1
|
Duchet C, Grabicová K, Kolar V, Lepšová O, Švecová H, Csercsa A, Zdvihalová B, Randák T, Boukal DS. Combined effects of climate warming and pharmaceuticals on a tri-trophic freshwater food web. WATER RESEARCH 2024; 250:121053. [PMID: 38159539 DOI: 10.1016/j.watres.2023.121053] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/13/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
Multiple anthropogenic stressors influence the functioning of lakes and ponds, but their combined effects are often little understood. We conducted two mesocosm experiments to evaluate the effects of warming (+4 °C above ambient temperature) and environmentally relevant concentrations of a mixture of commonly used pharmaceuticals (cardiovascular, psychoactive, antihistamines, antibiotics) on tri-trophic food webs representative of communities in ponds and other small standing waters. Communities were constituted of phyto- and zooplankton and macroinvertebrates (molluscs and insects) including benthic detritivores, grazers, omnivorous scrapers, omnivorous piercers, water column predators, benthic predators, and phytophilous predators. We quantified the main and interactive effects of warming and pharmaceuticals on each trophic level in the pelagic community and attributed them to the direct effects of both stressors and the indirect effects arising through biotic interactions. Warming and pharmaceuticals had stronger effects in the summer experiment, altering zooplankton community composition and causing delayed or accelerated emergence of top insect predators (odonates). In the summer experiment, both stressors and top predators reduced the biomass of filter-feeding zooplankton (cladocerans), while warming and pharmaceuticals had opposite effects on phytoplankton. In the winter experiment, the effects were much weaker and were limited to a positive effect of warming on phytoplankton biomass. Overall, we show that pharmaceuticals can exacerbate the effects of climate warming in freshwater ecosystems, especially during the warm season. Our results demonstrate the utility of community-level studies across seasons for risk assessment of multiple emerging stressors in freshwater ecosystems.
Collapse
Affiliation(s)
- Claire Duchet
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, Branišovská 1760, 37005 České Budějovice, Czech Republic; Institute of Entomology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 37005 České Budějovice, Czech Republic.
| | - Kateřina Grabicová
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Zátiší 728/II, CZ-389 25 Vodňany, Czech Republic
| | - Vojtech Kolar
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, Branišovská 1760, 37005 České Budějovice, Czech Republic; Institute of Entomology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 37005 České Budějovice, Czech Republic
| | - Olga Lepšová
- Department of Botany, Faculty of Science, University of South Bohemia, Branišovská 1760, 37005 České Budějovice, Czech Republic
| | - Helena Švecová
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Zátiší 728/II, CZ-389 25 Vodňany, Czech Republic
| | - Andras Csercsa
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, Branišovská 1760, 37005 České Budějovice, Czech Republic
| | - Barbora Zdvihalová
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, Branišovská 1760, 37005 České Budějovice, Czech Republic
| | - Tomáš Randák
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Zátiší 728/II, CZ-389 25 Vodňany, Czech Republic
| | - David S Boukal
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, Branišovská 1760, 37005 České Budějovice, Czech Republic; Institute of Entomology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 37005 České Budějovice, Czech Republic
| |
Collapse
|
2
|
Duchet C, Hou F, Sinclair CA, Tian Z, Kraft A, Kolar V, Kolodziej EP, McIntyre JK, Stark JD. Neonicotinoid mixture alters trophic interactions in a freshwater aquatic invertebrate community. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:165419. [PMID: 37429477 DOI: 10.1016/j.scitotenv.2023.165419] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/17/2023] [Accepted: 07/07/2023] [Indexed: 07/12/2023]
Abstract
Neonicotinoids are increasingly and widely used systemic insecticides in agriculture, residential applications, and elsewhere. These pesticides can sometimes occur in small water bodies in exceptionally high concentrations, leading to downstream non-target aquatic toxicity. Although insects appear to be the most sensitive group to neonicotinoids, other aquatic invertebrates may also be affected. Most existing studies focus on single-insecticide exposure and very little is known concerning the impact of neonicotinoid mixtures on aquatic invertebrates at the community level. To address this data gap and explore community-level effects, we performed an outdoor mesocosm experiment that tested the effect of a mixture of three common neonicotinoids (formulated imidacloprid, clothianidin and thiamethoxam) on an aquatic invertebrate community. Exposure to the neonicotinoid mixture induced a top-down cascading effect on insect predators and zooplankton, ultimately increasing phytoplankton. Our results highlight complexities of mixture toxicity occurring in the environment that may be underestimated with traditional mono-specific toxicological approaches.
Collapse
Affiliation(s)
- Claire Duchet
- Puyallup Research & Extension Center, Washington State University, Puyallup, WA 98371, USA; Institute of Entomology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, CZ-37005 České Budějovice, Czech Republic; Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, Branišovská 1760, CZ-37005 České Budějovice, Czech Republic.
| | - Fan Hou
- Center for Urban Waters, Tacoma, WA 98421, USA; Department of Civil and Environmental Engineering, University of Washington, Seattle, WA 98195, USA
| | - Cailin A Sinclair
- Puyallup Research & Extension Center, Washington State University, Puyallup, WA 98371, USA
| | - Zhenyu Tian
- Center for Urban Waters, Tacoma, WA 98421, USA; Interdisciplinary Arts and Sciences, University of Washington Tacoma, Tacoma, WA 98421, USA
| | - Alyssa Kraft
- Puyallup Research & Extension Center, Washington State University, Puyallup, WA 98371, USA
| | - Vojtech Kolar
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, CZ-37005 České Budějovice, Czech Republic; Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, Branišovská 1760, CZ-37005 České Budějovice, Czech Republic
| | - Edward P Kolodziej
- Center for Urban Waters, Tacoma, WA 98421, USA; Department of Civil and Environmental Engineering, University of Washington, Seattle, WA 98195, USA; Interdisciplinary Arts and Sciences, University of Washington Tacoma, Tacoma, WA 98421, USA
| | - Jenifer K McIntyre
- Puyallup Research & Extension Center, Washington State University, Puyallup, WA 98371, USA
| | - John D Stark
- Puyallup Research & Extension Center, Washington State University, Puyallup, WA 98371, USA
| |
Collapse
|
3
|
Bhattacharyya S, Bray JP, Gupta A, Gupta S, Nichols SJ, Kefford BJ. Short-term insecticide exposure amid co-occurring stressors reduces diversity and densities in north-east Indian experimental aquatic invertebrate communities. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 264:106691. [PMID: 37866165 DOI: 10.1016/j.aquatox.2023.106691] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/25/2023] [Accepted: 09/07/2023] [Indexed: 10/24/2023]
Abstract
Globally, river pesticide concentrations are associated with regional and local stream invertebrate diversity declines. Pesticides often co-occur with elevated nutrients (e.g. nitrogen and phosphorus) and sediments related to agriculture, making their individual effects difficult to disentangle. These effects are also less well studied in Asia, than in other geographic regions. Within Asia, India is one of the largest producers and users of pesticides and has approximately 60% of total land mass used for agriculture. Here we examine the responses of Indian river invertebrate communities subjected to malathion, nutrients, and sediment additions in a semi-orthogonal design, in three sequential (through time) short-term (120 h) mesocosm experiments. Additionally, a series of single-species toxicity tests were run that used 24 h exposure and 72 h recovery to examine the sensitivity of 13 local invertebrate taxa to malathion, and 9 taxa to cypermethrin, comparing these results to those from other biogeographic regions. Mesocosm results indicate that malathion exposure had a major effect compared to other stressors on communities, with a lesser effect of nutrients and/or sediments. In mesocosms, taxa richness, total abundance and the abundance of sensitive species all declined associated with malathion concentrations. Comparisons of organism sensitivities from other geographic locations and those in the current paper suggest taxa in India are relatively tolerant to malathion and cypermethrin. Our results further reinforce that the high observed aquatic pesticide concentrations known to occur in Asian freshwater ecosystems are likely to be negatively affecting biodiversity, homogenising biota towards those most stress tolerant.
Collapse
Affiliation(s)
- Saurav Bhattacharyya
- Assam University, Silchar, Assam, India; DIMES, University of Calabria, Via Pietro Bucci, Cubo 42A, Rende, 87036, Italy
| | - Jon P Bray
- Centre for Applied Water Sciences, Institute for Applied Ecology, University of Canberra, Canberra, Australia; Department of Pest Management and Conservation, Lincoln University, PO Box 85084, Christchurch, Canterbury, New Zealand; The Centre for One Biosecurity Research, Analysis and Synthesis, Lincoln University, PO Box 85084, Christchurch, Canterbury, New Zealand.
| | | | | | - Susan J Nichols
- Centre for Applied Water Sciences, Institute for Applied Ecology, University of Canberra, Canberra, Australia
| | - Ben J Kefford
- Centre for Applied Water Sciences, Institute for Applied Ecology, University of Canberra, Canberra, Australia
| |
Collapse
|
4
|
Teed RS, Moore DRJ, Vukov O, Brain RA, Overmyer JP. Challenges with the current methodology for conducting Endangered Species Act risk assessments for pesticides in the United States. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2023; 19:817-829. [PMID: 36385493 DOI: 10.1002/ieam.4713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
The US Environmental Protection Agency (USEPA or the Agency) is responsible for administering the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA). The Agency is also required to assess the potential risks of pesticides undergoing registration or re-registration to threatened and endangered (i.e., listed) species to ensure compliance with the Endangered Species Act. To assess potential risks to listed species, a screening-level risk assessment in the form of a biological evaluation (BE) is undertaken by the Agency for each pesticide. Given the large number of registration actions handled by the USEPA annually, efficient tools for conducting BEs are desirable. However, the "Revised Method" that is the basis for the USEPA's BE process has been ineffective at filtering out listed species and critical habitats that are at de minimis risk to pesticides. In the USEPA's BEs, the Magnitude of Effect Tool (MAGtool) has been used to determine potential risks to listed species that potentially co-occur with pesticide footprints. The MAGtool is a highly prescriptive, high-throughput compilation of existing FIFRA screening-level models with a geospatial interface. The tool has been a significant contributor to risk inflation and ultimately process inefficiency. The ineffectiveness of the tool stems from compounding conservatism, unrealistic and unreasonable assumptions regarding usage, limited application of species-specific data, lack of consideration of multiple lines of evidence, and inability to integrate higher-tier data. Here, we briefly describe the MAGtool and the critical deficiencies that impair its effectiveness, thus undermining its intention. Case studies are presented to highlight the deficiencies and solutions are recommended for improving listed species assessments in the future. Integr Environ Assess Manag 2023;19:817-829. © 2022 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
Affiliation(s)
| | | | | | | | - Jay P Overmyer
- Syngenta Crop Protection, Greensboro, North Carolina, USA
| |
Collapse
|
5
|
Coldsnow KD, Relyea RA. The combined effects of macrophytes and three road salts on aquatic communities in outdoor mesocosms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 287:117652. [PMID: 34186499 DOI: 10.1016/j.envpol.2021.117652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 06/20/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
Because of environmental and societal concerns, new strategies are being developed to mitigate the effects of road salt. These include new deicers that are alternatives to or mixtures with the most common road salt, sodium chloride (NaCl), improved techniques and equipment, and biotic mitigation methods. Using outdoor mesocosms, we investigated the impacts of NaCl and two common alternatives, magnesium chloride (MgCl2) and calcium chloride (CaCl2) on freshwater communities. We also investigated the mitigation ability of a common macrophyte, Elodea. We hypothesized that road salt exposure reduces filamentous algae, zooplankton, and macrocrustaceans, but results in increases in phytoplankton and gastropods. We also hypothesized that MgCl2 is the most toxic salt to communities, followed by CaCl2, and then NaCl. Lastly, we hypothesized that macrophytes mitigate some of the effects of road salt, specifically the effects on primary producers. We found that all three salts reduced filamentous algal biomass and amphipod abundance, but only MgCl2 reduced Elodea biomass. MgCl2 had the largest and longest lasting effects on zooplankton, specifically cladocerans and copepods, which resulted in a significant increase in phytoplankton and rotifers. CaCl2 increased ostracods and decreased snail abundance, but NaCl increased snail abundance. Lastly, while we did not find many interactions between road salt and macrophyte treatments, macrophytes did counteract many of the salt effects on producers, leading to decreased phytoplankton, increased filamentous algae, and altered abiotic responses. Thus, at similar chloride concentrations, NaCl alternatives, specifically MgCl2, are not safer for aquatic ecosystems and more research is needed to find safer road management strategies to protect freshwater ecosystems.
Collapse
Affiliation(s)
- Kayla D Coldsnow
- Department of Biological Sciences, Darrin Fresh Water Institute, Rensselaer Polytechnic Institute, 110 8th St., Troy, NY, 12180, USA.
| | - Rick A Relyea
- Department of Biological Sciences, Darrin Fresh Water Institute, Rensselaer Polytechnic Institute, 110 8th St., Troy, NY, 12180, USA
| |
Collapse
|
6
|
Sánchez-Bayo F. Indirect Effect of Pesticides on Insects and Other Arthropods. TOXICS 2021; 9:177. [PMID: 34437495 PMCID: PMC8402326 DOI: 10.3390/toxics9080177] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/04/2022]
Abstract
Pesticides released to the environment can indirectly affect target and non-target species in ways that are often contrary to their intended use. Such indirect effects are mediated through direct impacts on other species or the physical environment and depend on ecological mechanisms and species interactions. Typical mechanisms are the release of herbivores from predation and release from competition among species with similar niches. Application of insecticides to agriculture often results in subsequent pest outbreaks due to the elimination of natural enemies. The loss of floristic diversity and food resources that result from herbicide applications can reduce populations of pollinators and natural enemies of crop pests. In aquatic ecosystems, insecticides and fungicides often induce algae blooms as the chemicals reduce grazing by zooplankton and benthic herbivores. Increases in periphyton biomass typically result in the replacement of arthropods with more tolerant species such as snails, worms and tadpoles. Fungicides and systemic insecticides also reduce nutrient recycling by impairing the ability of detritivorous arthropods. Residues of herbicides can reduce the biomass of macrophytes in ponds and wetlands, indirectly affecting the protection and breeding of predatory insects in that environment. The direct impacts of pesticides in the environment are therefore either amplified or compensated by their indirect effects.
Collapse
Affiliation(s)
- Francisco Sánchez-Bayo
- School of Life and Environmental Sciences, The University of Sydney, Eveleigh, NSW 2015, Australia
| |
Collapse
|
7
|
Bray J, Miranda A, Keely-Smith A, Kaserzon S, Elisei G, Chou A, Nichols SJ, Thompson R, Nugegoda D, Kefford BJ. Sub-organism (acetylcholinesterase activity), population (survival) and chemical concentration responses reinforce mechanisms of antagonism associated with malathion toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 778:146087. [PMID: 34030370 DOI: 10.1016/j.scitotenv.2021.146087] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 02/05/2021] [Accepted: 02/20/2021] [Indexed: 06/12/2023]
Abstract
Within human modified ecosystems the effects of individual stressors are difficult to establish amid co-occurring biological processes, environmental gradients and other stressors. Coupled examination of several endpoints across different levels of organisation may help elucidate the individual and combined effects of stressors and interactions. Malathion is a commonly used organophosphate pesticide that contaminates freshwaters and has strong negative effects on aquatic biota. However, both other stressors (e.g. increased sediment) and common ecosystem components (e.g. macrophytes and variable pH) can reduce the aqueous concentrations of malathion, reducing its toxic effects. We conducted a fully orthogonal bioassay to examine how pH (at 7 and 7.8) and sorptive processes (across two levels of kaoline clay 0 and 24 g L-1) affected aqueous malathion concentrations and toxicity in an aquatic invertebrate genus. Survival and acetylcholinesterase activity as a sub-organism response were examined in the mayfly Coloburiscoides spp. (Ephemeroptera; Coluburiscidae). Measured aqueous malathion concentrations decreased with increased pH and in the presence of kaolin clay. Survival declined with increasing malathion concentrations and exposure period. Results further identify that antagonism of malathion toxicity was associated with both pH (alkaline hydrolysis) and effects associated with sediment independent of pH (driven by sorptive processes). However, model predictions varied associated with target and measured concentrations and concentrations examined. Antagonistic effects were most apparent using subset target malathion concentrations because of the dominant effect of malathion at high concentrations. Acetylcholinesterase activity, identified repression occurred across all treatments and did not identify antagonistic interactions, but these results were similar to survival responses at the time points examined (i.e. 120 h). Examination of chemistry, acetylcholinesterase, and survival, affords greater understanding of stressor effects and their interactions. Measured malathion concentrations may underestimate effects on aquatic biota; not because of synergism among stressors, but because of strong effects despite antagonism.
Collapse
Affiliation(s)
- J Bray
- Center for Applied Water Science, Institute for Applied Ecology, University of Canberra, Canberra, Australia; Gisborne District Council, Gisborne, New Zealand.
| | - A Miranda
- AQUEST research group, RMIT University, Melbourne, Australia
| | - A Keely-Smith
- Center for Applied Water Science, Institute for Applied Ecology, University of Canberra, Canberra, Australia
| | - S Kaserzon
- QAEHS, University of Queensland, Brisbane, Australia
| | - G Elisei
- QAEHS, University of Queensland, Brisbane, Australia
| | - A Chou
- Brigham Young University, UT, United States
| | - S J Nichols
- Center for Applied Water Science, Institute for Applied Ecology, University of Canberra, Canberra, Australia
| | - R Thompson
- Center for Applied Water Science, Institute for Applied Ecology, University of Canberra, Canberra, Australia
| | - D Nugegoda
- AQUEST research group, RMIT University, Melbourne, Australia
| | - B J Kefford
- Center for Applied Water Science, Institute for Applied Ecology, University of Canberra, Canberra, Australia
| |
Collapse
|
8
|
Oladejo MK, Oloyede OO, Adesakin TA, Morenikeji OA. The abundance, distribution and diversity of invasive and indigenous freshwater snails in a section of the Ogunpa River, southwest Nigeria. MOLLUSCAN RESEARCH 2021. [DOI: 10.1080/13235818.2021.1946905] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Musa K. Oladejo
- Parasitology Unit, Department of Zoology, University of Ibadan, Ibadan, Nigeria
| | - Oyedibu O. Oloyede
- Ecology and Environmental Biology Unit, Department of Zoology, University of Ibadan, Ibadan, Nigeria
| | - Taiwo A. Adesakin
- Limnology and Hydrology Unit, Department of Zoology, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Olajumoke A. Morenikeji
- Parasitology Unit, Department of Zoology, University of Ibadan, Ibadan, Nigeria
- Ecology and Environmental Biology Unit, Department of Zoology, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
9
|
Lewis JL, Agostini G, Jones DK, Relyea RA. Cascading effects of insecticides and road salt on wetland communities. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 272:116006. [PMID: 33189447 DOI: 10.1016/j.envpol.2020.116006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/13/2020] [Accepted: 11/04/2020] [Indexed: 06/11/2023]
Abstract
Novel stressors introduced by human activities increasingly threaten freshwater ecosystems. The annual application of more than 2.3 billion kg of pesticide active ingredient and 22 billion kg of road salt has led to the contamination of temperate waterways. While pesticides and road salt are known to cause direct and indirect effects in aquatic communities, their possible interactive effects remain widely unknown. Using outdoor mesocosms, we created wetland communities consisting of zooplankton, phytoplankton, periphyton, and leopard frog (Rana pipiens) tadpoles. We evaluated the toxic effects of six broad-spectrum insecticides from three families (neonicotinoids: thiamethoxam, imidacloprid; organophosphates: chlorpyrifos, malathion; pyrethroids: cypermethrin, permethrin), as well as the potentially interactive effects of four of these insecticides with three concentrations of road salt (NaCl; 44, 160, 1600 Cl- mg/L). Organophosphate exposure decreased zooplankton abundance, elevated phytoplankton biomass, and reduced tadpole mass whereas exposure to neonicotinoids and pyrethroids decreased zooplankton abundance but had no significant effect on phytoplankton abundance or tadpole mass. While organophosphates decreased zooplankton abundance at all salt concentrations, effects on phytoplankton abundance and tadpole mass were dependent upon salt concentration. In contrast, while pyrethroids had no effects in the absence of salt, they decreased zooplankton and phytoplankton density under increased salt concentrations. Our results highlight the importance of multiple-stressor research under natural conditions. As human activities continue to imperil freshwater systems, it is vital to move beyond single-stressor experiments that exclude potentially interactive effects of chemical contaminants.
Collapse
Affiliation(s)
- Jacquelyn L Lewis
- Department of Biological Sciences, Darrin Fresh Water Institute, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.
| | - Gabriela Agostini
- Department of Biological Sciences, Darrin Fresh Water Institute, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA; CONICET-Buenos Aires University, Institute of Ecology, Genetics and Evolution of Buenos Aires, Argentina
| | - Devin K Jones
- Department of Biological Sciences, Darrin Fresh Water Institute, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA; Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Rick A Relyea
- Department of Biological Sciences, Darrin Fresh Water Institute, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| |
Collapse
|
10
|
Ruso GE, Morrissey CA, Hogan NS, Sheedy C, Gallant MJ, Jardine TD. Detecting Amphibians in Agricultural Landscapes Using Environmental DNA Reveals the Importance of Wetland Condition. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2019; 38:2750-2763. [PMID: 31546287 DOI: 10.1002/etc.4598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 07/23/2019] [Accepted: 09/16/2019] [Indexed: 06/10/2023]
Abstract
Amphibians are declining worldwide, in part because of large-scale degradation of habitat from agriculture and pervasive pathogens. Yet a common North American amphibian, the wood frog (Lithobates sylvaticus), ranges widely and persists in agricultural landscapes. Conventional survey techniques rely on visual encounters and dip-netting efforts, but detectability limits the ability to test for the effects of environmental variables on amphibian habitat suitability. We used environmental DNA to determine the presence of wood frogs and an amphibian pathogen (ranavirus) in Prairie Pothole wetlands and investigated the effects of 32 water quality, wetland habitat, and landscape-level variables on frog presence at sites representing different degrees of agricultural intensity. Several wetland variables influenced wood frog presence, the most influential being those associated with wetland productivity (i.e., nutrients), vegetation buffer width, and proportion of the surrounding landscape that is comprised of other water bodies. Wood frog presence was positively associated with higher dissolved phosphorus (>0.4 mg/L), moderate dissolved nitrogen (0.1-0.2 mg/L), lower chlorophyll a (≤15 µg/L), wider vegetation buffers (≥10 m), and more water on the landscape (≥0.25). These results highlight the effects of environmental factors at multiple scales on the presence of amphibians in this highly modified landscape-namely the importance of maintaining wetland water quality, vegetation buffers, and surrounding habitat heterogeneity. Environ Toxicol Chem 2019;38:2750-2763. © 2019 SETAC.
Collapse
Affiliation(s)
- Gabrielle E Ruso
- Toxicology Graduate Program, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Christy A Morrissey
- Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- School of Environment and Sustainability, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Natacha S Hogan
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Claudia Sheedy
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, Alberta, Canada
| | - Melanie J Gallant
- Toxicology Graduate Program, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Timothy D Jardine
- School of Environment and Sustainability, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
11
|
Roubeau Dumont E, Larue C, Pujol B, Lamaze T, Elger A. Environmental variations mediate duckweed (Lemna minor L.) sensitivity to copper exposure through phenotypic plasticity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:14106-14115. [PMID: 30852756 DOI: 10.1007/s11356-019-04630-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 02/19/2019] [Indexed: 06/09/2023]
Abstract
Environmentally mediated sensitivity of Lemna minor to copper (Cu) was evaluated for the first time in three experiments: the effects of two levels of nutrient concentration, light irradiance or Cu pre-exposure were tested. Various Cu concentrations (ranging from 0.05 to 0.25 mg/L) were used to assess the sensitivity of L. minor to this metal, using one common strain previously acclimatized to two different levels of light intensity, nutrient enrichment and Cu pre-exposure. Our results showed a phenotypic plastic response of the relative growth rates based on frond number and fresh mass production, and maximum quantum yield of photosystem II (Fv/Fm). Growth was affected by the three environmental conditions both prior and during Cu exposure, whereas Fv/Fm was mostly affected during Cu exposure. Copper significantly influenced all the parameters measured in the three experiments. Environmental conditions significantly modified L. minor sensitivity to Cu in all experiments, with up to twofold difference depending on the treatment. Growth rate was the parameter that was most impacted. Our study revealed for the first time the existence of phenotypic plasticity in L. minor sensitivity to chemical contamination, and implies that environmental context needs to be taken into account for a relevant risk assessment.
Collapse
Affiliation(s)
- Eva Roubeau Dumont
- EcoLab, CNRS, Université de Toulouse, Toulouse, France.
- EcoLab, Campus INPT-ENSAT, Avenue de l'Agrobiopole - BP 32607, 31326, Castanet Tolosan Cedex, France.
| | - Camille Larue
- EcoLab, CNRS, Université de Toulouse, Toulouse, France
| | - Benoît Pujol
- Laboratoire Évolution & Diversité Biologique (EDB UMR 5174), CNRS, IRD, UPS, Université Fédérale de Toulouse Midi-Pyrénées, Toulouse, France
- EPHE, CNRS, UPVD, PSL Research University, USR 3278 CRIOBE, F-66360, Perpignan, France
| | - Thierry Lamaze
- Laboratoire CESBIO, CNRS, IRD, CNES, UPS, Université de Toulouse, Toulouse, France
| | - Arnaud Elger
- EcoLab, CNRS, Université de Toulouse, Toulouse, France
| |
Collapse
|
12
|
Smith GR, Krishnamurthy SVB, Burger AC, Rettig JE. Effects of malathion and nitrate exposure on the zooplankton community in experimental mesocosms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:9992-9997. [PMID: 29376215 DOI: 10.1007/s11356-018-1311-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 01/15/2018] [Indexed: 06/07/2023]
Abstract
Surface waters are likely to be contaminated by both pesticides and fertilizers. Such contamination can result in changes in community composition if there is differential toxicity to individual taxa. We conducted a fully factorial mesocosm experiment that examined the single and interactive effects of environmentally realistic concentrations of nitrate and malathion on zooplankton communities and phytoplankton productivity. Malathion significantly decreased the abundance of total zooplankton, cyclopoid copepods, copepod nauplii, and Ceriodaphnia, and increased the abundance of rotifers. Nitrate addition generally had no effect on zooplankton; however, Ceriodaphnia abundance was higher in control mesocosms than in nitrate-treated mesocosms. There was only one significant interaction between malathion and nitrate treatments: For Ceriodaphnia, the no malathion, no nitrate mesocosms had much higher abundances than all other combinations of treatments. Without nitrate addition, chl a levels were uniformly low across all malathion treatments, whereas in the presence of nitrate, there were differences among the malathion treatments. In conclusion, our results demonstrate that malathion contamination of aquatic ecosystems can result in changes in the abundance and composition of zooplankton communities. In contrast, nitrate contamination appeared to have much less potential impact on zooplankton communities, either on its own or in interaction with malathion. Our results reinforce the notion that the effects of contaminants on aquatic ecosystems can be complex and further research examining the single and interactive effects of chemical stressors is needed to more fully understand their effects.
Collapse
Affiliation(s)
- Geoffrey R Smith
- Department of Biology, Denison University, Granville, OH, 43023, USA.
| | - Sannanegunda V B Krishnamurthy
- Department of Environmental Science, Kuvempu University, Jnana Sahyadri, Shankaraghatta, Shimoga District, Karnataka, 577451, India
| | - Anthony C Burger
- Department of Biology, Denison University, Granville, OH, 43023, USA
| | - Jessica E Rettig
- Department of Biology, Denison University, Granville, OH, 43023, USA
| |
Collapse
|
13
|
Clemow YH, Manning GE, Breton RL, Winchell MF, Padilla L, Rodney SI, Hanzas JP, Estes TL, Budreski K, Toth BN, Hill KL, Priest CD, Teed RS, Knopper LD, Moore DR, Stone CT, Whatling P. A refined ecological risk assessment for California red-legged frog, Delta smelt, and California tiger salamander exposed to malathion. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2018; 14:224-239. [PMID: 29087623 DOI: 10.1002/ieam.2002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 10/24/2017] [Accepted: 10/30/2017] [Indexed: 06/07/2023]
Abstract
The California red-legged frog (CRLF), Delta smelt (DS), and California tiger salamander (CTS) are 3 species listed under the United States Federal Endangered Species Act (ESA), all of which inhabit aquatic ecosystems in California. The US Environmental Protection Agency (USEPA) has conducted deterministic screening-level risk assessments for these species potentially exposed to malathion, an organophosphorus insecticide and acaricide. Results from our screening-level analyses identified potential risk of direct effects to DS as well as indirect effects to all 3 species via reduction in prey. Accordingly, for those species and scenarios in which risk was identified at the screening level, we conducted a refined probabilistic risk assessment for CRLF, DS, and CTS. The refined ecological risk assessment (ERA) was conducted using best available data and approaches, as recommended by the 2013 National Research Council (NRC) report "Assessing Risks to Endangered and Threatened Species from Pesticides." Refined aquatic exposure models including the Pesticide Root Zone Model (PRZM), the Vegetative Filter Strip Modeling System (VFSMOD), the Variable Volume Water Model (VVWM), the Exposure Analysis Modeling System (EXAMS), and the Soil and Water Assessment Tool (SWAT) were used to generate estimated exposure concentrations (EECs) for malathion based on worst-case scenarios in California. Refined effects analyses involved developing concentration-response curves for fish and species sensitivity distributions (SSDs) for fish and aquatic invertebrates. Quantitative risk curves, field and mesocosm studies, surface-water monitoring data, and incident reports were considered in a weight-of-evidence approach. Currently, labeled uses of malathion are not expected to result in direct effects to CRLF, DS or CTS, or indirect effects due to effects on fish and invertebrate prey. Integr Environ Assess Manag 2018;14:224-239. © 2017 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
Affiliation(s)
- Yvonne H Clemow
- Intrinsik, Carleton University Campus, Ottawa, Ontario, Canada
| | | | - Roger L Breton
- Intrinsik, Carleton University Campus, Ottawa, Ontario, Canada
| | | | | | - Sara I Rodney
- Intrinsik, Carleton University Campus, Ottawa, Ontario, Canada
| | | | - Tammara L Estes
- Louisiana State University, Department of Environmental Science, Baton Rouge, Louisiana, USA
| | | | | | - Katie L Hill
- Intrinsik, Carleton University Campus, Ottawa, Ontario, Canada
| | | | - R Scott Teed
- Intrinsik, Carleton University Campus, Ottawa, Ontario, Canada
| | | | - Dwayne Rj Moore
- Intrinsik Environmental Sciences, New Gloucester, Maine, USA
| | | | | |
Collapse
|
14
|
Fragment dispersal and plant-induced dieback explain irregular ring-shaped pattern formation in a clonal submerged macrophyte. Ecol Modell 2017. [DOI: 10.1016/j.ecolmodel.2017.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
15
|
Brogan WR, Relyea RA. Multiple mitigation mechanisms: Effects of submerged plants on the toxicity of nine insecticides to aquatic animals. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 220:688-695. [PMID: 27823867 DOI: 10.1016/j.envpol.2016.10.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 10/06/2016] [Accepted: 10/10/2016] [Indexed: 06/06/2023]
Abstract
Understanding the processes that regulate contaminant impacts in nature is an increasingly important challenge. For insecticides in surface waters, the ability of aquatic plants to sorb, or bind, hydrophobic compounds has been identified as a primary mechanism by which toxicity can be mitigated (i.e. the sorption-based model). However, recent research shows that submerged plants can also rapidly mitigate the toxicity of the less hydrophobic insecticide malathion via alkaline hydrolysis (i.e. the hydrolysis-based model) driven by increased water pH resulting from photosynthesis. However, it is still unknown how generalizable these mitigation mechanisms are across the wide variety of insecticides applied today, and whether any general rules can be ascertained about which types of chemicals may be mitigated by each mechanism. We quantified the degree to which the submerged plant Elodea canadensis mitigated acute (48-h) toxicity to Daphnia magna using nine commonly applied insecticides spanning three chemical classes (carbamates: aldicarb, carbaryl, carbofuran; organophosphates: malathion, diazinon, chlorpyrifos; pyrethroids: permethrin, bifenthrin, lambda-cyhalothrin). We found that insecticides possessing either high octanol-water partition coefficients (log Kow) values (i.e. pyrethroids) or high susceptibility to alkaline hydrolysis (i.e. carbamates and malathion) were all mitigated to some degree by E. canadensis, while the plant had no effect on insecticides possessing intermediate log Kow values and low susceptibility to hydrolysis (i.e. chlorpyrifos and diazinon). Our results provide the first general insights into which types of insecticides are likely to be mitigated by different mechanisms based on known chemical properties. We suggest that current models and mitigation strategies would be improved by the consideration of both mitigation models.
Collapse
Affiliation(s)
- William R Brogan
- Pennsylvania Department of Environmental Protection, Pittsburgh, PA, USA.
| | | |
Collapse
|
16
|
Oloyede OO, Otarigho B, Morenikeji O. Diversity, distribution and abundance of freshwater snails in Eleyele dam, Ibadan, south-west Nigeria. ACTA ACUST UNITED AC 2016. [DOI: 10.1080/21658005.2016.1245934] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Oyedibu Oyebayo Oloyede
- Ecology and Environmental Biology Unit, Department of Zoology, University of Ibadan, Ibadan, Nigeria
| | - Benson Otarigho
- Cellular Parasitology, Cell Biology and Genetic Unit, Department of Zoology, University of Ibadan, Ibadan, Nigeria
- Department of Biological Science, Edo University, Iyamho, Edo State, Nigeria
| | - Olajumoke Morenikeji
- Parasitology/Ecology and Environmental Biology Unit, Department of Zoology, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|