: 10.1016/j.jid.2022.08.052] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/09/2022] [Accepted: 08/16/2022] [Indexed: 01/27/2023]
Abstract
Systemic sclerosis (SSc) is a clinically heterogeneous fibrotic disease with no effective treatment. Myofibroblasts are responsible for unresolving synchronous skin and internal organ fibrosis in SSc, but the drivers of sustained myofibroblast activation remain poorly understood. Using unbiased transcriptome analysis of skin biopsies, we identified the downregulation of SPAG17 in multiple independent cohorts of patients with SSc, and by orthogonal approaches, we observed a significant negative correlation between SPAG17 and fibrotic gene expression. Fibroblasts and endothelial cells explanted from SSc skin biopsies showed reduced chromatin accessibility at the SPAG17 locus. Remarkably, mice lacking Spag17 showed spontaneous skin fibrosis with increased dermal thickness, collagen deposition and stiffness, and altered collagen fiber alignment. Knockdown of SPAG17 in human and mouse fibroblasts and microvascular endothelial cells was accompanied by spontaneous myofibroblast transformation and markedly heightened sensitivity to profibrotic stimuli. These responses were accompanied by constitutive TGF-β pathway activation. Thus, we discovered impaired expression of SPAG17 in SSc and identified, to our knowledge, a previously unreported cell-intrinsic role for SPAG17 in the negative regulation of fibrotic responses. These findings shed fresh light on the pathogenesis of SSc and may inform the search for innovative therapies for SSc and other fibrotic conditions through SPAG17 signaling.
Collapse
Affiliation(s)
- Paulene Sapao
- Department of Chemistry, College of Humanities and Sciences, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Elisha D O Roberson
- Division of Rheumatology, John T. Milliken Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA; Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Bo Shi
- Scleroderma Program, Feinberg School of Medicine, Northwestern University, Chicago, Ilinois, USA
| | - Shervin Assassi
- Division of Rheumatology, Department of Internal Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Brian Skaug
- Division of Rheumatology, Department of Internal Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Fred Lee
- Department of Physiology & Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, Ilinois, USA
| | - Alexandra Naba
- Department of Physiology & Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, Ilinois, USA
| | - Bethany E Perez White
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Ilinois, USA
| | - Carlos Córdova-Fletes
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, México
| | - Pei-Suen Tsou
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Amr H Sawalha
- Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; The UPMC Lupus Center of Excellence, Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Johann E Gudjonsson
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan, USA; Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Feiyang Ma
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan, USA; Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Priyanka Verma
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Dibyendu Bhattacharyya
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Mary Carns
- Scleroderma Program, Feinberg School of Medicine, Northwestern University, Chicago, Ilinois, USA
| | - Jerome F Strauss
- Department of Obstetrics & Gynecology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Delphine Sicard
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minesota, USA
| | - Daniel J Tschumperlin
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minesota, USA
| | - Melissa I Champer
- Department of Biomedical Engineering, College of Engineering, University of Wisconsin-Madison, Madison, Wincosin, USA
| | - Paul J Campagnola
- Department of Biomedical Engineering, College of Engineering, University of Wisconsin-Madison, Madison, Wincosin, USA
| | - Maria E Teves
- Department of Obstetrics & Gynecology, Virginia Commonwealth University, Richmond, Virginia, USA.
| | - John Varga
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
5
|
Roberson ED, Carns M, Cao L, Aren K, Goldberg IA, Morales-Heil DJ, Korman BD, Atkinson JP, Varga J. Alterations of the Primary Cilia Gene SPAG17 and SOX9 Locus Noncoding RNAs Identified by RNA-Sequencing Analysis in Patients With Systemic Sclerosis. Arthritis Rheumatol 2023; 75:108-119. [PMID: 35762854 PMCID: PMC10445493 DOI: 10.1002/art.42281] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 05/12/2022] [Accepted: 06/23/2022] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Systemic sclerosis (SSc) is characterized by immune activation, vasculopathy, and unresolving fibrosis in the skin, lungs, and other organs. We performed RNA-sequencing analysis on skin biopsy samples and peripheral blood mononuclear cells (PBMCs) from SSc patients and unaffected controls to better understand the pathogenesis of SSc. METHODS We analyzed these data 1) to test for case/control differences and 2) to identify genes whose expression levels correlate with SSc severity as measured by local skin score, modified Rodnan skin thickness score (MRSS), forced vital capacity (FVC), or diffusing capacity for carbon monoxide (DLco). RESULTS We found that PBMCs from SSc patients showed a strong type I interferon signature. This signal was found to be replicated in the skin, with additional signals for increased extracellular matrix (ECM) genes, classical complement pathway activation, and the presence of B cells. Notably, we observed a marked decrease in the expression of SPAG17, a cilia component, in SSc skin. We identified genes that correlated with the MRSS, DLco, and FVC in SSc PBMCs and skin using weighted gene coexpression network analysis. These genes were largely distinct from the case/control differentially expressed genes. In PBMCs, type I interferon signatures negatively correlated with the DLco. In SSc skin, ECM gene expression positively correlated with the MRSS. Network analysis of SSc skin genes that correlated with clinical features identified the noncoding RNAs SOX9-AS1 and ROCR, both near the SOX9 locus, as highly connected, "hub-like" genes in the network. CONCLUSION These results identify noncoding RNAs and SPAG17 as novel factors potentially implicated in the pathogenesis of SSc.
Collapse
Affiliation(s)
- Elisha D.O. Roberson
- Department of Medicine, Division of Rheumatology, Washington University, St. Louis, MO, USA
- Department of Genetics, Washington University, St. Louis, MO, USA
| | - Mary Carns
- Feinberg School of Medicine, Scleroderma Program, Northwestern University, Chicago, IL, USA
| | - Li Cao
- Department of Medicine, Division of Rheumatology, Washington University, St. Louis, MO, USA
| | - Kathleen Aren
- Feinberg School of Medicine, Scleroderma Program, Northwestern University, Chicago, IL, USA
| | - Isaac A. Goldberg
- Feinberg School of Medicine, Scleroderma Program, Northwestern University, Chicago, IL, USA
| | - David J. Morales-Heil
- Department of Medicine, Division of Rheumatology, Washington University, St. Louis, MO, USA
| | - Benjamin D. Korman
- Feinberg School of Medicine, Scleroderma Program, Northwestern University, Chicago, IL, USA
| | - John P. Atkinson
- Department of Medicine, Division of Rheumatology, Washington University, St. Louis, MO, USA
| | - John Varga
- Feinberg School of Medicine, Scleroderma Program, Northwestern University, Chicago, IL, USA
- Department of Internal Medicine, Division of Rheumatology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
6
|
Guo X, Pei J, Wu X, Bao P, Ding X, Xiong L, Chu M, Lan X, Yan P. Detection of InDel and CNV of SPAG17 gene and their associations with bovine growth traits. Anim Biotechnol 2022; 33:440-447. [PMID: 32820682 DOI: 10.1080/10495398.2020.1803342] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Sperm-associated antigen 17 (SPAG17) gene encodes a central pair protein, which is involved in flagellar motility, male fertility and skeletal growth in ruminants. The insertions/deletions (indels) and copy number variations (CNVs) influence phenotypic traits by altering the sequences and copy numbers of functional genes, respectively. This study identified a novel 8-bp indel of SPAG17 gene in 1520 individuals from eight different cattle breeds, as well as a novel CNV region in 355 animals. The correlation analysis of indel showed that the individuals of ID genotype had superior performance traits such as body height (p = 0.038) and body slanting length (p = 0.041) as compared to other genotypes in Xianan cattle. For the CNV, different copy numbers were closely related to the body height in Qinchuan (p = 0.045) and body weight in Xianan (p = 0.036) breeds. Importantly, significant difference was observed between the 8-bp indel and the copy number loss in Xianan breed (p < 0.01). These findings indicated that the variations within the bovine SPAG17 gene can be considered as an effective DNA molecular marker for beef cattle breeding.
Collapse
Affiliation(s)
- Xian Guo
- Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou, Gansu, China
| | - Jie Pei
- Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou, Gansu, China
| | - Xiaoyun Wu
- Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou, Gansu, China
| | - Pengjia Bao
- Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou, Gansu, China
| | - Xuezhi Ding
- Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou, Gansu, China
| | - Lin Xiong
- Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou, Gansu, China
| | - Min Chu
- Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou, Gansu, China
| | - Xianyong Lan
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Ping Yan
- Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou, Gansu, China
| |
Collapse
|
7
|
Lindemann CB. The flagellar germ-line hypothesis: How flagellate and ciliate gametes significantly shaped the evolution of organismal complexity. Bioessays 2021; 44:e2100143. [PMID: 34967029 DOI: 10.1002/bies.202100143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 12/10/2021] [Accepted: 12/15/2021] [Indexed: 11/10/2022]
Abstract
This essay presents a hypothesis which contends that the development of organismic complexity in the eukaryotes depended extensively on propagation via flagellated and ciliated gametes. Organisms utilizing flagellate and ciliate gametes to propagate their germ line have contributed most of the organismic complexity found in the higher animals. The genes of the flagellum and the flagellar assembly system (intraflagellar transport) have played a disproportionately important role in the construction of complex tissues and organs. The hypothesis also proposes that competition between large numbers of haploid flagellated male gametes rigorously conserved the functionality of a key set of flagellar genes for more than 700 million years. This in turn has insured that a large set (>600) of highly functional cytoskeletal and signal pathway genes is always present in the lineage of organisms with flagellated or ciliated gametes to act as a dependable resource, or "toolkit," for organ elaboration.
Collapse
|
8
|
Faraji S, Sharafi M, Shahverdi A, Fathi R. Sperm Associated Antigens: Vigorous Influencers in Life. CELL JOURNAL 2021; 23:495-502. [PMID: 34837675 PMCID: PMC8588810 DOI: 10.22074/cellj.2021.7377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 06/27/2020] [Indexed: 11/21/2022]
Abstract
Sperm associated antigens (SPAGs) are specific proteins in terms of performance and evolution, that have common expressions in the testes or sperm cells. Moreover, the humoral immune response against some of SPAGs can result in immunological infertilities. On the other hand, recent studies have explored several new properties of SPAGs and shed light on sperm's function, the impact of anti-sperm antibodies (ASA) in immunological infertility, and some tumors related to SPAGs. This article presents an exhaustive review of SPAGs and their roles in the cell cycle, signaling pathways, fertility, sperm-oocyte cross-talk as well as their unfavorable positions as prognostic factors in many types of cancers.
Collapse
Affiliation(s)
- Samaneh Faraji
- Department of Molecular and Cellular Biology, Faculty of Basic Science and Advanced Technologies in Biology, University of Science
and Culture, ACECR, Tehran, Iran,Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR,
Tehran, Iran
| | - Mohsen Sharafi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR,
Tehran, Iran
| | - Abdolhossein Shahverdi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR,
Tehran, Iran,Reproductive Epidemiology Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran,P.O.Box: 16635-148Department of EmbryologyReproductive Biomedicine Research CenterRoyan Institute for
Reproductive BiomedicineACECRTehranIran
Emails:,
| | - Rouhollah Fathi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR,
Tehran, Iran,P.O.Box: 16635-148Department of EmbryologyReproductive Biomedicine Research CenterRoyan Institute for
Reproductive BiomedicineACECRTehranIran
Emails:,
| |
Collapse
|
9
|
Wang W, Jack BM, Wang HH, Kavanaugh MA, Maser RL, Tran PV. Intraflagellar Transport Proteins as Regulators of Primary Cilia Length. Front Cell Dev Biol 2021; 9:661350. [PMID: 34095126 PMCID: PMC8170031 DOI: 10.3389/fcell.2021.661350] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 04/06/2021] [Indexed: 12/21/2022] Open
Abstract
Primary cilia are small, antenna-like organelles that detect and transduce chemical and mechanical cues in the extracellular environment, regulating cell behavior and, in turn, tissue development and homeostasis. Primary cilia are assembled via intraflagellar transport (IFT), which traffics protein cargo bidirectionally along a microtubular axoneme. Ranging from 1 to 10 μm long, these organelles typically reach a characteristic length dependent on cell type, likely for optimum fulfillment of their specific roles. The importance of an optimal cilia length is underscored by the findings that perturbation of cilia length can be observed in a number of cilia-related diseases. Thus, elucidating mechanisms of cilia length regulation is important for understanding the pathobiology of ciliary diseases. Since cilia assembly/disassembly regulate cilia length, we review the roles of IFT in processes that affect cilia assembly/disassembly, including ciliary transport of structural and membrane proteins, ectocytosis, and tubulin posttranslational modification. Additionally, since the environment of a cell influences cilia length, we also review the various stimuli encountered by renal epithelia in healthy and diseased states that alter cilia length and IFT.
Collapse
Affiliation(s)
- Wei Wang
- Department of Anatomy and Cell Biology, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, United States
| | - Brittany M Jack
- Department of Anatomy and Cell Biology, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, United States
| | - Henry H Wang
- Department of Anatomy and Cell Biology, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, United States
| | - Matthew A Kavanaugh
- Department of Anatomy and Cell Biology, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, United States
| | - Robin L Maser
- Department of Clinical Laboratory Sciences, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, United States
| | - Pamela V Tran
- Department of Anatomy and Cell Biology, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
10
|
Guo X, Zhang S, Yang H, Pei J, Wu X, Bao P, Liang C, Xiong L, Chu M, Lan X, Yan P. Bovine TMEM95 gene: Polymorphisms detecting in five Chinese indigenous cattle breeds and their association with growth traits. ELECTRON J BIOTECHN 2021. [DOI: 10.1016/j.ejbt.2021.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
11
|
Central Apparatus, the Molecular Kickstarter of Ciliary and Flagellar Nanomachines. Int J Mol Sci 2021; 22:ijms22063013. [PMID: 33809498 PMCID: PMC7999657 DOI: 10.3390/ijms22063013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/10/2021] [Accepted: 03/12/2021] [Indexed: 02/07/2023] Open
Abstract
Motile cilia and homologous organelles, the flagella, are an early evolutionarily invention, enabling primitive eukaryotic cells to survive and reproduce. In animals, cilia have undergone functional and structural speciation giving raise to typical motile cilia, motile nodal cilia, and sensory immotile cilia. In contrast to other cilia types, typical motile cilia are able to beat in complex, two-phase movements. Moreover, they contain many additional structures, including central apparatus, composed of two single microtubules connected by a bridge-like structure and assembling numerous complexes called projections. A growing body of evidence supports the important role of the central apparatus in the generation and regulation of the motile cilia movement. Here we review data concerning the central apparatus structure, protein composition, and the significance of its components in ciliary beating regulation.
Collapse
|
12
|
Bazan R, Schröfel A, Joachimiak E, Poprzeczko M, Pigino G, Wloga D. Ccdc113/Ccdc96 complex, a novel regulator of ciliary beating that connects radial spoke 3 to dynein g and the nexin link. PLoS Genet 2021; 17:e1009388. [PMID: 33661892 PMCID: PMC7987202 DOI: 10.1371/journal.pgen.1009388] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 03/23/2021] [Accepted: 01/28/2021] [Indexed: 11/19/2022] Open
Abstract
Ciliary beating requires the coordinated activity of numerous axonemal complexes. The protein composition and role of radial spokes (RS), nexin links (N-DRC) and dyneins (ODAs and IDAs) is well established. However, how information is transmitted from the central apparatus to the RS and across other ciliary structures remains unclear. Here, we identify a complex comprising the evolutionarily conserved proteins Ccdc96 and Ccdc113, positioned parallel to N-DRC and forming a connection between RS3, dynein g, and N-DRC. Although Ccdc96 and Ccdc113 can be transported to cilia independently, their stable docking and function requires the presence of both proteins. Deletion of either CCDC113 or CCDC96 alters cilia beating frequency, amplitude and waveform. We propose that the Ccdc113/Ccdc96 complex transmits signals from RS3 and N-DRC to dynein g and thus regulates its activity and the ciliary beat pattern.
Collapse
Affiliation(s)
- Rafał Bazan
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Adam Schröfel
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Ewa Joachimiak
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Martyna Poprzeczko
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Gaia Pigino
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Human Technopole, Milan, Italy
- * E-mail: (GP); (DW)
| | - Dorota Wloga
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
- * E-mail: (GP); (DW)
| |
Collapse
|
13
|
Luo H, Li X, Hu L, Xu W, Chu Q, Liu A, Guo G, Liu L, Brito LF, Wang Y. Genomic analyses and biological validation of candidate genes for rectal temperature as an indicator of heat stress in Holstein cattle. J Dairy Sci 2021; 104:4441-4451. [PMID: 33589260 DOI: 10.3168/jds.2020-18725] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 11/15/2020] [Indexed: 12/26/2022]
Abstract
Heat stress is a major cause of welfare issues and economic losses to the worldwide dairy cattle industry. Genetic selection for heat tolerance has a great potential to positively affect the dairy industry, as the gains are permanent and cumulative over generations. Rectal temperature (RT) is hypothesized to be a good indicator trait of heat tolerance. Therefore, this study investigated the genetic architecture of RT by estimating genetic parameters, performing genome-wide association studies, and biologically validating potential candidate genes identified to be related to RT in Holstein cattle. A total of 33,013 RT records from 7,598 cows were used in this study. In addition, 1,114 cows were genotyped using the Illumina 150K Bovine BeadChip (Illumina, San Diego, CA). Rectal temperature measurements taken in the morning (AMRT) and in the afternoon (PMRT) are moderately heritable traits, with estimates of 0.09 ± 0.02 and 0.04 ± 0.01, respectively. These 2 traits are also highly genetically correlated (r = 0.90 ± 0.08). A total of 10 SNPs (located on BTA3, BTA4, BTA8, BTA13, BTA14, and BTA29) were found to be significantly associated with AMRT and PMRT. Subsequently, gene expression analyses were performed to validate the key functional genes identified (SPAG17, FAM107B, TSNARE1, RALYL, and PHRF1). This was done through in vitro exposure of peripheral blood mononuclear cells (PBMC) to different temperatures (37°C, 39°C, and 42°C). The relative mRNA expression of 2 genes, FAM107B and PHRF1, significantly changed between the control and heat stressed PBMC. In summary, RT is heritable, and enough genetic variability exists to enable genetic improvement of heat tolerance in Holstein cattle. Important genomic regions were identified and biologically validated; FAM107B and PHRF1 are the main candidate genes identified to influence heat stress response in dairy cattle.
Collapse
Affiliation(s)
- Hanpeng Luo
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture of China, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, China
| | - Xiang Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture of China, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, China
| | - Lirong Hu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture of China, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, China
| | - Wei Xu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture of China, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, China
| | - Qin Chu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, 100097, Beijing, China
| | - Aoxing Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture of China, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, China; Center for Quantitative Genetics and Genomics, Department of Molecular Biology and Genetics, Aarhus University, 8830, Tjele, Denmark
| | - Gang Guo
- Beijing Sunlon Livestock Development Company Limited, 100029, Beijing, China
| | - Lin Liu
- Beijing Dairy Cattle Center, 100192, Beijing, China
| | - Luiz F Brito
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907
| | - Yachun Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture of China, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, China.
| |
Collapse
|
14
|
Abdelhamed Z, Lukacs M, Cindric S, Ali S, Omran H, Stottmann RW. A novel hypomorphic allele of Spag17 causes primary ciliary dyskinesia phenotypes in mice. Dis Model Mech 2020; 13:dmm045344. [PMID: 32988999 PMCID: PMC7648611 DOI: 10.1242/dmm.045344] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 08/24/2020] [Indexed: 12/22/2022] Open
Abstract
Primary ciliary dyskinesia (PCD) is a human condition of dysfunctional motile cilia characterized by recurrent lung infection, infertility, organ laterality defects and partially penetrant hydrocephalus. We recovered a mouse mutant from a forward genetic screen that developed many of the hallmark phenotypes of PCD. Whole-exome sequencing identified this primary ciliary dyskinesia only (Pcdo) allele to be a nonsense mutation (c.5236A>T) in the Spag17 coding sequence creating a premature stop codon (K1746*). The Pcdo variant abolished several isoforms of SPAG17 in the Pcdo mutant testis but not in the brain. Our data indicate differential requirements for SPAG17 in different types of motile cilia. SPAG17 is essential for proper development of the sperm flagellum and is required for either development or stability of the C1 microtubule structure within the central pair apparatus of the respiratory motile cilia, but not the brain ependymal cilia. We identified changes in ependymal ciliary beating frequency, but these did not appear to alter lateral ventricle cerebrospinal fluid flow. Aqueductal stenosis resulted in significantly slower and abnormally directed cerebrospinal fluid flow, and we suggest that this is the root cause of the hydrocephalus. The Spag17Pcdo homozygous mutant mice are generally viable to adulthood but have a significantly shortened lifespan, with chronic morbidity. Our data indicate that the c.5236A>T Pcdo variant is a hypomorphic allele of Spag17 that causes phenotypes related to motile, but not primary, cilia. Spag17Pcdo is a useful new model for elucidating the molecular mechanisms underlying central pair PCD pathogenesis in the mouse.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Zakia Abdelhamed
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Anatomy and Embryology, Faculty of Medicine (Girl's Section), Al-Azhar University, Cairo 11651, Egypt
| | - Marshall Lukacs
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Medical Scientist Training Program, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Sandra Cindric
- Department of General Pediatrics, University Children's Hospital Münster, 48149 Münster, Germany
| | - Saima Ali
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Heymut Omran
- Department of General Pediatrics, University Children's Hospital Münster, 48149 Münster, Germany
| | - Rolf W Stottmann
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Medical Scientist Training Program, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH 45229, USA
| |
Collapse
|
15
|
Zhang X, Zhang S, Tang Q, Jiang E, Wang K, Lan X, Pan C. Goat sperm associated antigen 17 protein gene (SPAG17): Small and large fragment genetic variation detection, association analysis, and mRNA expression in gonads. Genomics 2020; 112:5115-5121. [PMID: 32949683 DOI: 10.1016/j.ygeno.2020.09.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/31/2020] [Accepted: 09/14/2020] [Indexed: 10/23/2022]
Abstract
Transcriptome sequencing analyses have suggested that sperm associated antigen 17 protein gene (SPAG17) may play important regulating roles in litter size. In this study, the expression profiles and genetic variations of the SPAG17 were studied in Shaanbei White Cashmere (SBWC) goats (n=1567). SPAG17 was highly expressed in testis and ovary of SBWC goats. At different developmental stages, it also continued to be highly expressed in testis. In addition, two variations of SPAG17, one indel locus and one copy number variation locus, were significantly associated with first-born litter size. Joint analysis results suggested that two polymorphic loci of the SPAG17 gene may regulate host gene expression in goat ovary and testis. Overall, the results indicated the important role of SPAG17 in the reproductive process of goats.
Collapse
Affiliation(s)
- Xuelian Zhang
- College of Animal Science and Technology, Northwest A&F University, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Yangling, Shaanxi, China
| | - Sihuan Zhang
- College of Animal Science and Technology, Northwest A&F University, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Yangling, Shaanxi, China
| | - Qi Tang
- College of Animal Science and Technology, Northwest A&F University, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Yangling, Shaanxi, China
| | - Enhui Jiang
- College of Animal Science and Technology, Northwest A&F University, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Yangling, Shaanxi, China
| | - Ke Wang
- College of Animal Science and Technology, Northwest A&F University, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Yangling, Shaanxi, China
| | - Xianyong Lan
- College of Animal Science and Technology, Northwest A&F University, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Yangling, Shaanxi, China.
| | - Chuanying Pan
- College of Animal Science and Technology, Northwest A&F University, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Yangling, Shaanxi, China.
| |
Collapse
|
16
|
Cai Y, Fu W, Cai D, Heller R, Zheng Z, Wen J, Li H, Wang X, Alshawi A, Sun Z, Zhu S, Wang J, Yang M, Hu S, Li Y, Yang Z, Gong M, Hou Y, Lan T, Wu K, Chen Y, Jiang Y, Wang X. Ancient Genomes Reveal the Evolutionary History and Origin of Cashmere-Producing Goats in China. Mol Biol Evol 2020; 37:2099-2109. [PMID: 32324877 PMCID: PMC7306693 DOI: 10.1093/molbev/msaa103] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Goats are one of the most widespread farmed animals across the world; however, their migration route to East Asia and local evolutionary history remain poorly understood. Here, we sequenced 27 ancient Chinese goat genomes dating from the Late Neolithic period to the Iron Age. We found close genetic affinities between ancient and modern Chinese goats, demonstrating their genetic continuity. We found that Chinese goats originated from the eastern regions around the Fertile Crescent, and we estimated that the ancestors of Chinese goats diverged from this population in the Chalcolithic period. Modern Chinese goats were divided into a northern and a southern group, coinciding with the most prominent climatic division in China, and two genes related to hair follicle development, FGF5 and EDA2R, were highly divergent between these populations. We identified a likely causal de novo deletion near FGF5 in northern Chinese goats that increased to high frequency over time, whereas EDA2R harbored standing variation dating to the Neolithic. Our findings add to our understanding of the genetic composition and local evolutionary process of Chinese goats.
Collapse
Affiliation(s)
- Yudong Cai
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Weiwei Fu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Dawei Cai
- Research Center for Chinese Frontier Archaeology, Jilin University, Changchun, China
| | - Rasmus Heller
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Zhuqing Zheng
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Jia Wen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Hui Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| | - Xiaolong Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Akil Alshawi
- School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, United Kingdom
- Department of Internal and Preventive Medicine, College of Veterinary Medicine, University of Baghdad, Iraqi Ministry of Higher Education and Scientific Research, Iraq
| | | | - Siqi Zhu
- Research Center for Chinese Frontier Archaeology, Jilin University, Changchun, China
| | - Juan Wang
- Henan Provincial Institute of Cultural Heritage and Archaeology, Zhengzhou, China
| | | | - Songmei Hu
- Shaanxi Academy of Archaeology, Xi’an, China
| | - Yan Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Zhirui Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Mian Gong
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yunan Hou
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Tianming Lan
- BGI-Shenzhen, Build 11, Beishan Industrial Zone, Yantian District, Shenzhen, China
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Kui Wu
- China National GeneBank-Shenzhen, BGI-Shenzhen, China
- Cancer Institute, BGI-Research, BGI-Shenzhen, Shenzhen, China
| | - Yulin Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yu Jiang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xihong Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
17
|
Ascari G, Peelman F, Farinelli P, Rosseel T, Lambrechts N, Wunderlich KA, Wagner M, Nikopoulos K, Martens P, Balikova I, Derycke L, Holtappels G, Krysko O, Van Laethem T, De Jaegere S, Guillemyn B, De Rycke R, De Bleecker J, Creytens D, Van Dorpe J, Gerris J, Bachert C, Neuhofer C, Walraedt S, Bischoff A, Pedersen LB, Klopstock T, Rivolta C, Leroy BP, De Baere E, Coppieters F. Functional characterization of the first missense variant in CEP78, a founder allele associated with cone-rod dystrophy, hearing loss, and reduced male fertility. Hum Mutat 2020; 41:998-1011. [PMID: 31999394 PMCID: PMC7187288 DOI: 10.1002/humu.23993] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 12/27/2019] [Accepted: 01/16/2020] [Indexed: 12/19/2022]
Abstract
Inactivating variants in the centrosomal CEP78 gene have been found in cone-rod dystrophy with hearing loss (CRDHL), a particular phenotype distinct from Usher syndrome. Here, we identified and functionally characterized the first CEP78 missense variant c.449T>C, p.(Leu150Ser) in three CRDHL families. The variant was found in a biallelic state in two Belgian families and in a compound heterozygous state-in trans with c.1462-1G>T-in a third German family. Haplotype reconstruction showed a founder effect. Homology modeling revealed a detrimental effect of p.(Leu150Ser) on protein stability, which was corroborated in patients' fibroblasts. Elongated primary cilia without clear ultrastructural abnormalities in sperm or nasal brushes suggest impaired cilia assembly. Two affected males from different families displayed sperm abnormalities causing infertility. One of these is a heterozygous carrier of a complex allele in SPAG17, a ciliary gene previously associated with autosomal recessive male infertility. Taken together, our data indicate that a missense founder allele in CEP78 underlies the same sensorineural CRDHL phenotype previously associated with inactivating variants. Interestingly, the CEP78 phenotype has been possibly expanded with male infertility. Finally, CEP78 loss-of-function variants may have an underestimated role in misdiagnosed Usher syndrome, with or without sperm abnormalities.
Collapse
Affiliation(s)
- Giulia Ascari
- Department of Biomolecular Medicine, Center for Medical Genetics Ghent, Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Frank Peelman
- Department of Medical Protein Research, Faculty of Medicine and Health Sciences, Flanders Institute for Biotechnology (VIB), Ghent University, Ghent, Belgium
| | - Pietro Farinelli
- Department of Computational Biology, Unit of Medical Genetics, University of Lausanne, Lausanne, Switzerland.,Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Toon Rosseel
- Department of Biomolecular Medicine, Center for Medical Genetics Ghent, Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Nina Lambrechts
- Department of Biomolecular Medicine, Center for Medical Genetics Ghent, Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Kirsten A Wunderlich
- Department of Computational Biology, Unit of Medical Genetics, University of Lausanne, Lausanne, Switzerland.,Department of Physiological Genomics, BMC, Ludwig-Maximilians-Universität München, Planegg, Germany
| | - Matias Wagner
- Institute of Human Genetics, Faculty of Medicine, Technical University of Munich, Munich, Germany.,Institute of Human Genetics, Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Neuherberg, Germany.,Institut für Neurogenomik, Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Neuherberg, Germany
| | - Konstantinos Nikopoulos
- Oncogenomics laboratory, Department of Hematology, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Pernille Martens
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Irina Balikova
- Department of Ophthalmology, Ghent University Hospital, Ghent, Belgium.,Department of Ophthalmology, University Hospital Leuven, Leuven, Belgium
| | - Lara Derycke
- Upper Airways Research Laboratory, Department Otorhinolaryngology, Ghent University Hospital, Ghent, Belgium
| | - Gabriële Holtappels
- Upper Airways Research Laboratory, Department Otorhinolaryngology, Ghent University Hospital, Ghent, Belgium
| | - Olga Krysko
- Upper Airways Research Laboratory, Department Otorhinolaryngology, Ghent University Hospital, Ghent, Belgium
| | - Thalia Van Laethem
- Department of Biomolecular Medicine, Center for Medical Genetics Ghent, Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Sarah De Jaegere
- Department of Biomolecular Medicine, Center for Medical Genetics Ghent, Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Brecht Guillemyn
- Department of Biomolecular Medicine, Center for Medical Genetics Ghent, Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Riet De Rycke
- Department of Biomedical Molecular Biology and Expertise Centre for Transmission Electron Microscopy, Ghent University, Ghent, Belgium.,VIB Center for Inflammation Research and BioImaging Core, VIB, Ghent, Belgium
| | - Jan De Bleecker
- Department of Neurology, Ghent University Hospital, Ghent, Belgium
| | - David Creytens
- Department of Pathology, Ghent University Hospital, Ghent, Belgium
| | - Jo Van Dorpe
- Department of Pathology, Ghent University Hospital, Ghent, Belgium
| | - Jan Gerris
- Department of Human Structure and Repair, Ghent University Hospital, Ghent, Belgium
| | - Claus Bachert
- Upper Airways Research Laboratory, Department Otorhinolaryngology, Ghent University Hospital, Ghent, Belgium
| | - Christiane Neuhofer
- Institute of Human Genetics, University Medical Center Göttingen (UMG), Göttingen, Germany
| | - Sophie Walraedt
- Department of Ophthalmology, Ghent University Hospital, Ghent, Belgium
| | - Almut Bischoff
- Department of Neurology, Friedrich-Baur-Institute, Ludwig-Maximilians-University, Munich, Germany
| | - Lotte B Pedersen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Klopstock
- Department of Neurology, Friedrich-Baur-Institute, Ludwig-Maximilians-University, Munich, Germany.,German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Carlo Rivolta
- Department of Computational Biology, Unit of Medical Genetics, University of Lausanne, Lausanne, Switzerland.,Clinical Research Center, Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland.,Department of Ophthalmology, University Hospital Basel, Basel, Switzerland.,Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Bart P Leroy
- Department of Biomolecular Medicine, Center for Medical Genetics Ghent, Ghent University Hospital, Ghent University, Ghent, Belgium.,Department of Ophthalmology, Ghent University Hospital, Ghent, Belgium.,Division of Ophthalmology and Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Elfride De Baere
- Department of Biomolecular Medicine, Center for Medical Genetics Ghent, Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Frauke Coppieters
- Department of Biomolecular Medicine, Center for Medical Genetics Ghent, Ghent University Hospital, Ghent University, Ghent, Belgium
| |
Collapse
|
18
|
Two Insertion/Deletion Variants within SPAG17 Gene Are Associated with Goat Body Measurement Traits. Animals (Basel) 2019; 9:ani9060379. [PMID: 31234269 PMCID: PMC6616450 DOI: 10.3390/ani9060379] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 06/08/2019] [Accepted: 06/15/2019] [Indexed: 12/30/2022] Open
Abstract
Simple Summary Sperm-associated antigen 17 (SPAG17) is a reproduction and skeletal development related gene. This study aimed to identify crucial insertion-deletion (indel) variations, which influence the body measurement traits of goats. Two intronic indels (14 bp and 17 bp indels) were identified by sequencing. In Shaanbei white cashmere goat (SBWC), the different genotypes of the 14 bp indel were markedly associated with goat body height, chest width, body length, and chest depth. The genotypes of the 17 bp indel were significantly associated with body height and chest width. The different combined genotypes were significantly associated with body height and chest width of SBWC and ten traits of Hainan black goat. These results suggested that the 14 and 17 bp indels within SPAG17 can be used in goat growth related traits marker-assisted selection breeding, especially body height. Abstract Sperm-associated antigen 17 (SPAG17) gene encodes a multifunctional cytoplasmic protein, which influences not only reproduction but also skeletal development related body measurement traits, especially body height. Thus, this study aimed to identify crucial insertion-deletion (indel) variations, which influence the body measurement traits of goats in large goat populations (n = 1725). As a result, two intronic indels (14 bp and 17 bp indel) were identified by sequencing. For the two indel loci, the distributions of genotypes and alleles were significantly different between the Shaanbei white cashmere goat (SBWC) and the Hainan black goat (HNBG). In SBWC goats, the different genotypes of the 14 bp indel were markedly associated with goat body height, chest width, body length and chest depth. The genotypes of the 17 bp indel were significantly related to body height and chest width. At the two loci, for all seven analyzed traits of SBWC goat, the growth data of DD homozygotes were the worst, which means that the 14 bp insertion and the 17 bp deletion were beneficial and detrimental variations, respectively. Moreover, the combined genotypes were significantly related to body height and chest width of SBWC goats and ten traits of HNBG. These results suggested that the 14 and 17 bp indels within SPAG17 can be used in goat growth related traits marker-assisted selection breeding, especially body height.
Collapse
|
19
|
Kuhlwilm M, Boeckx C. A catalog of single nucleotide changes distinguishing modern humans from archaic hominins. Sci Rep 2019; 9:8463. [PMID: 31186485 PMCID: PMC6560109 DOI: 10.1038/s41598-019-44877-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/24/2019] [Indexed: 01/06/2023] Open
Abstract
Throughout the past decade, studying ancient genomes has provided unique insights into human prehistory, and differences between modern humans and other branches like Neanderthals can enrich our understanding of the molecular basis of unique modern human traits. Modern human variation and the interactions between different hominin lineages are now well studied, making it reasonable to go beyond fixed genetic changes and explore changes that are observed at high frequency in present-day humans. Here, we identify 571 genes with non-synonymous changes at high frequency. We suggest that molecular mechanisms in cell division and networks affecting cellular features of neurons were prominently modified by these changes. Complex phenotypes in brain growth trajectory and cognitive traits are likely influenced by these networks and other non-coding changes presented here. We propose that at least some of these changes contributed to uniquely human traits, and should be prioritized for experimental validation.
Collapse
Affiliation(s)
- Martin Kuhlwilm
- Institut de Biologia Evolutiva, (CSIC-Universitat Pompeu Fabra), PRBB, Barcelona, Spain
| | - Cedric Boeckx
- ICREA, Barcelona, Spain.
- University of Barcelona, Barcelona, Spain.
- UB Institute of Complex Systems, Barcelona, Spain.
| |
Collapse
|
20
|
Alciaturi J, Anesetti G, Irigoin F, Skowronek F, Sapiro R. Distribution of sperm antigen 6 (SPAG6) and 16 (SPAG16) in mouse ciliated and non-ciliated tissues. J Mol Histol 2019; 50:189-202. [PMID: 30911868 DOI: 10.1007/s10735-019-09817-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 03/08/2019] [Indexed: 12/11/2022]
Abstract
The cilia and flagella of eukaryotic cells serve many functions, exhibiting remarkable conservation of both structure and molecular composition in widely divergent eukaryotic organisms. SPAG6 and SPAG16 are the homologous in the mice to Chlamydomonas reinhardtii PF16 and PF20. Both proteins are associated with the axonemal central apparatus and are essential for ciliary and flagellar motility in mammals. Recent data derived from high-throughput studies revealed expression of these genes in tissues that do not contain motile cilia. However, the distribution of SPAG6 and SPAG16 in ciliated and non-ciliated tissues is not completely understood. In this work, we performed a quantitative analysis of the expression of Spag6 and Spag16 genes in parallel with the immune-localization of the proteins in several tissues of adult mice. Expression of mRNA was higher in the testis and tissues bearing motile cilia than in the other analyzed tissues. Both proteins were present in ciliated and non-ciliated tissues. In the testis, SPAG6 was detected in spermatogonia, spermatocytes, and in the sperm flagella whereas SPAG16 was found in spermatocytes and in the sperm flagella. In addition, both proteins were detected in the cytoplasm of cells from the brain, spinal cord, and ovary. A small isoform of SPAG16 was localized in the nucleus of germ cells and some neurons. In a parallel set of experiments, we overexpressed EGFP-SPAG6 in cultured cells and observed that the protein co-localized with a subset of acetylated cytoplasmic microtubules. A role of these proteins stabilizing the cytoplasmic microtubules of eukaryotic cells is discussed.
Collapse
Affiliation(s)
- Jimena Alciaturi
- Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Gral. Flores 2125, Montevideo, Uruguay
| | - Gabriel Anesetti
- Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Gral. Flores 2125, Montevideo, Uruguay
| | - Florencia Irigoin
- Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Gral. Flores 2125, Montevideo, Uruguay.,Laboratorio de Genética Molecular Humana, Institut Pasteur de Montevideo, Mataojo 2020, Montevideo, Uruguay
| | - Fernanda Skowronek
- Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Gral. Flores 2125, Montevideo, Uruguay
| | - Rossana Sapiro
- Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Gral. Flores 2125, Montevideo, Uruguay.
| |
Collapse
|
21
|
Wang ZL, He RZ, Tu B, He JS, Cao X, Xia HS, Ba HL, Wu S, Peng C, Xiong K. Drilling Combined with Adipose-derived Stem Cells and Bone Morphogenetic Protein-2 to Treat Femoral Head Epiphyseal Necrosis in Juvenile Rabbits. Curr Med Sci 2018; 38:277-288. [PMID: 30074186 DOI: 10.1007/s11596-018-1876-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 07/24/2017] [Indexed: 02/06/2023]
Abstract
This study was designed to evaluate the effects of drilling through the growth plate and using adipose-derived stem cells (ADSCs) and bone morphogenetic protein-2 (BMP-2) to treat femoral head epiphyseal ischemic necrosis, which can be done in juvenile rabbits. Passagefour bromodeoxyuridine (BrdU)-labeled ADSCs were cultured, assayed with MTT to determine their viability and stained with alizarin red dye to determine their osteogenic ability. Two-month-old, healthy male rabbits (1.2 to 1.4 kg, n=45) underwent ischemic induction and were randomly divided into five groups (group A: animal model control; group B: drilling; group C: drilling & ADSCs; group D: drilling & BMP-2; and group E: drilling & ADSCs & BMP-2). Magnetic resonance imaging (MRI), X-ray imaging, hematoxylin and eosin staining and BrdU immunofluorescence detection were applied 4, 6 and 10 weeks after treatment. Approximately 90% of the ADSCs were labeled with BrdU and showed good viability and osteogenic ability. Similar results were observed in the rabbits in groups C and E at weeks 6 and 10. The animals of groups C and E demonstrated normal hip structure and improved femoral epiphyseal quotients and trabecular areas compared with those of the groups A and B (P<0.01). Group D demonstrated improved femoral epiphyseal quotients and trabecular areas compared with those of groups A and B (P<0.05). In summary, drilling through the growth plate combined with ADSC and BMP-2 treatments induced new bone formation and protected the femoral head epiphysis from collapsing in a juvenile rabbit model of femoral head epiphyseal ischemic necrosis.
Collapse
Affiliation(s)
- Zi-Li Wang
- Department of Orthopedic Surgery, Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Rong-Zhen He
- Department of Orthopedic Surgery, Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Bin Tu
- Department of Orthopaedics, Leping City People's Hospital, Leping, 333399, China
| | - Jin-Shen He
- Department of Orthopedic Surgery, Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Xu Cao
- Department of Orthopedic Surgery, Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Han-Song Xia
- Department of Orthopedic Surgery, Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Hong-Liang Ba
- Department of Orthopedic Surgery, Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Song Wu
- Department of Orthopedic Surgery, Third Xiangya Hospital of Central South University, Changsha, 410013, China.
| | - Cheng Peng
- Department of Plastic Surgery, Third Xiangya Hospital of Central South University, Changsha, 410013, China.
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, 410013, China.
| |
Collapse
|
22
|
SPAG17 Is Required for Male Germ Cell Differentiation and Fertility. Int J Mol Sci 2018; 19:ijms19041252. [PMID: 29690537 PMCID: PMC5979577 DOI: 10.3390/ijms19041252] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/05/2018] [Accepted: 04/12/2018] [Indexed: 01/08/2023] Open
Abstract
Spag17 encodes a protein present in the axoneme central pair complex of motile cilia and flagella. A mutation in this gene has been reported to be associated with infertility caused by defects in sperm motility. Here, we report that Spag17 knockout mice are infertile because of a severe defect in spermatogenesis. The histological evaluation of testis sections from mutant mice revealed seminiferous tubules with spermatogenesis arrested at the spermatid stage and cell debris in the cauda epididymis. The few sperm collected from the cauda epididymis were immotile and displayed abnormal tail and head morphology. Immunofluorescence analysis of Spag17 knockout germ cells showed spermatids with abnormally long manchette structures and morphological defects in the head. Electron microscopy showed altered manchette microtubules, reduced chromatin condensation, irregular nuclear shape, and detached acrosomes. Additionally, the transport of proteins (Pcdp1 and IFT20) along the manchette microtubules was disrupted in the knockout elongating spermatids. Our results show for the first time that Spag17 is essential for normal manchette structure, protein transport, and formation of the sperm head and flagellum, in addition to its role in sperm motility.
Collapse
|
23
|
Córdova-Fletes C, Becerra-Solano LE, Rangel-Sosa MM, Rivas-Estilla AM, Alberto Galán-Huerta K, Ortiz-López R, Rojas-Martínez A, Juárez-Vázquez CI, García-Ortiz JE. Uncommon runs of homozygosity disclose homozygous missense mutations in two ciliopathy-related genes ( SPAG17 and WDR35 ) in a patient with multiple brain and skeletal anomalies. Eur J Med Genet 2018; 61:161-167. [DOI: 10.1016/j.ejmg.2017.11.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 10/18/2017] [Accepted: 11/21/2017] [Indexed: 10/18/2022]
|
24
|
Li J, Zhu X, Ma L, Xu H, Cao X, Luo R, Chen H, Sun X, Cai Y, Lan X. Detection of a new 20-bp insertion/deletion (indel) within sheep PRND gene using mathematical expectation (ME) method. Prion 2017; 11:143-150. [PMID: 28362554 DOI: 10.1080/19336896.2017.1300740] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Prion-related protein doppel gene (PRND), as an essential member of the mammalian prion gene family, is associated with the scrapie susceptibility as well as phenotype traits, so the genetic variation of the PRND has been highly concerned recently, including the single nucleiotide polymorphism (SNP) and insertion/deletion (indel). Therefore, the objective of present study was to examine the possible indel variants by mathematical expectation (ME) detection method as well as explore its associations with phenotype traits. A novel 20-bp indel was verified in 623 tested individuals representing 4 diversity sheep breeds. The results showed that 3 genotypes were detected and the minor allelic frequency were 0.008 (Lanzhou Fat-Tail sheep, LFTS), 0.084 (Small Tail Han sheep, STHS), 0.021(Tong sheep, TS) and 0.083 (Hu sheep, HS), respectively. Comparing with the traditional method of detecting samples one by one, the reaction times with ME method was decreased by 36.22% (STHS), 37.00% (HS), 68.67% (TS) and 83.33% (LFTS), respectively. Besides, this locus was significantly associated to cannon circumference index (P = 0.012) and trunk index (P = 0.037) in the Hu sheep breed. Notably, it was not concordance with the present result of DNA sequencing (GCTGTCCCTGCAGGGCTTCT) and dbSNPase of NCBI (NC_443194: g.46184887- 46184906delCTGCTGTCCCTGCAGGGCTT). Consequently, it was the first time to detect the new 20-bp indel of sheep PRND gene by ME strategy, which might provide a valuable theoretical basis for marker-assisted selection in sheep genetics and breeding.
Collapse
Affiliation(s)
- Jie Li
- a College of Animal Science and Technology , Northwest A&F University , Yangling , China.,b Innovation Experimental College , Northwest A&F University , Yangling , China
| | - Xichun Zhu
- a College of Animal Science and Technology , Northwest A&F University , Yangling , China
| | - Lin Ma
- a College of Animal Science and Technology , Northwest A&F University , Yangling , China
| | - Hongwei Xu
- c Science Experimental Center , Northwest University for Nationalities , Lanzhou , China.,d College of Life Science and Engineering , Northwest University for Nationalities , Lanzhou , China
| | - Xin Cao
- c Science Experimental Center , Northwest University for Nationalities , Lanzhou , China.,d College of Life Science and Engineering , Northwest University for Nationalities , Lanzhou , China
| | - Renyun Luo
- e Ruilin Sci-Tech Cluture and Breeding Limit Company , Yongjing , China
| | - Hong Chen
- a College of Animal Science and Technology , Northwest A&F University , Yangling , China
| | - Xiuzhu Sun
- a College of Animal Science and Technology , Northwest A&F University , Yangling , China
| | - Yong Cai
- c Science Experimental Center , Northwest University for Nationalities , Lanzhou , China.,d College of Life Science and Engineering , Northwest University for Nationalities , Lanzhou , China
| | - Xianyong Lan
- a College of Animal Science and Technology , Northwest A&F University , Yangling , China
| |
Collapse
|
25
|
Loreng TD, Smith EF. The Central Apparatus of Cilia and Eukaryotic Flagella. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a028118. [PMID: 27770014 DOI: 10.1101/cshperspect.a028118] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The motile cilium is a complex organelle that is typically comprised of a 9+2 microtubule skeleton; nine doublet microtubules surrounding a pair of central singlet microtubules. Like the doublet microtubules, the central microtubules form a scaffold for the assembly of protein complexes forming an intricate network of interconnected projections. The central microtubules and associated structures are collectively referred to as the central apparatus (CA). Studies using a variety of experimental approaches and model organisms have led to the discovery of a number of highly conserved protein complexes, unprecedented high-resolution views of projection structure, and new insights into regulation of dynein-driven microtubule sliding. Here, we review recent progress in defining mechanisms for the assembly and function of the CA and include possible implications for the importance of the CA in human health.
Collapse
Affiliation(s)
- Thomas D Loreng
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755
| | - Elizabeth F Smith
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755
| |
Collapse
|
26
|
Teves ME, Nagarkatti-Gude DR, Zhang Z, Strauss JF. Mammalian axoneme central pair complex proteins: Broader roles revealed by gene knockout phenotypes. Cytoskeleton (Hoboken) 2016; 73:3-22. [PMID: 26785425 DOI: 10.1002/cm.21271] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Revised: 11/22/2015] [Accepted: 12/24/2015] [Indexed: 01/09/2023]
Abstract
The axoneme genes, their encoded proteins, their functions and the structures they form are largely conserved across species. Much of our knowledge of the function and structure of axoneme proteins in cilia and flagella is derived from studies on model organisms like the green algae, Chlamydomonas reinhardtii. The core structure of cilia and flagella is the axoneme, which in most motile cilia and flagella contains a 9 + 2 configuration of microtubules. The two central microtubules are the scaffold of the central pair complex (CPC). Mutations that disrupt CPC genes in Chlamydomonas and other model organisms result in defects in assembly, stability and function of the axoneme, leading to flagellar motility defects. However, targeted mutations generated in mice in the orthologous CPC genes have revealed significant differences in phenotypes of mutants compared to Chlamydomonas. Here we review observations that support the concept of cell-type specific roles for the CPC genes in mice, and an expanded repertoire of functions for the products of these genes in cilia, including non-motile cilia, and other microtubule-associated cellular functions.
Collapse
Affiliation(s)
- Maria E Teves
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, Virginia
| | - David R Nagarkatti-Gude
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, Virginia.,Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia
| | - Zhibing Zhang
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, Virginia.,Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia
| | - Jerome F Strauss
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, Virginia.,Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|