1
|
Lehto P, Skarp S, Saukko T, Säkkinen H, Syrjälä H, Kerkelä R, Saarimäki S, Bläuer S, Porvari K, Pakanen L, Karhu J, Ala-Kokko T. Postmortem analyses of myocardial microRNA expression in sepsis. Sci Rep 2024; 14:29476. [PMID: 39604475 PMCID: PMC11603066 DOI: 10.1038/s41598-024-81114-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 11/25/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Sepsis can lead to myocardial depression, playing a significant role in sepsis pathophysiology, clinical care, and outcome. To gain more insight into the pathophysiology of the myocardial response in sepsis, we investigated the expression of microRNA in myocardial autopsy specimens in critically ill deceased with sepsis and non-septic controls. MATERIALS AND METHODS In this retrospective observational study, we obtained myocardial tissue samples collected during autopsy from adult patients deceased with sepsis (n = 15) for routine histological examination. We obtained control myocardial tissue specimens (n = 15) from medicolegal autopsies of cadavers whose cause of death was injury or who were found dead at home and the cause of death was coronary artery disease with sudden cardiac arrest. RNA was isolated from formalin-fixed paraffin- embedded (FFPE) cardiac samples using the RecoverAll Total Nucleic Acid Isolation Kit for FFPE (Invitrogen). Differentially expressed miRNAs were identified using edgeR v3.32. MicroRNA was considered up- or down-regulated if the false discovery rate was < 0.05 and logarithmic fold change (log2FC) ≥ 1 for up-regulated or log2FC ≤ -1 for down-regulated miRNAs. The mean difference and 95% confidence interval (CI) were calculated for normalized read counts. Predicted miRNA targets were retrieved using Ingenuity Pathway Analysis (IPA) software, and pathway enrichment and classification were performed using PantherDB. For miRNA - mRNA interaction analysis, differentially expressed genes were analyzed by 3`mRNA sequencing. RESULTS Differential expression analysis identified a total of 32 miRNAs in the myocardial specimens. Eight miRNAs had a significant change in the mean difference based on the 95% CI, with the largest increase in mean counts in septic samples with hsa-miR-12136 and the highest fold change with hsa-miR-146b-5p. The threshold for down-regulated miRNAs in sepsis compared to controls was obtained with hsa-miR-144-5p and hsa-miR-451a, with the latter having the largest decrease in mean counts and fold decrease. The miRNA - mRNA interaction analysis identified eight miRNAs with target genes also differentially expressed in septic hearts. The highest number of potential targets were identified for hsa-miR-363-3p. CONCLUSIONS Several regulatory miRNAs were up-or down-regulated in the myocardial tissue of patients deceased with sepsis compared to non-septic subjects. The predicted target genes of miRNAs and miRNA-mRNA interaction analysis are associated with biological functions related to cardiovascular functions, cell viability, cell adhesion, and regulation of inflammatory and immune response.
Collapse
Affiliation(s)
- Pasi Lehto
- Research Group of Intensive Care Medicine, Intensive Care Centre, Oulu University Hospital, University of Oulu and Medical Research Center (MRC), PO BOX 29, 90029, Oulu, Finland.
| | - Sini Skarp
- Research Unit of Biomedicine and Internal Medicine, University of Oulu, Oulu, Finland
- Medical Research Centre Oulu, Biocenter Oulu, Oulu University Hospital and University of Oulu, University of Oulu, Oulu, Finland
| | - Taru Saukko
- Research Group of Intensive Care Medicine, Intensive Care Centre, Oulu University Hospital, University of Oulu and Medical Research Center (MRC), PO BOX 29, 90029, Oulu, Finland
| | - Hanna Säkkinen
- Research Group of Intensive Care Medicine, Intensive Care Centre, Oulu University Hospital, University of Oulu and Medical Research Center (MRC), PO BOX 29, 90029, Oulu, Finland
| | - Hannu Syrjälä
- Research Group of Intensive Care Medicine, Intensive Care Centre, Oulu University Hospital, University of Oulu and Medical Research Center (MRC), PO BOX 29, 90029, Oulu, Finland
| | - Risto Kerkelä
- Research Unit of Biomedicine and Internal Medicine, University of Oulu, Oulu, Finland
- Medical Research Centre Oulu, Biocenter Oulu, Oulu University Hospital and University of Oulu, University of Oulu, Oulu, Finland
| | - Samu Saarimäki
- Research Unit of Biomedicine and Internal Medicine, University of Oulu, Oulu, Finland
- Medical Research Centre Oulu, Biocenter Oulu, Oulu University Hospital and University of Oulu, University of Oulu, Oulu, Finland
| | - Sonja Bläuer
- Research Group of Intensive Care Medicine, Intensive Care Centre, Oulu University Hospital, University of Oulu and Medical Research Center (MRC), PO BOX 29, 90029, Oulu, Finland
- Research Unit of Biomedicine and Internal Medicine, University of Oulu, Oulu, Finland
- Medical Research Centre Oulu, Biocenter Oulu, Oulu University Hospital and University of Oulu, University of Oulu, Oulu, Finland
| | - Katja Porvari
- Department of Forensic Medicine, Research Unit of Internal Medicine, Medical Research Center Oulu, University of Oulu, PO Box 5000, 90014, Oulu, Finland
| | - Lasse Pakanen
- Department of Forensic Medicine, Research Unit of Internal Medicine, Medical Research Center Oulu, University of Oulu, PO Box 5000, 90014, Oulu, Finland
- Forensic Medicine Unit, Finnish Institute for Health and Welfare, Oulu, Finland
| | - Jaana Karhu
- Research Group of Intensive Care Medicine, Intensive Care Centre, Oulu University Hospital, University of Oulu and Medical Research Center (MRC), PO BOX 29, 90029, Oulu, Finland
| | - Tero Ala-Kokko
- Research Group of Intensive Care Medicine, Intensive Care Centre, Oulu University Hospital, University of Oulu and Medical Research Center (MRC), PO BOX 29, 90029, Oulu, Finland
| |
Collapse
|
2
|
Lee EJ, Jeong M, Lee H, Je MA, Park K, Lee DG, Xuan X, Kim S, Park S, Kim J. MiR-122, miR-133a, and miR-206 as potential biomarkers for post-mortem interval estimation. Genes Genomics 2024; 46:1175-1182. [PMID: 39207675 DOI: 10.1007/s13258-024-01559-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUD Accurate estimation of post-mortem interval (PMI) is crucial in forensic investigations. MicroRNAs (miRNAs or miRs) are small non-coding RNAs that remain relatively stable within the cell nucleus despite post-mortem changes. OBJECTIVE We assessed three target genes (miR-122, miR-133a, and miR-206) for PMI estimation using 72 healthy adult male BALB/c mice exposed to two different temperatures (4 and 21℃) at nine different time points over 10 days. METHODS Initially, the stability of the two reference genes (RNU6B and 5 srRNA) was evaluated using gene stability analysis tools (Delta Ct, Best Keeper, and Genorm) to select the optimal reference gene. RNU6B was found to be the most stable endogenous control. Subsequently, the expression patterns of miR-122, miR-133a, and miR-206 were analyzed within a 10-day PMI period using the heart, skeletal muscle, liver, and brain tissues. RESULTS At 4℃, miR-122 levels significantly decreased on days 8 and 10 in all tissues, with only the liver showing significant changes at 21℃. MiR-133a decreased over time in the heart, muscles, and brain, showing a dramatic decrease on days 8 and 10 in the heart and muscles at both temperatures. Although miR-206 levels decreased over time in muscles and liver at 4 ℃, these increased in the brain at 21 ℃, with no expression changes in other organs. CONCLUSION In summary, miR-122, miR-133a, and miR-206 are potential PMI markers in heart and skeletal muscle tissues.
Collapse
Affiliation(s)
- Eun Ju Lee
- Department of Clinical Laboratory Science, College of Health Sciences, Catholic University of Pusan, Busan, 46252, Republic of Korea
- Department of Research and Development, Korea Mycobacterium Resource Center (KMRC), The Korean Institute of Tuberculosis, Osong, 28158, Republic of Korea
| | - Mingyoung Jeong
- Department of Forensic Science, Graduate School, Catholic University of Pusan, Busan, 46252, Republic of Korea
| | - Haneul Lee
- Department of Forensic Science, Graduate School, Catholic University of Pusan, Busan, 46252, Republic of Korea
- Next-Generation Industrial Field-Based Specialist Program for Molecular Diagnostics, Brain Busan 21 Plus Project, Graduate School, Catholic University of Pusan, Busan, 46252, Republic of Korea
| | - Min-A Je
- Department of Clinical Laboratory Science, College of Health Sciences, Catholic University of Pusan, Busan, 46252, Republic of Korea
| | - Kwangmin Park
- Department of Clinical Laboratory Science, College of Health Sciences, Catholic University of Pusan, Busan, 46252, Republic of Korea
- Next-Generation Industrial Field-Based Specialist Program for Molecular Diagnostics, Brain Busan 21 Plus Project, Graduate School, Catholic University of Pusan, Busan, 46252, Republic of Korea
| | - Dong Geon Lee
- Department of Clinical Laboratory Science, College of Health Sciences, Catholic University of Pusan, Busan, 46252, Republic of Korea
- Next-Generation Industrial Field-Based Specialist Program for Molecular Diagnostics, Brain Busan 21 Plus Project, Graduate School, Catholic University of Pusan, Busan, 46252, Republic of Korea
| | - Xianglan Xuan
- Department of Clinical Laboratory Science, College of Health Sciences, Catholic University of Pusan, Busan, 46252, Republic of Korea
- Next-Generation Industrial Field-Based Specialist Program for Molecular Diagnostics, Brain Busan 21 Plus Project, Graduate School, Catholic University of Pusan, Busan, 46252, Republic of Korea
| | - Sunghyun Kim
- Department of Clinical Laboratory Science, College of Health Sciences, Catholic University of Pusan, Busan, 46252, Republic of Korea
- Department of Forensic Science, Graduate School, Catholic University of Pusan, Busan, 46252, Republic of Korea
- Next-Generation Industrial Field-Based Specialist Program for Molecular Diagnostics, Brain Busan 21 Plus Project, Graduate School, Catholic University of Pusan, Busan, 46252, Republic of Korea
| | - Sunyoung Park
- School of Mechanical Engineering, Yonsei University, Seoul, 03772, Republic of Korea.
| | - Jungho Kim
- Department of Clinical Laboratory Science, College of Health Sciences, Catholic University of Pusan, Busan, 46252, Republic of Korea.
- Department of Forensic Science, Graduate School, Catholic University of Pusan, Busan, 46252, Republic of Korea.
- Next-Generation Industrial Field-Based Specialist Program for Molecular Diagnostics, Brain Busan 21 Plus Project, Graduate School, Catholic University of Pusan, Busan, 46252, Republic of Korea.
| |
Collapse
|
3
|
Gerra MC, Dallabona C, Cecchi R. Epigenetic analyses in forensic medicine: future and challenges. Int J Legal Med 2024; 138:701-719. [PMID: 38242965 PMCID: PMC11003920 DOI: 10.1007/s00414-024-03165-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 01/09/2024] [Indexed: 01/21/2024]
Abstract
The possibility of using epigenetics in forensic investigation has gradually risen over the last few years. Epigenetic changes with their dynamic nature can either be inherited or accumulated throughout a lifetime and be reversible, prompting investigation of their use across various fields. In forensic sciences, multiple applications have been proposed, such as the discrimination of monozygotic twins, identifying the source of a biological trace left at a crime scene, age prediction, determination of body fluids and tissues, human behavior association, wound healing progression, and determination of the post-mortem interval (PMI). Despite all these applications, not all the studies considered the impact of PMI and post-sampling effects on the epigenetic modifications and the tissue-specificity of the epigenetic marks.This review aims to highlight the substantial forensic significance that epigenetics could support in various forensic investigations. First, basic concepts in epigenetics, describing the main epigenetic modifications and their functions, in particular, DNA methylation, histone modifications, and non-coding RNA, with a particular focus on forensic applications, were covered. For each epigenetic marker, post-mortem stability and tissue-specificity, factors that should be carefully considered in the study of epigenetic biomarkers in the forensic context, have been discussed. The advantages and limitations of using post-mortem tissues have been also addressed, proposing directions for these innovative strategies to analyze forensic specimens.
Collapse
Affiliation(s)
- Maria Carla Gerra
- Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parco Area Delle Scienze 11a, Viale Delle Scienze 11a, 43124, Parma, PR, Italy
| | - Cristina Dallabona
- Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parco Area Delle Scienze 11a, Viale Delle Scienze 11a, 43124, Parma, PR, Italy.
| | - Rossana Cecchi
- Department of Medicine and Surgery, University of Parma, Via Antonio Gramsci 14, 43126, Parma, PR, Italy
| |
Collapse
|
4
|
Grignani P, Visonà SD, Fronda MV, Borrelli P, Monti MC, Bertoglio B, Conti A, Fattorini P, Previderè C. The role of single nucleotide polymorphisms related to iron homeostasis in mesothelioma susceptibility after asbestos exposure: a genetic study on autoptic samples. Front Public Health 2023; 11:1236558. [PMID: 37942251 PMCID: PMC10628177 DOI: 10.3389/fpubh.2023.1236558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 10/06/2023] [Indexed: 11/10/2023] Open
Abstract
Asbestos-related diseases still represent a major public health problem all over the world. Among them, malignant mesothelioma (MM) is a poor-prognosis cancer, arising from the serosal lining of the pleura, pericardium and peritoneum, triggered by asbestos exposure. Literature data suggest the key role of iron metabolism in the coating process leading to the formation of asbestos bodies, considered to be both protective and harmful. Two sample sets of individuals were taken into consideration, both residing in Broni or neighboring cities (Northwestern Italy) where an asbestos cement factory was active between 1932 and 1993. The present study aims to compare the frequency of six SNPs involved in iron trafficking, previously found to be related to protection/predisposition to MM after asbestos exposure, between 48 male subjects with documented asbestos exposure who died of MM and 48 male subjects who were exposed to asbestos but did not develop MM or other neoplastic respiratory diseases (Non-Mesothelioma Asbestos Exposed - NMAE). The same analysis was performed on 76 healthy male controls. The allelic and genotypic frequencies of a sub-group of 107 healthy Italian individuals contained in the 1000 genomes database were considered for comparison. PCR-multiplex amplification followed by SNaPshot mini-sequencing reaction was used. The findings presented in this study show that the allelic and genotypic frequencies for six SNP markers involved in iron metabolism/homeostasis and the modulation of tumor microenvironment are not significantly different between the two sample sets of MM and NMAE. Therefore, the SNPs here considered do not seem to be useful markers for individual susceptibility to mesothelioma. This finding is not in agreement with previous literature.
Collapse
Affiliation(s)
- Pierangela Grignani
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| | - Silvia Damiana Visonà
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| | - Maria Vittoria Fronda
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| | - Paola Borrelli
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
- Laboratory of Biostatistics, Department of Medical, Oral and Biotechnological Sciences, G. d’Annunzio, University of Chieti, Chieti, Italy
| | - Maria Cristina Monti
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| | - Barbara Bertoglio
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| | - Adelaide Conti
- Department of Medical and Surgical Specialities, Radiological Sciences and Public Health, Forensic Medicine Unit, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Paolo Fattorini
- Department of Medicine, Surgery and Health, University of Trieste, Ospedale di Cattinara, Trieste, Italy
| | - Carlo Previderè
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| |
Collapse
|
5
|
Bernini Di Michele A, Onofri V, Pesaresi M, Turchi C. The Role of miRNA Expression Profile in Sudden Cardiac Death Cases. Genes (Basel) 2023; 14:1954. [PMID: 37895303 PMCID: PMC10606010 DOI: 10.3390/genes14101954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Sudden cardiac death (SCD) is one of the leading causes of death in the world and for this reason it has attracted the attention of numerous researchers in the field of legal medicine. It is not easy to determine the cause in a SCD case and the available methods used for diagnosis cannot always give an exhaustive answer. In addition, the molecular analysis of genes does not lead to a clear conclusion, but it could be interesting to focus attention on the expression level of miRNAs, a class of non-coding RNA of about 22 nucleotides. The role of miRNAs is to regulate the gene expression through complementary binding to 3'-untraslated regions of miRNAs, leading to the inhibition of translation or to mRNA degradation. In recent years, several studies were performed with the aim of exploring the use of these molecules as biomarkers for SCD cases, and to also distinguish the causes that lead to cardiac death. In this review, we summarize experiments, evidence, and results of different studies on the implication of miRNAs in SCD cases. We discuss the different biological starting materials with their respective advantages and disadvantages, studying miRNA expression on tissue (fresh-frozen tissue and FFPE tissue), circulating cell-free miRNAs in blood of patients affected by cardiac disease at high risk of SCD, and exosomal miRNAs analyzed from serum of people who died from SCD.
Collapse
Affiliation(s)
- Alessia Bernini Di Michele
- Section of Legal Medicine, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, Via Tronto, 60126 Ancona, Italy; (A.B.D.M.); (M.P.)
| | - Valerio Onofri
- Legal Medicine Unit, AOU Azienda Ospedaliero Universitaria delle Marche, 60126 Ancona, Italy;
| | - Mauro Pesaresi
- Section of Legal Medicine, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, Via Tronto, 60126 Ancona, Italy; (A.B.D.M.); (M.P.)
| | - Chiara Turchi
- Section of Legal Medicine, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, Via Tronto, 60126 Ancona, Italy; (A.B.D.M.); (M.P.)
| |
Collapse
|
6
|
Guardado-Estrada M, Cárdenas-Monroy CA, Martínez-Rivera V, Cortez F, Pedraza-Lara C, Millan-Catalan O, Pérez-Plasencia C. A miRNome analysis at the early postmortem interval. PeerJ 2023; 11:e15409. [PMID: 37304870 PMCID: PMC10257396 DOI: 10.7717/peerj.15409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/23/2023] [Indexed: 06/13/2023] Open
Abstract
The postmortem interval (PMI) is the time elapsing since the death of an individual until the body is examined. Different molecules have been analyzed to better estimate the PMI with variable results. The miRNAs draw attention in the forensic field to estimate the PMI as they can better support degradation. In the present work, we analyzed the miRNome at early PMI in rats' skeletal muscle using the Affymetrix GeneChip™ miRNA 4.0 microarrays. We found 156 dysregulated miRNAs in rats' skeletal muscle at 24 h of PMI, out of which 84 were downregulated, and 72 upregulated. The miRNA most significantly downregulated was miR-139-5p (FC = -160, p = 9.97 × 10-11), while the most upregulated was rno-miR-92b-5p (FC = 241.18, p = 2.39 × 10-6). Regarding the targets of these dysregulated miRNAs, the rno-miR-125b-5p and rno-miR-138-5p were the miRNAs with more mRNA targets. The mRNA targets that we found in the present study participate in several biological processes such as interleukin secretion regulation, translation regulation, cell growth, or low oxygen response. In addition, we found a downregulation of SIRT1 mRNA and an upregulation of TGFBR2 mRNA at 24 h of PMI. These results suggest there is an active participation of miRNAs at early PMI which could be further explored to identify potential biomarkers for PMI estimation.
Collapse
Affiliation(s)
- Mariano Guardado-Estrada
- Laboratorio de Genética, Ciencia Forense, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Christian A. Cárdenas-Monroy
- Laboratorio de Genética, Ciencia Forense, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Vanessa Martínez-Rivera
- Laboratorio de Genética, Ciencia Forense, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Fernanda Cortez
- Computational Genomics Division, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
| | - Carlos Pedraza-Lara
- Laboratorio de Entomología, Ciencia Forense, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Oliver Millan-Catalan
- Unidad de Investigación Biomédica en Cáncer, Laboratorio de Genómica, Instituto Nacional de Cancerología, Mexico City, Mexico
| | - Carlos Pérez-Plasencia
- Unidad de Investigación Biomédica en Cáncer, Laboratorio de Genómica, Instituto Nacional de Cancerología, Mexico City, Mexico
- Unidad de Investigación Biomédica en Cáncer, Laboratorio de Genómica, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
7
|
miRNA Dysregulation in Cardiovascular Diseases: Current Opinion and Future Perspectives. Int J Mol Sci 2023; 24:ijms24065192. [PMID: 36982265 PMCID: PMC10048938 DOI: 10.3390/ijms24065192] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/01/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023] Open
Abstract
MicroRNAs (miRNAs), small noncoding RNAs, are post-transcriptional gene regulators that can promote the degradation or decay of coding mRNAs, regulating protein synthesis. Many experimental studies have contributed to clarifying the functions of several miRNAs involved in regulatory processes at the cardiac level, playing a pivotal role in cardiovascular disease (CVD). This review aims to provide an up-to-date overview, with a focus on the past 5 years, of experimental studies on human samples to present a clear background of the latest advances to summarize the current knowledge and future perspectives. SCOPUS and Web of Science were searched using the following keywords: (miRNA or microRNA) AND (cardiovascular diseases); AND (myocardial infarction); AND (heart damage); AND (heart failure), including studies published from 1 January 2018 to 31 December 2022. After an accurate evaluation, 59 articles were included in the present systematic review. While it is clear that miRNAs are powerful gene regulators, all the underlying mechanisms remain unclear. The need for up-to-date data always justifies the enormous amount of scientific work to increasingly highlight their pathways. Given the importance of CVDs, miRNAs could be important both as diagnostic and therapeutic (theranostic) tools. In this context, the discovery of “TheranoMIRNAs” could be decisive in the near future. The definition of well-setout studies is necessary to provide further evidence in this challenging field.
Collapse
|
8
|
Umehara T, Mori R, Murase T, Tanaka T, Kasai K, Ikematsu K, Sato H. rno-miR-203a-3p and Mex3B contribute to cell survival of iliopsoas muscle via the Socs3-Casp3 axis under severe hypothermia in rats. Leg Med (Tokyo) 2022; 59:102150. [PMID: 36198254 DOI: 10.1016/j.legalmed.2022.102150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/06/2022] [Accepted: 09/16/2022] [Indexed: 02/05/2023]
Abstract
Forensic diagnosis of fatal hypothermia is considered difficult because no specific findings, such as molecular markers, have been identified. Therefore, determining the molecular mechanism in hypothermia and identifying novel molecular markers to assist in diagnosing fatal hypothermia are important. This study aimed to investigate microRNA (miRNA) and mRNA expression in iliopsoas muscle, which plays a role in homeostasis in mammals, to resolve the molecular mechanism in hypothermia. We generated rat models of mild, moderate, and severe hypothermia, then performed body temperature-dependent miRNA and mRNA expression analysis of the iliopsoas muscle using microarray and next-generation sequencing. Analysis showed that rno-miR-203a-3p expression was lower with decreasing body temperature, while Socs3 expression was significantly increased only by severe hypothermia. Luciferase reporter assays suggested that Socs3 expression is regulated by rno-miR-203a-3p. Socs3 and Mex3B small interfering RNA-mediated knockdown showed that suppressing Mex3B could induce the activation of Socs3, followed by a change in caspase 3/7 activity and adenosine triphosphate levels in iliopsoas muscle cells. These findings indicate that rno-miR-203a-3p and Mex3B are deactivated by a decrease in body temperature, whereby it contributes to suppressing apoptosis by accelerating Socs3. Accordingly, the rno-miR-203a-3p-Socs3-Casp3 or Mex3B-Socs3-Casp3 axis may be the part of the biological defense response to maintain homeostasis under extreme hypothermia.
Collapse
Affiliation(s)
- Takahiro Umehara
- Department of Forensic Medicine, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, Fukuoka 807-8555, Japan.
| | - Ryoichi Mori
- Department of Pathology, Nagasaki University, School of Medicine and Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki, Nagasaki 852-8523, Japan
| | - Takehiko Murase
- Division of Forensic Pathology and Science, Unit of Social Medicine, Course of Medical and Dental Sciences, Graduate School of Biomedical Sciences, Nagasaki University School of Medicine, 1-12-4 Sakamoto, Nagasaki, Nagasaki 852-8523, Japan
| | - Toshiko Tanaka
- Department of Forensic Medicine, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, Fukuoka 807-8555, Japan
| | - Kentaro Kasai
- Department of Forensic Medicine, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, Fukuoka 807-8555, Japan
| | - Kazuya Ikematsu
- Division of Forensic Pathology and Science, Unit of Social Medicine, Course of Medical and Dental Sciences, Graduate School of Biomedical Sciences, Nagasaki University School of Medicine, 1-12-4 Sakamoto, Nagasaki, Nagasaki 852-8523, Japan
| | - Hiroaki Sato
- Department of Forensic Medicine, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, Fukuoka 807-8555, Japan
| |
Collapse
|
9
|
Kim SY, Jang S, Lee S, Park JT, Lee SJ, Kim HS. Characterization of Exosomes and Exosomal RNAs Isolated from Post-Mortem Body Fluids for Molecular Forensic Diagnosis. Diagnostics (Basel) 2022; 12:2153. [PMID: 36140554 PMCID: PMC9498102 DOI: 10.3390/diagnostics12092153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/01/2022] [Accepted: 09/03/2022] [Indexed: 11/25/2022] Open
Abstract
Exosomes have been mainly studied for their potential applications in biomarker detection and drug delivery for diagnosis and treatment. However, in the field of forensic research, the potential value of exosomes derived from post-mortem body fluids has not been investigated to date. Here, we isolated the exosomes and exosomal RNAs from post-mortem body fluids, including cardiac blood, pericardial fluid, and urine. We also compared commercial exosome isolation kits to determine the optimal method for post-mortem exosome isolation. Transmission electron microscopy (TEM), the Agilent bioanalyzer system, and western blotting were used to evaluate the efficiencies of alternative isolation methods and the characteristics of isolated exosomes. There were no significant differences between exosomes obtained from post-mortem and ante-mortem body fluids in the expression of exosome surface markers or morphology. The exosomes were well-preserved even under simulated post-mortem conditions. Among the isolation procedures tested, the membrane affinity column-based method was the most suitable for post-mortem exosomal RNA isolation. These results suggest that exosomes are well-preserved in post-mortem body fluids and could be utilized for forensic diagnosis.
Collapse
Affiliation(s)
- So-Yeon Kim
- Department of Forensic Medicine, Chonnam National University Medical School, Gwangju 61469, Korea
| | - Sinae Jang
- Department of Forensic Medicine, Chonnam National University Medical School, Gwangju 61469, Korea
- Brain Korea 21 Plus Program, Chonnam National University Medical School, Gwangju 61469, Korea
| | - Sookyoung Lee
- Division of Forensic Medical Examination, National Forensic Service, Wonju 26460, Korea
| | - Jong-Tae Park
- Department of Forensic Medicine, Chonnam National University Medical School, Gwangju 61469, Korea
| | - Su-Jin Lee
- Department of Forensic Medicine, Chonnam National University Medical School, Gwangju 61469, Korea
- Biomedical Research Institute, Chonnam National University Hospital, Gwangju 61469, Korea
| | - Hyung-Seok Kim
- Department of Forensic Medicine, Chonnam National University Medical School, Gwangju 61469, Korea
| |
Collapse
|
10
|
Li L, He X, Liu M, Yun L, Cong B. Diagnostic value of cardiac miR-126-5p, miR-134-5p, and miR-499a-5p in coronary artery disease-induced sudden cardiac death. Front Cardiovasc Med 2022; 9:944317. [PMID: 36093145 PMCID: PMC9457639 DOI: 10.3389/fcvm.2022.944317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 08/01/2022] [Indexed: 11/17/2022] Open
Abstract
Background The identification of coronary artery disease-induced sudden cardiac death (CAD-SCD) has always been a medical challenge. MicroRNAs (miRNAs) played vital roles in pathogenesis processes and served as potential biomarkers for cardiovascular and many other diseases. The aim of this study was to investigate the diagnostic value of the specific miRNAs for CAD-SCD. Methods A total of 30 autopsy-verified CAD-SCD victims were selected, including 18 individuals who experienced more than once asymptomatic myocardial ischemia (CAD-activated SCD) and 12 victims without prominent pathological features of insufficient blood supply (CAD-silent SCD). Meanwhile, 30 traumatic victims were enrolled as controls. Systematic postmortem examinations were performed in all study population. The expressions of cardiac miR-126-5p, miR-134-5p, and miR-499a-5p were analyzed by real-time quantitative polymerase chain reaction (RT-qPCR). Results RT-qPCR showed significant downregulations of miR-126-5p and miR-499a-5p in CAD-SCD victims, with no obvious difference in miR-134-5p. Receiver-operating characteristic analysis revealed the diagnostic performance of miR-126-5p (areas under the curve [AUC] = 0.76) and validated miR-499a-5p (AUC = 0.82) as a sensitive marker. Additionally, the decreased expression of the two specific cardio-miRNAs was detected for discriminating CAD-silent SCD and CAD-activated SCD. Compared with the limited diagnostic value of single miR-126-5p and miR-499a-5p, their combination could achieve better discriminative capacity (AUC = 0.82, sensitivity = 91.7%, specificity = 77.8%). Conclusion Cardiac miR-126-5p and miR-499a-5p presented good diagnostic abilities for CAD-SCD, and their combination could help evaluate CAD condition. These targeted miRNAs as novel biomarkers are expected to be useful to discriminate the detailed causes in real SCD cases.
Collapse
Affiliation(s)
- Linfeng Li
- Department of Forensic Pathology, West China School of Basic Medical Sciences and Forensic Science, Sichuan University, Chengdu, China
| | - Xiangwang He
- Department of Forensic Pathology, West China School of Basic Medical Sciences and Forensic Science, Sichuan University, Chengdu, China
| | - Min Liu
- Department of Forensic Pathology, West China School of Basic Medical Sciences and Forensic Science, Sichuan University, Chengdu, China
| | - Libing Yun
- Department of Forensic Pathology, West China School of Basic Medical Sciences and Forensic Science, Sichuan University, Chengdu, China
- *Correspondence: Libing Yun
| | - Bin Cong
- Department of Forensic Pathology, West China School of Basic Medical Sciences and Forensic Science, Sichuan University, Chengdu, China
- Department of Forensic Medicine, Hebei Medical University, Shijiazhuang, China
- Bin Cong
| |
Collapse
|
11
|
Guan X, Zhang Y, Gareev I, Beylerli O, Li X, Lu G, Lv L, Hai X. MiR-499a prevents astrocytes mediated inflammation in ischemic stroke by targeting PTEN. Noncoding RNA Res 2021; 6:146-152. [PMID: 34632168 PMCID: PMC8488463 DOI: 10.1016/j.ncrna.2021.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 01/29/2023] Open
Abstract
INTRODUCTION Ischemic stroke (IS) is a common and severe neurological disorder and is associated with high rates of mortality and morbidity. Inflammatory reaction in astrocytes is one of the important pathological factors of stroke. Improved understanding of the underlying molecular mechanisms should aid better treatment of the disease. This study aimed to test our hypothesis that a miR-499a played an important role in the inflammatory response in astrocytes induced by IS targeting phosphatase and tensin homologue deleted on chromosome 10 (PTEN). METHODS This study was comprised of two models: oxygen-glucose deprivation (OGD) and reoxygenation model. Quantitative real-time PCR (qRT-PCR) and Western blot were used to examine gene expression levels, and MTT assay analysis were used to examine cell states. The relationships between miR-499a and PTEN were confirmed by luciferase reporter assay. RESULTS MiR-499a was robustly downregulated with OGD induced injury in astrocytes. Forced transient expression of miR-499a in OGD astrocytes nearly completely reversed the inflammatory response. Knockdown of miR-499a by its specific inhibitor in healthy astrocytes induced the inflammatory response resembling those produced by OGD. On the other hand, PTEN was markedly upregulated in OGD astrocytes, which was reciprocal to the expression of miR-499a. PTEN was experimentally validated as a direct target gene for miR-499a. Overexpression of PTEN was able to induce an inflammatory response of astrocytes. Moreover, PTEN siRNA counteracted the inflammatory response induced by OGD. CONCLUSIONS Taken together, our findings indicate miR-499a as an important factor to prevent inflammatory response and suggest miR-499a as a new molecule for the treatment of IS. The present study also demonstrated the relationship between miR-499a and PTEN, with PTEN as a downstream signaling mediator of miR-499a in the inflammatory response of astrocytes induced by IS.
Collapse
Affiliation(s)
- Xiaoxiang Guan
- Department of Pharmacy, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Harbin, Heilongjiang, 150001, PR China
| | - Yiwei Zhang
- Harbin Medical University, 157 Baojian Street, Harbin, Heilongjiang, 150001, PR China
| | - Ilgiz Gareev
- Bashkir State Medical University, Ufa, 450008, Russia
| | - Ozal Beylerli
- Bashkir State Medical University, Ufa, 450008, Russia
| | - Xinyuan Li
- The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Harbin, Heilongjiang, 150001, PR China
| | - Guitian Lu
- The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Harbin, Heilongjiang, 150001, PR China
| | - Lin Lv
- The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Harbin, Heilongjiang, 150001, PR China
| | - Xin Hai
- Department of Pharmacy, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Harbin, Heilongjiang, 150001, PR China
| |
Collapse
|
12
|
Yan F, Chen Y, Ye X, Zhang F, Wang S, Zhang L, Luo X. miR-3113-5p, miR-223-3p, miR-133a-3p, and miR-499a-5p are sensitive biomarkers to diagnose sudden cardiac death. Diagn Pathol 2021; 16:67. [PMID: 34332589 PMCID: PMC8325858 DOI: 10.1186/s13000-021-01127-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 07/12/2021] [Indexed: 01/30/2023] Open
Abstract
Background Sudden cardiac death (SCD) remains a great health threat and diagnostic challenge, especially those cases without positive autopsy findings. Molecular biomarkers have been urgently needed for the diagnosis of SCD displaying negative autopsy results. Due to their nature of stability, microRNAs (miRNAs) have emerged as promising diagnostic biomarkers for cardiovascular diseases. Methods This study investigated whether specific cardio-miRNAs (miR-3113-5p, miR-223-3p, miR-499a-5p, and miR-133a-3p) could serve as potential biomarkers for the diagnosis of SCD. Thirty-four SCD cases were selected, 18 categorized as SCD with negative autopsy (SCD-negative autopsy) findings and 16 as SCD with positive autopsy (SCD-positive autopsy) findings such as coronary atherosclerosis and gross myocardial scar. Carbon monoxide (CO) intoxication (n = 14) and fatal injury death (n = 14) that displayed no pathological changes of myocardium were selected as control group, respectively. Histological analyses were performed to reveal the pathological changes and real-time quantitative polymerase chain reaction (RT-qPCR) was used to determine the expression of those miRNAs. Results It showed that heart samples from the SCD-negative autopsy group displayed no remarkable difference with regard to the expression of cleaved-caspase3, CD31, and CD68 and the extent of fibrotic tissue accumulation when compared with control samples. The four cardio-miRNAs were significantly up-regulated in the SCD samples as compared with control. When discriminating SCD from controls, receiver operating characteristic (ROC) curve analysis revealed that the areas under the curve (AUC) of these 4 miRNAs were from 0.7839 to 0.9043 with sensitivity of 64.71–97.06% and specificity of 70–100%. Moreover, when discriminating the specific causes of SCD, the four miRNA expressions increased in the heart from the SCD-negative autopsy group as relative to that from the SCD-positive autopsy group, and a combination of two miRNAs presented higher diagnostic value (AUC = 0.7407–0.8667). Conclusion miR-3113-5p, miR-223-3p, miR-499a-5p, and miR-133a-3p may serve as independent diagnostic biomarkers for SCD, and a combination of two of these miRNAs could further discriminate detailed causes of SCD.
Collapse
Affiliation(s)
- Fengping Yan
- Department of Forensic Medicine, School of Basic Medical Sciences, Gannan Medical University, 1 Yixueyuan Road, Zhanggong District, Ganzhou, Jiangxi, 341000, PR China. .,Key Laboratory of Prevention and treatment of cardiovascular and cerebrovascular diseases of Ministry of Education, Gannan Medical University, 1 Yixueyuan Road, Zhanggong District, Ganzhou, Jiangxi, 341000, People's Republic of China.
| | - Yuanyuan Chen
- Department of Forensic Medicine, School of Basic Medical Sciences, Gannan Medical University, 1 Yixueyuan Road, Zhanggong District, Ganzhou, Jiangxi, 341000, PR China.,Key Laboratory of Prevention and treatment of cardiovascular and cerebrovascular diseases of Ministry of Education, Gannan Medical University, 1 Yixueyuan Road, Zhanggong District, Ganzhou, Jiangxi, 341000, People's Republic of China
| | - Xing Ye
- Department of Forensic Medicine, School of Basic Medical Sciences, Gannan Medical University, 1 Yixueyuan Road, Zhanggong District, Ganzhou, Jiangxi, 341000, PR China.,Key Laboratory of Prevention and treatment of cardiovascular and cerebrovascular diseases of Ministry of Education, Gannan Medical University, 1 Yixueyuan Road, Zhanggong District, Ganzhou, Jiangxi, 341000, People's Republic of China
| | - Fu Zhang
- Criminal Technology Center of Guangdong Province Public Security Bureau, Guangzhou, Guangdong, 510050, PR China
| | - Shiquan Wang
- Department of Forensic Medicine, School of Basic Medical Sciences, Gannan Medical University, 1 Yixueyuan Road, Zhanggong District, Ganzhou, Jiangxi, 341000, PR China.,Key Laboratory of Prevention and treatment of cardiovascular and cerebrovascular diseases of Ministry of Education, Gannan Medical University, 1 Yixueyuan Road, Zhanggong District, Ganzhou, Jiangxi, 341000, People's Republic of China
| | - Le Zhang
- Forensic Science Center of Gannan Medical University, 1 Yixueyuan Road, Zhanggong District, Ganzhou, Jiangxi, 341000, People's Republic of China
| | - Xiaoting Luo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Gannan Medical University, 1 Yixueyuan Road, Zhanggong District, Ganzhou, Jiangxi, 341000, PR China.
| |
Collapse
|
13
|
Shidham VB. Cell-blocks and other ancillary studies (including molecular genetic tests and proteomics). Cytojournal 2021; 18:4. [PMID: 33880127 PMCID: PMC8053490 DOI: 10.25259/cytojournal_3_2021] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 01/18/2021] [Indexed: 01/28/2023] Open
Abstract
Many types of elective ancillary tests may be required to support the cytopathologic interpretations. Most of these tests can be performed on cell-blocks of different cytology specimens. The cell-block sections can be used for almost any special stains including various histochemistry stains and for special stains for different microorganisms including fungi, Pneumocystis jirovecii (carinii), and various organisms including acid-fast organisms similar to the surgical biopsy specimens. Similarly, in addition to immunochemistry, different molecular tests can be performed on cell-blocks. Molecular tests broadly can be divided into two main types Molecular genetic tests and Proteomics.
Collapse
Affiliation(s)
- Vinod B Shidham
- Department of Pathology, Wayne State University School of Medicine, Karmanos Cancer Center, and Detroit Medical Center, Detroit, Michigan, United States
| |
Collapse
|
14
|
Measurements Methods for the Development of MicroRNA-Based Tests for Cancer Diagnosis. Int J Mol Sci 2021; 22:ijms22031176. [PMID: 33503982 PMCID: PMC7865473 DOI: 10.3390/ijms22031176] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/15/2021] [Accepted: 01/22/2021] [Indexed: 12/19/2022] Open
Abstract
Studies investigating microRNAs as potential biomarkers for cancer, immune-related diseases, or cardiac pathogenic diseases, among others, have exponentially increased in the last years. In particular, altered expression of specific miRNAs correlates with the occurrence of several diseases, making these molecules potential molecular tools for non-invasive diagnosis, prognosis, and response to therapy. Nonetheless, microRNAs are not in clinical use yet, due to inconsistencies in the literature regarding the specific miRNAs identified as biomarkers for a specific disease, which in turn can be attributed to several reasons, including lack of assay standardization and reproducibility. Technological limitations in circulating microRNAs measurement have been, to date, the biggest challenge for using these molecules in clinical settings. In this review we will discuss pre-analytical, analytical, and post-analytical challenges to address the potential technical biases and patient-related parameters that can have an influence and should be improved to translate miRNA biomarkers to the clinical stage. Moreover, we will describe the currently available methods for circulating miRNA expression profiling and measurement, underlining their advantages and potential pitfalls.
Collapse
|
15
|
MicroRNAs: An Update of Applications in Forensic Science. Diagnostics (Basel) 2020; 11:diagnostics11010032. [PMID: 33375374 PMCID: PMC7823886 DOI: 10.3390/diagnostics11010032] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/17/2020] [Accepted: 12/23/2020] [Indexed: 12/25/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of non-coding RNAs containing 18–24 nucleotides that are involved in the regulation of many biochemical mechanisms in the human body. The level of miRNAs in body fluids and tissues increases because of altered pathophysiological mechanisms, thus they are employed as biomarkers for various diseases and conditions. In recent years, miRNAs obtained a great interest in many fields of forensic medicine given their stability and specificity. Several specific miRNAs have been studied in body fluid identification, in wound vitality in time of death determination, in drowning, in the anti-doping field, and other forensic fields. However, the major problems are (1) lack of universal protocols for diagnostic expression testing and (2) low reproducibility of independent studies. This review is an update on the application of these molecular markers in forensic biology.
Collapse
|
16
|
Body temperature-dependent microRNA expression analysis in rats: rno-miR-374-5p regulates apoptosis in skeletal muscle cells via Mex3B under hypothermia. Sci Rep 2020; 10:15432. [PMID: 32963265 PMCID: PMC7508983 DOI: 10.1038/s41598-020-71931-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 08/11/2020] [Indexed: 02/02/2023] Open
Abstract
Forensic diagnosis of fatal hypothermia is considered difficult because there are no specific findings. Accordingly, exploration of novel fatal hypothermia-specific findings is important. To elucidate the molecular mechanism of homeostasis in hypothermia and identify novel molecular markers to inform the diagnosis of fatal hypothermia, we focused on microRNA expression in skeletal muscle, which plays a role in cold-induced thermogenesis in mammals. We generated rat models of mild, moderate, and severe hypothermia, and performed body temperature-dependent microRNA expression analysis of the iliopsoas muscle using microarray and quantitative real-time PCR (qRT-PCR). The results show that rno-miR-374-5p expression was significantly induced only by severe hypothermia. Luciferase reporter assay and qRT-PCR results indicated that Mex3B expression was regulated by rno-miR-374-5p and decreased with decreasing body temperature. Gene ontology analysis indicated the involvement of Mex3B in positive regulation of GTPase activity. siRNA analysis showed that Mex3B directly or indirectly regulated Kras expression in vitro, and significantly changed the expression of apoptosis-related genes and proteins. Collectively, these results indicate that rno-miR-374-5p was activated by a decrease in body temperature, whereby it contributed to cell survival by suppressing Mex3B and activating or inactivating Kras. Thus, rno-miR-374-5p is a potential supporting marker for the diagnosis of fatal hypothermia.
Collapse
|
17
|
Baloun J, Bencurova P, Totkova T, Kubova H, Hermanova M, Hendrych M, Pail M, Pospisilova S, Brazdil M. Epilepsy miRNA Profile Depends on the Age of Onset in Humans and Rats. Front Neurosci 2020; 14:924. [PMID: 33041753 PMCID: PMC7522367 DOI: 10.3389/fnins.2020.00924] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 08/11/2020] [Indexed: 12/27/2022] Open
Abstract
Temporal lobe epilepsy (TLE) is a severe neurological disorder accompanied by recurrent spontaneous seizures. Although the knowledge of TLE onset is still incomplete, TLE pathogenesis most likely involves the aberrant expression of microRNAs (miRNAs). miRNAs play an essential role in organism homeostasis and are widely studied in TLE as potential therapeutics and biomarkers. However, many discrepancies in discovered miRNAs occur among TLE studies due to model-specific miRNA expression, different onset ages of epilepsy among patients, or technology-related bias. We employed a massive parallel sequencing approach to analyze brain tissues from 16 adult mesial TLE (mTLE)/hippocampal sclerosis (HS) patients, 8 controls and 20 rats with TLE-like syndrome, and 20 controls using the same workflow and categorized these subjects based on the age of epilepsy onset. All categories were compared to discover overlapping miRNAs with an aberrant expression, which could be involved in TLE. Our cross-comparative analyses showed distinct miRNA profiles across the age of epilepsy onset and found that the miRNA profile in rats with adult-onset TLE shows the closest resemblance to the profile in mTLE/HS patients. Additionally, this analysis revealed overlapping miRNAs between patients and the rat model, which should participate in epileptogenesis and ictogenesis. Among the overlapping miRNAs stand out miR-142-5p and miR-142-3p, which regulate immunomodulatory agents with pro-convulsive effects and suppress neuronal growth. Our cross-comparison study enhanced the insight into the effect of the age of epilepsy onset on miRNA expression and deepened the knowledge of epileptogenesis. We employed the same methodological workflow in both patients and the rat model, thus improving the reliability and accuracy of our results.
Collapse
Affiliation(s)
- Jiri Baloun
- Central European Institute of Technology, Masaryk University, Brno, Czechia
| | - Petra Bencurova
- Central European Institute of Technology, Masaryk University, Brno, Czechia.,Brno Epilepsy Center, Department of Neurology, Medical Faculty of Masaryk University, St. Anne's University Hospital, Brno, Czechia
| | - Tereza Totkova
- Central European Institute of Technology, Masaryk University, Brno, Czechia
| | - Hana Kubova
- Department of Developmental Epileptology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| | - Marketa Hermanova
- First Department of Pathology, Medical Faculty of Masaryk University, St. Anne's University Hospital, Brno, Czechia
| | - Michal Hendrych
- First Department of Pathology, Medical Faculty of Masaryk University, St. Anne's University Hospital, Brno, Czechia
| | - Martin Pail
- Brno Epilepsy Center, Department of Neurology, Medical Faculty of Masaryk University, St. Anne's University Hospital, Brno, Czechia
| | - Sarka Pospisilova
- Central European Institute of Technology, Masaryk University, Brno, Czechia
| | - Milan Brazdil
- Central European Institute of Technology, Masaryk University, Brno, Czechia.,Brno Epilepsy Center, Department of Neurology, Medical Faculty of Masaryk University, St. Anne's University Hospital, Brno, Czechia
| |
Collapse
|
18
|
Zhang K, Cheng M, Xu J, Chen L, Li J, Li Q, Xie X, Wang Q. MiR-711 and miR-183-3p as potential markers for vital reaction of burned skin. Forensic Sci Res 2020; 7:503-509. [DOI: 10.1080/20961790.2020.1719454] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Affiliation(s)
- Kaikai Zhang
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Ming Cheng
- Forensic Science Centre of Guangdong Provincial Public Security Department, Guangzhou, China
| | - Jingtao Xu
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Lijian Chen
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Jiahao Li
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Qiangguo Li
- Department of Critical Medicine, Mudan District People’s Hospital, Heze, China
| | - Xiaoli Xie
- Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Qi Wang
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
19
|
Kakimoto Y, Matsushima Y, Tanaka M, Hayashi H, Wang T, Yokoyama K, Ochiai E, Osawa M. MicroRNA profiling of gastric content from breast-fed and formula-fed infants to estimate last feeding: a pilot study. Int J Legal Med 2019; 134:903-909. [PMID: 31832755 DOI: 10.1007/s00414-019-02226-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 12/04/2019] [Indexed: 02/06/2023]
Abstract
Recently, we were consulted about a challenging case, where an infant died by poisoning and the drug-dependent mother insisted that she unintentionally gave the toxic drug through breast milk. Accordingly, we investigated the utility of immunoblotting and microRNA (miRNA) profiling of the infant's gastric content (GC) to differentiate between breast-feeding and formula-feeding. As a pilot study, we sampled the GC from breast-fed (GCB) and formula-fed (GCF) infants, as well as gastric juice (GJ) from fasted adults at autopsy. Breast milk (BM) samples were collected from volunteers within 1 year post-delivery. By immunoblotting, lactoferrin and gross cystic disease fluid protein (GCDEP) were clearly detected in BM, but could not be detected in GCB. Similarly, β-lactoglobulin was detected in formula milk, but could not be detected in GCF. Meanwhile, miRNA sequencing revealed that the miRNA expression profile of GCB was closer to BM than GCF and GJ. Especially, miR-151a and miR-186 were more abundant in BM and GCB than in GCF and GJ. Our study is the first to elucidate the human GJ miRNA profile and demonstrate the possibility that miR-151a and miR-186 in GC may be the biomarker of breast-feeding.
Collapse
Affiliation(s)
- Yu Kakimoto
- Department of Forensic Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan.
| | - Yutaka Matsushima
- Department of Forensic Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Masayuki Tanaka
- Support Center for Medical Research and Education, Tokai University, Kanagawa, Japan
| | - Hideki Hayashi
- Support Center for Medical Research and Education, Tokai University, Kanagawa, Japan
| | - Ting Wang
- Support Center for Medical Research and Education, Tokai University, Kanagawa, Japan
| | - Keiko Yokoyama
- Support Center for Medical Research and Education, Tokai University, Kanagawa, Japan
| | - Eriko Ochiai
- Department of Forensic Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Motoki Osawa
- Department of Forensic Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| |
Collapse
|
20
|
Lv Y, Li S, Li Z, Tao R, Shao Y, Chen Y. Quantitative analysis of noncoding RNA from paired fresh and formalin-fixed paraffin-embedded brain tissues. Int J Legal Med 2019; 134:873-884. [PMID: 31788707 DOI: 10.1007/s00414-019-02210-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 11/13/2019] [Indexed: 12/30/2022]
Abstract
Formalin-fixed paraffin-embedded (FFPE) tissues are commonly used both clinically and in forensic pathology. Recently, noncoding RNA (ncRNA) has attracted interest among molecular medical researchers. However, it remains unclear whether newly identified ncRNAs, such as long noncoding RNA (lncRNA) and circular RNA (circRNA), remain stable for downstream molecular analysis in FFPE tissues. Here, we assessed the feasibility of using autoptic FFPE brain tissues from eight individuals to perform quantitative molecular analyses. Selected RNA targets (9 mRNAs and 15 ncRNAs) with different amplicon lengths were studied by RT-qPCR in paired fresh and FFPE specimens. For RNA quality assessment, RNA purity and yield were comparable between the two sample cohorts; however, the RNA integrity number decreased significantly during FFPE sampling. Amplification efficiency also displayed certain variability related with amplicon length and RNA species. We found molecular evidence that short amplicons of mRNA, lncRNA, and circRNA were amplified more efficiently than long amplicons. With the assistance of RefFinder, 5S, SNORD48, miR-103a, and miR-125b were selected as reference genes given their high stability. After normalization, we found that short amplicon markers (e.g., ACTB mRNA and MALAT1 lncRNA) exhibited high consistency of quantification in paired fresh/FFPE samples. In particular, circRNAs (XPO1, HIPK3, and TMEM56) presented relatively consistent and stable expression profiles in FFPE tissues compared with their corresponding linear transcripts. Additionally, we evaluated the influence of prolonged storage time on the amplification of gene transcripts and found that short amplicons still work effectively in archived FFPE biospecimens. In conclusion, our findings demonstrate the possibility of performing accurate quantitative analysis of ncRNAs using short amplicons and standardized RT-qPCR assays in autopsy-derived FFPE samples.
Collapse
Affiliation(s)
- Yehui Lv
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610065, China. .,Shanghai Key Laboratory of Forensic Medicine, Academy of Forensic Science, Shanghai, 200063, China. .,School of basic medical sciences, Shanghai University of Medicine & Health Science, Shanghai, 201318, China.
| | - Shiying Li
- Shanghai Key Laboratory of Forensic Medicine, Academy of Forensic Science, Shanghai, 200063, China
| | - Zhihong Li
- School of basic medical sciences, Shanghai University of Medicine & Health Science, Shanghai, 201318, China
| | - Ruiyang Tao
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610065, China.,Shanghai Key Laboratory of Forensic Medicine, Academy of Forensic Science, Shanghai, 200063, China
| | - Yu Shao
- Shanghai Key Laboratory of Forensic Medicine, Academy of Forensic Science, Shanghai, 200063, China
| | - Yijiu Chen
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610065, China. .,Shanghai Key Laboratory of Forensic Medicine, Academy of Forensic Science, Shanghai, 200063, China.
| |
Collapse
|
21
|
Pinchi E, Frati P, Aromatario M, Cipolloni L, Fabbri M, La Russa R, Maiese A, Neri M, Santurro A, Scopetti M, Viola RV, Turillazzi E, Fineschi V. miR-1, miR-499 and miR-208 are sensitive markers to diagnose sudden death due to early acute myocardial infarction. J Cell Mol Med 2019; 23:6005-6016. [PMID: 31240830 PMCID: PMC6714215 DOI: 10.1111/jcmm.14463] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 05/02/2019] [Accepted: 05/15/2019] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) are strongly up-regulated under pathological stress and in a wide range of diseases. In recent years, miRNAs are under investigation for their potential use as biomarkers in cardiovascular diseases. We investigate whether specific cardio-miRNAs are overexpressed in heart samples from subjects deceased for acute myocardial infarction (AMI) or sudden cardiac death (SCD), and whether miRNA could help differentiate between them. Forty four cases of death due to cardiovascular disease were selected, respectively, 19 cases categorized as AMI and 25 as SCD. Eighteen cases of traumatic death without pathological cardiac involvement were selected as control. Immunohistochemical investigation was performed for CD15, IL-15, Cx43, MCP-1, tryptase, troponin C and troponin I. Reverse transcription and quantitative real-time PCR were performed for miR-1, miR-133, miR-208 and miR-499. In AMI group, stronger immunoreaction for the CD15, IL-15 and MCP-1 antibodies was detectable compared with SCD and control. Cx43 showed a negative reaction with respect to the other groups. Real-time PCR results showed a down-regulation of all miRNAs in the AMI group compared with SCD and control. The selected miRNAs presented high accuracy in discriminating SCD from AMI (miR-1 and miR-499) and AMI from control (miR-208) representing a potential aid for both clinicians and pathologists for differential diagnosis.
Collapse
Affiliation(s)
- Enrica Pinchi
- Department of Anatomical, Histological, Forensic and Orthopaedic SciencesSapienza University of RomeRomeItaly
| | - Paola Frati
- Department of Anatomical, Histological, Forensic and Orthopaedic SciencesSapienza University of RomeRomeItaly
- IRCSS Neuromed Mediterranean Neurological InstitutePozzilliItaly
| | - Mariarosaria Aromatario
- Department of Anatomical, Histological, Forensic and Orthopaedic SciencesSapienza University of RomeRomeItaly
| | - Luigi Cipolloni
- Department of Anatomical, Histological, Forensic and Orthopaedic SciencesSapienza University of RomeRomeItaly
| | - Matteo Fabbri
- Department of Morphology, Experimental Medicine and SurgeryUniversity of FerraraFerraraItaly
| | - Raffaele La Russa
- Department of Anatomical, Histological, Forensic and Orthopaedic SciencesSapienza University of RomeRomeItaly
- IRCSS Neuromed Mediterranean Neurological InstitutePozzilliItaly
| | - Aniello Maiese
- Department of Anatomical, Histological, Forensic and Orthopaedic SciencesSapienza University of RomeRomeItaly
| | - Margherita Neri
- Department of Morphology, Experimental Medicine and SurgeryUniversity of FerraraFerraraItaly
| | - Alessandro Santurro
- Department of Anatomical, Histological, Forensic and Orthopaedic SciencesSapienza University of RomeRomeItaly
| | - Matteo Scopetti
- Department of Anatomical, Histological, Forensic and Orthopaedic SciencesSapienza University of RomeRomeItaly
| | - Rocco Valerio Viola
- Department of Anatomical, Histological, Forensic and Orthopaedic SciencesSapienza University of RomeRomeItaly
| | - Emanuela Turillazzi
- Institute of Legal Medicine, Department of Surgical, Medical and Molecular Pathology and Critical Care MedicineUniversity of PisaPisaItaly
| | - Vittorio Fineschi
- Department of Anatomical, Histological, Forensic and Orthopaedic SciencesSapienza University of RomeRomeItaly
- IRCSS Neuromed Mediterranean Neurological InstitutePozzilliItaly
| |
Collapse
|
22
|
Fang C, Zhao J, Li J, Qian J, Liu X, Sun Q, Liu W, Tian Y, Ji A, Wu H, Yan J. Massively parallel sequencing of microRNA in bloodstains and evaluation of environmental influences on miRNA candidates using realtime polymerase chain reaction. Forensic Sci Int Genet 2018; 38:32-38. [PMID: 30321749 DOI: 10.1016/j.fsigen.2018.10.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 06/30/2018] [Accepted: 10/01/2018] [Indexed: 12/21/2022]
Abstract
MicroRNAs (miRNA) are small (22-24 nucleotides) non-coding RNAs with potential application in forensic science because of their anti-degradation property and tissue specificity. Recent studies on the use of miRNA in forensic applications have mainly focused on body fluid identification using realtime polymerase chain reaction or microarray analysis. However, the exploration of miRNA in bloodstains, which are the most valuable source of biological evidence during case investigations, is currently lacking, particularly for aged and environmentally compromised forensic samples. Recent developments in massively parallel sequencing (MPS) technology provide the opportunity to establish a whole-genome miRNA profile with high throughput and efficiency. However, MPS analysis of genome-wide miRNA profiles from bloodstains has not been reported to date. In this study, the whole-genome miRNA profiles of bloodstains were examined using MPS, revealing 633 known miRNAs and 266 novel miRNAs. To further explore the stability of miRNAs in bloodstains under various circumstances, the expression levels of six miRNAs (miR-16-5p, miR-20a-5p, miR-486-5p, miR-148a-3p, miR-151a-3p, and miR-451a) that were abundant in blood/bloodstains were examined. The results showed that freezing/thawing and a high concentration of oxidant solution affects the absolute expression of miRNA significantly, while storage for up to 5 months and a temperature of 37 °C did not have any observed effects. This study not only provides a novel method to explore miRNA profiles in bloodstains using MPS, but also points to the circumstantial influences on miRNA expression, which are an important consideration for practical application. Collectively, our work may shed light on MPS-based approaches with miRNA analysis of bloodstains in forensics.
Collapse
Affiliation(s)
- Chen Fang
- Beijing Center for Physical and Chemical Analysis, Beijing 100094, PR China; Beijing Engineering Technology Research Centre of Gene Sequencing and Gene Function Analysis, Beijing 100094, PR China
| | - Jing Zhao
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100010, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Junbo Li
- Beijing Center for Physical and Chemical Analysis, Beijing 100094, PR China; Beijing Engineering Technology Research Centre of Gene Sequencing and Gene Function Analysis, Beijing 100094, PR China
| | - Jialin Qian
- Beijing Center for Physical and Chemical Analysis, Beijing 100094, PR China; Beijing Engineering Technology Research Centre of Gene Sequencing and Gene Function Analysis, Beijing 100094, PR China
| | - Xu Liu
- Beijing Center for Physical and Chemical Analysis, Beijing 100094, PR China; Beijing Engineering Technology Research Centre of Gene Sequencing and Gene Function Analysis, Beijing 100094, PR China
| | - Qifan Sun
- National Engineering Laboratory for Forensic Science and MPS Key Laboratory of Forensic Genetics, Institute of Forensic Science, Ministry of Public Security, Beijing 100038, PR China
| | - Wenli Liu
- Beijing Center for Physical and Chemical Analysis, Beijing 100094, PR China; Beijing Engineering Technology Research Centre of Gene Sequencing and Gene Function Analysis, Beijing 100094, PR China
| | - Yanjie Tian
- Beijing Center for Physical and Chemical Analysis, Beijing 100094, PR China; Beijing Engineering Technology Research Centre of Gene Sequencing and Gene Function Analysis, Beijing 100094, PR China
| | - Anquan Ji
- National Engineering Laboratory for Forensic Science and MPS Key Laboratory of Forensic Genetics, Institute of Forensic Science, Ministry of Public Security, Beijing 100038, PR China
| | - Huijuan Wu
- Beijing Center for Physical and Chemical Analysis, Beijing 100094, PR China; Beijing Engineering Technology Research Centre of Gene Sequencing and Gene Function Analysis, Beijing 100094, PR China.
| | - Jiangwei Yan
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100010, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China; School of Forensic Medicine, Shanxi Medical University, Taiyuan 030001, PR China.
| |
Collapse
|
23
|
Fang C, Zhao J, Liu X, Zhang J, Cao Y, Yang Y, Yu C, Zhang X, Qian J, Liu W, Wu H, Yan J. MicroRNA profile analysis for discrimination of monozygotic twins using massively parallel sequencing and real-time PCR. Forensic Sci Int Genet 2018; 38:23-31. [PMID: 30321748 DOI: 10.1016/j.fsigen.2018.09.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 07/22/2018] [Accepted: 09/28/2018] [Indexed: 12/12/2022]
Abstract
In general, it is extremely problematic to discriminate between monozygotic twins (MZTs), who share the same genomic DNA sequence, using traditional DNA-based identification methods such as short tandem repeat profiling. MicroRNAs (miRNAs) have shown potential in forensic applications owing to their low molecular weight, abundant and tissue-specific expression. In this study, we utilized massively parallel sequencing technology to perform genome-wide profiling of miRNAs in the blood from four pairs of healthy MZTs. On average, 158 miRNAs were detected in each individual and 14% of which were differentially expressed within each pair of MZTs. The miRNAs with the most significant differences in expression between the twins were confirmed using real-time polymerase chain reaction. Our results demonstrated that miRNAs have potential for use as molecular markers in MZTs discrimination.
Collapse
Affiliation(s)
- Chen Fang
- Beijing Center for Physical and Chemical Analysis, Beijing 100094, PR China; Beijing Engineering Technology Research Centre of Gene Sequencing and Gene Function Analysis, Beijing 100094, PR China
| | - Jing Zhao
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100010, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xu Liu
- Beijing Center for Physical and Chemical Analysis, Beijing 100094, PR China; Beijing Engineering Technology Research Centre of Gene Sequencing and Gene Function Analysis, Beijing 100094, PR China
| | - Jingjing Zhang
- Beijing Huayan Judicial Authentication Institute, Beijing 100192, PR China
| | - Yunwang Cao
- School of Forensic Medicine, Shanxi Medical University, Taiyuan 030001, PR China
| | - Yaran Yang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100010, PR China
| | - Chunrui Yu
- Beijing Center for Physical and Chemical Analysis, Beijing 100094, PR China; Beijing Engineering Technology Research Centre of Gene Sequencing and Gene Function Analysis, Beijing 100094, PR China
| | - Xiaoli Zhang
- Beijing Center for Physical and Chemical Analysis, Beijing 100094, PR China; Beijing Engineering Technology Research Centre of Gene Sequencing and Gene Function Analysis, Beijing 100094, PR China
| | - Jialin Qian
- Beijing Center for Physical and Chemical Analysis, Beijing 100094, PR China; Beijing Engineering Technology Research Centre of Gene Sequencing and Gene Function Analysis, Beijing 100094, PR China
| | - Wenli Liu
- Beijing Center for Physical and Chemical Analysis, Beijing 100094, PR China; Beijing Engineering Technology Research Centre of Gene Sequencing and Gene Function Analysis, Beijing 100094, PR China
| | - Huijuan Wu
- Beijing Center for Physical and Chemical Analysis, Beijing 100094, PR China; Beijing Engineering Technology Research Centre of Gene Sequencing and Gene Function Analysis, Beijing 100094, PR China; Beijing Gene Medical Laboratory Co., Ltd., Beijing 100094, PR China.
| | - Jiangwei Yan
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100010, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China; School of Forensic Medicine, Shanxi Medical University, Taiyuan 030001, PR China.
| |
Collapse
|
24
|
Kakimoto Y, Tanaka M, Hayashi H, Yokoyama K, Osawa M. Overexpression of miR-221 in sudden death with cardiac hypertrophy patients. Heliyon 2018; 4:e00639. [PMID: 30009269 PMCID: PMC6041564 DOI: 10.1016/j.heliyon.2018.e00639] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 05/06/2018] [Accepted: 05/25/2018] [Indexed: 01/04/2023] Open
Abstract
Background Cardiac hypertrophy is a well-known risk factor for heart failure and sudden cardiac death (SCD). On the other hand, physiological cardiac hypertrophy is often observed in young healthy men, and it is difficult to predict SCD in cardiac hypertrophy subjects who do not show symptoms of heart failure. MicroRNAs (miRNAs) widely regulate biological activity and play pivotal roles in heart failure progression. In this study, we investigated whether miRNA expression is altered in SCD with cardiac hypertrophy (SCH). Methods Cardiac tissues were sampled at autopsy from SCH patients, compensated cardiac hypertrophy (CCH) subjects who died of causes other than heart failure, and control cases without cardiac hypertrophy or heart failure. After histopathological examination, we performed deep sequencing and quantitative PCR of cardiac miRNAs. Results and discussion Although SCH and CCH showed indistinguishable histological features, their miRNA expression signatures were distinct. Among the 240 miRNAs stably detected in the heart, 8 were differentially expressed between SCH and CCH. Specifically, miR-221 increased in SCH compared to CCH and control cases. The significant elevation of cardiac miR-221 in SCH patients is correlated with lethal outcomes. Thus, our results indicate that an elevated miR-221 level is potentially associated with an increased risk of SCD in subjects with cardiac hypertrophy.
Collapse
Affiliation(s)
- Yu Kakimoto
- Department of Forensic Medicine, Tokai University School of Medicine, Kanagawa, Japan
| | - Masayuki Tanaka
- Support Center for Medical Research and Education, Tokai University, Kanagawa, Japan
| | - Hideki Hayashi
- Support Center for Medical Research and Education, Tokai University, Kanagawa, Japan
| | - Keiko Yokoyama
- Support Center for Medical Research and Education, Tokai University, Kanagawa, Japan
| | - Motoki Osawa
- Department of Forensic Medicine, Tokai University School of Medicine, Kanagawa, Japan
| |
Collapse
|
25
|
Hollis AR, Starkey MP. MicroRNAs in equine veterinary science. Equine Vet J 2018; 50:721-726. [PMID: 29672919 DOI: 10.1111/evj.12954] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 03/31/2018] [Indexed: 12/26/2022]
Abstract
MicroRNAs are small noncoding RNAs that play a pivotal role in diverse cellular processes through post-transcriptional regulation of gene expression. The dysregulation of specific microRNAs is associated with disease development and progression. In this review, we summarise how microRNAs modulate gene expression, and explain microRNA nomenclature. We discuss the potential applications of microRNAs in equine disease diagnosis and treatment, in the context of the sum of current knowledge about microRNA expression in normal and diseased equine tissues.
Collapse
Affiliation(s)
- A R Hollis
- Animal Health Trust, Kentford, Suffolk, UK
| | | |
Collapse
|
26
|
Loudig O, Liu C, Rohan T, Ben-Dov IZ. Retrospective MicroRNA Sequencing: Complementary DNA Library Preparation Protocol Using Formalin-fixed Paraffin-embedded RNA Specimens. J Vis Exp 2018. [PMID: 29781987 DOI: 10.3791/57471] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
-Archived, clinically classified formalin-fixed paraffin-embedded (FFPE) tissues can provide nucleic acids for retrospective molecular studies of cancer development. By using non-invasive or pre-malignant lesions from patients who later develop invasive disease, gene expression analyses may help identify early molecular alterations that predispose to cancer risk. It has been well described that nucleic acids recovered from FFPE tissues have undergone severe physical damage and chemical modifications, which make their analysis difficult and generally requires adapted assays. MicroRNAs (miRNAs), however, which represent a small class of RNA molecules spanning only up to ~18-24 nucleotides, have been shown to withstand long-term storage and have been successfully analyzed in FFPE samples. Here we present a 3' barcoded complementary DNA (cDNA) library preparation protocol specifically optimized for the analysis of small RNAs extracted from archived tissues, which was recently demonstrated to be robust and highly reproducible when using archived clinical specimens stored for up to 35 years. This library preparation is well adapted to the multiplex analysis of compromised/degraded material where RNA samples (up to 18) are ligated with individual 3' barcoded adapters and then pooled together for subsequent enzymatic and biochemical preparations prior to analysis. All purifications are performed by polyacrylamide gel electrophoresis (PAGE), which allows size-specific selections and enrichments of barcoded small RNA species. This cDNA library preparation is well adapted to minute RNA inputs, as a pilot polymerase chain reaction (PCR) allows determination of a specific amplification cycle to produce optimal amounts of material for next-generation sequencing (NGS). This approach was optimized for the use of degraded FFPE RNA from specimens archived for up to 35 years and provides highly reproducible NGS data.
Collapse
Affiliation(s)
- Olivier Loudig
- Department of Research, Hackensack University Medical Center; Department of Medical Sciences, Seton Hall University; Department of Epidemiology and Population Health, Albert Einstein College of Medicine;
| | - Christina Liu
- Department of Research, Hackensack University Medical Center; Department of Medical Sciences, Seton Hall University
| | - Thomas Rohan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine
| | - Iddo Z Ben-Dov
- Department of Nephrology and Hypertension, Hadassah - Hebrew University Medical Center
| |
Collapse
|
27
|
Aljakna A, Fracasso T, Sabatasso S. Molecular tissue changes in early myocardial ischemia: from pathophysiology to the identification of new diagnostic markers. Int J Legal Med 2018; 132:425-438. [DOI: 10.1007/s00414-017-1750-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 11/20/2017] [Indexed: 02/06/2023]
|
28
|
Down-regulation of miR-133a/b in patients with myocardial infarction correlates with the presence of ventricular fibrillation. Biomed Pharmacother 2018; 99:65-71. [PMID: 29324314 DOI: 10.1016/j.biopha.2018.01.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 12/22/2017] [Accepted: 01/03/2018] [Indexed: 12/22/2022] Open
Abstract
MicroRNAs (miRNAs) are important regulators of physiologic and pathologic conditions of the heart. Animal models of heart diseases have shown that miRNAs may contribute to the development of arrhythmias. However, little is known about the expression of muscle- and cardiac-specific miRNAs in patients with myocardial infarction (MI) who have developed ventricular fibrillation (VF). Our study included 47 patients who had died from myocardial infarction (MI), 23 with clinically proven VF and 24 without VF. Autopsy samples of infarcted tissue and remote myocardium were available (n = 94). Heart tissue from 8 healthy trauma victims was included as control. Expression of miR-1, miR-133a/b and miR-208 was analyzed using real-time PCR (qPCR). In patients with MI with VF, we observed down-regulation of miR-133a/b, and this down-regulation was even stronger 2-7 days after MI. miR-208 was up-regulated in remote myocardium irrespective of the presence of VF. Deregulation of miR-1 and miR-208 was not related to the presence of VF. Our results suggest that down-regulation of miR-133a/b might contribute to the development of VF in patients with MI. However, up-regulation of miR-1 and miR-208 in remote myocardium might play a role in cardiac remodeling after MI, at least to certain degree.
Collapse
|
29
|
Pordzik J, Pisarz K, De Rosa S, Jones AD, Eyileten C, Indolfi C, Malek L, Postula M. The Potential Role of Platelet-Related microRNAs in the Development of Cardiovascular Events in High-Risk Populations, Including Diabetic Patients: A Review. Front Endocrinol (Lausanne) 2018; 9:74. [PMID: 29615970 PMCID: PMC5869202 DOI: 10.3389/fendo.2018.00074] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 02/19/2018] [Indexed: 12/13/2022] Open
Abstract
Platelet activation plays a pivotal role in the development and progression of atherosclerosis, which often leads to potentially fatal ischemic events at later stages of the disease. Platelets and platelet microvesicles (PMVs) contain large amounts of microRNA (miRNA), which contributes largely to the pool of circulating miRNAs. Hence, they represent a promising option for the development of innovative diagnostic biomarkers, that can be specific for the underlying etiology. Circulating miRNAs can be responsible for intracellular communication and may have a biological effect on target cells. As miRNAs associated to both cardiovascular diseases (CVD) and diabetes mellitus can be measured by means of a wide array of techniques, they can be exploited as an innovative class of smart disease biomarkers. In this manuscript, we provide an outline of miRNAs associated with platelet function and reactivity (miR-223, miR-126, miR-197, miR-191, miR-21, miR-150, miR-155, miR-140, miR-96, miR-98) that should be evaluated as novel biomarkers to improve diagnostics and treatment of CVD.
Collapse
Affiliation(s)
- Justyna Pordzik
- Center for Preclinical Research and Technology CEPT, Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Warsaw, Poland
| | - Katarzyna Pisarz
- Center for Preclinical Research and Technology CEPT, Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Warsaw, Poland
| | - Salvatore De Rosa
- Division of Cardiology, Department of Medical and Surgical Sciences, “Magna Graecia” University, Catanzaro, Italy
| | - Axel Dyve Jones
- Center for Preclinical Research and Technology CEPT, Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Warsaw, Poland
| | - Ceren Eyileten
- Center for Preclinical Research and Technology CEPT, Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Warsaw, Poland
| | - Ciro Indolfi
- Division of Cardiology, Department of Medical and Surgical Sciences, “Magna Graecia” University, Catanzaro, Italy
- URT-CNR, Department of Medicine, Consiglio Nazionale delle Ricerche of IFC, Catanzaro, Italy
| | - Lukasz Malek
- Faculty of Rehabilitation, University of Physical Education, Warsaw, Poland
| | - Marek Postula
- Center for Preclinical Research and Technology CEPT, Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Warsaw, Poland
- *Correspondence: Marek Postula,
| |
Collapse
|
30
|
Circulatory microrna in acute myocardial infarction: A candidate biomarker for forensic investigation. FORENSIC SCIENCE INTERNATIONAL GENETICS SUPPLEMENT SERIES 2017. [DOI: 10.1016/j.fsigss.2017.09.136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
31
|
Bencurova P, Baloun J, Musilova K, Radova L, Tichy B, Pail M, Zeman M, Brichtova E, Hermanova M, Pospisilova S, Mraz M, Brazdil M. MicroRNA and mesial temporal lobe epilepsy with hippocampal sclerosis: Whole miRNome profiling of human hippocampus. Epilepsia 2017; 58:1782-1793. [PMID: 28815576 DOI: 10.1111/epi.13870] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2017] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Mesial temporal lobe epilepsy (mTLE) is a severe neurological disorder characterized by recurrent seizures. mTLE is frequently accompanied by neurodegeneration in the hippocampus resulting in hippocampal sclerosis (HS), the most common morphological correlate of drug resistance in mTLE patients. Incomplete knowledge of pathological changes in mTLE+HS complicates its therapy. The pathological mechanism underlying mTLE+HS may involve abnormal gene expression regulation, including posttranscriptional networks involving microRNAs (miRNAs). miRNA expression deregulation has been reported in various disorders, including epilepsy. However, the miRNA profile of mTLE+HS is not completely known and needs to be addressed. METHODS Here, we have focused on hippocampal miRNA profiling in 33 mTLE+HS patients and nine postmortem controls to reveal abnormally expressed miRNAs. In this study, we significantly reduced technology-related bias (the most common source of false positivity in miRNA profiling data) by combining two different miRNA profiling methods, namely next generation sequencing and miRNA-specific quantitative real-time polymerase chain reaction. RESULTS These methods combined have identified and validated 20 miRNAs with altered expression in the human epileptic hippocampus; 19 miRNAs were up-regulated and one down-regulated in mTLE+HS patients. Nine of these miRNAs have not been previously associated with epilepsy, and 19 aberrantly expressed miRNAs potentially regulate the targets and pathways linked with epilepsy (such as potassium channels, γ-aminobutyric acid, neurotrophin signaling, and axon guidance). SIGNIFICANCE This study extends current knowledge of miRNA-mediated gene expression regulation in mTLE+HS by identifying miRNAs with altered expression in mTLE+HS, including nine novel abnormally expressed miRNAs and their putative targets. These observations further encourage the potential of microRNA-based biomarkers or therapies.
Collapse
Affiliation(s)
- Petra Bencurova
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic.,Department of Neurology, Brno Epilepsy Center, St. Anne's University Hospital, Brno, Czech Republic.,Medical Faculty of Masaryk University, Brno, Czech Republic
| | - Jiri Baloun
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic.,Department of Neurology, Brno Epilepsy Center, St. Anne's University Hospital, Brno, Czech Republic.,Medical Faculty of Masaryk University, Brno, Czech Republic
| | - Katerina Musilova
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic.,Medical Faculty of Masaryk University, Brno, Czech Republic
| | - Lenka Radova
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Boris Tichy
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Martin Pail
- Department of Neurology, Brno Epilepsy Center, St. Anne's University Hospital, Brno, Czech Republic.,Medical Faculty of Masaryk University, Brno, Czech Republic
| | - Martin Zeman
- Medical Faculty of Masaryk University, Brno, Czech Republic.,Department of Forensic Medicine, St. Anne's University Hospital, Brno, Czech Republic
| | - Eva Brichtova
- Medical Faculty of Masaryk University, Brno, Czech Republic.,Department of Neurosurgery, St. Anne's University Hospital, Brno, Czech Republic
| | - Marketa Hermanova
- Medical Faculty of Masaryk University, Brno, Czech Republic.,First Department of Pathological Anatomy, St. Anne's University Hospital, Brno, Czech Republic
| | - Sarka Pospisilova
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Marek Mraz
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Milan Brazdil
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic.,Department of Neurology, Brno Epilepsy Center, St. Anne's University Hospital, Brno, Czech Republic.,Medical Faculty of Masaryk University, Brno, Czech Republic
| |
Collapse
|
32
|
Peskoe SB, Barber JR, Zheng Q, Meeker AK, De Marzo AM, Platz EA, Lupold SE. Differential long-term stability of microRNAs and RNU6B snRNA in 12-20 year old archived formalin-fixed paraffin-embedded specimens. BMC Cancer 2017; 17:32. [PMID: 28061773 PMCID: PMC5219687 DOI: 10.1186/s12885-016-3008-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 12/15/2016] [Indexed: 11/18/2022] Open
Abstract
Background The quantitative analysis of microRNA (miRNA) gene expression in archived formalin-fixed, paraffin embedded (FFPE) tissues has been instrumental to identifying their potential roles in cancer biology, diagnosis, and prognosis. However, it remains unclear whether miRNAs remain stable in FFPE tissues stored for long periods of time. Methods Here we report Taqman real-time RT-PCR quantification of miR-21, miR-141, miR-221, and RNU6B small nuclear RNA (snRNA) levels from 92 radical prostatectomy specimens stored for 12–20 years in FFPE blocks. The relative stability of each transcript over time was assessed using general linear models. The correlation between transcript quantities, sample age, and RNA integrity number (RIN) were determined utilizing Spearman rank correlation. Results All transcript levels linearly decreased with sample age, demonstrating a clear loss of miRNA stability and RNU6B snRNA stability over time. The most rapid rates of degradation were observed for RNU6B and miR-21, while miR-141 and miR-221 were more stable. RNA quality was not correlated with sample age or with miR-21, miR-221, or RNU6B snRNA levels. Conversely, miR-141 levels increased with RNA quality. Conclusions MiRNA and snRNA levels gradually decreased over an eight year period in FFPE tissue blocks. Sample age was the most consistent feature associated with miRNA stability. The reference snRNA, RUN6B, was more rapidly degraded when compared to miR-141 and miR-221 miRNAs. Various miRNAs demonstrated differential rates of degradation. Quantitative miRNA studies from long-term archived FFPE tissues may therefore benefit from epidemiologic study design or statistical analysis methods that take into account differential storage-dependent transcript degradation. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-3008-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sarah B Peskoe
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - John R Barber
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Qizhi Zheng
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Alan K Meeker
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA.,The James Buchanan Brady Urologic Institute and Department of Urology, Johns Hopkins School of Medicine, Baltimore, MD, USA.,Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | - Angelo M De Marzo
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA.,The James Buchanan Brady Urologic Institute and Department of Urology, Johns Hopkins School of Medicine, Baltimore, MD, USA.,Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | - Elizabeth A Platz
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.,The James Buchanan Brady Urologic Institute and Department of Urology, Johns Hopkins School of Medicine, Baltimore, MD, USA.,Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | - Shawn E Lupold
- The James Buchanan Brady Urologic Institute and Department of Urology, Johns Hopkins School of Medicine, Baltimore, MD, USA. .,Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA.
| |
Collapse
|
33
|
MicroRNA Stability in FFPE Tissue Samples: Dependence on GC Content. PLoS One 2016; 11:e0163125. [PMID: 27649415 PMCID: PMC5029930 DOI: 10.1371/journal.pone.0163125] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 09/03/2016] [Indexed: 11/30/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs responsible for fine-tuning of gene expression at post-transcriptional level. The alterations in miRNA expression levels profoundly affect human health and often lead to the development of severe diseases. Currently, high throughput analyses, such as microarray and deep sequencing, are performed in order to identify miRNA biomarkers, using archival patient tissue samples. MiRNAs are more robust than longer RNAs, and resistant to extreme temperatures, pH, and formalin-fixed paraffin-embedding (FFPE) process. Here, we have compared the stability of miRNAs in FFPE cardiac tissues using next-generation sequencing. The mode read length in FFPE samples was 11 nucleotides (nt), while that in the matched frozen samples was 22 nt. Although the read counts were increased 1.7-fold in FFPE samples, compared with those in the frozen samples, the average miRNA mapping rate decreased from 32.0% to 9.4%. These results indicate that, in addition to the fragmentation of longer RNAs, miRNAs are to some extent degraded in FFPE tissues as well. The expression profiles of total miRNAs in two groups were highly correlated (0.88 <r < 0.92). However, the relative read count of each miRNA was different depending on the GC content (p<0.0001). The unequal degradation of each miRNA affected the abundance ranking in the library, and miR-133a was shown to be the most abundant in FFPE cardiac tissues instead of miR-1, which was predominant before fixation. Subsequent quantitative PCR (qPCR) analyses revealed that miRNAs with GC content of less than 40% are more degraded than GC-rich miRNAs (p<0.0001). We showed that deep sequencing data obtained using FFPE samples cannot be directly compared with that of fresh frozen samples. The combination of miRNA deep sequencing and other quantitative analyses, such as qPCR, may improve the utility of archival FFPE tissue samples.
Collapse
|
34
|
Chistiakov DA, Orekhov AN, Bobryshev YV. Cardiac-specific miRNA in cardiogenesis, heart function, and cardiac pathology (with focus on myocardial infarction). J Mol Cell Cardiol 2016; 94:107-121. [PMID: 27056419 DOI: 10.1016/j.yjmcc.2016.03.015] [Citation(s) in RCA: 212] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 02/09/2016] [Accepted: 03/24/2016] [Indexed: 12/21/2022]
Abstract
Cardiac miRNAs (miR-1, miR133a, miR-208a/b, and miR-499) are abundantly expressed in the myocardium. They play a central role in cardiogenesis, heart function and pathology. While miR-1 and miR-133a predominantly control early stages of cardiogenesis supporting commitment of cardiac-specific muscle lineage from embryonic stem cells and mesodermal precursors, miR-208 and miR-499 are involved in the late cardiogenic stages mediating differentiation of cardioblasts to cardiomyocytes and fast/slow muscle fiber specification. In the heart, miR-1/133a control cardiac conductance and automaticity by regulating all phases of the cardiac action potential. miR-208/499 located in introns of the heavy chain myosin genes regulate expression of sarcomeric contractile proteins. In cardiac pathology including myocardial infarction (MI), expression of cardiac miRNAs is markedly altered that leads to deleterious effects associated with heart wounding, arrhythmia, increased apoptosis, fibrosis, hypertrophy, and tissue remodeling. In acute MI, circulating levels of cardiac miRNAs are significantly elevated making them to be a promising diagnostic marker for early diagnosis of acute MI. Great cardiospecific capacity of these miRNAs is very helpful for enhancing regenerative properties and survival of stem cell and cardiac progenitor transplants and for reprogramming of mature non-cardiac cells to cardiomyocytes.
Collapse
Affiliation(s)
- Dimitry A Chistiakov
- Department of Molecular Genetic Diagnostics and Cell Biology, Division of Laboratory Medicine, Institute of Pediatrics, Research Center for Children's Health, 119991 Moscow, Russia
| | - Alexander N Orekhov
- Institute of General Pathology and Pathophysiology, Russian Academy of Sciences, Moscow 125315, Russia; Department of Biophysics, Biological Faculty, Moscow State University, Moscow 119991, Russia; Institute for Atherosclerosis Research, Skolkovo Innovative Center, Moscow 121609, Russia
| | - Yuri V Bobryshev
- Institute of General Pathology and Pathophysiology, Russian Academy of Sciences, Moscow 125315, Russia; Faculty of Medicine, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia; School of Medicine, University of Western Sydney, Campbelltown, NSW 2560, Australia.
| |
Collapse
|
35
|
Kakimoto Y, Tanaka M, Kamiguchi H, Hayashi H, Ochiai E, Osawa M. MicroRNA deep sequencing reveals chamber-specific miR-208 family expression patterns in the human heart. Int J Cardiol 2016; 211:43-8. [PMID: 26974694 DOI: 10.1016/j.ijcard.2016.02.145] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 02/10/2016] [Accepted: 02/28/2016] [Indexed: 10/22/2022]
Abstract
BACKGROUND Heart chamber-specific mRNA expression patterns have been extensively studied, and dynamic changes have been reported in many cardiovascular diseases. MicroRNAs (miRNAs) are also important regulators of normal cardiac development and functions that generally suppress gene expression at the posttranscriptional level. Recent focus has been placed on circulating miRNAs as potential biomarkers for cardiac disorders. However, miRNA expression levels in human normal hearts have not been thoroughly studied, and chamber-specific miRNA expression signatures in particular remain unclear. METHODS AND RESULTS We performed miRNA deep sequencing on human paired left atria (LA) and ventricles (LV) under normal physiologic conditions. Among 438 miRNAs, miR-1 was the most abundant in both chambers, representing 21% of the miRNAs in LA and 26% in LV. A total of 25 miRNAs were differentially expressed between LA and LV; 14 were upregulated in LA, and 11 were highly expressed in LV. Notably, the miR-208 family in particular showed prominent chamber specificity; miR-208a-3p and miR-208a-5p were abundant in LA, whereas miR-208b-3p and miR-208b-5p were preferentially expressed in LV. Subsequent real-time polymerase chain reaction analysis validated the predominant expression of miR-208a in LA and miR-208b in LV. CONCLUSIONS Human atrial and ventricular tissues display characteristic miRNA expression signatures under physiological conditions. Notably, miR-208a and miR-208b show significant chamber-specificity as do their host genes, α-MHC and β-MHC, which are mainly expressed in the atria and ventricles, respectively. These findings might also serve to enhance our understanding of cardiac miRNAs and various heart diseases.
Collapse
Affiliation(s)
- Yu Kakimoto
- Department of Forensic Medicine, Tokai University School of Medicine, Kanagawa, Japan
| | - Masayuki Tanaka
- Support Center for Medical Research and Education, Tokai University, Kanagawa, Japan
| | - Hiroshi Kamiguchi
- Support Center for Medical Research and Education, Tokai University, Kanagawa, Japan
| | - Hideki Hayashi
- Support Center for Medical Research and Education, Tokai University, Kanagawa, Japan
| | - Eriko Ochiai
- Department of Forensic Medicine, Tokai University School of Medicine, Kanagawa, Japan
| | - Motoki Osawa
- Department of Forensic Medicine, Tokai University School of Medicine, Kanagawa, Japan.
| |
Collapse
|
36
|
Estimation of the time of death through the analysis of clock miRNAs expression in blood and vitreous humor. FORENSIC SCIENCE INTERNATIONAL GENETICS SUPPLEMENT SERIES 2015. [DOI: 10.1016/j.fsigss.2015.09.082] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
37
|
Exploring miRNA-Associated Signatures with Diagnostic Relevance in Glioblastoma Multiforme and Breast Cancer Patients. J Clin Med 2015; 4:1612-30. [PMID: 26287251 PMCID: PMC4555080 DOI: 10.3390/jcm4081612] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 07/23/2015] [Accepted: 08/04/2015] [Indexed: 12/17/2022] Open
Abstract
The growing attention that non-coding RNAs have attracted in the field of cancer research in recent years is undeniable. Whether investigated as prospective therapeutic targets or prognostic indicators or diagnostic biomarkers, the clinical relevance of these molecules is starting to emerge. In addition, identification of non-coding RNAs in a plethora of body fluids has further positioned these molecules as attractive non-invasive biomarkers. This review will first provide an overview of the synthetic cascade that leads to the production of the small non-coding RNAs microRNAs (miRNAs) and presents their strengths as biomarkers of disease. Our interest will next be directed at exploring the diagnostic utility of miRNAs in two types of cancer: the brain tumor glioblastoma multiforme (GBM) and breast cancer. Finally, we will discuss additional clinical implications associated with miRNA detection as well as introduce other non-coding RNAs that have generated recent interest in the cancer research community.
Collapse
|