1
|
Luty M, Szydlak R, Pabijan J, Zemła J, Oevreeide IH, Prot VE, Stokke BT, Lekka M, Zapotoczny B. Tubulin-Targeted Therapy in Melanoma Increases the Cell Migration Potential by Activation of the Actomyosin Cytoskeleton─An In Vitro Study. ACS Biomater Sci Eng 2024; 10:7155-7166. [PMID: 39436192 PMCID: PMC11558564 DOI: 10.1021/acsbiomaterials.4c01226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/23/2024]
Abstract
One of the most dangerous aspects of cancers is their ability to metastasize, which is the leading cause of death. Hence, it holds significance to develop therapies targeting the eradication of cancer cells in parallel, inhibiting metastases in cells surviving the applied therapy. Here, we focused on two melanoma cell lines─WM35 and WM266-4─representing the less and more invasive melanomas. We investigated the mechanisms of cellular processes regulating the activation of actomyosin as an effect of colchicine treatment. Additionally, we investigated the biophysical aspects of supplement therapy using Rho-associated protein kinase (ROCK) inhibitor (Y-27632) and myosin II inhibitor ((-)-blebbistatin), focusing on the microtubules and actin filaments. We analyzed their effect on the proliferation, migration, and invasiveness of melanoma cells, supported by studies on cytoskeletal architecture using confocal fluorescence microscopy and nanomechanics using atomic force microscopy (AFM) and microconstriction channels. Our results showed that colchicine inhibits the migration of most melanoma cells, while for a small cell population, it paradoxically increases their migration and invasiveness. These changes are also accompanied by the formation of stress fibers, compensating for the loss of microtubules. Simultaneous administration of selected agents led to the inhibition of this compensatory effect. Collectively, our results highlighted that colchicine led to actomyosin activation and increased the level of cancer cell invasiveness. We emphasized that a cellular pathway of Rho-ROCK-dependent actomyosin contraction is responsible for the increased invasive potential of melanoma cells in tubulin-targeted therapy.
Collapse
Affiliation(s)
- Marcin Luty
- Institute
of Nuclear Physics, Polish Academy of Sciences, Krakow PL-31342, Poland
| | - Renata Szydlak
- Institute
of Nuclear Physics, Polish Academy of Sciences, Krakow PL-31342, Poland
| | - Joanna Pabijan
- Institute
of Nuclear Physics, Polish Academy of Sciences, Krakow PL-31342, Poland
| | - Joanna Zemła
- Institute
of Nuclear Physics, Polish Academy of Sciences, Krakow PL-31342, Poland
| | - Ingrid H. Oevreeide
- Biophysics
and Medical Technology, Department of Physics, NTNU The Norwegian University of Science and Technology, Trondheim NO-7491, Norway
| | - Victorien E. Prot
- Biomechanics,
Department of Structural Engineering, NTNU
The Norwegian University of Science and Technology, Trondheim NO-7491, Norway
| | - Bjørn T. Stokke
- Biophysics
and Medical Technology, Department of Physics, NTNU The Norwegian University of Science and Technology, Trondheim NO-7491, Norway
| | - Malgorzata Lekka
- Institute
of Nuclear Physics, Polish Academy of Sciences, Krakow PL-31342, Poland
| | | |
Collapse
|
2
|
Chen A, Li S, Gui J, Zhou H, Zhu L, Mi Y. Mechanisms of tropomyosin 3 in the development of malignant tumors. Heliyon 2024; 10:e35723. [PMID: 39170461 PMCID: PMC11336884 DOI: 10.1016/j.heliyon.2024.e35723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 08/23/2024] Open
Abstract
Tropomyosin (TPM) is an important regulatory protein that binds to actin in fine myofilaments, playing a crucial role in the regulation of muscle contraction. TPM3, as one of four tropomyosin genes, is notably prevalent in eukaryotic cells. Traditionally, abnormal gene expression of TPM3 has been exclusively associated with myopathy. However, recent years have witnessed a surge in studies highlighting the close correlation between abnormal expression of TPM3 and the onset, progression, metastasis, and prognosis of various malignant tumors. In light of this, investigating the mechanisms underlying the pathogenetic role of TPM3 holds significant promise for early diagnosis and more effective treatment strategies. This article aims to provide an insightful review of the structural characteristics of TPM3 and its intricate role in the occurrence and development of malignant tumors.
Collapse
Affiliation(s)
- Anjie Chen
- Department of Urology, Affiliated Hospital of Jiangnan University, 1000 Hefeng Road, Wuxi, 214122, Jiangsu Province, China
- Wuxi School of Medicine, Jiangnan University, 1800 Lihudadao, Wuxi, 214122, Jiangsu Province, China
| | - Sixin Li
- Department of Urology, Affiliated Hospital of Jiangnan University, 1000 Hefeng Road, Wuxi, 214122, Jiangsu Province, China
- Wuxi School of Medicine, Jiangnan University, 1800 Lihudadao, Wuxi, 214122, Jiangsu Province, China
| | - Jiandong Gui
- Department of Urology, Affiliated Hospital of Jiangnan University, 1000 Hefeng Road, Wuxi, 214122, Jiangsu Province, China
- Wuxi School of Medicine, Jiangnan University, 1800 Lihudadao, Wuxi, 214122, Jiangsu Province, China
| | - Hangsheng Zhou
- Department of Urology, Affiliated Hospital of Jiangnan University, 1000 Hefeng Road, Wuxi, 214122, Jiangsu Province, China
- Wuxi School of Medicine, Jiangnan University, 1800 Lihudadao, Wuxi, 214122, Jiangsu Province, China
| | - Lijie Zhu
- Department of Urology, Affiliated Hospital of Jiangnan University, 1000 Hefeng Road, Wuxi, 214122, Jiangsu Province, China
| | - Yuanyuan Mi
- Department of Urology, Affiliated Hospital of Jiangnan University, 1000 Hefeng Road, Wuxi, 214122, Jiangsu Province, China
| |
Collapse
|
3
|
Guo Y, Ma S, Wang D, Mei F, Guo Y, Heng BC, Zhang S, Huang Y, Wei Y, He Y, Liu W, Xu M, Zhang X, Chen L, Deng X. HtrA3 paves the way for MSC migration and promotes osteogenesis. Bioact Mater 2024; 38:399-410. [PMID: 38774457 PMCID: PMC11107107 DOI: 10.1016/j.bioactmat.2024.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/24/2024] Open
Abstract
Mesenchymal stem cell (MSC) migration determines the healing capacity of bone and is crucial in promoting bone regeneration. Migration of MSCs is highly dependent on degradation of extracellular matrix by proteolytic enzymes. However, the underlying mechanisms of how enzymolysis paves the way for MSCs to migrate from their niche to the defect area is still not fully understood. Here, this study shows that high-temperature requirement A3 (HtrA3) overcomes the physical barrier and provides anchor points through collagen IV degradation, paving the way for MSC migration. HtrA3 is upregulated in MSCs at the leading edge of bone defect during the early stage of healing. HtrA3 degrades the surrounding collagen IV, which increases the collagen network porosity and increases integrin β1 expression. Subsequently, integrin β1 enhances the mechanotransduction of MSCs, thus remodeling the cytoskeleton, increasing cellular stiffness and nuclear translocation of YAP, eventually promoting the migration and subsequent osteogenic differentiation of MSCs. Local administration of recombinant HtrA3 in rat cranial bone defects significantly increases new bone formation and further validates the enhancement of MSC migration. This study helps to reveal the novel roles of HtrA3, explore potential targets for regenerative medicine, and offer new insights for the development of bioactive materials.
Collapse
Affiliation(s)
- Yaru Guo
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Siqin Ma
- Department of Stomatology, PLA General Hospital, First Affiliated Hospital (304 Hospital), Beijing, 100081, China
| | - Dandan Wang
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Feng Mei
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yusi Guo
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Boon Chin Heng
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Shihan Zhang
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Ying Huang
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Yan Wei
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Ying He
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Wenwen Liu
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Mingming Xu
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Xuehui Zhang
- NMPA Key Laboratory for Dental Materials, Department of Dental Materials & Dental Medical Devices Testing Center, Peking University School and Hospital of Stomatology, Beijing, 100081, China
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Lili Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xuliang Deng
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, China
- NMPA Key Laboratory for Dental Materials, Department of Dental Materials & Dental Medical Devices Testing Center, Peking University School and Hospital of Stomatology, Beijing, 100081, China
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| |
Collapse
|
4
|
Radman BA, Alhameed AMM, Shu G, Yin G, Wang M. Cellular elasticity in cancer: a review of altered biomechanical features. J Mater Chem B 2024; 12:5299-5324. [PMID: 38742281 DOI: 10.1039/d4tb00328d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
A large number of studies have shown that changes in biomechanical characteristics are an important indicator of tumor transformation in normal cells. Elastic deformation is one of the more studied biomechanical features of tumor cells, which plays an important role in tumourigenesis and development. Altered cell elasticity often brings many indications. This manuscript reviews the effects of altered cellular elasticity on cell characteristics, including adhesion viscosity, migration, proliferation, and differentiation elasticity and stiffness. Also, the physical factors that may affect cell elasticity, such as temperature, cell height, cell-viscosity, and aging, are summarized. Then, the effects of cell-matrix, cytoskeleton, in vitro culture medium, and cell-substrate with different three-dimensional structures on cell elasticity during cell tumorigenesis are outlined. Importantly, we summarize the current signaling pathways that may affect cellular elasticity, as well as tests for cellular elastic deformation. Finally, we summarize current hybrid materials: polymer-polymer, protein-protein, and protein-polymer hybrids, also, nano-delivery strategies that target cellular resilience and cases that are at least in clinical phase 1 trials. Overall, the behavior of cancer cell elasticity is modulated by biological, chemical, and physical changes, which in turn have the potential to alter cellular elasticity, and this may be an encouraging prediction for the future discovery of cancer therapies.
Collapse
Affiliation(s)
- Bakeel A Radman
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha, China.
- Department of Biology, College of Science and Education, Albaydha University, Yemen
| | | | - Guang Shu
- Department of Histology and Embryology, School of Basic Medical Sciences, Central South University, Changsha, 410013, China
- China-Africa Research Center of Infectious Diseases, School of Basic Medical Sciences, Central South University, Changsha, 410013, China
| | - Gang Yin
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha, China.
| | - Maonan Wang
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha, China.
| |
Collapse
|
5
|
Padmanabhan J, Chen K, Sivaraj D, Henn D, Kuehlmann BA, Kussie HC, Zhao ET, Kahn A, Bonham CA, Dohi T, Beck TC, Trotsyuk AA, Stern-Buchbinder ZA, Than PA, Hosseini HS, Barrera JA, Magbual NJ, Leeolou MC, Fischer KS, Tigchelaar SS, Lin JQ, Perrault DP, Borrelli MR, Kwon SH, Maan ZN, Dunn JCY, Nazerali R, Januszyk M, Prantl L, Gurtner GC. Allometrically scaling tissue forces drive pathological foreign-body responses to implants via Rac2-activated myeloid cells. Nat Biomed Eng 2023; 7:1419-1436. [PMID: 37749310 PMCID: PMC10651488 DOI: 10.1038/s41551-023-01091-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 08/02/2023] [Indexed: 09/27/2023]
Abstract
Small animals do not replicate the severity of the human foreign-body response (FBR) to implants. Here we show that the FBR can be driven by forces generated at the implant surface that, owing to allometric scaling, increase exponentially with body size. We found that the human FBR is mediated by immune-cell-specific RAC2 mechanotransduction signalling, independently of the chemistry and mechanical properties of the implant, and that a pathological FBR that is human-like at the molecular, cellular and tissue levels can be induced in mice via the application of human-tissue-scale forces through a vibrating silicone implant. FBRs to such elevated extrinsic forces in the mice were also mediated by the activation of Rac2 signalling in a subpopulation of mechanoresponsive myeloid cells, which could be substantially reduced via the pharmacological or genetic inhibition of Rac2. Our findings provide an explanation for the stark differences in FBRs observed in small animals and humans, and have implications for the design and safety of implantable devices.
Collapse
Affiliation(s)
- Jagannath Padmanabhan
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Kellen Chen
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Surgery, University of Arizona College of Medicine, Tucson, AZ, USA.
| | - Dharshan Sivaraj
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Surgery, University of Arizona College of Medicine, Tucson, AZ, USA.
| | - Dominic Henn
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Department of Plastic Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Britta A Kuehlmann
- Department of Plastic and Reconstructive Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Hudson C Kussie
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Department of Surgery, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Eric T Zhao
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Anum Kahn
- Cell Sciences Imaging Facility (CSIF), Beckman Center, Stanford University, Stanford, CA, USA
| | - Clark A Bonham
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Teruyuki Dohi
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Thomas C Beck
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Artem A Trotsyuk
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Department of Surgery, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Zachary A Stern-Buchbinder
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Peter A Than
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Hadi S Hosseini
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Janos A Barrera
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Noah J Magbual
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Melissa C Leeolou
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Katharina S Fischer
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Seth S Tigchelaar
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - John Q Lin
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - David P Perrault
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Mimi R Borrelli
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Sun Hyung Kwon
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Zeshaan N Maan
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - James C Y Dunn
- Division of Pediatric Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Rahim Nazerali
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael Januszyk
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Lukas Prantl
- Department of Plastic and Reconstructive Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Geoffrey C Gurtner
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Surgery, University of Arizona College of Medicine, Tucson, AZ, USA.
| |
Collapse
|
6
|
Ndlovu E, Malpartida L, Sultana T, Dahms TES, Dague E. Host Cell Geometry and Cytoskeletal Organization Governs Candida-Host Cell Interactions at the Nanoscale. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37888912 DOI: 10.1021/acsami.3c09870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Candida is one of the most common opportunistic fungal pathogens in humans. Its adhesion to the host cell is required in parasitic states and is important for pathogenesis. Many studies have shown that there is an increased risk of developing candidiasis when normal tissue barriers are weakened or when immune defenses are compromised, for example, during cancer treatment that induces immunosuppression. The mechanical properties of malignant cells, such as adhesiveness and viscoelasticity, which contribute to cellular invasion and migration are different from those of noncancerous cells. To understand host invasion and its relationship with host cell health, we probed the interaction of Candida spp. with cancerous and noncancerous human cell lines using atomic force microscopy in the single-cell force spectroscopy mode. There was significant adhesion between Candida and human cells, with more adhesion to cancerous versus noncancerous cell lines. This increase in adhesion is related to the mechanobiological properties of cancer cells, which have a disorganized cytoskeleton and lower rigidity. Altered geometry and cytoskeletal disruption of the human cells impacted adhesion parameters, underscoring the role of cytoskeletal organization in Candida-human cell adhesion and implicating the manipulation of cell properties as a potential future therapeutic strategy.
Collapse
Affiliation(s)
- Easter Ndlovu
- Department of Chemistry and Biochemistry, University of Regina, 3737 Wascana Parkway, Regina S4S 0A2, Saskatchewan, Canada
| | - Lucas Malpartida
- National Centre for Scientific Research, Laboratory for Analysis and Architecture of Systems (LAAS), 7 Avenue du Colonel Roche, BP 54200, Toulouse cedex 4 31031, France
| | - Taranum Sultana
- Department of Chemistry and Biochemistry, University of Regina, 3737 Wascana Parkway, Regina S4S 0A2, Saskatchewan, Canada
| | - Tanya E S Dahms
- Department of Chemistry and Biochemistry, University of Regina, 3737 Wascana Parkway, Regina S4S 0A2, Saskatchewan, Canada
| | - Etienne Dague
- National Centre for Scientific Research, Laboratory for Analysis and Architecture of Systems (LAAS), 7 Avenue du Colonel Roche, BP 54200, Toulouse cedex 4 31031, France
| |
Collapse
|
7
|
Wang D, Wang Y, Di X, Wang F, Wanninayaka A, Carnell M, Hardeman EC, Jin D, Gunning PW. Cortical tension drug screen links mitotic spindle integrity to Rho pathway. Curr Biol 2023; 33:4458-4469.e4. [PMID: 37875071 DOI: 10.1016/j.cub.2023.09.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 07/24/2023] [Accepted: 09/11/2023] [Indexed: 10/26/2023]
Abstract
Mechanical force generation plays an essential role in many cellular functions, including mitosis. Actomyosin contractile forces mediate changes in cell shape in mitosis and are implicated in mitotic spindle integrity via cortical tension. An unbiased screen of 150 small molecules that impact actin organization and 32 anti-mitotic drugs identified two molecular targets, Rho kinase (ROCK) and tropomyosin 3.1/2 (Tpm3.1/2), whose inhibition has the greatest impact on mitotic cortical tension. The converse was found for compounds that depolymerize microtubules. Tpm3.1/2 forms a co-polymer with mitotic cortical actin filaments, and its inhibition prevents rescue of multipolar spindles induced by anti-microtubule chemotherapeutics. We examined the role of mitotic cortical tension in this rescue mechanism. Inhibition of ROCK and Tpm3.1/2 and knockdown (KD) of cortical nonmuscle myosin 2A (NM2A), all of which reduce cortical tension, inhibited rescue of multipolar mitotic spindles, further implicating cortical tension in the rescue mechanism. GEF-H1 released from microtubules by depolymerization increased cortical tension through the RhoA pathway, and its KD also inhibited rescue of multipolar mitotic spindles. We conclude that microtubule depolymerization by anti-cancer drugs induces cortical-tension-based rescue to ensure integrity of the mitotic bipolar spindle mediated via the RhoA pathway. Central to this mechanism is the dependence of NM2A on Tpm3.1/2 to produce the functional engagement of actin filaments responsible for cortical tension.
Collapse
Affiliation(s)
- Dejiang Wang
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia; School of Biomedical Sciences, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Yao Wang
- School of Biomedical Sciences, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Xiangjun Di
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Fan Wang
- School of Electrical and Data Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW 2007, Australia; School of Physics, Beihang University, Beijing 100191, P.R. China
| | - Amanda Wanninayaka
- School of Biomedical Sciences, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Michael Carnell
- Katharina Gaus Light Microscope Facility, Mark Wainwright Analytical Centre, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Edna C Hardeman
- School of Biomedical Sciences, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Dayong Jin
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia; UTS-SUStech Joint Research Centre for Biomedical Materials & Devices, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, P.R. China
| | - Peter W Gunning
- School of Biomedical Sciences, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW 2052, Australia.
| |
Collapse
|
8
|
Wei J, Li M. Interplay of Fluid Mechanics and Matrix Stiffness in Tuning the Mechanical Behaviors of Single Cells Probed by Atomic Force Microscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:1309-1319. [PMID: 36633932 DOI: 10.1021/acs.langmuir.2c03137] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
It is well known that both fluid mechanics and matrix stiffness present within the cellular microenvironments play an essential role in the physiological and pathological processes of cells. However, so far, knowledge of the interplay of fluid mechanics and matrix stiffness in tuning the mechanical behaviors of single cells is still extremely limited. Particularly, atomic force microscopy (AFM) is now an important and standard tool for characterizing the mechanical properties of single living cells. Nevertheless, studies of utilizing AFM to detect cellular mechanics are commonly performed in static medium conditions, which are unable to access the effects of fluidic media on cellular behaviors. Here, by integrating AFM with a fluidic cell medium device and hydrogel technology, the combined effects of fluid mechanics and matrix stiffness on cell mechanics were investigated. A fluidic medium device with tunable fluid mechanics was established to simulate the shear flow effects, and hydrogels were used to fabricate substrates with different stiffnesses for cell growth. Especially, the cantilever of the AFM probe was modified with a microsphere to indent cells for probing cell mechanics. Based on the established experimental platform, the elastic and viscous properties of single living cells grown on substrates with tunable matrix stiffness under fluidic microenvironments were quantitatively measured, and the remarkable alterations in the mechanical properties of cells were unraveled. The subcellular structure changes of cells in fluidic microenvironments were observed by fluorescence microscopy. Further, AFM morphological imaging was used to image living cells grown in fluidic medium conditions, and significant changes in the surface structure and roughness of cells were observed. The study provides a novel way to investigate the synergistic effects of fluid mechanics and matrix stiffness on the behaviors of single cells, which will benefit unveiling the underlying mechanical cues involved the interactions between microenvironments and cells.
Collapse
Affiliation(s)
- Jiajia Wei
- State Key Laboratory of Robotics, Chinese Academy of Sciences, Shenyang Institute of Automation, Shenyang110016, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang110169, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Mi Li
- State Key Laboratory of Robotics, Chinese Academy of Sciences, Shenyang Institute of Automation, Shenyang110016, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang110169, China
- University of Chinese Academy of Sciences, Beijing100049, China
| |
Collapse
|
9
|
Su Z, Chen Z, Ma K, Chen H, Ho JWK. Molecular determinants of intrinsic cellular stiffness in health and disease. Biophys Rev 2022; 14:1197-1209. [PMID: 36345276 PMCID: PMC9636357 DOI: 10.1007/s12551-022-00997-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/11/2022] [Indexed: 10/14/2022] Open
Abstract
In recent years, the role of intrinsic biophysical features, especially cellular stiffness, in diverse cellular and disease processes is being increasingly recognized. New high throughput techniques for the quantification of cellular stiffness facilitate the study of their roles in health and diseases. In this review, we summarized recent discovery about how cellular stiffness is involved in cell stemness, tumorigenesis, and blood diseases. In addition, we review the molecular mechanisms underlying the gene regulation of cellular stiffness in health and disease progression. Finally, we discussed the current understanding on how the cytoskeleton structure and the regulation of these genes contribute to cellular stiffness, highlighting where the field of cellular stiffness is headed.
Collapse
Affiliation(s)
- Zezhuo Su
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, SAR China
- Laboratory of Data Discovery for Health Limited (D24H), Hong Kong Science Park, Hong Kong, SAR China
| | - Zhenlin Chen
- Department of Biomedical Engineering, College of Engineering, City University of Hong Kong, Kowloon, Hong Kong, SAR China
| | - Kun Ma
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, SAR China
- Laboratory of Data Discovery for Health Limited (D24H), Hong Kong Science Park, Hong Kong, SAR China
| | - Huaying Chen
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, Shenzhen, 518055 China
| | - Joshua W. K. Ho
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, SAR China
- Laboratory of Data Discovery for Health Limited (D24H), Hong Kong Science Park, Hong Kong, SAR China
| |
Collapse
|
10
|
Vakhrusheva A, Murashko A, Trifonova E, Efremov Y, Timashev P, Sokolova O. Role of Actin-binding Proteins in the Regulation of Cellular Mechanics. Eur J Cell Biol 2022; 101:151241. [DOI: 10.1016/j.ejcb.2022.151241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/18/2022] [Accepted: 05/19/2022] [Indexed: 12/25/2022] Open
|
11
|
Nutritionally induced nanoscale variations in spider silk structural and mechanical properties. J Mech Behav Biomed Mater 2021; 125:104873. [PMID: 34653899 DOI: 10.1016/j.jmbbm.2021.104873] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 09/24/2021] [Accepted: 09/30/2021] [Indexed: 10/20/2022]
Abstract
Spider major ampullate (MA) silk is characterized by high strength and toughness and is adaptable across environments. Experiments depriving spiders of protein have enabled researchers to examine nutritionally induced changes in gene expression, protein structures, and bulk properties of MA silk. However, it has not been elucidated if it varies in a similar way at a nanoscale. Here we used Atomic Force Microscopy (AFM) to simultaneously examine the topographic, structural, and mechanical properties of silks spun by two species of spider, Argiope keyserlingi and Latrodectus hasselti, at a nanoscale when protein fed or deprived. We found height, a measure of localized width, to substantially vary across species and treatments. We also found that Young's modulus, which may be used as an estimate of localized stiffness, decreased with protein deprivation in both species' silk. Our results suggest that nanoscale skin-core structures of A. keyserlingi's MA silk varied significantly across treatments, whereas only slight structural and functional variability was found for L. hasselti's silk. These results largely agreed with examinations of the bulk properties of each species' silk. However, we could not directly attribute the decoupling between protein structures and bulk mechanics in L. hasselti's silk to nanoscale features. Our results advance the understanding of processes inducing skin and core structural variations in spider silks at a nanoscale, which serves to enhance the prospect of developing biomimetic engineering programs.
Collapse
|
12
|
Wang Z, Zhu X, Cong X. Spatial micro-variation of 3D hydrogel stiffness regulates the biomechanical properties of hMSCs. Biofabrication 2021; 13. [PMID: 34107453 DOI: 10.1088/1758-5090/ac0982] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/09/2021] [Indexed: 02/06/2023]
Abstract
Human mesenchymal stem cells (hMSCs) are one of the most promising candidates for cell-based therapeutic products. Nonetheless, their biomechanical phenotype afterin vitroexpansion is still unsatisfactory, for example, restricting the efficiency of microcirculation of delivered hMSCs for further cell therapies. Here, we propose a scheme using maleimide-dextran hydrogel with locally varied stiffness in microscale to modify the biomechanical properties of hMSCs in three-dimensional (3D) niches. We show that spatial micro-variation of stiffness can be controllably generated in the hydrogel with heterogeneously cross-linking via atomic force microscopy measurements. The result of 3D cell culture experiment demonstrates the hydrogels trigger the formation of multicellular spheroids, and the derived hMSCs could be rationally softened via adjustment of the stiffness variation (SV) degree. Importantly,in vitro, the hMSCs modified with the higher SV degree can pass easier through capillary-shaped micro-channels. Further, we discuss the underlying mechanics of the increased cellular elasticity by focusing on the effect of rearranged actin networks, via the proposed microscopic model of biomechanically modified cells. Overall, this work highlights the effectiveness of SV-hydrogels in reprogramming and manufacturing hMSCs with designed biomechanical properties for improved therapeutic potential.
Collapse
Affiliation(s)
- Zheng Wang
- College of Mechanical and Electrical Engineering, Hohai University, Changzhou, Jiangsu 213022, People's Republic of China
| | - Xiaolu Zhu
- College of Mechanical and Electrical Engineering, Hohai University, Changzhou, Jiangsu 213022, People's Republic of China.,Changzhou Key Laboratory of Digital Manufacture Technology, Hohai University, Changzhou, Jiangsu 213022, People's Republic of China.,Jiangsu Key Laboratory of Special Robot Technology, Hohai University, Changzhou, Jiangsu 213022, People's Republic of China
| | - Xiuli Cong
- Department of Orthopaedics, Zhejiang Hospital, No. 12 Lingyin Road, Hangzhou, Zhejiang 310013, People's Republic of China
| |
Collapse
|
13
|
Vasilaki D, Bakopoulou A, Tsouknidas A, Johnstone E, Michalakis K. Biophysical interactions between components of the tumor microenvironment promote metastasis. Biophys Rev 2021; 13:339-357. [PMID: 34168685 PMCID: PMC8214652 DOI: 10.1007/s12551-021-00811-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 05/03/2021] [Indexed: 02/07/2023] Open
Abstract
During metastasis, tumor cells need to adapt to their dynamic microenvironment and modify their mechanical properties in response to both chemical and mechanical stimulation. Physical interactions occur between cancer cells and the surrounding matrix including cell movements and cell shape alterations through the process of mechanotransduction. The latter describes the translation of external mechanical cues into intracellular biochemical signaling. Reorganization of both the cytoskeleton and the extracellular matrix (ECM) plays a critical role in these spreading steps. Migrating tumor cells show increased motility in order to cross the tumor microenvironment, migrate through ECM and reach the bloodstream to the metastatic site. There are specific factors affecting these processes, as well as the survival of circulating tumor cells (CTC) in the blood flow until they finally invade the secondary tissue to form metastasis. This review aims to study the mechanisms of metastasis from a biomechanical perspective and investigate cell migration, with a focus on the alterations in the cytoskeleton through this journey and the effect of biologic fluids on metastasis. Understanding of the biophysical mechanisms that promote tumor metastasis may contribute successful therapeutic approaches in the fight against cancer.
Collapse
Affiliation(s)
- Dimitra Vasilaki
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| | - Athina Bakopoulou
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| | - Alexandros Tsouknidas
- Laboratory for Biomaterials and Computational Mechanics, Department of Mechanical Engineering, University of Western Macedonia, Kozani, Greece
| | | | - Konstantinos Michalakis
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
- Division of Graduate Prosthodontics, Tufts University School of Dental Medicine, Boston, MA USA
- University of Oxford, Oxford, UK
| |
Collapse
|
14
|
Pulling the springs of a cell by single-molecule force spectroscopy. Emerg Top Life Sci 2021; 5:77-87. [PMID: 33284963 DOI: 10.1042/etls20200254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/11/2020] [Accepted: 11/16/2020] [Indexed: 11/17/2022]
Abstract
The fundamental unit of the human body comprises of the cells which remain embedded in a fibrillar network of extracellular matrix proteins which in turn provides necessary anchorage the cells. Tissue repair, regeneration and reprogramming predominantly involve a traction force mediated signalling originating in the ECM and travelling deep into the cell including the nucleus via circuitry of spring-like filamentous proteins like microfilaments or actin, intermediate filaments and microtubules to elicit a response in the form of mechanical movement as well as biochemical changes. The 'springiness' of these proteins is highlighted in their extension-contraction behaviour which is manifested as an effect of differential traction force. Atomic force microscope (AFM) provides the magic eye to visualize and quantify such force-extension/indentation events in these filamentous proteins as well as in whole cells. In this review, we have presented a summary of the current understanding and advancement of such measurements by AFM based single-molecule force spectroscopy in the context of cytoskeletal and nucleoskeletal proteins which act in tandem to facilitate mechanotransduction.
Collapse
|
15
|
Delineating the heterogeneity of matrix-directed differentiation toward soft and stiff tissue lineages via single-cell profiling. Proc Natl Acad Sci U S A 2021; 118:2016322118. [PMID: 33941688 PMCID: PMC8126831 DOI: 10.1073/pnas.2016322118] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The clinical utility of mesenchymal stromal/stem cells (MSCs) in mediating immunosuppressive effects and supporting regenerative processes is broadly established. However, the inherent heterogeneity of MSCs compromises its biomedical efficacy and reproducibility. To study how cellular variation affects fate decision-making processes, we perform single-cell RNA sequencing at multiple time points during bipotential matrix-directed differentiation toward soft- and stiff tissue lineages. In this manner, we identify distinctive MSC subpopulations that are characterized by their multipotent differentiation capacity and mechanosensitivity. Also, whole-genome screening highlights TPM1 as a potent mechanotransducer of matrix signals and regulator of cell differentiation. Thus, by introducing single-cell methodologies into mechanobiology, we delineate the complexity of adult stem cell responses to extracellular cues in tissue regeneration and immunomodulation. Mesenchymal stromal/stem cells (MSCs) form a heterogeneous population of multipotent progenitors that contribute to tissue regeneration and homeostasis. MSCs assess extracellular elasticity by probing resistance to applied forces via adhesion, cytoskeletal, and nuclear mechanotransducers that direct differentiation toward soft or stiff tissue lineages. Even under controlled culture conditions, MSC differentiation exhibits substantial cell-to-cell variation that remains poorly characterized. By single-cell transcriptional profiling of nonconditioned, matrix-conditioned, and early differentiating cells, we identified distinct MSC subpopulations with distinct mechanosensitivities, differentiation capacities, and cell cycling. We show that soft matrices support adipogenesis of multipotent cells and early endochondral ossification of nonadipogenic cells, whereas intramembranous ossification and preosteoblast proliferation are directed by stiff matrices. Using diffusion pseudotime mapping, we outline hierarchical matrix-directed differentiation and perform whole-genome screening of mechanoresponsive genes. Specifically, top-ranked tropomyosin-1 is highly sensitive to stiffness cues both at RNA and protein levels, and changes in TPM1 expression determine the differentiation toward soft versus stiff tissue lineage. Consistent with actin stress fiber stabilization, tropomyosin-1 overexpression maintains YAP1 nuclear localization, activates YAP1 target genes, and directs osteogenic differentiation. Knockdown of tropomyosin-1 reversed YAP1 nuclear localization consistent with relaxation of cellular contractility, suppressed osteogenesis, activated early endochondral ossification genes after 3 d of culture in induction medium, and facilitated adipogenic differentiation after 1 wk. Our results delineate cell-to-cell variation of matrix-directed MSC differentiation and highlight tropomyosin-mediated matrix sensing.
Collapse
|
16
|
Ombid RJL, Oyong GG, Cabrera EC, Espulgar WV, Saito M, Tamiya E, Pobre RF. In-vitro study of monocytic THP-1 leukemia cell membrane elasticity with a single-cell microfluidic-assisted optical trapping system. BIOMEDICAL OPTICS EXPRESS 2020; 11:6027-6037. [PMID: 33150003 PMCID: PMC7587289 DOI: 10.1364/boe.402526] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/20/2020] [Accepted: 09/23/2020] [Indexed: 06/11/2023]
Abstract
We studied the elastic profile of monocytic THP-1 leukemia cells using a microfluidic-assisted optical trap. A 2-µm fused silica bead was optically trapped to mechanically dent an immobilized single THP-1 monocyte sieved on a 15-µm microfluidic capture chamber. Cells treated with Zeocin and untreated cells underwent RT-qPCR analysis to determine cell apoptosis through gene expression in relation to each cell's deformation profile. Results showed that untreated cells with 43.05 ± 6.68 Pa are more elastic compared to the treated cells with 15.81 ± 2.94 Pa. THP-1 monocyte's elastic modulus is indicative of cell apoptosis shown by upregulated genes after Zeocin treatment. This study clearly showed that the developed technique can be used to distinguish between cells undergoing apoptosis and cells not undergoing apoptosis and which may apply to the study of other cells and other cell states as well.
Collapse
Affiliation(s)
- Ric John L. Ombid
- OPTICS Research Unit, CENSER, De La Salle University (DLSU), Manila, Philippines
- Optics and Instrumentation Physics Laboratory, Physics Department, DLSU, Manila, Philippines
| | - Glenn G. Oyong
- OPTICS Research Unit, CENSER, De La Salle University (DLSU), Manila, Philippines
- Molecular Science Unit Laboratory, CENSER, DLSU, Manila, Philippines
| | - Esperanza C. Cabrera
- Biology Department, DLSU, Manila, Philippines
- Molecular Science Unit Laboratory, CENSER, DLSU, Manila, Philippines
| | - Wilfred V. Espulgar
- Department of Applied Physics, Graduate School of Engineering, Osaka University, Japan
| | - Masato Saito
- Department of Applied Physics, Graduate School of Engineering, Osaka University, Japan
- Advanced Photonics and Biosensing Open Innovation Laboratory, AIST-Osaka University, Photonics Center, Osaka University, Osaka 565-0871, Japan
| | - Eiichi Tamiya
- Advanced Photonics and Biosensing Open Innovation Laboratory, AIST-Osaka University, Photonics Center, Osaka University, Osaka 565-0871, Japan
- The Institute of Scientific and Industrial Research, Osaka University, Japan
| | - Romeric F. Pobre
- OPTICS Research Unit, CENSER, De La Salle University (DLSU), Manila, Philippines
- Optics and Instrumentation Physics Laboratory, Physics Department, DLSU, Manila, Philippines
| |
Collapse
|
17
|
Zhou Y, Qiu N, Mine Y, Meng Y, Keast R, Zhu C. Quantitative Comparative Proteomic Analysis of Chicken Egg Vitelline Membrane Proteins during High-Temperature Storage. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:9816-9825. [PMID: 32809818 DOI: 10.1021/acs.jafc.0c03538] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
To explore the thermally induced alterations in chicken egg vitelline membrane (CEVM) protein abundances, a comparative proteomic analysis of CEVM after 10 days of storage at 30 °C was performed. Altogether, 981 proteins were identified, of which 124 protein abundances were decreased and 79 were increased. Bioinformatic analysis suggested that the altered proteins were related to structure (n = 10), mechanical properties (n = 13), chaperone (n = 15), antibacterial (n = 12), and antioxidant (n = 3). Alterations in abundances of structural proteins, possibly resulting from the disintegration of these complexes, were observed in this study, suggesting a loss in fibrous structure. Several proteins involved in mechanical strength (n = 10), elasticity (n = 3), and chaperone were decreased in abundances, which indicated that deficits in these proteins might affect the CEVM mechanical properties. These findings will extend our understanding of CEVM deterioration during high-temperature storage from a proteomic perspective.
Collapse
Affiliation(s)
- Yu Zhou
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Ning Qiu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Yoshinori Mine
- Department of Food Science, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Yaqi Meng
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Russell Keast
- Centre for Advanced Sensory Science, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Victoria 3125, Australia
| | - Chunxia Zhu
- Center of Stomatology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Road, Wuhan 430030, P. R. China
| |
Collapse
|
18
|
Kwon S, Yang W, Moon D, Kim KS. Comparison of Cancer Cell Elasticity by Cell Type. J Cancer 2020; 11:5403-5412. [PMID: 32742487 PMCID: PMC7391204 DOI: 10.7150/jca.45897] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/24/2020] [Indexed: 12/27/2022] Open
Abstract
Lower cellular elasticity is a distinguishing feature of cancer cells compared with normal cells. To determine whether cellular elasticity differs based on cancer cell type, cells were selected from three different cancer types including breast, cervix, and lung. For each cancer type, one counterpart normal cell and three types of cancer cells were selected, and their elasticity was measured using atomic force microscopy (AFM). The elasticity of normal cells was in the order of MCF10A > WI-38 ≥ Ect1/E6E7 which corresponds to the counterpart normal breast, lung, and cervical cancer cells, respectively. All cancer cells exhibited lower elasticity than their counterpart normal cells. Compared with the counterpart normal cells, the difference in cellular elasticity was the greatest in cervical cancer cells, followed by lung and breast cancer cells. This result indicates lower elasticity is a unique property of cancer cells; however, the reduction in elasticity may depend on the histological origin of the cells. The F-actin cytoskeleton of cancer cells was different in structure and content from normal cells. The F-actin is mainly distributed at the periphery of cancer cells and its content was mostly lower than that seen in normal cells.
Collapse
Affiliation(s)
- Sangwoo Kwon
- Department of Biomedical Engineering, College of Medicine, Kyung Hee University, Seoul 130-710, Republic of Korea
| | - Woochul Yang
- Department of Physics, Dongguk University, Seoul 04620, Republic of Korea
| | - Donggerami Moon
- Department of Biomedical Engineering, College of Medicine, Kyung Hee University, Seoul 130-710, Republic of Korea
| | - Kyung Sook Kim
- Department of Biomedical Engineering, College of Medicine, Kyung Hee University, Seoul 130-710, Republic of Korea
| |
Collapse
|
19
|
Kwon S, Kim KS. Qualitative analysis of contribution of intracellular skeletal changes to cellular elasticity. Cell Mol Life Sci 2020; 77:1345-1355. [PMID: 31605149 PMCID: PMC11105102 DOI: 10.1007/s00018-019-03328-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 09/25/2019] [Accepted: 09/30/2019] [Indexed: 01/07/2023]
Abstract
Cells are dynamic structures that continually generate and sustain mechanical forces within their environments. Cells respond to mechanical forces by changing their shape, moving, and differentiating. These reactions are caused by intracellular skeletal changes, which induce changes in cellular mechanical properties such as stiffness, elasticity, viscoelasticity, and adhesiveness. Interdisciplinary research combining molecular biology with physics and mechanical engineering has been conducted to characterize cellular mechanical properties and understand the fundamental mechanisms of mechanotransduction. In this review, we focus on the role of cytoskeletal proteins in cellular mechanics. The specific role of each cytoskeletal protein, including actin, intermediate filaments, and microtubules, on cellular elasticity is summarized along with the effects of interactions between the fibers.
Collapse
Affiliation(s)
- Sangwoo Kwon
- Department of Biomedical Engineering, College of Medicine, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Kyung Sook Kim
- Department of Biomedical Engineering, College of Medicine, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
| |
Collapse
|
20
|
Putra VDL, Jalilian I, Campbell M, Poole K, Whan R, Tomasetig F, Tate MLK. Mapping the Mechanome-A Protocol for Simultaneous Live Imaging and Quantitative Analysis of Cell Mechanoadaptation and Ingression. Bio Protoc 2019; 9:e3439. [PMID: 33654934 DOI: 10.21769/bioprotoc.3439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/28/2019] [Accepted: 11/22/2019] [Indexed: 11/02/2022] Open
Abstract
Mechanomics, the mechanics equivalent of genomics, is a burgeoning field studying mechanical modulation of stem cell behavior and lineage commitment. Analogous to mechanical testing of a living material as it adapts and evolves, mapping of the mechanome necessitates the development of new protocols to assess changes in structure and function in live stem cells as they adapt and differentiate. Previous techniques have relied on imaging of cellular structures in fixed cells and/or live cell imaging of single cells with separate studies of changes in mechanical and biological properties. Here we present two complementary protocols to study mechanobiology and mechanoadaptation of live stem cells in adherent and motile contexts. First, we developed and tested live imaging protocols for simultaneous visualization and tracking of actin and tubulin mechanoadaptation as well as shape and volume of cells and their nuclei in adherent model embryonic murine mesenchymal stem cells (C3H/10T1/2) and in a neuroblastoma cell line. Then we applied the protocol to enable quantitative study of primary human mesenchymal stem cells in a motile state, e.g., ingression in a three-dimensional, in vitro cell culture model. Together, these protocols enable study of emergent structural mechanoadaptation of the cell's own cytoskeletal machinery while tracking lineage commitment using phenotypic (quantitative morphology measures) and genotypic (e.g., reverse transcription Polymerase Chain Reaction, rtPCR) methods. These tools are expected to facilitate the mapping of the mechanome and incipient mechanistic understanding of stem cell mechanobiology, from the cellular to the tissue and organ length scales.
Collapse
Affiliation(s)
- Vina D L Putra
- MechBio Team, Graduate School of Biomedical Engineering, University of New South Wales, Sydney, Australia
| | - Iman Jalilian
- MechBio Team, Graduate School of Biomedical Engineering, University of New South Wales, Sydney, Australia.,Department of Cell Biology, Yale University, New Haven, USA
| | - Madeline Campbell
- MechBio Team, Graduate School of Biomedical Engineering, University of New South Wales, Sydney, Australia
| | - Kate Poole
- Cellular Mechanotransduction Group, EMBL Australia Node in Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Renee Whan
- Mark Wainwright Analytical Centre, University of New South Wales, Sydney, Australia
| | - Florence Tomasetig
- Mark Wainwright Analytical Centre, University of New South Wales, Sydney, Australia
| | - Melissa L Knothe Tate
- MechBio Team, Graduate School of Biomedical Engineering, University of New South Wales, Sydney, Australia
| |
Collapse
|
21
|
Abstract
The interactions of cytoskeletal actin filaments with myosin family motors are essential for the integrity and function of eukaryotic cells. They support a wide range of force-dependent functions. These include mechano-transduction, directed transcellular transport processes, barrier functions, cytokinesis, and cell migration. Despite the indispensable role of tropomyosins in the generation and maintenance of discrete actomyosin-based structures, the contribution of individual cytoskeletal tropomyosin isoforms to the structural and functional diversification of the actin cytoskeleton remains a work in progress. Here, we review processes that contribute to the dynamic sorting and targeted distribution of tropomyosin isoforms in the formation of discrete actomyosin-based structures in animal cells and their effects on actin-based motility and contractility.
Collapse
|
22
|
Meiring JCM, Bryce NS, Niño JLG, Gabriel A, Tay SS, Hardeman EC, Biro M, Gunning PW. Tropomyosin concentration but not formin nucleators mDia1 and mDia3 determines the level of tropomyosin incorporation into actin filaments. Sci Rep 2019; 9:6504. [PMID: 31019238 PMCID: PMC6482184 DOI: 10.1038/s41598-019-42977-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 04/11/2019] [Indexed: 12/31/2022] Open
Abstract
The majority of actin filaments in human cells exist as a co-polymer with tropomyosin, which determines the functionality of actin filaments in an isoform dependent manner. Tropomyosin isoforms are sorted to different actin filament populations and in yeast this process is determined by formins, however it remains unclear what process determines tropomyosin isoform sorting in mammalian cells. We have tested the roles of two major formin nucleators, mDia1 and mDia3, in the recruitment of specific tropomyosin isoforms in mammals. Despite observing poorer cell-cell attachments in mDia1 and mDia3 KD cells and an actin bundle organisation defect with mDia1 knock down; depletion of mDia1 and mDia3 individually and concurrently did not result in any significant impact on tropomyosin recruitment to actin filaments, as observed via immunofluorescence and measured via biochemical assays. Conversely, in the presence of excess Tpm3.1, the absolute amount of Tpm3.1-containing actin filaments is not fixed by actin filament nucleators but rather depends on the cell concentration of Tpm3.1. We conclude that mDia1 and mDia3 are not essential for tropomyosin recruitment and that tropomyosin incorporation into actin filaments is concentration dependent.
Collapse
Affiliation(s)
- Joyce C M Meiring
- Cellular and Genetic Medicine Unit, School of Medical Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Nicole S Bryce
- Cellular and Genetic Medicine Unit, School of Medical Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Jorge Luis Galeano Niño
- Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Antje Gabriel
- Cellular and Genetic Medicine Unit, School of Medical Sciences, University of New South Wales, Sydney, NSW, 2052, Australia.,Pharmaceutical Biology, Center for Drug Research, Ludwig-Maximilians-Universität, Munich, Germany
| | - Szun S Tay
- Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Edna C Hardeman
- Cellular and Genetic Medicine Unit, School of Medical Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Maté Biro
- Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Peter W Gunning
- Cellular and Genetic Medicine Unit, School of Medical Sciences, University of New South Wales, Sydney, NSW, 2052, Australia.
| |
Collapse
|
23
|
Atomic force microscopy-based cancer diagnosis by detecting cancer-specific biomolecules and cells. Biochim Biophys Acta Rev Cancer 2019; 1871:367-378. [DOI: 10.1016/j.bbcan.2019.03.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/21/2019] [Accepted: 03/26/2019] [Indexed: 02/07/2023]
|
24
|
Moffitt L, Karimnia N, Stephens A, Bilandzic M. Therapeutic Targeting of Collective Invasion in Ovarian Cancer. Int J Mol Sci 2019; 20:E1466. [PMID: 30909510 PMCID: PMC6471817 DOI: 10.3390/ijms20061466] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 03/14/2019] [Accepted: 03/15/2019] [Indexed: 12/31/2022] Open
Abstract
Ovarian cancer is the seventh most commonly diagnosed cancer amongst women and has the highest mortality rate of all gynaecological malignancies. It is a heterogeneous disease attributed to one of three cell types found within the reproductive milieu: epithelial, stromal, and germ cell. Each histotype differs in etiology, pathogenesis, molecular biology, risk factors, and prognosis. Furthermore, the origin of ovarian cancer remains unclear, with ovarian involvement secondary to the contribution of other gynaecological tissues. Despite these complexities, the disease is often treated as a single entity, resulting in minimal improvement to survival rates since the introduction of platinum-based chemotherapy over 30 years ago. Despite concerted research efforts, ovarian cancer remains one of the most difficult cancers to detect and treat, which is in part due to the unique mode of its dissemination. Ovarian cancers tend to invade locally to neighbouring tissues by direct extension from the primary tumour, and passively to pelvic and distal organs within the peritoneal fluid or ascites as multicellular spheroids. Once at their target tissue, ovarian cancers, like most epithelial cancers including colorectal, melanoma, and breast, tend to invade as a cohesive unit in a process termed collective invasion, driven by specialized cells termed "leader cells". Emerging evidence implicates leader cells as essential drivers of collective invasion and metastasis, identifying collective invasion and leader cells as a viable target for the management of metastatic disease. However, the development of targeted therapies specifically against this process and this subset of cells is lacking. Here, we review our understanding of metastasis, collective invasion, and the role of leader cells in ovarian cancer. We will discuss emerging research into the development of novel therapies targeting collective invasion and the leader cell population.
Collapse
Affiliation(s)
- Laura Moffitt
- Hudson Institute of Medical Research, Clayton VIC 3168, Australia.
- Department of Molecular and Translational Sciences, Monash University, Clayton VIC 3800, Australia.
| | - Nazanin Karimnia
- Hudson Institute of Medical Research, Clayton VIC 3168, Australia.
- Department of Molecular and Translational Sciences, Monash University, Clayton VIC 3800, Australia.
| | - Andrew Stephens
- Hudson Institute of Medical Research, Clayton VIC 3168, Australia.
- Department of Molecular and Translational Sciences, Monash University, Clayton VIC 3800, Australia.
| | - Maree Bilandzic
- Hudson Institute of Medical Research, Clayton VIC 3168, Australia.
- Department of Molecular and Translational Sciences, Monash University, Clayton VIC 3800, Australia.
| |
Collapse
|
25
|
Abstract
Cell's elasticity is an integrative parameter summarizing the biophysical outcome of many known and unknown cellular processes. This includes intracellular signaling, cytoskeletal activity, changes of cell volume and morphology, and many others. Not only intracellular processes defines a cell's elasticity but also environmental factors like their biochemical and biophysical surrounding. Therefore, cell mechanics represents a comprehensive variable of life. A cell in its standard conditions shows variabilities of biochemical and biophysical processes resulting in a certain range of cell's elasticity. Changes of the standard conditions, endogenously or exogenously induced, are frequently paralleled by changes of cell elasticity. Therefore cell elasticity could serve as parameter to characterize different states of a cell. Atomic force microscopy (AFM) combines high spatial resolution with very high force sensitivity and allows investigating mechanical properties of living cells under physiological conditions. However, elastic moduli reported in the literature showed a large variability, sometimes by an order of magnitude (or even more) for the same cell type assessed in different labs. Clearly, a prerequisite for the use of cell elasticity to describe the actual cell status is a standardized procedure that allows obtaining comparable values of a cell independent from the instrument, from the lab and operator. Biologically derived variations of elasticity could not be reduced due to the nature of living cells but technically and methodologically derived variations could be minimized by a standardized procedure.This chapter provides a Standardized Nanomechanical AFM Procedure (SNAP) that reduces strongly the variability of results obtained on soft samples and living cells by a reliable method to calibrate AFM cantilevers.
Collapse
Affiliation(s)
- Hermann Schillers
- Institute of Physiology II, University of Münster, Münster, Germany.
| |
Collapse
|
26
|
Cheng C, Nowak RB, Amadeo MB, Biswas SK, Lo WK, Fowler VM. Tropomyosin 3.5 protects the F-actin networks required for tissue biomechanical properties. J Cell Sci 2018; 131:jcs222042. [PMID: 30333143 PMCID: PMC6288072 DOI: 10.1242/jcs.222042] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 10/09/2018] [Indexed: 12/20/2022] Open
Abstract
Tropomyosins (Tpms) stabilize F-actin and regulate interactions with other actin-binding proteins. The eye lens changes shape in order to focus light to transmit a clear image, and thus lens organ function is tied to its biomechanical properties, presenting an opportunity to study Tpm functions in tissue mechanics. Mouse lenses contain Tpm3.5 (also known as TM5NM5), a previously unstudied isoform encoded by Tpm3, which is associated with F-actin on lens fiber cell membranes. Decreased levels of Tpm3.5 lead to softer and less mechanically resilient lenses that are unable to resume their original shape after compression. While cell organization and morphology appear unaffected, Tmod1 dissociates from the membrane in Tpm3.5-deficient lens fiber cells resulting in reorganization of the spectrin-F-actin and α-actinin-F-actin networks at the membrane. These rearranged F-actin networks appear to be less able to support mechanical load and resilience, leading to an overall change in tissue mechanical properties. This is the first in vivo evidence that a Tpm protein is essential for cell biomechanical stability in a load-bearing non-muscle tissue, and indicates that Tpm3.5 protects mechanically stable, load-bearing F-actin in vivoThis article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Catherine Cheng
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Roberta B Nowak
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Michael B Amadeo
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Sondip K Biswas
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, GA 30314, USA
| | - Woo-Kuen Lo
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, GA 30314, USA
| | - Velia M Fowler
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
27
|
Repetto O, De Re V, De Paoli A, Belluco C, Alessandrini L, Canzonieri V, Cannizzaro R. Identification of protein clusters predictive of tumor response in rectal cancer patients receiving neoadjuvant chemo-radiotherapy. Oncotarget 2018; 8:28328-28341. [PMID: 28423701 PMCID: PMC5438653 DOI: 10.18632/oncotarget.16053] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 02/27/2017] [Indexed: 12/26/2022] Open
Abstract
Preoperative neoadjuvant chemoradiotherapy (nCRT) is the gold standard in locally advanced rectal cancer, only 10–30% of patients achieving benefits. Currently, there is a need of a reliable selection of markers for the identification of poor or non-responders prior to therapy. In this work, we compared protein profiles before therapy of patients differing in their responses to nCRT to find novel predictive markers of response to therapy. Patients were grouped into 3 groups according to their tumor regression grading (TRG) after surgery: 'TRG 1–2′, good responders, 'TRG 3′ and 'TRG 4′, poor responders. Paired surgical specimens of rectal cancer and healthy (histologically confirmed) rectal tissues from 15 patients were analysed before nCRT by two dimensional difference in gel electrophoresis followed by mass spectrometry. Thirty spots were found as differentially expressed (p < 0.05). Among them, 3 spots (spots 471, 683 and 684) showed an increased amount of protein in poor responders compared with good responders, and they were more tumor associated compared with healthy tissues. Proteins of these spots were identified as fibrinogen ß chain fragment D, actin isoforms, B9 and B5 serpins, cathepsin D isoforms and peroxiredoxin-4. In an independent validation set of 20 rectal carcinomas we validated the increased fibrinogen ß chain abundance before nCRT in poor responders by immunoblotting. In conclusion, we propose a risk-stratification tool in predicting the response to nCRT treatment in rectal cancer based on the quantity of these proteins.
Collapse
Affiliation(s)
- Ombretta Repetto
- Facility of Bio-Proteomics, Immunopathology and Cancer Biomarkers, IRCCS CRO National Cancer Institute, Aviano, Italy
| | - Valli De Re
- Facility of Bio-Proteomics, Immunopathology and Cancer Biomarkers, IRCCS CRO National Cancer Institute, Aviano, Italy
| | - Antonino De Paoli
- Radiation Oncology, IRCCS CRO National Cancer Institute, Aviano, Italy
| | - Claudio Belluco
- Surgical Oncology, IRCCS CRO National Cancer Institute, Aviano, Italy
| | | | | | - Renato Cannizzaro
- Renato Cannizzaro, Gastroenterology, IRCCS CRO National Cancer Institute, Aviano, Italy
| |
Collapse
|
28
|
Tropomyosin 2 heterozygous knockout in mice using CRISPR-Cas9 system displays the inhibition of injury-induced epithelial-mesenchymal transition, and lens opacity. Mech Ageing Dev 2018; 171:24-30. [PMID: 29510160 DOI: 10.1016/j.mad.2018.03.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 01/28/2018] [Accepted: 03/01/2018] [Indexed: 01/16/2023]
Abstract
The process of epithelial-mesenchymal transition (EMT) of lens epithelial cells (LECs) after cataract surgery contributes to tissue fibrosis, wound healing and lens regeneration via a mechanism not yet fully understood. Here, we show that tropomyosin 2 (Tpm2) plays a critical role in wound healing and lens aging. Posterior capsular opacification (PCO) after lens extraction surgery was accompanied by elevated expression of Tpm2. Tpm2 heterozygous knockout mice, generated via the clustered regularly interspaced short palindromic repeat/Cas9 (CRISPR/Cas9) system showed promoted progression of cataract with age. Further, injury-induced EMT of the mouse lens epithelium, as evaluated histologically and by the expression patterns of Tpm1 and Tpm2, was attenuated in the absence of Tpm2. In conclusion, Tpm2 may be important in maintaining lens physiology and morphology. However, Tpm2 is involved in the progression of EMT during the wound healing process of mouse LECs, suggesting that inhibition of Tpm2 may suppress PCO.
Collapse
|
29
|
Suchowerska AK, Fok S, Stefen H, Gunning PW, Hardeman EC, Power J, Fath T. Developmental Profiling of Tropomyosin Expression in Mouse Brain Reveals Tpm4.2 as the Major Post-synaptic Tropomyosin in the Mature Brain. Front Cell Neurosci 2017; 11:421. [PMID: 29311841 PMCID: PMC5743921 DOI: 10.3389/fncel.2017.00421] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 12/14/2017] [Indexed: 12/14/2022] Open
Abstract
Nerve cell connections, formed in the developing brain of mammals, undergo a well-programmed process of maturation with changes in their molecular composition over time. The major structural element at the post-synaptic specialization is the actin cytoskeleton, which is composed of different populations of functionally distinct actin filaments. Previous studies, using ultrastructural and light imaging techniques have established the presence of different actin filament populations at the post-synaptic site. However, it remains unknown, how these different actin filament populations are defined and how their molecular composition changes over time. In the present study, we have characterized changes in a core component of actin filaments, the tropomyosin (Tpm) family of actin-associated proteins from embryonal stage to the adult stage. Using biochemical fractionation of mouse brain tissue, we identified the tropomyosin Tpm4.2 as the major post-synaptic Tpm. Furthermore, we found age-related differences in the composition of Tpms at the post-synaptic compartment. Our findings will help to guide future studies that aim to define the functional properties of actin filaments at different developmental stages in the mammalian brain.
Collapse
Affiliation(s)
- Alexandra K Suchowerska
- Neurodegeneration and Repair Unit, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Sandra Fok
- Neurodegeneration and Repair Unit, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Holly Stefen
- Neurodegeneration and Repair Unit, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia.,Neuron Culture Core Facility, University of New South Wales, SydneyNSW, Australia
| | - Peter W Gunning
- Cellular and Genetic Medicine Unit, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Edna C Hardeman
- Cellular and Genetic Medicine Unit, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - John Power
- Translational Neuroscience Facility, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Thomas Fath
- Neurodegeneration and Repair Unit, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia.,Neuron Culture Core Facility, University of New South Wales, SydneyNSW, Australia
| |
Collapse
|
30
|
Ng JL, Kersh ME, Kilbreath S, Knothe Tate M. Establishing the Basis for Mechanobiology-Based Physical Therapy Protocols to Potentiate Cellular Healing and Tissue Regeneration. Front Physiol 2017; 8:303. [PMID: 28634452 PMCID: PMC5460618 DOI: 10.3389/fphys.2017.00303] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 04/27/2017] [Indexed: 12/17/2022] Open
Abstract
Life is mechanobiological: mechanical stimuli play a pivotal role in the formation of structurally and functionally appropriate body templates through mechanobiologically-driven cellular and tissue re/modeling. The body responds to mechanical stimuli engendered through physical movement in an integrated fashion, internalizing and transferring forces from organ, through tissue and cellular length scales. In the context of rehabilitation and therapeutic outcomes, such mechanical stimuli are referred to as mechanotherapy. Physical therapists use mechanotherapy and mechanical interventions, e.g., exercise therapy and manual mobilizations, to restore function and treat disease and/or injury. While the effect of directed movement, such as in physical therapy, is well documented at the length scale of the body and its organs, a number of recent studies implicate its integral effect in modulating cellular behavior and subsequent tissue adaptation. Yet the link between movement biomechanics, physical therapy, and subsequent cellular and tissue mechanoadaptation is not well established in the literature. Here we review mechanoadaptation in the context of physical therapy, from organ to cell scale mechanotransduction and cell to organ scale extracellular matrix genesis and re/modeling. We suggest that physical therapy can be developed to harness the mechanosensitivity of cells and tissues, enabling prescriptive definition of physical and mechanical interventions to enhance tissue genesis, healing, and rehabilitation.
Collapse
Affiliation(s)
- Joanna L. Ng
- Graduate School of Biomedical Engineering, University of New South WalesSydney, NSW, Australia
| | - Mariana E. Kersh
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-ChampaignChampaign, IL, United States
| | - Sharon Kilbreath
- Faculty of Health Sciences, University of SydneySydney, NSW, Australia
| | - M. Knothe Tate
- Graduate School of Biomedical Engineering, University of New South WalesSydney, NSW, Australia
| |
Collapse
|
31
|
Suki B, Hu Y, Murata N, Imsirovic J, Mondoñedo JR, de Oliveira CLN, Schaible N, Allen PG, Krishnan R, Bartolák-Suki E. A microfluidic chamber-based approach to map the shear moduli of vascular cells and other soft materials. Sci Rep 2017; 7:2305. [PMID: 28536424 PMCID: PMC5442161 DOI: 10.1038/s41598-017-02659-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 04/18/2017] [Indexed: 11/09/2022] Open
Abstract
There is growing interest in quantifying vascular cell and tissue stiffness. Most measurement approaches, however, are incapable of assessing stiffness in the presence of physiological flows. We developed a microfluidic approach which allows measurement of shear modulus (G) during flow. The design included a chamber with glass windows allowing imaging with upright or inverted microscopes. Flow was controlled gravitationally to push culture media through the chamber. Fluorescent beads were conjugated to the sample surface and imaged before and during flow. Bead displacements were calculated from images and G was computed as the ratio of imposed shear stress to measured shear strain. Fluid-structure simulations showed that shear stress on the surface did not depend on sample stiffness. Our approach was verified by measuring the moduli of polyacrylamide gels of known stiffness. In human pulmonary microvascular endothelial cells, G was 20.4 ± 12 Pa and decreased by 20% and 22% with increasing shear stress and inhibition of non-muscle myosin II motors, respectively. The G showed a larger intra- than inter-cellular variability and it was mostly determined by the cytosol. Our shear modulus microscopy can thus map the spatial distribution of G of soft materials including gels, cells and tissues while allowing the visualization of microscopic structures such as the cytoskeleleton.
Collapse
Affiliation(s)
- Béla Suki
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA.
| | - Yingying Hu
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
| | - Naohiko Murata
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
| | - Jasmin Imsirovic
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
| | - Jarred R Mondoñedo
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
| | | | - Niccole Schaible
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Philip G Allen
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
| | - Ramaswamy Krishnan
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | | |
Collapse
|
32
|
Actin stress fiber organization promotes cell stiffening and proliferation of pre-invasive breast cancer cells. Nat Commun 2017; 8:15237. [PMID: 28508872 PMCID: PMC5440822 DOI: 10.1038/ncomms15237] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 03/10/2017] [Indexed: 12/25/2022] Open
Abstract
Studies of the role of actin in tumour progression have highlighted its key contribution in cell softening associated with cell invasion. Here, using a human breast cell line with conditional Src induction, we demonstrate that cells undergo a stiffening state prior to acquiring malignant features. This state is characterized by the transient accumulation of stress fibres and upregulation of Ena/VASP-like (EVL). EVL, in turn, organizes stress fibres leading to transient cell stiffening, ERK-dependent cell proliferation, as well as enhancement of Src activation and progression towards a fully transformed state. Accordingly, EVL accumulates predominantly in premalignant breast lesions and is required for Src-induced epithelial overgrowth in Drosophila. While cell softening allows for cancer cell invasion, our work reveals that stress fibre-mediated cell stiffening could drive tumour growth during premalignant stages. A careful consideration of the mechanical properties of tumour cells could therefore offer new avenues of exploration when designing cancer-targeting therapies. When cells acquire a malignant phenotype they become less stiff and this helps migration and invasion favouring metastasis. Here the authors show that Src-driven cell transformation and transition to a less stiff state follows an event of membrane stiffening due to stress fibres accumulation.
Collapse
|
33
|
Desouza-Armstrong M, Gunning PW, Stehn JR. Tumor suppressor tropomyosin Tpm2.1 regulates sensitivity to apoptosis beyond anoikis characterized by changes in the levels of intrinsic apoptosis proteins. Cytoskeleton (Hoboken) 2017; 74:233-248. [PMID: 28378936 DOI: 10.1002/cm.21367] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 03/03/2017] [Accepted: 03/28/2017] [Indexed: 01/15/2023]
Abstract
The actin cytoskeleton is a polymer system that acts both as a sensor and mediator of apoptosis. Tropomyosins (Tpm) are a family of actin binding proteins that form co-polymers with actin and diversify actin filament function. Previous studies have shown that elevated expression of the tropomyosin isoform Tpm2.1 sensitized cells to apoptosis induced by cell detachment (anoikis) via an unknown mechanism. It is not yet known whether Tpm2.1 or other tropomyosin isoforms regulate sensitivity to apoptosis beyond anoikis. In this study, rat neuroepithelial cells overexpressing specific tropomyosin isoforms (Tpm1.7, Tpm2.1, Tpm3.1, and Tpm4.2) were screened for sensitivity to different classes of apoptotic stimuli, including both cytoskeletal and non-cytoskeletal targeting compounds. Results showed that elevated expression of tropomyosins in general inhibited apoptosis sensitivity to different stimuli. However, Tpm2.1 overexpression consistently enhanced sensitivity to anoikis as well as apoptosis induced by the actin targeting drug jasplakinolide (JASP). In contrast the cancer-associated isoform Tpm3.1 inhibited the induction of apoptosis by a range of agents. Treatment of Tpm2.1 overexpressing cells with JASP was accompanied by enhanced sensitivity to mitochondrial depolarization, a hallmark of intrinsic apoptosis. Moreover, Tpm2.1 overexpressing cells showed elevated levels of the apoptosis proteins Bak (proapoptotic), Mcl-1 (prosurvival), Bcl-2 (prosurvival) and phosphorylated p53 (Ser392). Finally, JASP treatment of Tpm2.1 cells caused significantly reduced Mcl-1, Bcl-2 and p53 (Ser392) levels relative to control cells. We therefore propose that Tpm2.1 regulates sensitivity to apoptosis beyond the scope of anoikis by modulating the expression of key intrinsic apoptosis proteins which primes the cell for death.
Collapse
Affiliation(s)
- Melissa Desouza-Armstrong
- Department of Anatomy, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Peter W Gunning
- Department of Anatomy, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Justine R Stehn
- Department of Anatomy, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, Australia.,Novogen Ltd. Hornsby, Sydney, New South Wales, 2077, Australia
| |
Collapse
|
34
|
Gray KT, Kostyukova AS, Fath T. Actin regulation by tropomodulin and tropomyosin in neuronal morphogenesis and function. Mol Cell Neurosci 2017; 84:48-57. [PMID: 28433463 DOI: 10.1016/j.mcn.2017.04.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 04/06/2017] [Accepted: 04/11/2017] [Indexed: 12/26/2022] Open
Abstract
Actin is a profoundly influential protein; it impacts, among other processes, membrane morphology, cellular motility, and vesicle transport. Actin can polymerize into long filaments that push on membranes and provide support for intracellular transport. Actin filaments have polar ends: the fast-growing (barbed) end and the slow-growing (pointed) end. Depolymerization from the pointed end supplies monomers for further polymerization at the barbed end. Tropomodulins (Tmods) cap pointed ends by binding onto actin and tropomyosins (Tpms). Tmods and Tpms have been shown to regulate many cellular processes; however, very few studies have investigated their joint role in the nervous system. Recent data directly indicate that they can modulate neuronal morphology. Additional studies suggest that Tmod and Tpm impact molecular processes influential in synaptic signaling. To facilitate future research regarding their joint role in actin regulation in the nervous system, we will comprehensively discuss Tpm and Tmod and their known functions within molecular systems that influence neuronal development.
Collapse
Affiliation(s)
- Kevin T Gray
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington, United States; School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Alla S Kostyukova
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington, United States.
| | - Thomas Fath
- School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia.
| |
Collapse
|
35
|
Zanotelli MR, Bordeleau F, Reinhart-King CA. Subcellular regulation of cancer cell mechanics. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2017. [DOI: 10.1016/j.cobme.2017.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
36
|
Knothe Tate ML, Gunning PW, Sansalone V. Emergence of Form from Function - Mechanical Engineering Approaches to Probe the Role of Stem Cell Mechanoadaptation in Sealing Cell Fate. BIOARCHITECTURE 2016; 6:85-103. [PMID: 27739911 DOI: 10.1080/19490992.2016.1229729] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Stem cell "mechanomics" refers to the effect of mechanical cues on stem cell and matrix biology, where cell shape and fate are intrinsic manifestations of form and function. Before specialization, the stem cell itself serves as a sensor and actuator; its structure emerges from its local mechanical milieu as the cell adapts over time. Coupling of novel spatiotemporal imaging and computational methods allows for linking of the energy of adaptation to the structure, biology and mechanical function of the cell. Cutting edge imaging methods enable probing of mechanisms by which stem cells' emergent anisotropic architecture and fate commitment occurs. A novel cell-scale model provides a mechanistic framework to describe stem cell growth and remodeling through mechanical feedback; making use of a generalized virtual power principle, the model accounts for the rate of doing work or the rate of using energy to effect the work. This coupled approach provides a basis to elucidate mechanisms underlying the stem cell's innate capacity to adapt to mechanical stimuli as well as the role of mechanoadaptation in lineage commitment. An understanding of stem cell mechanoadaptation is key to deciphering lineage commitment, during prenatal development, postnatal wound healing, and engineering of tissues.
Collapse
Affiliation(s)
- Melissa L Knothe Tate
- a Graduate School of Biomedical Engineering , University of New South Wales , Sydney , Australia
| | - Peter W Gunning
- b School of Medical Sciences, University of New South Wales , Sydney , Australia
| | - Vittorio Sansalone
- c Université Paris-Est Créteil (UPEC), Laboratoire Modélisation et Simulation Multi Echelle , MSME UMR 8208 CNRS, France
| |
Collapse
|
37
|
Wang B, Qin P, Zhao H, Xia T, Wang J, Liu L, Zhu L, Xu J, Huang C, Shi Y, Du Y. Substrate stiffness orchestrates epithelial cellular heterogeneity with controlled proliferative pattern via E-cadherin/β-catenin mechanotransduction. Acta Biomater 2016; 41:169-80. [PMID: 27208640 DOI: 10.1016/j.actbio.2016.05.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 05/17/2016] [Accepted: 05/17/2016] [Indexed: 12/19/2022]
Abstract
UNLABELLED Epithelial cellular heterogeneity has been observed in pathological tissues with abnormal matrix stiffness and cells cultured on rigid substrates. However, it remains unclear how matrix stiffness influences cellular heterogeneity formation in multi-cellular population. Here, we demonstrated that cellular heterogeneity regulated by substrate stiffness is evident starting from the initial single-cell stage (indicated by cellular Young's modulus and morphology) until the resulting multi-cellular stage (indicated by cellular functions) through distinguished proliferative patterns. Epithelial cells on soft substrate proliferated in a neighbor-dependent manner with stronger E-cadherin expression and more homogeneous E-cadherin/β-catenin localization compared to those on coverslips, which resulted in reduced heterogeneity in downstream cellular functions of the multi-cellular population. In particular, decreased heterogeneity in human embryonic stem cells upon expansion and endodermal induction was achieved on soft substrate. Overall, our work provides new insights on mechanotransduction during epithelial proliferation which regulates the formation of cellular heterogeneity and potentially provides a highly efficient approach to regulate stem cell fate by fine-tuning substrate stiffness. STATEMENT OF SIGNIFICANCE This study demonstrates that cellular heterogeneity regulated by substrate stiffness is evident starting from the initial single-cell stage until the resulting multi-cellular stage through distinguished proliferative patterns. During this process, E-cadherin/β-catenin mechanotransduction is found to play important role in substrate stiffness-regulated epithelial cellular heterogeneity formation. In particular, decreased heterogeneity in human embryonic stem cells upon expansion and endodermal induction is achieved on soft substrate. Hence, we believe that this work not only provides new insights on mechanotransduction of E-cadherin/β-catenin which regulates the formation of cellular heterogeneity during proliferation, but also potentially provides a highly efficient approach to regulate stem cell fate by fine-tuning substrate stiffness.
Collapse
|
38
|
Guyot Y, Smeets B, Odenthal T, Subramani R, Luyten FP, Ramon H, Papantoniou I, Geris L. Immersed Boundary Models for Quantifying Flow-Induced Mechanical Stimuli on Stem Cells Seeded on 3D Scaffolds in Perfusion Bioreactors. PLoS Comput Biol 2016; 12:e1005108. [PMID: 27658116 PMCID: PMC5033382 DOI: 10.1371/journal.pcbi.1005108] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 08/16/2016] [Indexed: 12/13/2022] Open
Abstract
Perfusion bioreactors regulate flow conditions in order to provide cells with oxygen, nutrients and flow-associated mechanical stimuli. Locally, these flow conditions can vary depending on the scaffold geometry, cellular confluency and amount of extra cellular matrix deposition. In this study, a novel application of the immersed boundary method was introduced in order to represent a detailed deformable cell attached to a 3D scaffold inside a perfusion bioreactor and exposed to microscopic flow. The immersed boundary model permits the prediction of mechanical effects of the local flow conditions on the cell. Incorporating stiffness values measured with atomic force microscopy and micro-flow boundary conditions obtained from computational fluid dynamics simulations on the entire scaffold, we compared cell deformation, cortical tension, normal and shear pressure between different cell shapes and locations. We observed a large effect of the precise cell location on the local shear stress and we predicted flow-induced cortical tensions in the order of 5 pN/μm, at the lower end of the range reported in literature. The proposed method provides an interesting tool to study perfusion bioreactors processes down to the level of the individual cell's micro-environment, which can further aid in the achievement of robust bioprocess control for regenerative medicine applications.
Collapse
Affiliation(s)
- Yann Guyot
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
- Biomechanics Research Unit, Université de Liège, Liège, Belgium
| | - Bart Smeets
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
- Division of Mechatronics, Biostatistics and Sensors (MeBioS), Leuven, Belgium
- Biomechanics Section, KU Leuven, Leuven, Belgium
| | - Tim Odenthal
- Division of Mechatronics, Biostatistics and Sensors (MeBioS), Leuven, Belgium
| | - Ramesh Subramani
- Division of Mechatronics, Biostatistics and Sensors (MeBioS), Leuven, Belgium
| | - Frank P. Luyten
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
- Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium
| | - Herman Ramon
- Division of Mechatronics, Biostatistics and Sensors (MeBioS), Leuven, Belgium
| | - Ioannis Papantoniou
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
- Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium
| | - Liesbet Geris
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
- Biomechanics Research Unit, Université de Liège, Liège, Belgium
- Biomechanics Section, KU Leuven, Leuven, Belgium
| |
Collapse
|
39
|
Bio- chemical and physical characterizations of mesenchymal stromal cells along the time course of directed differentiation. Sci Rep 2016; 6:31547. [PMID: 27526936 PMCID: PMC4985743 DOI: 10.1038/srep31547] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 07/18/2016] [Indexed: 12/21/2022] Open
Abstract
Cellular biophysical properties are novel biomarkers of cell phenotypes which may reflect the status of differentiating stem cells. Accurate characterizations of cellular biophysical properties, in conjunction with the corresponding biochemical properties could help to distinguish stem cells from primary cells, cancer cells, and differentiated cells. However, the correlated evolution of these properties in the course of directed stem cells differentiation has not been well characterized. In this study, we applied video particle tracking microrheology (VPTM) to measure intracellular viscoelasticity of differentiating human mesenchymal stromal/stem cells (hMSCs). Our results showed that osteogenesis not only increased both elastic and viscous moduli, but also converted the intracellular viscoelasticity of differentiating hMSCs from viscous-like to elastic-like. In contrast, adipogenesis decreased both elastic and viscous moduli while hMSCs remained viscous-like during the differentiation. In conjunction with bio- chemical and physical parameters, such as gene expression profiles, cell morphology, and cytoskeleton arrangement, we demonstrated that VPTM is a unique approach to quantify, with high data throughput, the maturation level of differentiating hMSCs and to anticipate their fate decisions. This approach is well suited for time-lapsed study of the mechanobiology of differentiating stem cells especially in three dimensional physico-chemical biomimetic environments including porous scaffolds.
Collapse
|
40
|
Luo Q, Kuang D, Zhang B, Song G. Cell stiffness determined by atomic force microscopy and its correlation with cell motility. Biochim Biophys Acta Gen Subj 2016; 1860:1953-60. [PMID: 27288584 DOI: 10.1016/j.bbagen.2016.06.010] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 05/24/2016] [Accepted: 06/06/2016] [Indexed: 01/07/2023]
Abstract
BACKGROUND Cell stiffness is a crucial mechanical property that is closely related to cell motility. AFM is the most prevalent method used to determine cell stiffness by the quantitative parameter designated as Young's modulus. Young's modulus is regarded as a biomarker of cell motility, especially in estimating the metastasis of cancer cells, because in recent years, it has been repeatedly shown that cancerous cells are softer than their benign counterparts. However, some conflicting evidence has shown that cells with higher motility are sometimes stiffer than their counterparts. Thus, the correlation between cell stiffness and motility remains a matter of debate. SCOPE OF REVIEW In this review, we first summarize the reports on correlations between cell motility and stiffness determined by AFM and then discuss the major determinants of AFM-determined cell stiffness with a focus on the cytoskeleton, nuclear stiffness and methodological issues. Last, we propose a possible correlation between cell stiffness and motility and the possible explanations for the conflicting evidence. MAJOR CONCLUSIONS The AFM-determined Young's modulus is greatly affected by the characteristics of the cytoskeleton, as well as the procedures and parameters used in detection. Young's modulus is a reliable biomarker for the characterization of metastasis; however, reliability is questioned in the evaluation of pharmacologically or genetically modified motility. GENERAL SIGNIFICANCE This review provides an overview of the current understanding of the correlation between AFM-determined cell stiffness and motility, the determinants of this detecting method, as well as clues to optimize detecting parameters.
Collapse
Affiliation(s)
- Qing Luo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, People's Republic of China.
| | - Dongdong Kuang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, People's Republic of China
| | - Bingyu Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, People's Republic of China
| | - Guanbin Song
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, People's Republic of China.
| |
Collapse
|
41
|
Gray KT, Suchowerska AK, Bland T, Colpan M, Wayman G, Fath T, Kostyukova AS. Tropomodulin isoforms utilize specific binding functions to modulate dendrite development. Cytoskeleton (Hoboken) 2016; 73:316-28. [PMID: 27126680 DOI: 10.1002/cm.21304] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Revised: 04/26/2016] [Accepted: 04/27/2016] [Indexed: 12/18/2022]
Abstract
Tropomodulins (Tmods) cap F-actin pointed ends and have altered expression in the brain in neurological diseases. The function of Tmods in neurons has been poorly studied and their role in neurological diseases is entirely unknown. In this article, we show that Tmod1 and Tmod2, but not Tmod3, are positive regulators of dendritic complexity and dendritic spine morphology. Tmod1 increases dendritic branching distal from the cell body and the number of filopodia/thin spines. Tmod2 increases dendritic branching proximal to the cell body and the number of mature dendritic spines. Tmods utilize two actin-binding sites and two tropomyosin (Tpm)-binding sites to cap F-actin. Overexpression of Tmods with disrupted Tpm-binding sites indicates that Tmod1 and Tmod2 differentially utilize their Tpm- and actin-binding sites to affect morphology. Disruption of Tmod1's Tpm-binding sites abolished the overexpression phenotype. In contrast, overexpression of the mutated Tmod2 caused the same phenotype as wild type overexpression. Proximity ligation assays indicate that the mutated Tmods are shuttled similarly to wild type Tmods. Our data begins to uncover the roles of Tmods in neural development and the mechanism by which Tmods alter neural morphology. These observations in combination with altered Tmod expression found in several neurological diseases also suggest that dysregulation of Tmod expression may be involved in the pathology of these diseases. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Kevin T Gray
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington
| | - Alexandra K Suchowerska
- School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Tyler Bland
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| | - Mert Colpan
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington
| | - Gary Wayman
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| | - Thomas Fath
- School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Alla S Kostyukova
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington
| |
Collapse
|
42
|
Colpan M, Moroz NA, Gray KT, Cooper DA, Diaz CA, Kostyukova AS. Tropomyosin-binding properties modulate competition between tropomodulin isoforms. Arch Biochem Biophys 2016; 600:23-32. [PMID: 27091317 DOI: 10.1016/j.abb.2016.04.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 04/12/2016] [Accepted: 04/13/2016] [Indexed: 01/09/2023]
Abstract
The formation and fine-tuning of cytoskeleton in cells are governed by proteins that influence actin filament dynamics. Tropomodulin (Tmod) regulates the length of actin filaments by capping the pointed ends in a tropomyosin (TM)-dependent manner. Tmod1, Tmod2 and Tmod3 are associated with the cytoskeleton of non-muscle cells and their expression has distinct consequences on cell morphology. To understand the molecular basis of differences in the function and localization of Tmod isoforms in a cell, we compared the actin filament-binding abilities of Tmod1, Tmod2 and Tmod3 in the presence of Tpm3.1, a non-muscle TM isoform. Tmod3 displayed preferential binding to actin filaments when competing with other isoforms. Mutating the second or both TM-binding sites of Tmod3 destroyed its preferential binding. Our findings clarify how Tmod1, Tmod2 and Tmod3 compete for binding actin filaments. Different binding mechanisms and strengths of Tmod isoforms for Tpm3.1 contribute to their divergent functional capabilities.
Collapse
Affiliation(s)
- Mert Colpan
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164-6515, United States.
| | - Natalia A Moroz
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164-6515, United States
| | - Kevin T Gray
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164-6515, United States
| | - Dillon A Cooper
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164-6515, United States
| | - Christian A Diaz
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164-6515, United States
| | - Alla S Kostyukova
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164-6515, United States.
| |
Collapse
|
43
|
Palankar R, Glaubitz M, Martens U, Medvedev N, von der Ehe M, Felix SB, Münzenberg M, Delcea M. 3D Micropillars Guide the Mechanobiology of Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes. Adv Healthc Mater 2016; 5:335-41. [PMID: 26676091 DOI: 10.1002/adhm.201500740] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Indexed: 12/25/2022]
Abstract
3D micropillars generated by photolithography are used as a platform to probe by atomic force microscopy the mechanodynamics of human induced pluripotent stem cell-derived cardiomyocytes. 3D micropillars guide subcellular cytoskeletal modifications of cardiomyocytes and lead to biochemical changes altering beating rate, stiffness, and calcium dynamics of the cells.
Collapse
Affiliation(s)
- Raghavendra Palankar
- ZIK HIKE - Centre for Innovation Competence (Humoral Immune Reactions in Cardiovascular Diseases); Ernst-Moritz-Arndt-University; 17489 Greifswald Germany
| | - Michael Glaubitz
- ZIK HIKE - Centre for Innovation Competence (Humoral Immune Reactions in Cardiovascular Diseases); Ernst-Moritz-Arndt-University; 17489 Greifswald Germany
| | - Ulrike Martens
- Institute for Physics; University of Greifswald; 17489 Greifswald Germany
| | - Nikolay Medvedev
- ZIK HIKE - Centre for Innovation Competence (Humoral Immune Reactions in Cardiovascular Diseases); Ernst-Moritz-Arndt-University; 17489 Greifswald Germany
| | - Marvin von der Ehe
- Institute for Physics; University of Greifswald; 17489 Greifswald Germany
| | - Stephan B. Felix
- Clinic for Internal Medicine B (Cardiology); University of Greifswald Sauebruchstrasse; 17475 Greifswald Germany
- DZHK (German Centre for Cardiovascular Research) partner site; Greifswald Germany
| | - Markus Münzenberg
- Institute for Physics; University of Greifswald; 17489 Greifswald Germany
| | - Mihaela Delcea
- ZIK HIKE - Centre for Innovation Competence (Humoral Immune Reactions in Cardiovascular Diseases); Ernst-Moritz-Arndt-University; 17489 Greifswald Germany
- DZHK (German Centre for Cardiovascular Research) partner site; Greifswald Germany
| |
Collapse
|
44
|
A small molecule inhibitor of tropomyosin dissociates actin binding from tropomyosin-directed regulation of actin dynamics. Sci Rep 2016; 6:19816. [PMID: 26804624 PMCID: PMC4726228 DOI: 10.1038/srep19816] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 12/07/2015] [Indexed: 12/26/2022] Open
Abstract
The tropomyosin family of proteins form end-to-end polymers along the actin filament. Tumour cells rely on specific tropomyosin-containing actin filament populations for growth and survival. To dissect out the role of tropomyosin in actin filament regulation we use the small molecule TR100 directed against the C terminus of the tropomyosin isoform Tpm3.1. TR100 nullifies the effect of Tpm3.1 on actin depolymerisation but surprisingly Tpm3.1 retains the capacity to bind F-actin in a cooperative manner. In vivo analysis also confirms that, in the presence of TR100, fluorescently tagged Tpm3.1 recovers normally into stress fibers. Assembling end-to-end along the actin filament is thereby not sufficient for tropomyosin to fulfil its function. Rather, regulation of F-actin stability by tropomyosin requires fidelity of information communicated at the barbed end of the actin filament. This distinction has significant implications for perturbing tropomyosin-dependent actin filament function in the context of anti-cancer drug development.
Collapse
|
45
|
KSHV MicroRNAs Repress Tropomyosin 1 and Increase Anchorage-Independent Growth and Endothelial Tube Formation. PLoS One 2015; 10:e0135560. [PMID: 26263384 PMCID: PMC4532463 DOI: 10.1371/journal.pone.0135560] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 07/23/2015] [Indexed: 01/09/2023] Open
Abstract
Kaposi’s sarcoma (KS) is characterized by highly vascularized spindle-cell tumors induced after infection of endothelial cells by Kaposi’s sarcoma-associated herpesvirus (KSHV). In KS tumors, KSHV expresses only a few latent proteins together with 12 pre-microRNAs. Previous microarray and proteomic studies predicted that multiple splice variants of the tumor suppressor protein tropomyosin 1 (TPM1) were targets of KSHV microRNAs. Here we show that at least two microRNAs of KSHV, miR-K2 and miR-K5, repress protein levels of specific isoforms of TPM1. We identified a functional miR-K5 binding site in the 3’ untranslated region (UTR) of one TPM1 isoform. Furthermore, the inhibition or loss of miR-K2 or miR-K5 restores expression of TPM1 in KSHV-infected cells. TPM1 protein levels were also repressed in KSHV-infected clinical samples compared to uninfected samples. Functionally, miR-K2 increases viability of unanchored human umbilical vein endothelial cells (HUVEC) by inhibiting anoikis (apoptosis after cell detachment), enhances tube formation of HUVECs, and enhances VEGFA expression. Taken together, KSHV miR-K2 and miR-K5 may facilitate KSHV pathogenesis.
Collapse
|
46
|
Gunning PW, Hardeman EC, Lappalainen P, Mulvihill DP. Tropomyosin - master regulator of actin filament function in the cytoskeleton. J Cell Sci 2015; 128:2965-74. [PMID: 26240174 DOI: 10.1242/jcs.172502] [Citation(s) in RCA: 174] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Tropomyosin (Tpm) isoforms are the master regulators of the functions of individual actin filaments in fungi and metazoans. Tpms are coiled-coil parallel dimers that form a head-to-tail polymer along the length of actin filaments. Yeast only has two Tpm isoforms, whereas mammals have over 40. Each cytoskeletal actin filament contains a homopolymer of Tpm homodimers, resulting in a filament of uniform Tpm composition along its length. Evidence for this 'master regulator' role is based on four core sets of observation. First, spatially and functionally distinct actin filaments contain different Tpm isoforms, and recent data suggest that members of the formin family of actin filament nucleators can specify which Tpm isoform is added to the growing actin filament. Second, Tpms regulate whole-organism physiology in terms of morphogenesis, cell proliferation, vesicle trafficking, biomechanics, glucose metabolism and organ size in an isoform-specific manner. Third, Tpms achieve these functional outputs by regulating the interaction of actin filaments with myosin motors and actin-binding proteins in an isoform-specific manner. Last, the assembly of complex structures, such as stress fibers and podosomes involves the collaboration of multiple types of actin filament specified by their Tpm composition. This allows the cell to specify actin filament function in time and space by simply specifying their Tpm isoform composition.
Collapse
Affiliation(s)
- Peter W Gunning
- School of Medical Sciences, UNSW Australia, Sydney 2052, Australia
| | - Edna C Hardeman
- School of Medical Sciences, UNSW Australia, Sydney 2052, Australia
| | - Pekka Lappalainen
- Institute of Biotechnology, University of Helsinki, Helsinki, 00014, Finland
| | - Daniel P Mulvihill
- School of Biosciences, Stacey Building, University of Kent, Canterbury, Kent CT2 7NJ, UK
| |
Collapse
|