1
|
Liu G, Dong BB, Devanarayana S, Chen RC, Liu Q. Emerging roles of mechanosensitive ion channels in ventilator induced lung injury: a systematic review. Front Immunol 2024; 15:1479230. [PMID: 39664395 PMCID: PMC11631737 DOI: 10.3389/fimmu.2024.1479230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 11/08/2024] [Indexed: 12/13/2024] Open
Abstract
Background The pathogenetic mechanisms of ventilator-induced lung injury (VILI) still need to be elucidated. The mechanical forces during mechanical ventilation are continually sensed and transmitted by mechanosensitive ion channels (MSICs) in pulmonary endothelial, epithelial, and immune cells. In recent years, MSICs have been shown to be involved in VILI. Methods A systematic search across PubMed, the Cochrane Library, Web of Science, and ScienceDirect was performed from inception to March 2024, and the review was conducted in accordance with PRISMA guidelines. The potential eligible studies were evaluated by two authors independently. Study characteristics, quality assessment, and potential mechanisms were analyzed. Results We included 23 eligible studies, most of which were performed with murine animals in vivo. At the in vitro level, 52% and 48% of the experiments were conducted with human or animal cells, respectively. No clinical studies were found. The most reported MSICs include Piezo channels, transient receptor potential channels, potassium channels, and stretch-activated sodium channels. Piezo1 has been the most concerned channel in the recent five years. This study found that signal pathways, such as RhoA/ROCK1, could be enhanced by cyclic stretch-activated MSICs, which contribute to VILI through dysregulated inflammation and immune responses mediated by ion transport. The review indicates the emerging role of MSICs in the pathogenesis of VILI, especially as a signal-transmitting link between mechanical stretch and pathogenesis such as inflammation, disruption of cell junctions, and edema formation. Conclusions Mechanical stretch stimulates MSICs to increase transcellular ion exchange and subsequently generates VILI through inflammation and other pathogeneses mediated by MSICs signal-transmitting pathways. These findings make it possible to identify potential therapeutic targets for the prevention of lung injury through further exploration and more studies. Systematic review registration https://inplasy.com/inplasy-2024-10-0115/, identifier INPLASY2024100115.
Collapse
Affiliation(s)
- Gang Liu
- Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Bin-bin Dong
- Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Shalika Devanarayana
- School of International Education, Zhengzhou University, Zhengzhou, Henan, China
| | - Rong-Chang Chen
- Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Department of Shenzhen Institute of Respiratory Diseases, Shenzhen People’s Hospital, Shenzhen, Guangdong, China
| | - Qi Liu
- Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
2
|
Aubin Vega M, Girault A, Meunier É, Chebli J, Privé A, Robichaud A, Adam D, Brochiero E. Function of KvLQT1 potassium channels in a mouse model of bleomycin-induced acute lung injury. Front Physiol 2024; 15:1345488. [PMID: 38444763 PMCID: PMC10912346 DOI: 10.3389/fphys.2024.1345488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/30/2024] [Indexed: 03/07/2024] Open
Abstract
Acute respiratory distress syndrome (ARDS) is characterized by an exacerbated inflammatory response, severe damage to the alveolar-capillary barrier and a secondary infiltration of protein-rich fluid into the airspaces, ultimately leading to respiratory failure. Resolution of ARDS depends on the ability of the alveolar epithelium to reabsorb lung fluid through active transepithelial ion transport, to control the inflammatory response, and to restore a cohesive and functional epithelium through effective repair processes. Interestingly, several lines of evidence have demonstrated the important role of potassium (K+) channels in the regulation of epithelial repair processes. Furthermore, these channels have previously been shown to be involved in sodium/fluid absorption across alveolar epithelial cells, and we have recently demonstrated the contribution of KvLQT1 channels to the resolution of thiourea-induced pulmonary edema in vivo. The aim of our study was to investigate the role of the KCNQ1 pore-forming subunit of KvLQT1 channels in the outcome of ARDS parameters in a model of acute lung injury (ALI). We used a molecular approach with KvLQT1-KO mice challenged with bleomycin, a well-established ALI model that mimics the key features of the exudative phase of ARDS on day 7. Our data showed that KvLQT1 deletion exacerbated the negative outcome of bleomycin on lung function (resistance, elastance and compliance). An alteration in the profile of infiltrating immune cells was also observed in KvLQT1-KO mice while histological analysis showed less interstitial and/or alveolar inflammatory response induced by bleomycin in KvLQT1-KO mice. Finally, a reduced repair rate of KvLQT1-KO alveolar cells after injury was observed. This work highlights the complex contribution of KvLQT1 in the development and resolution of ARDS parameters in a model of ALI.
Collapse
Affiliation(s)
- Mélissa Aubin Vega
- Centre de recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
- Département de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Alban Girault
- Centre de recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
- Département de Médecine, Université de Montréal, Montréal, QC, Canada
- Laboratoire de Physiologie Cellulaire et Moléculaire (LPCM UR UPJV 4667), Amiens, France
| | - Émilie Meunier
- Centre de recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
- Département de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Jasmine Chebli
- Centre de recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
- Département de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Anik Privé
- Centre de recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
| | | | - Damien Adam
- Centre de recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
- Département de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Emmanuelle Brochiero
- Centre de recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
- Département de Médecine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
3
|
Lambert C, Schmidt K, Karger M, Stadler M, Stradal TEB, Rottner K. Cytochalasans and Their Impact on Actin Filament Remodeling. Biomolecules 2023; 13:1247. [PMID: 37627312 PMCID: PMC10452583 DOI: 10.3390/biom13081247] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 07/28/2023] [Accepted: 08/06/2023] [Indexed: 08/27/2023] Open
Abstract
The eukaryotic actin cytoskeleton comprises the protein itself in its monomeric and filamentous forms, G- and F-actin, as well as multiple interaction partners (actin-binding proteins, ABPs). This gives rise to a temporally and spatially controlled, dynamic network, eliciting a plethora of motility-associated processes. To interfere with the complex inter- and intracellular interactions the actin cytoskeleton confers, small molecular inhibitors have been used, foremost of all to study the relevance of actin filaments and their turnover for various cellular processes. The most prominent inhibitors act by, e.g., sequestering monomers or by interfering with the polymerization of new filaments and the elongation of existing filaments. Among these inhibitors used as tool compounds are the cytochalasans, fungal secondary metabolites known for decades and exploited for their F-actin polymerization inhibitory capabilities. In spite of their application as tool compounds for decades, comprehensive data are lacking that explain (i) how the structural deviances of the more than 400 cytochalasans described to date influence their bioactivity mechanistically and (ii) how the intricate network of ABPs reacts (or adapts) to cytochalasan binding. This review thus aims to summarize the information available concerning the structural features of cytochalasans and their influence on the described activities on cell morphology and actin cytoskeleton organization in eukaryotic cells.
Collapse
Affiliation(s)
- Christopher Lambert
- Molecular Cell Biology Group, Helmholtz Centre for Infection Research (HZI), Inhoffenstrasse 7, 38124 Braunschweig, Germany
- Department of Cell Biology, Helmholtz Centre for Infection Research (HZI), Inhoffenstrasse 7, 38124 Braunschweig, Germany
- Department of Microbial Drugs, Helmholtz Centre for Infection Research and German Centre for Infection Research (DZIF), Partner Site Hannover/Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany;
| | - Katharina Schmidt
- Department of Cell Biology, Helmholtz Centre for Infection Research (HZI), Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Marius Karger
- Molecular Cell Biology Group, Helmholtz Centre for Infection Research (HZI), Inhoffenstrasse 7, 38124 Braunschweig, Germany
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany
| | - Marc Stadler
- Department of Microbial Drugs, Helmholtz Centre for Infection Research and German Centre for Infection Research (DZIF), Partner Site Hannover/Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany;
| | - Theresia E. B. Stradal
- Department of Cell Biology, Helmholtz Centre for Infection Research (HZI), Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Klemens Rottner
- Molecular Cell Biology Group, Helmholtz Centre for Infection Research (HZI), Inhoffenstrasse 7, 38124 Braunschweig, Germany
- Department of Cell Biology, Helmholtz Centre for Infection Research (HZI), Inhoffenstrasse 7, 38124 Braunschweig, Germany
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany
- Braunschweig Integrated Centre of Systems Biology (BRICS), 38106 Braunschweig, Germany
| |
Collapse
|
4
|
Zyrianova T, Lopez B, Liao A, Gu C, Wong L, Ottolia M, Olcese R, Schwingshackl A. BK Channels Regulate LPS-induced CCL-2 Release from Human Pulmonary Endothelial Cells. Am J Respir Cell Mol Biol 2021; 64:224-234. [PMID: 33217242 PMCID: PMC7874395 DOI: 10.1165/rcmb.2020-0228oc] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 11/05/2020] [Indexed: 11/24/2022] Open
Abstract
We recently established a role for the stretch-activated two-pore-domain K+ (K2P) channel TREK-1 (K2P2.1) in inflammatory cytokine secretion using models of hyperoxia-, mechanical stretch-, and TNF-α-induced acute lung injury. We have now discovered the expression of large conductance, Ca2+-activated K+ (BK) channels in human pulmonary microvascular endothelial cells and primary human alveolar epithelial cells using semiquantitative real-time PCR, IP and Western blot, and investigated their role in inflammatory cytokine secretion using an LPS-induced acute lung injury model. As expected, LPS induced IL-6 and CCL-2 secretion from pulmonary endothelial and epithelial cells. BK activation with NS1619 decreased LPS-induced CCL-2 but not IL-6 secretion from endothelial cells and had no effect on epithelial cells, although fluorometric assays revealed that BK activation hyperpolarized the plasma membrane potential (Em) of both cell types. Interestingly, BK inhibition (Paxilline) did not alter cytokine secretion or the Em in either cell type. Furthermore, LPS treatment by itself did not affect the Em or intracellular Ca2+ concentrations. Therefore, we propose BK channel activation as a novel targeted approach to counteract LPS-induced CCL-2 secretion from endothelial cells. This protective effect appears to occur via Em hyperpolarization but independent of intracellular Ca2+ concentrations.
Collapse
Affiliation(s)
| | | | | | | | | | - Michela Ottolia
- Department of Anesthesiology and Perioperative Medicine, and
| | - Riccardo Olcese
- Department of Anesthesiology and Perioperative Medicine, and
- Department of Physiology, University of California Los Angeles, Los Angeles, California
| | | |
Collapse
|
5
|
Kim A, Jung HG, Kim YE, Kim SC, Park JY, Lee SG, Hwang EM. The Knockdown of TREK-1 in Hippocampal Neurons Attenuate Lipopolysaccharide-Induced Depressive-Like Behavior in Mice. Int J Mol Sci 2019; 20:ijms20235902. [PMID: 31771312 PMCID: PMC6929152 DOI: 10.3390/ijms20235902] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/15/2019] [Accepted: 11/21/2019] [Indexed: 02/07/2023] Open
Abstract
TWIK-related potassium channel-1 (TREK-1) is broadly expressed in the brain and involved in diverse brain diseases, such as seizures, ischemia, and depression. However, the cell type-specific roles of TREK-1 in the brain are largely unknown. Here, we generated a Cre-dependent TREK-1 knockdown (Cd-TREK-1 KD) transgenic mouse containing a gene cassette for Cre-dependent TREK-1 short hairpin ribonucleic acid to regulate the cell type-specific TREK-1 expression. We confirmed the knockdown of TREK-1 by injecting adeno-associated virus (AAV) expressing Cre into the hippocampus of the mice. To study the role of hippocampal neuronal TREK-1 in a lipopolysaccharide (LPS)-induced depression model, we injected AAV-hSyn-BFP (nCTL group) or AAV-hSyn-BFP-Cre (nCre group) virus into the hippocampus of Cd-TREK-1 KD mice. Interestingly, the immobility in the tail suspension test after LPS treatment did not change in the nCre group. Additionally, some neurotrophic factors (BDNF, VEGF, and IGF-1) significantly increased more in the nCre group compared to the nCTL group after LPS treatment, but there was no difference in the expression of their receptors. Therefore, our data suggest that TREK-1 in the hippocampal neurons has antidepressant effects, and that Cd-TREK-1 KD mice are a valuable tool to reveal the cell type-specific roles of TREK-1 in the brain.
Collapse
Affiliation(s)
- Ajung Kim
- Center for Functional Connectomics, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (A.K.); (H.-G.J.); (Y.-E.K.); (S.-C.K.)
- KHU-KIST Department of Converging Science and Technology, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Hyun-Gug Jung
- Center for Functional Connectomics, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (A.K.); (H.-G.J.); (Y.-E.K.); (S.-C.K.)
- School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul 02841, Korea;
| | - Yeong-Eun Kim
- Center for Functional Connectomics, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (A.K.); (H.-G.J.); (Y.-E.K.); (S.-C.K.)
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul 02792, Korea
| | - Seung-Chan Kim
- Center for Functional Connectomics, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (A.K.); (H.-G.J.); (Y.-E.K.); (S.-C.K.)
- School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul 02841, Korea;
| | - Jae-Yong Park
- School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul 02841, Korea;
| | - Seok-Geun Lee
- KHU-KIST Department of Converging Science and Technology, Graduate School, Kyung Hee University, Seoul 02447, Korea
- Department of Science in Korean Medicine, Kyung Hee University, Seoul 02447, Korea
- Correspondence: (S.-G.L.); (E.M.H.)
| | - Eun Mi Hwang
- Center for Functional Connectomics, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (A.K.); (H.-G.J.); (Y.-E.K.); (S.-C.K.)
- KHU-KIST Department of Converging Science and Technology, Graduate School, Kyung Hee University, Seoul 02447, Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul 02792, Korea
- Correspondence: (S.-G.L.); (E.M.H.)
| |
Collapse
|
6
|
Canella R, Martini M, Cavicchio C, Cervellati F, Benedusi M, Valacchi G. Involvement of the TREK-1 channel in human alveolar cell membrane potential and its regulation by inhibitors of the chloride current. J Cell Physiol 2019; 234:17704-17713. [PMID: 30805940 DOI: 10.1002/jcp.28396] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 01/03/2019] [Accepted: 01/10/2019] [Indexed: 12/14/2022]
Abstract
K+ channels of the alveolar epithelium control the driving force acting on the ionic and solvent flow through the cell membrane contributing to the maintenance of cell volume and the constitution of epithelial lining fluid. In the present work, we analyze the effect of the Cl- channel inhibitors: (4-[(2-butyl-6,7-dichloro-2-cyclopentyl-2,3-dihydro-1-oxo-inden-5-yl)oxy] butanoic acid (DCPIB) and 9-anthracenecarboxylic acid (9-AC) on the total current in a type II pneumocytes (A549 cell line) model by patch clamp, immunocytochemical, and gene knockdown techniques. We noted that DCPIB and 9-AC promote the activation of K conductance. In fact, they significantly increase the intensity of the current and shift its reversal potential to values more negative than the control. By silencing outward rectifier channel in its anoctamin 6 portion, we excluded a direct involvement of Cl- ions in modulation of IK and, by means of functional tests with its specific inhibitor spadin, we identified the TREK-1 channel as the presumable target of both drugs. As the activity of TREK-1 has a key role for the correct functioning of the alveolar epithelium, the identification of DCPIB and 9-AC molecules as its activators suggests their possible use to build new pharmacological tools for the modulation of this channel.
Collapse
Affiliation(s)
- Rita Canella
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Marta Martini
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Carlotta Cavicchio
- Animal Science Department, Plants for Human Health Institute, NC State University, Kannapolis, North Carolina
| | - Franco Cervellati
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Mascia Benedusi
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Giuseppe Valacchi
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy.,Animal Science Department, Plants for Human Health Institute, NC State University, Kannapolis, North Carolina
| |
Collapse
|
7
|
Intracellular Colocalization of Influenza Viral RNA and Rab11A Is Dependent upon Microtubule Filaments. J Virol 2017; 91:JVI.01179-17. [PMID: 28724771 PMCID: PMC5599730 DOI: 10.1128/jvi.01179-17] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 07/13/2017] [Indexed: 12/31/2022] Open
Abstract
Influenza A virus (IAV) consists of eight viral RNA (vRNA) segments that are replicated in the host cell nucleus and transported to the plasma membrane for packaging into progeny virions. We have previously proposed a model where subcomplexes of vRNA are exported from the nucleus and assembled en route to the plasma membrane. However, the role of host cytoskeletal proteins in the cytoplasmic assembly of IAV vRNA segments remains unknown. Previous studies have suggested that IAV vRNA segments are transported via Rab11A-containing recycling endosomes (RE) and use both microtubules (MT) and actin. Rab11A RE transport primarily along MT; therefore, investigation of the role of MT in vRNA assembly is warranted. We explored the role of MT in vRNA assembly and replication by using multiple IAV strains in various cell types, including primary human airway epithelial cells. We observed that Rab11A localization was altered in the presence of MT-depolymerizing drugs, but growth of IAV in all of the cell types tested was unchanged. Fluorescent in situ hybridization was performed to determine the role of MT in the assembly of multiple vRNA segments. Unexpectedly, we found that vRNA-vRNA association in cytoplasmic foci was independent of MT. Given the disparity of localization between Rab11A and vRNA segments in the absence of intact MT filaments, we analyzed the three-dimensional spatial relationship between Rab11A and vRNA in the cytoplasm of infected cells. We found that Rab11A and vRNA colocalization is dependent upon dynamic MT filaments. Taken together, our data suggest that cytoplasmic transport of influenza vRNA may include a Rab11A RE-independent mechanism. IMPORTANCE IAV infections cause a large public health burden through seasonal epidemics and sporadic pandemics. Pandemic IAVs emerge through reassortment of vRNA in animal or human hosts. Elucidation of the mechanism of intracellular dynamics of IAV assembly is necessary to understand reassortment. Our results describing the role of MT in vRNA transport and assembly expand upon previous studies characterizing vRNA assembly. This study is the first to assess the role of MT in influenza virus replication in human bronchial airway epithelial cells. In addition, we present novel data on the role of MT in facilitating the association between distinct vRNA segments. Interestingly, our results suggest that progressive assembly of vRNA segments may be cell type dependent and that vRNA may be transported through the cytoplasm without Rab11A RE in the absence of intact MT. These results enhance our understanding of vRNA assembly and the role of cytoskeletal proteins in that process.
Collapse
|
8
|
Carreon TA, Castellanos A, Gasull X, Bhattacharya SK. Interaction of cochlin and mechanosensitive channel TREK-1 in trabecular meshwork cells influences the regulation of intraocular pressure. Sci Rep 2017; 7:452. [PMID: 28352076 PMCID: PMC5428432 DOI: 10.1038/s41598-017-00430-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 02/28/2017] [Indexed: 12/18/2022] Open
Abstract
In the eye, intraocular pressure (IOP) is tightly regulated and its persistent increase leads to ocular hypertension and glaucoma. We have previously shown that trabecular meshwork (TM) cells might detect aqueous humor fluid shear stress via interaction of the extracellular matrix (ECM) protein cochlin with the cell surface bound and stretch-activated channel TREK-1. We provide evidence here that interaction between both proteins are involved in IOP regulation. Silencing of TREK-1 in mice prevents the previously demonstrated cochlin-overexpression mediated increase in IOP. Biochemical and electrophysiological experiments demonstrate that high shear stress-induced multimeric cochlin produces a qualitatively different interaction with TREK-1 compared to monomeric cochlin. Physiological concentrations of multimeric but not monomeric cochlin reduce TREK-1 current. Results presented here indicate that the interaction of TREK-1 and cochlin play an important role for maintaining IOP homeostasis. [Corrected].
Collapse
Affiliation(s)
- Teresia A Carreon
- Bascom Palmer Eye Institute, University of Miami, Miami, Florida, USA.,Department of Biochemistry and Molecular Biology, University of Miami, Miami, USA
| | - Aida Castellanos
- Department of Biomedicine, University of Barcelona, Barcelona, Spain.,Institut d'Investigaciones Biomediques August Pi I Sunyer (IDIBAPS), Barcelona, Spain.,Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Xavier Gasull
- Department of Biomedicine, University of Barcelona, Barcelona, Spain.,Institut d'Investigaciones Biomediques August Pi I Sunyer (IDIBAPS), Barcelona, Spain.,Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Sanjoy K Bhattacharya
- Bascom Palmer Eye Institute, University of Miami, Miami, Florida, USA. .,Department of Biochemistry and Molecular Biology, University of Miami, Miami, USA.
| |
Collapse
|
9
|
Yuan J, Zhang YM, Wu W, Ma W, Wang F. Effect of glycosides of Cistanche on the expression of mitochondrial precursor protein and keratin type II cytoskeletal 6A in a rat model of vascular dementia. Neural Regen Res 2017; 12:1152-1158. [PMID: 28852399 PMCID: PMC5558496 DOI: 10.4103/1673-5374.211196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Glycosides of Cistanche (GC) is a preparation used extensively for its neuroprotective effect against neurological diseases, but its mechanisms of action remains incompletely understood. Here, we established a bilateral common carotid artery occlusion model of vascular dementia in rats and injected the model rats with a suspension of GC (10 mg/kg/day, intraperitoneally) for 14 consecutive days. Immunohistochemistry showed that GC significantly reduced p-tau and amyloid beta (Aβ) immunoreactivity in the hippocampus of the model rats. Proteomic analysis demonstrated upregulation of mitochondrial precursor protein and downregulation of keratin type II cytoskeletal 6A after GC treatment compared with model rats that had received saline. Western blot assay confirmed these findings. Our results suggest that the neuroprotective effect of GC in vascular dementia occurs via the promotion of neuronal cytoskeleton regeneration.
Collapse
|
10
|
Roan E. Dichotomy of Tenure and Biomedical Engineering Research with a Purpose in an Academic Setting. Front Pediatr 2015; 3:113. [PMID: 26779462 PMCID: PMC4688338 DOI: 10.3389/fped.2015.00113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 12/09/2015] [Indexed: 11/13/2022] Open
Affiliation(s)
- Esra Roan
- University of Memphis , Memphis, TN , USA
| |
Collapse
|