1
|
Vaziri C, Forker K, Zhang X, Wu D, Zhou P, Bowser JL. Pathological modulation of genome maintenance by cancer/testes antigens (CTAs). DNA Repair (Amst) 2025; 147:103818. [PMID: 39983270 DOI: 10.1016/j.dnarep.2025.103818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 02/07/2025] [Accepted: 02/10/2025] [Indexed: 02/23/2025]
Abstract
The Cancer Testis Antigens (CTAs) are a group of germ cell proteins that are absent from normal somatic cells yet aberrantly expressed in many cancer cells. When mis-expressed in cancer cells, many CTAs promote tumorigenic characteristics including genome instability, DNA damage tolerance and therapy resistance. Here we highlight some of the CTAs for which their roles in genome maintenance in cancer cells are well established. We consider three broad CTA categories: (1) Melanoma Antigens (MAGEs) (2) Mitotic CTAs and (3) CTAs with roles in meiotic homologous recombination. Many cancer cells rely on CTAs to tolerate intrinsic and therapy-induced genotoxic stress. Therefore, CTAs represent molecular vulnerabilities of cancer cells and may provide opportunities for therapy. Owing to their high-level expression in tumors and absence from normal somatic cells, CTA-directed therapies could have a high level of specificity and would likely be devoid of side-effect toxicity.
Collapse
Affiliation(s)
- Cyrus Vaziri
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA.
| | - Karly Forker
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Xingyuan Zhang
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC 27710, USA
| | - Di Wu
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Biostatistics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Pei Zhou
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jessica L Bowser
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
2
|
Faiena I, Adhikary S, Schweitzer C, Astrow SH, Grogan T, Funt SA, Bot A, Dorff T, Rosenberg JE, Elashoff DA, Pantuck AJ, Drakaki A. Gene and Protein Expression of MAGE and Associated Immune Landscape Elements in Non-Small-Cell Lung Carcinoma and Urothelial Carcinomas. J Immunother 2024; 47:351-360. [PMID: 39169899 PMCID: PMC11446647 DOI: 10.1097/cji.0000000000000538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 06/21/2024] [Indexed: 08/23/2024]
Abstract
Melanoma-associated antigen-A (MAGE-A) is expressed in multiple cancers with restricted expression in normal tissue. We sought to assess the MAGE-A3/A6 expression profile as well as immune landscape in urothelial (UC) and non-small cell lung carcinoma (NSCLC). We also assessed co-expression of immune-associated markers, including programmed cell death ligand 1 (PD-L1) in tumor and/or immune cells, and assessed the effect of checkpoint inhibitor treatment on these markers in the context of urothelial carcinoma. We used formalin-fixed paraffin-embedded (FFPE) tissue sections from a variety of tumor types were screened by IHC for MAGE-A and PD-L1 expression. Gene expression analyses by RNA sequencing were performed on RNA extracted from serial tissue sections. UC tumor samples from patients treated with checkpoint inhibitors were assessed by IHC and NanoString gene expression analysis for MAGE-A and immune marker expression before and after treatment. Overall, 84 samples (57%) had any detectable MAGE-A expression. Detectable MAGE-A expression was present at similar frequencies in both tumor tissue types, with 41 (50%) NSCLC and 43 (64%) UC. MAGE-A expression was not significantly changed before and after checkpoint inhibitor therapy by both IHC and NanoString mRNA sequencing. Other immune markers were similarly unchanged post immune checkpoint inhibitor therapy. Stable expression of MAGE-A3/A6 pre and post checkpoint inhibitor treatment indicates that archival specimens harvested after checkpoint therapy are applicable to screening potential candidates for MAGE therapies.
Collapse
Affiliation(s)
- Izak Faiena
- Columbia University Irving Medical Center, New York, NY, USA
| | | | | | | | - Tristan Grogan
- Department of Medicine Statistics Core,David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Samuel A. Funt
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Tanya Dorff
- City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | | | - David A. Elashoff
- Department of Medicine Statistics Core,David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Allan J. Pantuck
- Institute of Urologic Oncology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Alexandra Drakaki
- Institute of Urologic Oncology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
3
|
Verma S, Swain D, Kushwaha PP, Brahmbhatt S, Gupta K, Sundi D, Gupta S. Melanoma Antigen Family A (MAGE A) as Promising Biomarkers and Therapeutic Targets in Bladder Cancer. Cancers (Basel) 2024; 16:246. [PMID: 38254738 PMCID: PMC10813664 DOI: 10.3390/cancers16020246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/19/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024] Open
Abstract
The Melanoma Antigen Gene (MAGE) is a large family of highly conserved proteins that share a common MAGE homology domain. Interestingly, many MAGE family members exhibit restricted expression in reproductive tissues but are abnormally expressed in various human malignancies, including bladder cancer, which is a common urinary malignancy associated with high morbidity and mortality rates. The recent literature suggests a more prominent role for MAGEA family members in driving bladder tumorigenesis. This review highlights the role of MAGEA proteins, the potential for them to serve as diagnostic or prognostic biomarker(s), and as therapeutic targets for bladder cancer.
Collapse
Affiliation(s)
- Shiv Verma
- Department of Urology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (S.V.); (P.P.K.); (K.G.)
- The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Diya Swain
- College of Arts and Sciences, Case Western Reserve University, Cleveland, OH 44106, USA; (D.S.); (S.B.)
| | - Prem Prakash Kushwaha
- Department of Urology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (S.V.); (P.P.K.); (K.G.)
- The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Smit Brahmbhatt
- College of Arts and Sciences, Case Western Reserve University, Cleveland, OH 44106, USA; (D.S.); (S.B.)
| | - Karishma Gupta
- Department of Urology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (S.V.); (P.P.K.); (K.G.)
- The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Debasish Sundi
- Department of Urology, Division of Urologic Oncology, The Ohio State University Comprehensive Cancer Center, James Cancer Hospital & Wexner Medical Center, Columbus, OH 43210, USA;
| | - Sanjay Gupta
- Department of Urology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (S.V.); (P.P.K.); (K.G.)
- The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Nutrition, Case Western Reserve University, Cleveland, OH 44106, USA
- Division of General Medical Sciences, Case Comprehensive Cancer Center, Cleveland, OH 44106, USA
| |
Collapse
|
4
|
Fuchs JR, Schulte BC, Fuchs JW, Agulnik M. Emerging targeted and cellular therapies in the treatment of advanced and metastatic synovial sarcoma. Front Oncol 2023; 13:1123464. [PMID: 36761952 PMCID: PMC9905840 DOI: 10.3389/fonc.2023.1123464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/09/2023] [Indexed: 01/26/2023] Open
Abstract
Synovial sarcoma is a soft tissue sarcoma accounting for approximately 1,000 cases per year in the United States. Currently, standard treatment of advanced and metastatic synovial sarcoma is anthracycline-based chemotherapy. While advanced synovial sarcoma is more responsive to chemotherapy compared to other soft tissue sarcomas, survival rates are poor, with a median survival time of less than 18 months. Enhanced understanding of tumor antigen expression and molecular mechanisms behind synovial sarcoma provide potential targets for treatment. Adoptive Cell Transfer using engineered T-cell receptors is in clinical trials for treatment of synovial sarcoma, specifically targeting New York esophageal squamous cell carcinoma-1 (NY-ESO-1), preferentially expressed antigen in melanoma (PRAME), and melanoma antigen-A4 (MAGE-A4). In this review, we explore the opportunities and challenges of these treatments. We also describe artificial adjuvant vector cells (aAVCs) and BRD9 inhibitors, two additional potential targets for treatment of advanced synovial sarcoma. This review demonstrates the progress that has been made in treatment of synovial sarcoma and highlights the future study and qualification needed to implement these technologies as standard of care.
Collapse
Affiliation(s)
- Joseph R. Fuchs
- Department of Medicine, McGaw Medical Center of Northwestern University, Chicago, IL, United States
| | - Brian C. Schulte
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Jeffrey W. Fuchs
- Department of Medicine, McGaw Medical Center of Northwestern University, Chicago, IL, United States
| | - Mark Agulnik
- Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, CA, United States,*Correspondence: Mark Agulnik,
| |
Collapse
|
5
|
Pascucci FA, Escalada MC, Suberbordes M, Vidal C, Ladelfa MF, Monte M. MAGE-I proteins and cancer-pathways: A bidirectional relationship. Biochimie 2022; 208:31-37. [PMID: 36403755 DOI: 10.1016/j.biochi.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/31/2022] [Accepted: 11/10/2022] [Indexed: 11/19/2022]
Abstract
Data emerged from the last 20 years of basic research on tumor antigens positioned the type I MAGE (Melanoma Antigen GEnes - I or MAGE-I) family as cancer driver factors. MAGE-I gene expression is mainly restricted to normal reproductive tissues. However, abnormal re-expression in cancer unbalances the cell status towards enhanced oncogenic activity or reduced tumor suppression. Anomalous MAGE-I gene re-expression in cancer is attributed to altered epigenetic-mediated chromatin silencing. Still, emerging data indicate that MAGE-I can be regulated at protein level. Results from different laboratories suggest that after its anomalous re-expression, specific MAGE-I proteins can be regulated by well-known signaling pathways or key cellular processes that finally potentiate the cancer cell phenotype. Thus, MAGE-I proteins both regulate and are regulated by cancer-related pathways. Here, we present an updated review highlighting the recent findings on the regulation of MAGE-I by oncogenic pathways and the potential consequences in the tumor cell behavior.
Collapse
Affiliation(s)
- Franco Andrés Pascucci
- Laboratorio de Oncología Molecular, Departamento de Química Biológica and IQUIBICEN-UBA/CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Micaela Carolina Escalada
- Laboratorio de Oncología Molecular, Departamento de Química Biológica and IQUIBICEN-UBA/CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Melisa Suberbordes
- Laboratorio de Oncología Molecular, Departamento de Química Biológica and IQUIBICEN-UBA/CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Candela Vidal
- Laboratorio de Oncología Molecular, Departamento de Química Biológica and IQUIBICEN-UBA/CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María Fátima Ladelfa
- Laboratorio de Oncología Molecular, Departamento de Química Biológica and IQUIBICEN-UBA/CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
| | - Martín Monte
- Laboratorio de Oncología Molecular, Departamento de Química Biológica and IQUIBICEN-UBA/CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
6
|
MAGED2 Is Required under Hypoxia for cAMP Signaling by Inhibiting MDM2-Dependent Endocytosis of G-Alpha-S. Cells 2022; 11:cells11162546. [PMID: 36010623 PMCID: PMC9406315 DOI: 10.3390/cells11162546] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/14/2022] [Accepted: 08/15/2022] [Indexed: 01/15/2023] Open
Abstract
Mutations in MAGED2 cause transient Bartter syndrome characterized by severe renal salt wasting in fetuses and infants, which leads to massive polyhydramnios causing preterm labor, extreme prematurity and perinatal death. Notably, this condition resolves spontaneously in parallel with developmental increase in renal oxygenation. MAGED2 interacts with G-alpha-S (Gαs). Given the role of Gαs in activating adenylyl cyclase at the plasma membrane and consequently generating cAMP to promote renal salt reabsorption via protein kinase A (PKA), we hypothesized that MAGED2 is required for this signaling pathway under hypoxic conditions such as in fetuses. Consistent with that, under both physical and chemical hypoxia, knockdown of MAGED2 in renal (HEK293) and cancer (HeLa) cell culture models caused internalization of Gαs, which was fully reversible upon reoxygenation. In contrast to Gαs, cell surface expression of the β2-adrenergic receptor, which is coupled to Gαs, was not affected by MAGED2 depletion, demonstrating specific regulation of Gαs by MAGED2. Importantly, the internalization of Gαs due to MAGED2 deficiency significantly reduced cAMP generation and PKA activity. Interestingly, the internalization of Gαs was blocked by preventing its endocytosis with dynasore. Given the role of E3 ubiquitin ligases, which can be regulated by MAGE-proteins, in regulating endocytosis, we assessed the potential role of MDM2-dependent ubiquitination in MAGED2 deficiency-induced internalization of Gαs under hypoxia. Remarkably, MDM2 depletion or its chemical inhibition fully abolished Gαs-endocytosis following MAGED2 knockdown. Moreover, endocytosis of Gαs was also blocked by mutation of ubiquitin acceptor sites in Gαs. Thus, we reveal that MAGED2 is essential for the cAMP/PKA pathway under hypoxia to specifically regulate Gαs endocytosis by blocking MDM2-dependent ubiquitination of Gαs. This may explain, at least in part, the transient nature of Bartter syndrome caused by MAGED2 mutations and opens new avenues for therapy in these patients.
Collapse
|
7
|
Liu Y, Cao B, Hu L, Ye J, Tian W, He X. The Dual Roles of MAGE-C2 in p53 Ubiquitination and Cell Proliferation Through E3 Ligases MDM2 and TRIM28. Front Cell Dev Biol 2022; 10:922675. [PMID: 35927984 PMCID: PMC9344466 DOI: 10.3389/fcell.2022.922675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/17/2022] [Indexed: 01/10/2023] Open
Abstract
The tumor suppressor p53 is critical for the maintenance of genome stability and protection against tumor malignant transformation, and its homeostasis is usually regulated by ubiquitination. MDM2 is a major E3 ligase of p53 ubiquitination, and its activity is enhanced by TRIM28. TRIM28 also independently ubiquitinates p53 as an E3 ligase activated by MAGE-C2. Moreover, MAGE-C2 is highly expressed in various cancers, but the detailed mechanisms of MAGE-C2 involved in MDM2/TRIM28-mediated p53 ubiquitination remain unknown. Here, we found that MAGE-C2 directly interacts with MDM2 through its conserved MHD domain to inhibit the activity of MDM2 on p53 ubiquitination. Furthermore, TRIM28 acts as an MAGE-C2 binding partner and directly competes with MAGE-C2 for MDM2 interaction, thus releasing the inhibitory role of MAGE-C2 and promoting p53 ubiquitination. MAGE-C2 suppresses cell proliferation in TRIM28-deficient cells, but the overexpression of TRIM28 antagonizes the inhibitory role of MAGE-C2 and accumulates p53 ubiquitination to promote cell proliferation. This study clarified the molecular link of MAGE-C2 in two major E3 systems MDM2 and TRIM28 on p53 ubiquitination. Our results revealed the molecular function of how MAGE-C2 and TRIM28 contribute to p53 ubiquitination and cell proliferation, in which MAGE-C2 acts as a potential inhibitor of MDM2 and TRIM28 is a vital regulator for MAGE-C2 function in p53 protein level and cell proliferation. This work would be helpful to understand the regulation mechanism of tumor suppressor p53.
Collapse
|
8
|
Abstract
PURPOSE OF REVIEW To summarize the development of modified T-cell therapies in sarcomas and discuss relevant published and ongoing clinical trials to date. RECENT FINDINGS Numerous clinical trials are underway evaluating tumor-specific chimeric antigen receptor T cells and high affinity T-cell receptor (TCR)-transduced T cells in sarcomas. Notably, translocation-dependent synovial sarcoma and myxoid/round cell liposarcoma are the subject of several phase II trials evaluating TCRs targeting cancer testis antigens New York esophageal squamous cell carcinoma-1 (NY-ESO-1) and melanoma antigen-A4 (MAGE A4), and response rates of up to 60% have been observed for NY-ESO-1 directed, modified T cells in synovial sarcoma. Challenges posed by modified T-cell therapy include limitations conferred by HLA-restriction, non-immunogenic tumor microenvironments (TME), aggressive lymphodepletion and immune-mediated toxicities restricting coinfusion of cytokines. SUMMARY Cellular therapy to augment the adaptive immune response through delivery of modified T cells is an area of novel therapeutic development in sarcomas where a reliably expressed, ubiquitous target antigen can be identified. Therapeutic tools to improve the specificity, signaling, proliferation and persistence of modified TCRs and augment clinical responses through safe manipulation of the sarcoma TME will be necessary to harness the full potential of this approach.
Collapse
|
9
|
Ellegate J, Mastri M, Isenhart E, Krolewski JJ, Chatta G, Kauffman E, Moffitt M, Eng KH. Loss of MAGEC3 Expression Is Associated with Prognosis in Advanced Ovarian Cancers. Cancers (Basel) 2022; 14:cancers14030731. [PMID: 35158998 PMCID: PMC8833712 DOI: 10.3390/cancers14030731] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Familial studies connect variants in the X-linked gene MAGEC3 to early-onset ovarian cancers. In this retrospective cohort study, we determined that, unlike other MAGE family members, the MAGEC3 protein is normally expressed in ovarian tissue but is lost in half of the ovarian cancers. Similar to other predisposition genes like BRCA2, survival modeling suggests that expression loss is associated with favorable progression-free survival, and continued expression is associated with response to platinum therapy. Because of the assumed antigenicity of MAGE genes, we tested and observed associations with lymphocyte infiltration, NY-ESO-1 seropositivity, and the co-expression of tumor antigens at Xq28. Using transcriptomic modeling, we predicted that MAGEC3 expression is associated with stress-related cell cycle stalling and DNA repair pathway expression. Abstract Rare variants in MAGEC3 are associated with BRCA negative, early-onset ovarian cancers. Given this association, we evaluated the impact of MAGEC3 protein expression on prognosis and transcription. We quantified normal and tumor protein expression of MAGEC3 via immunohistochemistry in n = 394 advanced ovarian cancers, assessed the correlation of these values with clinicopathologic and immunological features and modeled survival using univariate and multivariate models. To extend these results, we quantified MAGEC3 protein expression in n = 180 cancers and used matching RNA sequencing data to determine MAGEC3-associated differentially expressed genes and to build an RNA-based model of MAGEC3 protein levels. This model was tested in a third independent cohort of patients from TCGA’s OV dataset (n = 282). MAGEC3 protein was sporadically lost in ovarian cancers, with half of the cases falling below the 9.5th percentile of normal tissue expression. Cases with MAGEC3 loss demonstrated better progression-free survival [HR = 0.71, p = 0.004], and analyses performed on predicted protein scores were consistent [HR = 0.57 p = 0.002]. MAGEC3 protein was correlated with CD8 protein expression [Pearson’s r = 0.176, p = 0.011], NY-ESO-1 seropositivity, and mRNA expression of tumor antigens at Xq28. Results of gene set enrichment analysis showed that genes associated with MAGEC3 protein expression cluster around G2/M checkpoint (NES = 3.20, FDR < 0.001) and DNA repair (NES = 2.28, FDR < 0.001) hallmark pathways. These results show that MAGEC3 is a prognostic biomarker in ovarian cancer.
Collapse
Affiliation(s)
- James Ellegate
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (J.E.J.); (M.M.); (E.I.); (J.J.K.)
| | - Michalis Mastri
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (J.E.J.); (M.M.); (E.I.); (J.J.K.)
| | - Emily Isenhart
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (J.E.J.); (M.M.); (E.I.); (J.J.K.)
| | - John J. Krolewski
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (J.E.J.); (M.M.); (E.I.); (J.J.K.)
| | - Gurkamal Chatta
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA;
| | - Eric Kauffman
- Department of Urology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA;
| | - Melissa Moffitt
- Department of Gynecologic Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA;
| | - Kevin H. Eng
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (J.E.J.); (M.M.); (E.I.); (J.J.K.)
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
- Correspondence:
| |
Collapse
|
10
|
Saeednejad Zanjani L, Razmi M, Fattahi F, Kalantari E, Abolhasani M, Saki S, Madjd Z, Mohsenzadegan M. Overexpression of melanoma-associated antigen A2 has a clinical significance in embryonal carcinoma and is associated with tumor progression. J Cancer Res Clin Oncol 2021; 148:609-631. [PMID: 34837545 DOI: 10.1007/s00432-021-03859-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/14/2021] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Melanoma-associated antigen A2 (MAGE-A2) is a member of the cancer-testis antigen family differentially overexpressed in a variety of malignancies and is associated with tumor development. However, clinical significance and prognostic value of MAGE-A2 in different histological subtypes of testicular germ cell tumors (TGCTs) have not been explored. MATERIALS AND METHODS Here, we aimed to investigate the clinical significance and prognostic impact of MAGE-A2 expression in TGCTs compared to benign tumors as well as adjacent normal tissues and then between seminomas and non-seminomas groups using immunohistochemistry on tissue microarrays. RESULTS The results indicated a statistically significant difference between overexpression of MAGE-A2 and histological subtypes of TGCTs. A statistically significant association was found between a high level of nuclear expression of MAGE-A2 protein and advanced pT stage (P = 0.022), vascular invasion (P = 0.037), as well as involvement of rete testis (P = 0.022) in embryonal carcinomas. Increased nuclear expression of MAGE-A2 was observed to be associated with more aggressive behaviors and tumor progression rather than cytoplasmic expression in these cases. Further, high level nuclear expression of MAGE-A2 had shorter disease-specific survival (DSS) or progression-free survival (PFS) compared to patients with moderate and low expression of MAGE-A2, however, without a statistically significant association. CONCLUSION Our results confirm that increased nuclear expression of MAGE-A2 has a clinical significance in embryonal carcinomas and is associated with progression of disease. Moreover, MAGE-A2 may act as a potential predictive biomarker for the prognosis in embryonal carcinomas if follow-up period becomes longer. Further investigations for the biological function of MAGE-A2 are required in future studies.
Collapse
Affiliation(s)
| | - Mahdieh Razmi
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Fahimeh Fattahi
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Elham Kalantari
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Maryam Abolhasani
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Hasheminejad Kidney Center, Iran University of Medical Sciences, (IUMS), Tehran, Iran
| | - Sima Saki
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Zahra Madjd
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Monireh Mohsenzadegan
- Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| |
Collapse
|
11
|
Poojary M, Jishnu PV, Kabekkodu SP. Prognostic Value of Melanoma-Associated Antigen-A (MAGE-A) Gene Expression in Various Human Cancers: A Systematic Review and Meta-analysis of 7428 Patients and 44 Studies. Mol Diagn Ther 2021; 24:537-555. [PMID: 32548799 PMCID: PMC7497308 DOI: 10.1007/s40291-020-00476-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background Members of the melanoma-associated antigen-A (MAGE-A) subfamily are overexpressed in many cancers and can drive cancer progression, metastasis, and therapeutic recurrence. Objective This study is the first comprehensive meta-analysis evaluating the prognostic utility of MAGE-A members in different cancers. Methods A systematic literature search was conducted in PubMed, Google Scholar, Science Direct, and Web of Science. The pooled hazard ratios with 95% confidence intervals were estimated to evaluate the prognostic significance of MAGE-A expression in various cancers. Results In total, 44 eligible studies consisting of 7428 patients from 11 countries were analysed. Univariate and multivariate analysis for overall survival, progression-free survival, and disease-free survival showed a significant association between high MAGE-A expression and various cancers (P < 0.00001). Additionally, subgroup analysis demonstrated that high MAGE-A expression was significantly associated with poor prognosis for lung, gastrointestinal, breast, and ovarian cancer in both univariate and multivariate analysis for overall survival. Conclusion Overexpression of MAGE-A subfamily members is linked to poor prognosis in multiple cancers. Therefore, it could serve as a potential prognostic marker of poor prognosis in cancers. Electronic supplementary material The online version of this article (10.1007/s40291-020-00476-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Manish Poojary
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Padacherri Vethil Jishnu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India.
| |
Collapse
|
12
|
Chadar R, Kesharwani P. Nanotechnology-based siRNA delivery strategies for treatment of triple negative breast cancer. Int J Pharm 2021; 605:120835. [PMID: 34197908 DOI: 10.1016/j.ijpharm.2021.120835] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/13/2021] [Accepted: 06/25/2021] [Indexed: 12/26/2022]
Abstract
Triple negative breast cancer (TNBC) is a subtype of breast cancer characterized by absence of estrogen (ER) receptor, progesterone (PR) receptor, and human epidermal growth factor-2 (HER-2) receptor. TNBC is an aggressive disease that develops early Chemoresistance. The major pitfall associated is its poor prognosis, low overall survival, high relapse, and mortality as compared to other types of breast cancer. Chemotherapy could be helpful but do not contribute to an increase in survival of patient. To overcome such obstacles, in our article we explored advanced therapy using genes and nanocarrier along with its conjugation to achieve high therapeutic profile with reduced side effect. siRNAs are one of the class of RNA associated with gene silencing. They also regulate the expression of certain proteins that are involved in development of tumor cells. But they are highly unstable. So, for efficient delivery of siRNA, very intelligent, efficient delivery systems are required. Several nanotechnologies based non-viral vectors such as liposome, micelles, nanoparticles, dendrimers, exosomes, nanorods and nanobubbles etc. offers enormous unique properties such as nanometric size range, targeting potential with the capability to link with several targeting moieties for the gene delivery. These non-viral vectors are much safer, effective and efficient system for the delivery of genes along with chemotherapeutics. This review provides an overview of TNBC, conventional and advanced treatment approach of TNBC along with understanding of current status of several nanocarriers used for the delivery of siRNA for the treatment of TNBC.
Collapse
Affiliation(s)
- Rahul Chadar
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
13
|
Mitchell G, Pollack SM, Wagner MJ. Targeting cancer testis antigens in synovial sarcoma. J Immunother Cancer 2021; 9:jitc-2020-002072. [PMID: 34083416 PMCID: PMC8183285 DOI: 10.1136/jitc-2020-002072] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2021] [Indexed: 02/02/2023] Open
Abstract
Synovial sarcoma (SS) is a rare cancer that disproportionately affects children and young adults. Cancer testis antigens (CTAs) are proteins that are expressed early in embryonic development, but generally not expressed in normal tissue. They are aberrantly expressed in many different cancer types and are an attractive therapeutic target for immunotherapies. CTAs are expressed at high levels in SS. This high level of CTA expression makes SS an ideal cancer for treatment strategies aimed at harnessing the immune system to recognize aberrant CTA expression and fight against the cancer. Pivotal clinical trials are now underway, with the potential to dramatically alter the landscape of SS management and treatment from current standards of care. In this review, we describe the rationale for targeting CTAs in SS with a focus on NY-ESO-1 and MAGE-A4, the current state of vaccine and T-cell receptor-based therapies, and consider emerging opportunities for future development.
Collapse
Affiliation(s)
| | - Seth M Pollack
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.,Oncology, University of Washington, Seattle, Washington, USA.,Lurie Cancer Center, Northwestern University, Chicago, Illinois, USA
| | - Michael J Wagner
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA .,Oncology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
14
|
Yang P, Meng M, Zhou Q. Oncogenic cancer/testis antigens are a hallmarker of cancer and a sensible target for cancer immunotherapy. Biochim Biophys Acta Rev Cancer 2021; 1876:188558. [PMID: 33933558 DOI: 10.1016/j.bbcan.2021.188558] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 03/16/2021] [Accepted: 04/26/2021] [Indexed: 02/07/2023]
Abstract
Increasing evidence shows that numerous cancer-testis antigens (CTAs) are uniquely overexpressed in various types of cancer and most CTAs are oncogenic. Overexpression of oncogenic CTAs promotes carcinogenesis, cancer metastasis, and drug resistance. Oncogenic CTAs are generally associated with poor prognosis in cancer patients and are an important hallmark of cancer, making them a crucial target for cancer immunotherapy. CTAs-targeted antibodies, vaccines, and chimeric antigen receptor-modified T cells (CAR-T) have recently been used in cancer treatment and achieved promising outcomes in the preclinical and early clinical trials. However, the efficacy of current CTA-targeted therapeutics is either moderate or low in cancer therapy. CTA-targeted cancer immunotherapy is facing enormous challenges. Several critical scientific problems need to be resolved: (1) the antigen presentation function of MHC-I protein is usually deficient in cancer patients, so that very low amounts of intracellular CTA epitopes are presented to tumor cell membrane surface, leading to weak immune response and subsequent immunity to CTAs; (2) various immunosuppressive cells are rich in tumor tissues leading to diminished tumor immunity; (3) the tumor tissue microenvironment markedly reduces the efficacy of cancer immunotherapy. In the current review paper, the authors propose new strategies and approaches to overcome the barriers of CTAs-targeted immunotherapy and to develop novel potent immune therapeutics against cancer. Finally, we highlight that the oncogenic CTAs have high tumor specificity and immunogenicity, and are sensible targets for cancer immunotherapy. We predict that CTAs-targeted immunotherapy will bring about breakthroughs in cancer therapy in the near future.
Collapse
Affiliation(s)
- Ping Yang
- Department of Pathophysiology, School of Medicine, Nantong University, Nantong, Jiangsu 226000, PR China
| | - Mei Meng
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, Suzhou, Jiangsu 215123, PR China; 2011 Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Quansheng Zhou
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, Suzhou, Jiangsu 215123, PR China; 2011 Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu 215123, PR China.
| |
Collapse
|
15
|
Pascucci FA, Ladelfa MF, Toledo MF, Escalada M, Suberbordes M, Monte M. MageC2 protein is upregulated by oncogenic activation of MAPK pathway and causes impairment of the p53 transactivation function. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2021; 1868:118918. [PMID: 33279609 DOI: 10.1016/j.bbamcr.2020.118918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/19/2020] [Accepted: 11/26/2020] [Indexed: 10/22/2022]
Abstract
Normal-to-tumor cell transition is accompanied by changes in gene expression and signal transduction that turns the balance toward cancer-cell phenotype, eluding by different mechanisms, the response of tumor-suppressor genes. Here, we observed that MageC2, a MAGE-I protein able to regulate the p53 tumor-suppressor, is accumulated upon MEK/ERK MAPK activation. Overexpression of H-RasV12 oncogene causes an increase in MageC2 protein that is prevented by pharmacologic inhibition of MEK. Similarly, decrease in MageC2 protein levels is shown in A375 melanoma cells (which harbor B-RafV600E oncogenic mutation) treated with MEK inhibitors. MageC2 protein levels decrease when p14ARF is expressed, causing an Mdm2-independent upregulation of p53 transactivation. However, MageC2 is refractory to p14ARF-driven downregulation when H-RasV12 is co-expressed. Using MageC2 knockout A375 cells generated by CRISPR/CAS9 technology, we demonstrated the relevance of MageC2 protein in reducing p53 transcriptional activity in cells containing hyperactive MEK/ERK signaling. Furthermore, gene expression analysis performed in cancer-genomic databases, supports the correlation of reduced p53 transcriptional activity and high MageC2 expression, in melanoma cells containing Ras or B-Raf driver mutations. Data presented here suggest that MageC2 can be a functional target of the oncogenic MEK/ERK pathway to regulate p53.
Collapse
Affiliation(s)
- Franco Andrés Pascucci
- Lab. Oncología Molecular, Departamento de Química Biológica and IQUIBICEN-UBA/CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María Fátima Ladelfa
- Lab. Oncología Molecular, Departamento de Química Biológica and IQUIBICEN-UBA/CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María Fernanda Toledo
- Lab. Oncología Molecular, Departamento de Química Biológica and IQUIBICEN-UBA/CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Micaela Escalada
- Lab. Oncología Molecular, Departamento de Química Biológica and IQUIBICEN-UBA/CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Melisa Suberbordes
- Lab. Oncología Molecular, Departamento de Química Biológica and IQUIBICEN-UBA/CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Martín Monte
- Lab. Oncología Molecular, Departamento de Química Biológica and IQUIBICEN-UBA/CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
16
|
A Preliminary Study of the Cross-Reactivity of Canine MAGE-A with Hominid Monoclonal Antibody 6C1 in Canine Mammary Gland Tumors: An Attractive Target for Cancer Diagnostic, Prognostic and Immunotherapeutic Development in Dogs. Vet Sci 2020; 7:vetsci7030109. [PMID: 32784970 PMCID: PMC7558761 DOI: 10.3390/vetsci7030109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 01/27/2023] Open
Abstract
Melanoma-associated antigen-A (MAGE-A), a family of cancer/testis antigens, has been recognized as a potential target molecule for cancer immunotherapy. However, there has been very little information available with regard to this antigen in dogs. This study aimed to investigate the expression of MAGE-A in canine mammary gland tumors (CMTs) using immunohistochemistry and immunoblotting with human monoclonal MAGE-A antibody 6C1. The present study has provided evidence of cross-reactivity of the canine MAGE-A expression with the human MAGE-A antibody in CMTs. The MAGE-A antigens were expressed in moderate- and high-grade malignant CMTs (22.22%, 2/9), but no expression was observed in benign CMTs. The immunohistochemical staining of canine MAGE antigen in CMT cells showed nuclear and nuclear–cytoplasmic expression patterns that may be involved with the mitotic cell division of tumor cells. Molecular weights of the canine MAGE-A antigen presented in this study were approximately 42–62 kDa, which were close to those of other previous studies involving humans and dogs. The findings on this protein in CMTs could supply valuable oncological knowledge for the development of novel diagnostic, prognostic and immunotherapeutic tumor markers in veterinary medicine.
Collapse
|
17
|
Mao Y, Fan W, Hu H, Zhang L, Michel J, Wu Y, Wang J, Jia L, Tang X, Xu L, Chen Y, Zhu J, Feng Z, Xu L, Yin R, Tang Q. MAGE-A1 in lung adenocarcinoma as a promising target of chimeric antigen receptor T cells. J Hematol Oncol 2019; 12:106. [PMID: 31640756 PMCID: PMC6805483 DOI: 10.1186/s13045-019-0793-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 09/20/2019] [Indexed: 12/13/2022] Open
Abstract
Background Cancer/testis antigens (CTAs) are a special type of tumor antigen and are believed to act as potential targets for cancer immunotherapy. Methods In this study, we first screened a rational CTA MAGE-A1 for lung adenocarcinoma (LUAD) and explored the detailed characteristics of MAGE-A1 in LUAD development through a series of phenotypic experiments. Then, we developed a novel MAGE-A1-CAR-T cell (mCART) using lentiviral vector based on our previous MAGE-A1-scFv. The anti-tumor effects of this mCART were finally investigated in vitro and in vivo. Results The results showed striking malignant behaviors of MAGE-A1 in LUAD development, which further validated the rationality of MAGE-A1 as an appropriate target for LUAD treatment. Then, the innovative mCART was successfully constructed, and mCART displayed encouraging tumor-inhibitory efficacy in LUAD cells and xenografts. Conclusions Taken together, our data suggest that MAGE-A1 is a promising candidate marker for LUAD therapy and the MAGE-A1-specific CAR-T cell immunotherapy may be an effective strategy for the treatment of MAGE-A1-positive LUAD.
Collapse
Affiliation(s)
- Yuan Mao
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, The Fourth Clinical College of Nanjing Medical University, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, China.,NHC Key Laboratory of Antibody Technique, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Hematology and Oncology, Department of Geriatric Lung Cancer Laboratory, Geriatric Hospital of Nanjing Medical University, Jiangsu Province Geriatric Hospital, Nanjing, China
| | - Weifei Fan
- Department of Hematology and Oncology, Department of Geriatric Lung Cancer Laboratory, Geriatric Hospital of Nanjing Medical University, Jiangsu Province Geriatric Hospital, Nanjing, China
| | - Hao Hu
- Department of Interventional Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Louqian Zhang
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, The Fourth Clinical College of Nanjing Medical University, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, China
| | - Jerod Michel
- Department of Mathematics, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Yaqin Wu
- Department of Radiation Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, the Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Jun Wang
- Department of Hematology and Oncology, Department of Geriatric Lung Cancer Laboratory, Geriatric Hospital of Nanjing Medical University, Jiangsu Province Geriatric Hospital, Nanjing, China
| | - Lizhou Jia
- NHC Key Laboratory of Antibody Technique, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Xiaojun Tang
- NHC Key Laboratory of Antibody Technique, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Li Xu
- Department of Pathology, Jiangsu Cancer Hospital, Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Yan Chen
- Department of Pathology, Jiangsu Cancer Hospital, Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Jin Zhu
- Huadong Medical Institute of Biotechniques, Nanjing, China
| | - Zhenqing Feng
- NHC Key Laboratory of Antibody Technique, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Lin Xu
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, The Fourth Clinical College of Nanjing Medical University, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, China.
| | - Rong Yin
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, The Fourth Clinical College of Nanjing Medical University, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, China.
| | - Qi Tang
- NHC Key Laboratory of Antibody Technique, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China. .,Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
18
|
Wei R, Dean DC, Thanindratarn P, Hornicek FJ, Guo W, Duan Z. Cancer testis antigens in sarcoma: Expression, function and immunotherapeutic application. Cancer Lett 2019; 479:54-60. [PMID: 31634526 DOI: 10.1016/j.canlet.2019.10.024] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/23/2019] [Accepted: 10/15/2019] [Indexed: 02/06/2023]
Abstract
Sarcomas are a group of heterogeneous malignancies of mesenchymal origin. Patient outcomes remain especially grim for those with recurrent or metastatic disease, and current therapeutic strategies have not significantly improved outcomes over the past few decades. This has led to a number of studies assessing novel therapies. Cancer testis antigens (CTAs) are tumor-associated antigens with physiologic expression in the testis and various malignancies, including sarcomas. Genes encoding CTAs include MAGE, NY-ESO-1, PRAME, TRAG-3/CSAGE, and SSX. The importance and function of CTAs in tumorigenesis have gained recognition in recent years. They are also proving as robust diagnostic and prognostic biomarkers. Therapeutically, antigens derived from CTAs are highly recognizable by T lymphocytes and therefore capable of generating a potent antitumor immune response. CTAs are, therefore, promising targets for novel immunotherapies. Here we review the emerging works on expression, function, and immunotherapeutic application of CTAs in sarcoma therapy.
Collapse
Affiliation(s)
- Ran Wei
- Department of Orthopedic Surgery, Sarcoma Biology Laboratory, David Geffen School of Medicine at UCLA, 615 Charles E. Young Dr. South, Los Angeles, CA, 90095, USA; Musculoskeletal Tumor Center, Peking University People's Hospital, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, China.
| | - Dylan C Dean
- Department of Orthopedic Surgery, Sarcoma Biology Laboratory, David Geffen School of Medicine at UCLA, 615 Charles E. Young Dr. South, Los Angeles, CA, 90095, USA.
| | - Pichaya Thanindratarn
- Department of Orthopedic Surgery, Sarcoma Biology Laboratory, David Geffen School of Medicine at UCLA, 615 Charles E. Young Dr. South, Los Angeles, CA, 90095, USA.
| | - Francis J Hornicek
- Department of Orthopedic Surgery, Sarcoma Biology Laboratory, David Geffen School of Medicine at UCLA, 615 Charles E. Young Dr. South, Los Angeles, CA, 90095, USA.
| | - Wei Guo
- Musculoskeletal Tumor Center, Peking University People's Hospital, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, China.
| | - Zhenfeng Duan
- Department of Orthopedic Surgery, Sarcoma Biology Laboratory, David Geffen School of Medicine at UCLA, 615 Charles E. Young Dr. South, Los Angeles, CA, 90095, USA.
| |
Collapse
|
19
|
Cancer-testis antigens MAGEA proteins are incorporated into extracellular vesicles released by cells. Oncotarget 2019; 10:3694-3708. [PMID: 31217903 PMCID: PMC6557214 DOI: 10.18632/oncotarget.26979] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 05/13/2019] [Indexed: 12/21/2022] Open
Abstract
Melanoma-associated antigen A (MAGEA) family proteins represent a class of tumor antigens that are expressed in a variety of malignant tumors, but their expression in normal tissues is restricted to germ cells. MAGEA family consists of eleven proteins that are highly conserved sharing the common MAGE homology domain (MHD). In the current study, we show that MAGEA4 and MAGEA10 proteins are incorporated into extracellular vesicles released by mouse fibroblast and human osteosarcoma U2OS cells and are expressed, at least partly, on the surface of released EVs. The C-terminal part of the protein containing MHD domain is required for this activity. Expression of MAGEA proteins induced the budding of cells and formation of extracellular vesicles with 150 to 1500 nm in diameter. Our data suggest that the release of MAGEA-positive EVs is at least to some extent induced by the expression of MAGEA proteins itself. This may be one of the mechanisms of MAGEA proteins to induce cancer formation and progression.
Collapse
|
20
|
Epigenetic regulation of MAGE family in human cancer progression-DNA methylation, histone modification, and non-coding RNAs. Clin Epigenetics 2018; 10:115. [PMID: 30185218 PMCID: PMC6126015 DOI: 10.1186/s13148-018-0550-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 08/30/2018] [Indexed: 12/20/2022] Open
Abstract
The melanoma antigen gene (MAGE) proteins are a group of highly conserved family members that contain a common MAGE homology domain. Type I MAGEs are relevant cancer-testis antigens (CTAs), and originally considered as attractive targets for cancer immunotherapy due to their typically high expression in tumor tissues but restricted expression in normal adult tissues. Here, we reviewed the recent discoveries and ideas that illustrate the biological functions of MAGE family in cancer progression. Furthermore, we also highlighted the current understanding of the epigenetic mechanism of MAGE family expression in human cancers.
Collapse
|
21
|
Mahmoud AM. Cancer testis antigens as immunogenic and oncogenic targets in breast cancer. Immunotherapy 2018; 10:769-778. [PMID: 29926750 PMCID: PMC6462849 DOI: 10.2217/imt-2017-0179] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Accepted: 03/16/2018] [Indexed: 01/07/2023] Open
Abstract
Breast cancer cells frequently express tumor-associated antigens that can elicit immune responses to eradicate cancer. Cancer-testis antigens (CTAs) are a group of tumor-associated antigens that might serve as ideal targets for cancer immunotherapy because of their cancer-restricted expression and robust immunogenicity. Previous clinical studies reported that CTAs are associated with negative hormonal status, aggressive tumor behavior and poor survival. Furthermore, experimental studies have shown the ability of CTAs to induce both cellular and humoral immune responses. They also demonstrated the implication of CTAs in promoting cancer cell growth, inhibiting apoptosis and inducing cancer cell invasion and migration. In the current review, we attempt to address the immunogenic and oncogenic potential of CTAs and their current utilization in therapeutic interventions for breast cancer.
Collapse
Affiliation(s)
- Abeer M Mahmoud
- Department of Physical Therapy, College of Applied Health Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Pathology, South Egypt Cancer Institute, Assiut University, Assiut 71111, Egypt
| |
Collapse
|
22
|
Õunap K, Kurg K, Võsa L, Maiväli Ü, Teras M, Planken A, Ustav M, Kurg R. Antibody response against cancer-testis antigens MAGEA4 and MAGEA10 in patients with melanoma. Oncol Lett 2018; 16:211-218. [PMID: 29928403 PMCID: PMC6006456 DOI: 10.3892/ol.2018.8684] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 04/19/2018] [Indexed: 02/06/2023] Open
Abstract
Melanoma-associated antigen A (MAGEA) represent a class of tumor antigens that are expressed in a variety of malignant tumors, however, their expression in healthy normal tissues is restricted to germ cells of testis, fetal ovary and placenta. The restricted expression and immunogenicity of these antigens make them ideal targets for immunotherapy in human cancer. In the present study the presence of naturally occurring antibodies against two MAGEA subfamily proteins, MAGEA4 and MAGEA10, was analyzed in patients with melanoma at different stages of disease. Results indicated that the anti-MAGEA4/MAGEA10 immune response in melanoma patients was heterogeneous, with only ~8% of patients having a strong response. Comparing the number of strongly responding patients between different stages of disease revealed that the highest number of strong responses was detected among stage II melanoma patients. These findings support the model that the immune system is involved in the control of melanoma in the early stages of disease.
Collapse
Affiliation(s)
- Kadri Õunap
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia
| | - Kristiina Kurg
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia
| | - Liisi Võsa
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia
| | - Ülo Maiväli
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia
| | - Marina Teras
- Melanoma Unit of The General Surgery and Oncology Surgery Centre, North Estonian Medical Centre, 13419 Tallinn, Estonia
| | - Anu Planken
- Melanoma Unit of The General Surgery and Oncology Surgery Centre, North Estonian Medical Centre, 13419 Tallinn, Estonia
| | - Mart Ustav
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia
| | - Reet Kurg
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia
| |
Collapse
|
23
|
Raghavendra A, Kalita-de Croft P, Vargas AC, Smart CE, Simpson PT, Saunus JM, Lakhani SR. Expression of MAGE-A and NY-ESO-1 cancer/testis antigens is enriched in triple-negative invasive breast cancers. Histopathology 2018; 73:68-80. [PMID: 29465777 PMCID: PMC6635746 DOI: 10.1111/his.13498] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 02/17/2018] [Indexed: 12/12/2022]
Abstract
Aims A better understanding of the expression of cancer/testis antigens (CTAs) in breast cancer might enable the identification of new immunotherapy options, especially for triple‐negative (TN) tumours, which lack expression of the conventional therapeutic targets oestrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2. The aim of this study was to quantify the expression of MAGE‐A and NY‐ESO‐1 CTAs in breast cancer, and relate this to known clinicopathological parameters. Methods and results We surveyed MAGE‐A and NY‐ESO‐1 expression in an unselected cohort of 367 breast tumours (of which 65 were TN), with accompanying clinical follow‐up data, by using immunohistochemical analysis of tissue microarrays. Relevant to their potential as vaccine targets in breast cancer, MAGE‐A was expressed in 13% of cases, and NY‐ESO‐1 in 3.8%, with the majority of tumours showing fairly homogeneous staining within individual tissue cores (~85% of cases with staining in >75% of tumour cells). Most NY‐ESO‐1‐positive cases also expressed MAGE‐A (P = 2.06 × 10−9), and both were strongly associated with the TN phenotype (P < 0.0001), with the most proliferative and poorly differentiated cases, in paticular, showing genomic instability. This was characterised by coexpression of c‐Kit and TTK, and overexpression of p53. Conclusions MAGE‐A and NY‐ESO‐1 are frequently expressed in TN breast cancer (~47% and 17% of TN cases, respectively), suggesting that targeting them could be feasible in this patient group. Expression is reasonably homogeneous in positive cases, suggesting that immunohistochemical analysis of tissue biopsies would be a reliable companion biomarker.
Collapse
Affiliation(s)
- Ashwini Raghavendra
- Faculty of Medicine, The University of Queensland, The Royal Brisbane and Women's Hospital, Herston, Queensland, Australia.,QIMR Berghofer Medical Research Institute, The Royal Brisbane and Women's Hospital, Herston, Queensland, Australia
| | - Priyakshi Kalita-de Croft
- Faculty of Medicine, The University of Queensland, The Royal Brisbane and Women's Hospital, Herston, Queensland, Australia.,QIMR Berghofer Medical Research Institute, The Royal Brisbane and Women's Hospital, Herston, Queensland, Australia
| | - Ana C Vargas
- Faculty of Medicine, The University of Queensland, The Royal Brisbane and Women's Hospital, Herston, Queensland, Australia.,QIMR Berghofer Medical Research Institute, The Royal Brisbane and Women's Hospital, Herston, Queensland, Australia
| | - Chanel E Smart
- Faculty of Medicine, The University of Queensland, The Royal Brisbane and Women's Hospital, Herston, Queensland, Australia.,QIMR Berghofer Medical Research Institute, The Royal Brisbane and Women's Hospital, Herston, Queensland, Australia
| | - Peter T Simpson
- Faculty of Medicine, The University of Queensland, The Royal Brisbane and Women's Hospital, Herston, Queensland, Australia.,QIMR Berghofer Medical Research Institute, The Royal Brisbane and Women's Hospital, Herston, Queensland, Australia
| | - Jodi M Saunus
- Faculty of Medicine, The University of Queensland, The Royal Brisbane and Women's Hospital, Herston, Queensland, Australia.,QIMR Berghofer Medical Research Institute, The Royal Brisbane and Women's Hospital, Herston, Queensland, Australia
| | - Sunil R Lakhani
- Faculty of Medicine, The University of Queensland, The Royal Brisbane and Women's Hospital, Herston, Queensland, Australia.,Pathology Queensland, The Royal Brisbane and Women's Hospital, Herston, Queensland, Australia
| |
Collapse
|
24
|
MAGE-A11 expression contributes to cisplatin resistance in head and neck cancer. Clin Oral Investig 2017; 22:1477-1486. [PMID: 29034444 DOI: 10.1007/s00784-017-2242-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 10/09/2017] [Indexed: 10/18/2022]
Abstract
OBJECTIVE The objective of this study is to investigate the roles of melanoma-associated antigens (MAGEs) in the cisplatin treatment of head and neck cancer. MATERIALS AND METHODS We assessed the efficacy of cisplatin in a set of four head and neck cancer cell lines using a crystal violet assay. The MAGE-A expression in all cell lines was measured with RT-qPCR. The correlation between MAGE-A expression and cisplatin efficacy was investigated using Spearman's correlation analysis. Furthermore, we established a cell line with stable overexpression of MAGE-A11 and determined influence on proliferation, cisplatin efficacy and cell apoptosis. In this cell line, the effects of cisplatin were assessed using either crystal violet assays or flow cytometry (Annexin V). RESULTS For MAGE-A11, we observed the highest correlation (r = 1.000, p = 0.0417) with low cisplatin efficacy. Stable overexpression of MAGE-A11 resulted in no changes in proliferation, but in lower cisplatin cytotoxicity and lower rates of apoptosis. Also, mouse double minute 2 homolog (MDM2) expression was induced by MAGE-A11 overexpression. CONCLUSION We provide evidence that MAGE-A11 expression contributes to cisplatin resistance in head and neck cancer. CLINICAL RELEVANCE Our study underscores the negative predictive role of MAGE-A11 expression in head and neck cancer.
Collapse
|
25
|
A functional SUMO-motif in the active site of PIM1 promotes its degradation via RNF4, and stimulates protein kinase activity. Sci Rep 2017; 7:3598. [PMID: 28620180 PMCID: PMC5472562 DOI: 10.1038/s41598-017-03775-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 05/04/2017] [Indexed: 11/09/2022] Open
Abstract
The PIM1 serine/threonine protein kinase mediates growth factor and survival signalling, and cooperates potently with c-MYC during tumorigenesis. PIM1 is overexpressed in many human cancers and is a promising target for drug development. PIM1 levels are regulated mainly through cytokine-induced transcription and protein degradation, but mechanisms regulating its activity and levels remain largely unexplored. Here, we show that PIM1 is modified in vitro and in cultured cells by the Small ubiquitin-like modifier (SUMO) on two independent sites: K169, within a consensus SUMOylation motif (IK169DE171) in the active site of PIM1, and also at a second promiscuous site. Alanine substitution of E171 (within the consensus motif) abolished SUMOylation, significantly increased the half-life of PIM1, and markedly reduced its ubiquitylation. Mechanistically, SUMOylation promoted ubiquitin-mediated degradation of PIM1 via recruitment of the SUMO-targeted ubiquitin ligase, RNF4. Additionally, SUMOylated PIM1 showed enhanced protein kinase activity in vitro. Interestingly, the E171A mutant was active in vitro but displayed altered substrate specificity in cultured cells, consistent with the idea that SUMOylation may govern PIM1 substrate specificity under certain contexts. Taken together, these data demonstrate that the protein kinase activity and levels of PIM1 can be regulated by a covalent post-translational modification.
Collapse
|
26
|
Zhao H, Xie YZ, Xing R, Sun M, Chi F, Zeng YC. MDMX is a prognostic factor for non-small cell lung cancer and regulates its sensitivity to cisplatin. Cell Oncol (Dordr) 2017; 40:357-365. [PMID: 28567715 DOI: 10.1007/s13402-017-0325-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2017] [Indexed: 11/27/2022] Open
Abstract
PURPOSE Chemoradiotherapy is the standard treatment modality for advanced non-small cell lung cancer (NSCLC). However, drug and radiation resistance remain major factors influencing its clinical outcome. The purpose of this study was to evaluate whether MDMX can affect the chemosensitivity and clinical outcome of NSCLC. METHODS Quantitative real-time PCR (qRT-PCR) was performed to assess MDMX mRNA expression levels in 105 primary NSCLC tissues, its corresponding non-cancerous tissues and two NSCLC-derived cell lines (A549 and SK-MES-1). In addition, immunohistochemistry was carried out to detect MDMX protein expression in the primary NSCLC tissues. The MDMX expression levels were correlated with clinicopathological and survival features. The effects of MDMX expression knockdown on NSCLC cell proliferation and chemosensitivity were evaluated using MTT, flow cytometry and soft agar colony assays. RESULTS We found that the mRNA expression level of MDMX in NSCLC tissues was significantly higher than that in its corresponding non-tumorous tissues. High MDMX expression was found to be related to poor tumor cell differentiation, advanced TNM stages and the occurrence of lymph node metastases. Patients with a high MDMX expression level exhibited a lower overall survival rate than those with a low expression level. Multivariate analysis showed that a high MDMX protein expression level may serve as an independent prognostic factor for NSCLC patients. In addition, we found that MDMX expression knockdown combined with cisplatin treatment in vitro significantly increased apoptosis and decreased soft agar colony formation in NSCLC-derived cells. CONCLUSIONS Our data indicate that MDMX expression may serve as an independent unfavorable prognostic factor for NSCLC patient outcome, which in turn may at least partly be due to the ability of the MDMX protein to regulate the proliferative capacity and chemosensitivity of NSCLC cells.
Collapse
Affiliation(s)
- Han Zhao
- Department of Medical Oncology, Shengjing Hospital of China Medical University, 39 Huaxiang Road, Shenyang, 110022, China
| | - Yu-Zhuo Xie
- Department of Medical Oncology, Shengjing Hospital of China Medical University, 39 Huaxiang Road, Shenyang, 110022, China
| | - Rui Xing
- Department of Medical Oncology, Shengjing Hospital of China Medical University, 39 Huaxiang Road, Shenyang, 110022, China
| | - Ming Sun
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Feng Chi
- Department of Medical Oncology, Shengjing Hospital of China Medical University, 39 Huaxiang Road, Shenyang, 110022, China
| | - Yue-Can Zeng
- Department of Medical Oncology, Shengjing Hospital of China Medical University, 39 Huaxiang Road, Shenyang, 110022, China.
| |
Collapse
|
27
|
Laiseca JE, Ladelfa MF, Cotignola J, Peche LY, Pascucci FA, Castaño BA, Galigniana MD, Schneider C, Monte M. Functional interaction between co-expressed MAGE-A proteins. PLoS One 2017; 12:e0178370. [PMID: 28542476 PMCID: PMC5443569 DOI: 10.1371/journal.pone.0178370] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 05/11/2017] [Indexed: 12/19/2022] Open
Abstract
MAGE-A (Melanoma Antigen Genes-A) are tumor-associated proteins with expression in a broad spectrum of human tumors and normal germ cells. MAGE-A gene expression and function are being increasingly investigated to better understand the mechanisms by which MAGE proteins collaborate in tumorigenesis and whether their detection could be useful for disease prognosis purposes. Alterations in epigenetic mechanisms involved in MAGE gene silencing cause their frequent co-expression in tumor cells. Here, we have analyzed the effect of MAGE-A gene co-expression and our results suggest that MageA6 can potentiate the androgen receptor (AR) co-activation function of MageA11. Database search confirmed that MageA11 and MageA6 are co-expressed in human prostate cancer samples. We demonstrate that MageA6 and MageA11 form a protein complex resulting in the stabilization of MageA11 and consequently the enhancement of AR activity. The mechanism involves association of the Mage A6-MHD domain to MageA11, prevention of MageA11 ubiquitinylation on lysines 240 and 245 and decreased proteasome-dependent degradation. We experimentally demonstrate here for the first time that two MAGE-A proteins can act together in a non-redundant way to potentiate a specific oncogenic function. Overall, our results highlight the complexity of the MAGE gene networking in regulating cancer cell behavior.
Collapse
Affiliation(s)
- Julieta E. Laiseca
- Lab. Oncología Molecular, Departamento de Química Biológica and IQUIBICEN-UBA/CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María F. Ladelfa
- Lab. Oncología Molecular, Departamento de Química Biológica and IQUIBICEN-UBA/CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Javier Cotignola
- Lab. Inflamación y Cáncer, Departamento de Química Biológica and IQUIBICEN-UBA/CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Leticia Y. Peche
- Laboratorio Nazionale del Consorzio Interuniversitario per le Biotecnologie, Area Science Park, Trieste , Italy
| | - Franco A. Pascucci
- Lab. Oncología Molecular, Departamento de Química Biológica and IQUIBICEN-UBA/CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Bryan A. Castaño
- Lab. Oncología Molecular, Departamento de Química Biológica and IQUIBICEN-UBA/CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mario D. Galigniana
- Lab. Biología Molecular y Celular, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Laboratorio Receptores Nucleares, IBYME-CONICET, Buenos Aires, Argentina
| | - Claudio Schneider
- Laboratorio Nazionale del Consorzio Interuniversitario per le Biotecnologie, Area Science Park, Trieste , Italy
- Dipartimento di Scienze e Tecnologie Biomediche, Università di Udine, p.le Kolbe 4, Udine, Italy
| | - Martin Monte
- Lab. Oncología Molecular, Departamento de Química Biológica and IQUIBICEN-UBA/CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
28
|
Zhao J, Wang Y, Mu C, Xu Y, Sang J. MAGEA1 interacts with FBXW7 and regulates ubiquitin ligase-mediated turnover of NICD1 in breast and ovarian cancer cells. Oncogene 2017; 36:5023-5034. [DOI: 10.1038/onc.2017.131] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 03/22/2017] [Accepted: 03/27/2017] [Indexed: 12/17/2022]
|
29
|
Abstract
INTRODUCTION Esophageal cancer (EC) is the eighth most common cancer in the world, and the prognosis of EC is still poor. Although immunotherapy has been developed in melanoma and lung cancer, it is also expected to show efficacy in EC. Currently, several clinical trials are ongoing to evaluate the safety and efficacy of immunotherapies, immune checkpoint inhibitors, adoptive T cell transfer, and therapeutic cancer vaccines in EC. Areas covered: This review provides an overview and the status of immunotherapy in EC. Clinical significance of molecules related immune checkpoints, especially PD-1 and PD-L1 is presented and the designs, results and future directions of clinical trials using immunotherapy in EC are provided. Expert opinion: To bring immunotherapy to the forefront of treatment for EC, it is necessary to select patients who can obtain a high efficacy of immunotherapy and to also elucidate the correct timing for administration. Moreover, combination therapies of immunotherapy with existing chemotherapy or radiation or other immunotherapy with different mechanisms of action must be evaluated to achieve excellent outcomes in patients with EC.
Collapse
Affiliation(s)
- Tomokazu Tanaka
- a Department of Surgery , Saga University Faculty of Medicine , Saga , Japan
| | - Jun Nakamura
- a Department of Surgery , Saga University Faculty of Medicine , Saga , Japan
| | - Hirokazu Noshiro
- a Department of Surgery , Saga University Faculty of Medicine , Saga , Japan
| |
Collapse
|
30
|
Lee AK, Potts PR. A Comprehensive Guide to the MAGE Family of Ubiquitin Ligases. J Mol Biol 2017; 429:1114-1142. [PMID: 28300603 DOI: 10.1016/j.jmb.2017.03.005] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 03/07/2017] [Accepted: 03/07/2017] [Indexed: 12/28/2022]
Abstract
Melanoma antigen (MAGE) genes are conserved in all eukaryotes and encode for proteins sharing a common MAGE homology domain. Although only a single MAGE gene exists in lower eukaryotes, the MAGE family rapidly expanded in eutherians and consists of more than 50 highly conserved genes in humans. A subset of MAGEs initially garnered interest as cancer biomarkers and immunotherapeutic targets due to their antigenic properties and unique expression pattern that is primary restricted to germ cells and aberrantly reactivated in various cancers. However, further investigation revealed that MAGEs not only drive tumorigenesis but also regulate pathways essential for diverse cellular and developmental processes. Therefore, MAGEs are implicated in a broad range of diseases including neurodevelopmental, renal, and lung disorders, and cancer. Recent biochemical and biophysical studies indicate that MAGEs assemble with E3 RING ubiquitin ligases to form MAGE-RING ligases (MRLs) and act as regulators of ubiquitination by modulating ligase activity, substrate specification, and subcellular localization. Here, we present a comprehensive guide to MAGEs highlighting the molecular mechanisms of MRLs and their physiological roles in germ cell and neural development, oncogenic functions in cancer, and potential as therapeutic targets in disease.
Collapse
Affiliation(s)
- Anna K Lee
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | - Patrick Ryan Potts
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA.
| |
Collapse
|
31
|
Li Y, Li J, Wang Y, Zhang Y, Chu J, Sun C, Fu Z, Huang Y, Zhang H, Yuan H, Yin Y. Roles of cancer/testis antigens (CTAs) in breast cancer. Cancer Lett 2017; 399:64-73. [PMID: 28274891 DOI: 10.1016/j.canlet.2017.02.031] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/22/2017] [Accepted: 02/24/2017] [Indexed: 12/19/2022]
Abstract
Breast cancer is the most common cancer diagnosed and is the second leading cause of cancer death among women in the US. For breast cancer, early diagnosis and efficient therapy remains a significant clinical challenge. Therefore, it is necessary to identify novel tumor associated molecules to target for biomarker development and immunotherapy. In this regard, cancer testis antigens (CTAs) have emerged as a potential clinical biomarker targeting immunotherapy for various malignancies due to the nature of its characteristics. CTAs are a group of tumor associated antigens (TAAs) that display normal expression in immune-privileged organs, but display aberrant expression in several types of cancers, particularly in advanced cancers. Investigation of CTAs for the clinical management of breast malignancies indicates that these TAAs have potential roles as novel biomarkers, with increased specificity and sensitivity compared to those currently used in the clinic. Moreover, TAAs could be therapeutic targets for cancer immunotherapy. This review is an attempt to address the promising CTAs in breast cancer and their possible clinical implications as biomarkers and immunotherapeutic targets with particular focus on challenges and future interventions.
Collapse
Affiliation(s)
- Yongfei Li
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University. Nanjing 210004, China
| | - Jun Li
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University. Nanjing 210004, China
| | - Yifan Wang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University. Nanjing 210004, China
| | - Yanhong Zhang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University. Nanjing 210004, China
| | - Jiahui Chu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University. Nanjing 210004, China
| | - Chunxiao Sun
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University. Nanjing 210004, China
| | - Ziyi Fu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University. Nanjing 210004, China; Nanjing Maternity and Child Health Medical Institute, Affiliated Obstetrics and Gynecology Hospital, Nanjing Medical University, Nanjing 210004, China
| | - Yi Huang
- Department of Pharmacology and Chemical Biology, Magee Women's Research Institute, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - Hansheng Zhang
- School of Public Health, University of Maryland, College Park, MD 20742, USA
| | - Hongyan Yuan
- Department of Oncology and Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Yongmei Yin
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University. Nanjing 210004, China.
| |
Collapse
|
32
|
Zhrebker L, Cherni I, Gross LM, Hinshelwood MM, Reese M, Aldrich J, Guileyardo JM, Roberts WC, Craig D, Von Hoff DD, Mennel RG, Carpten JD. Case report: whole exome sequencing of primary cardiac angiosarcoma highlights potential for targeted therapies. BMC Cancer 2017; 17:17. [PMID: 28056866 PMCID: PMC5217318 DOI: 10.1186/s12885-016-3000-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 12/14/2016] [Indexed: 02/03/2023] Open
Abstract
Background Primary cardiac angiosarcomas are rare, but they are the most aggressive type of primary cardiac neoplasms. When patients do present, it is with advanced pulmonary and/or cardiac symptoms. Therefore, many times the correct diagnosis is not made at the time of initial presentation. These patients have metastatic disease and the vast majority of these patients die within a few months after diagnosis. Currently the treatment choices are limited and there are no targeted therapies available. Case presentation A 56-year-old male presented with shortness of breath, night sweats, and productive cough for a month. Workup revealed pericardial effusion and multiple bilateral pulmonary nodules suspicious for metastatic disease. Transthoracic echocardiogram showed a large pericardial effusion and a large mass in the base of the right atrium. Results of biopsy of bilateral lung nodules established a diagnosis of primary cardiac angiosarcoma. Aggressive pulmonary disease caused rapid deterioration; the patient went on hospice and subsequently died. Whole exome sequencing of the patient’s postmortem tumor revealed a novel KDR (G681R) mutation, and focal high-level amplification at chromosome 1q encompassing MDM4, a negative regulator of TP53. Conclusion Mutations in KDR have been reported previously in angiosarcomas. Previous studies also demonstrated that KDR mutants with constitutive KDR activation could be inhibited with specific KDR inhibitors in vitro. Thus, patients harboring activating KDR mutations could be candidates for treatment with KDR-specific inhibitors. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-3000-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Leah Zhrebker
- Baylor Charles A. Sammons Cancer Center at Dallas, Baylor University Medical Center at Dallas, 3410 Worth Street, Dallas, TX, 75246, USA. .,Department of Internal Medicine, Baylor University Medical Center at Dallas, 3500 Gaston Ave, Dallas, TX, 75246, USA.
| | - Irene Cherni
- Integrative Cancer Genomics, Translational Genomics Research Institute, 445N 5th Street, Phoenix, AZ, 85004, USA
| | - Lara M Gross
- Department of Internal Medicine, Baylor University Medical Center at Dallas, 3500 Gaston Ave, Dallas, TX, 75246, USA
| | - Margaret M Hinshelwood
- Baylor Charles A. Sammons Cancer Center at Dallas, Baylor University Medical Center at Dallas, 3410 Worth Street, Dallas, TX, 75246, USA
| | - Merrick Reese
- Baylor Charles A. Sammons Cancer Center at Dallas, Baylor University Medical Center at Dallas, 3410 Worth Street, Dallas, TX, 75246, USA.,Texas Oncology/US Oncology, 3410 Worth Street, Dallas, TX, 75246, USA
| | - Jessica Aldrich
- Integrative Cancer Genomics, Translational Genomics Research Institute, 445N 5th Street, Phoenix, AZ, 85004, USA
| | - Joseph M Guileyardo
- Anatomic Pathology and Clinical Pathology, Baylor University Medical Center at Dallas, 3600 Gaston Ave, Dallas, TX, 75246, USA
| | - William C Roberts
- Department of Internal Medicine, Baylor University Medical Center at Dallas, 3500 Gaston Ave, Dallas, TX, 75246, USA.,Anatomic Pathology and Clinical Pathology, Baylor University Medical Center at Dallas, 3600 Gaston Ave, Dallas, TX, 75246, USA
| | - David Craig
- Integrative Cancer Genomics, Translational Genomics Research Institute, 445N 5th Street, Phoenix, AZ, 85004, USA
| | - Daniel D Von Hoff
- Clinical Translational Research Division Translational Genomics Research Institute, 445N 5th Street, Phoenix, AZ, 85004, USA
| | - Robert G Mennel
- Baylor Charles A. Sammons Cancer Center at Dallas, Baylor University Medical Center at Dallas, 3410 Worth Street, Dallas, TX, 75246, USA.,Texas Oncology/US Oncology, 3410 Worth Street, Dallas, TX, 75246, USA.,College of Medicine, Texas A&M Health Sciences Center, 3410 Worth Street, Dallas, TX, 75246, USA
| | - John D Carpten
- Integrative Cancer Genomics, Translational Genomics Research Institute, 445N 5th Street, Phoenix, AZ, 85004, USA
| |
Collapse
|
33
|
The cancer/testis antigen MAGEC2 promotes amoeboid invasion of tumor cells by enhancing STAT3 signaling. Oncogene 2016; 36:1476-1486. [PMID: 27775077 DOI: 10.1038/onc.2016.314] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 07/18/2016] [Accepted: 07/22/2016] [Indexed: 12/11/2022]
Abstract
The biological function of MAGEC2, a cancer/testis antigen highly expressed in various cancers, remains largely unknown. Here we demonstrate that expression of MAGEC2 induces rounded morphology and amoeboid-like movement of tumor cells in vitro and promotes tumor metastasis in vivo. The pro-metastasis effect of MAGEC2 was mediated by signal transducer and activator of transcription 3 (STAT3) activation. Mechanistically, MAGEC2 interacts with STAT3 and inhibits the polyubiquitination and proteasomal degradation of STAT3 in the nucleus of tumor cells, resulting in accumulation of phosphorylated STAT3 and enhanced transcriptional activity. Notably, expression levels of MAGEC2 and phosphorylated STAT3 are positively correlated and both are associated with incidence of metastasis in human hepatocellular carcinoma. This study not only reveals a previously unappreciated role of MAGEC2 in promoting tumor metastasis, but also identifies a new molecular mechanism by which MAGEC2 sustains hyperactivation of STAT3 in the nucleus of tumor cells. Thus, MAGEC2 may represent a new antitumor metastasis target for treatment of cancer.
Collapse
|
34
|
Biochemical and proteomic characterization of retrovirus Gag based microparticles carrying melanoma antigens. Sci Rep 2016; 6:29425. [PMID: 27403717 PMCID: PMC4941533 DOI: 10.1038/srep29425] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 06/17/2016] [Indexed: 12/22/2022] Open
Abstract
Extracellular vesicles are membraneous particles released by a variety of cells into the extracellular microenvironment. Retroviruses utilize the cellular vesiculation pathway for virus budding/assembly and the retrovirus Gag protein induces the spontaneous formation of microvesicles or virus-like particles (VLPs) when expressed in the mammalian cells. In this study, five different melanoma antigens, MAGEA4, MAGEA10, MART1, TRP1 and MCAM, were incorporated into the VLPs and their localization within the particles was determined. Our data show that the MAGEA4 and MAGEA10 proteins as well as MCAM are expressed on the surface of VLPs. The compartmentalization of exogenously expressed cancer antigens within the VLPs did not depend on the localization of the protein within the cell. Comparison of the protein content of VLPs by LC-MS/MS-based label-free quantitative proteomics showed that VLPs carrying different cancer antigens are very similar to each other, but differ to some extent from VLPs without recombinant antigen. We suggest that retrovirus Gag based virus-like particles carrying recombinant antigens have a potential to be used in cancer immunotherapy.
Collapse
|
35
|
Hou S, Xian L, Shi P, Li C, Lin Z, Gao X. The Magea gene cluster regulates male germ cell apoptosis without affecting the fertility in mice. Sci Rep 2016; 6:26735. [PMID: 27226137 PMCID: PMC4880894 DOI: 10.1038/srep26735] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 05/06/2016] [Indexed: 11/21/2022] Open
Abstract
While apoptosis is essential for male germ cell development, improper activation of apoptosis in the testis can affect spermatogenesis and cause reproduction defects. Members of the MAGE-A (melanoma antigen family A) gene family are frequently clustered in mammalian genomes and are exclusively expressed in the testes of normal animals but abnormally activated in a wide variety of cancers. We investigated the potential roles of these genes in spermatogenesis by generating a mouse model with a 210-kb genomic deletion encompassing six members of the Magea gene cluster (Magea1, Magea2, Magea3, Magea5, Magea6 and Magea8). Male mice carrying the deletion displayed smaller testes from 2 months old with a marked increase in apoptotic germ cells in the first wave of spermatogenesis. Furthermore, we found that Magea genes prevented stress-induced spermatogenic apoptosis after N-ethyl-N-nitrosourea (ENU) treatment during the adult stage. Mechanistically, deletion of the Magea gene cluster resulted in a dramatic increase in apoptotic germ cells, predominantly spermatocytes, with activation of p53 and induction of Bax in the testes. These observations demonstrate that the Magea genes are crucial in maintaining normal testicular size and protecting germ cells from excessive apoptosis under genotoxic stress.
Collapse
Affiliation(s)
- Siyuan Hou
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, China
| | - Li Xian
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, China
| | - Peiliang Shi
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, China
| | - Chaojun Li
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, China
| | - Zhaoyu Lin
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, China
| | - Xiang Gao
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, China
| |
Collapse
|
36
|
Newman JA, Cooper CDO, Roos AK, Aitkenhead H, Oppermann UCT, Cho HJ, Osman R, Gileadi O. Structures of Two Melanoma-Associated Antigens Suggest Allosteric Regulation of Effector Binding. PLoS One 2016; 11:e0148762. [PMID: 26910052 PMCID: PMC4766014 DOI: 10.1371/journal.pone.0148762] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 12/14/2015] [Indexed: 01/08/2023] Open
Abstract
The MAGE (melanoma associated antigen) protein family are tumour-associated proteins normally present only in reproductive tissues such as germ cells of the testis. The human genome encodes over 60 MAGE genes of which one class (containing MAGE-A3 and MAGE-A4) are exclusively expressed in tumours, making them an attractive target for the development of targeted and immunotherapeutic cancer treatments. Some MAGE proteins are thought to play an active role in driving cancer, modulating the activity of E3 ubiquitin ligases on targets related to apoptosis. Here we determined the crystal structures of MAGE-A3 and MAGE-A4. Both proteins crystallized with a terminal peptide bound in a deep cleft between two tandem-arranged winged helix domains. MAGE-A3 (but not MAGE-A4), is predominantly dimeric in solution. Comparison of MAGE-A3 and MAGE-A3 with a structure of an effector-bound MAGE-G1 suggests that a major conformational rearrangement is required for binding, and that this conformational plasticity may be targeted by allosteric binders.
Collapse
Affiliation(s)
- Joseph A. Newman
- Structural Genomics Consortium, University of Oxford, ORCRB, Roosevelt Drive, Oxford, OX3 7DQ, United Kingdom
| | - Christopher D. O. Cooper
- Structural Genomics Consortium, University of Oxford, ORCRB, Roosevelt Drive, Oxford, OX3 7DQ, United Kingdom
| | - Anette K. Roos
- Structural Genomics Consortium, University of Oxford, ORCRB, Roosevelt Drive, Oxford, OX3 7DQ, United Kingdom
| | - Hazel Aitkenhead
- Structural Genomics Consortium, University of Oxford, ORCRB, Roosevelt Drive, Oxford, OX3 7DQ, United Kingdom
| | - Udo C. T. Oppermann
- NDORMS, University of Oxford, Botnar Research Centre, Oxford, OX3 7LD, United Kingdom
| | - Hearn J. Cho
- Tisch Cancer Institute, Mt Sinai School of Medicine, Icahn 15-20B 1425 Madison Avenue, New York, NY, 10029, United States of America
| | - Roman Osman
- Department of Structural and Chemical Biology, Box 1677, Mount Sinai School of Medicine, New York, NY, 10029, United States of America
| | - Opher Gileadi
- Structural Genomics Consortium, University of Oxford, ORCRB, Roosevelt Drive, Oxford, OX3 7DQ, United Kingdom
- * E-mail:
| |
Collapse
|
37
|
Weon JL, Potts PR. The MAGE protein family and cancer. Curr Opin Cell Biol 2015; 37:1-8. [PMID: 26342994 DOI: 10.1016/j.ceb.2015.08.002] [Citation(s) in RCA: 170] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Accepted: 08/17/2015] [Indexed: 12/21/2022]
Abstract
The Melanoma Antigen Gene (MAGE) protein family is a large, highly conserved group of proteins that share a common MAGE homology domain. Intriguingly, many MAGE proteins are restricted in expression to reproductive tissues, but are aberrantly expressed in a wide variety of cancer types. Originally discovered as antigens on tumor cells and developed as cancer immunotherapy targets, recent literature suggests a more prominent role for MAGEs in driving tumorigenesis. This review will highlight recent developments into the function of MAGEs as oncogenes, their mechanisms of action in regulation of ubiquitin ligases, and outstanding questions in the field.
Collapse
Affiliation(s)
- Jenny L Weon
- Departments of Physiology, Pharmacology, and Biochemistry, UT Southwestern Medical Center, Dallas, TX 75390, United States
| | - Patrick Ryan Potts
- Departments of Physiology, Pharmacology, and Biochemistry, UT Southwestern Medical Center, Dallas, TX 75390, United States.
| |
Collapse
|