1
|
Saberi E, Qureshi JA, Brown JK. Differential expression of "Candidatus Liberibacter solanacearum" genes and prophage loci in different life stages of potato psyllid. Sci Rep 2024; 14:16248. [PMID: 39009624 PMCID: PMC11251058 DOI: 10.1038/s41598-024-65156-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 06/17/2024] [Indexed: 07/17/2024] Open
Abstract
Psyllid species, including the potato psyllid (PoP) Bactericera cockerelli (Sulc) (Triozidae) serve as host and vector of "Candidatus Liberibacter spp." ("Ca. Liberibacter"), which also infects diverse plant hosts, including citrus and tomato. Psyllid transmission of "Ca. Liberibacter" is circulative and propagative. The time of "Ca. Liberibacter" acquisition and therefore vector life stage most competent for bacterial transmission varies by pathosystems. Here, the potato psyllid-"Ca. Liberibacter solanacearum" (CLso) pathosystem was investigated to dissect CLso-prophage interactions in the tomato plant and PoP-psyllid host by real-time quantitative reverse transcriptase amplification of CLso genes/loci with predicted involvement in host infection and psyllid-CLso transmission. Genes/loci analyzed were associated with (1) CLso-adhesion, -invasion, -pathogenicity, and -motility, (2) prophage-adhesion and pathogenicity, and (3) CLso-lysogenic cycle. Relative gene expression was quantified by qRT-PCR amplification from total RNA isolated from CLso-infected 1st-2nd and 4th-5th nymphs and teneral adults and CLso-infected tomato plants in which CLso infection is thought to occur without SC1-SC2 replication. Gene/loci expression was host-dependent and varied with the psyllid developmental stage. Loci previously associated with repressor-anti-repressor regulation in the "Ca Liberibacter asiaticus"-prophage pathosystem, which maintains the lysogenic cycle in Asian citrus psyllid Diaphorina citri, were expressed in CLso-infected psyllids but not in CLso-infected tomato plants.
Collapse
Affiliation(s)
- Esmaeil Saberi
- School of Plant Sciences, The University of Arizona, Tucson, AZ, USA
- Department of Entomology and Nematology, IFAS, Southwest Florida Research and Education Center, University of Florida, Immokalee, FL, USA
| | - Jawwad A Qureshi
- Department of Entomology and Nematology, IFAS, Southwest Florida Research and Education Center, University of Florida, Immokalee, FL, USA
| | - Judith K Brown
- School of Plant Sciences, The University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
2
|
Thakre N, Carver M, Paredes-Montero JR, Mondal M, Hu J, Saberi E, Ponvert N, Qureshi JA, Brown JK. UV-LASER adjuvant-surfactant-facilitated delivery of mobile dsRNA to tomato plant vasculature and evidence of biological activity by gene knockdown in the potato psyllid. PEST MANAGEMENT SCIENCE 2024; 80:2141-2153. [PMID: 38146104 DOI: 10.1002/ps.7952] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 12/13/2023] [Accepted: 12/26/2023] [Indexed: 12/27/2023]
Abstract
BACKGROUND Double-stranded RNA (dsRNA) biopesticides are of interest for the abatement of insect vectors of pathogenic bacteria such as 'Candidatus Liberibacter', which infects both its psyllid and plant hosts. Silencing of genes essential for psyllids, or for Liberibacter, is anticipated to lead to mortality or impeded bacterial multiplication. Foliar delivery is preferred for biopesticide application; however, the cuticle impedes dsRNA penetration into the vasculature. Here, conditions were established for wounding tomato leaves using ultraviolet light amplification by stimulated emissions of radiation (UV-LASER) to promote dsRNA penetration into leaves and vasculature. RESULTS UV-LASER treatment with application of select adjuvants/surfactants resulted in vascular delivery of 100-, 300- and 600-bp dsRNAs that, in general, were correlated with size. The 100-bp dsRNA required no pretreatment, whereas 300- and 600-bp dsRNAs entered the vasculature after UV-LASER treatment only and UV-LASER adjuvant/surfactant treatment, respectively. Of six adjuvant/surfactants evaluated, plant-derived oil combined with an anionic organosilicon compound performed most optimally. Localization of dsRNAs in the tomato vasculature was documented using fluorometry and fluorescence confocal microscopy. The biological activity of in planta-delivered dsRNA (200-250 bp) was determined by feeding third-instar psyllids on tomato leaves post UV-LASER adjuvant/surfactant treatment, with or without psyllid cdc42- and gelsolin dsRNAs. Gene knockdown was quantified by quantitative, real-time polymerase chain reaction with reverse transcription (RT-qPCR) amplification. At 10 days post the ingestion-access period, knockdown of cdc42 and gelsolin expression was 61% and 56%, respectively, indicating that the dsRNAs delivered to the tomato vasculature were mobile and biologically active. CONCLUSION Results indicated that UV-LASER adjuvant/surfactant treatments facilitated the delivery of mobile, biologically active dsRNA molecules to the plant vasculature. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Neha Thakre
- School of Plant Sciences, The University of Arizona, Tucson, AZ, USA
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA
| | - Megan Carver
- School of Plant Sciences, The University of Arizona, Tucson, AZ, USA
| | - Jorge R Paredes-Montero
- Biology Department, Saginaw Valley State University, University Center, USA
- Facultad de Ciencias de la Vida, Escuela Superior Politécnica del Litoral, ESPOL, Campus Gustavo Galindo, Guayaquil, Ecuador
| | - Mosharrof Mondal
- School of Plant Sciences, The University of Arizona, Tucson, AZ, USA
| | - Jiahuai Hu
- School of Plant Sciences, The University of Arizona, Tucson, AZ, USA
| | - Esmaeil Saberi
- Department of Entomology and Nematology, IFAS, Southwest Florida Research and Education Center, University of Florida, Immokalee, FL, USA
| | - Nathaniel Ponvert
- School of Plant Sciences, The University of Arizona, Tucson, AZ, USA
| | - Jawwad A Qureshi
- Department of Entomology and Nematology, IFAS, Southwest Florida Research and Education Center, University of Florida, Immokalee, FL, USA
| | - Judith K Brown
- School of Plant Sciences, The University of Arizona, Tucson, AZ, USA
| |
Collapse
|
3
|
Zhao ST, Ran XT, Huang YY, Sang W, Derrick BE, Qiu BL. Transcriptomic response of citrus psyllid salivary glands to the infection of citrus Huanglongbing pathogen. BULLETIN OF ENTOMOLOGICAL RESEARCH 2024:1-20. [PMID: 38444234 DOI: 10.1017/s0007485324000038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
The Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Psyllidae), is the key vector insect transmitting the Candidatus Liberibacter asiaticus (CLas) bacterium that causes the devastating citrus greening disease (Huanglongbing, HLB) worldwide. The D. citri salivary glands (SG) exhibit an important barrier against the transmission of HLB pathogen. However, knowledge on the molecular mechanism of SG defence against CLas infection is still limited. In the present study, we compared the SG transcriptomic response of CLas-free and CLas-infected D. citri using an illumine paired-end RNA sequencing. In total of 861 differentially expressed genes (DEGs) in the SG upon CLas infection, including 202 upregulated DEGs and 659 downregulated DEGs were identified. Functional annotation analysis showed that most of the DEGs were associated with cellular processes, metabolic processes, and the immune response. Gene ontology and Kyoto Encyclopaedia of Genes and Genomes enrichment analyses revealed that these DEGs were enriched in pathways involving carbohydrate metabolism, amino acid metabolism, the immune system, the digestive system, the lysosome, and endocytosis. A total of 16 DEGs were randomly selected to further validate the accuracy of RNA-Seq dataset by reverse-transcription quantitative polymerase chain reaction. This study provides substantial transcriptomic information regarding the SG of D. citri in response to CLas infection, which may shed light on the molecular interaction between D. citri and CLas, and provides new ideas for the prevention and control of citrus psyllid.
Collapse
Affiliation(s)
- San-Tao Zhao
- Engineering Research Centre of Biological Control, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Engineering Research Center of Biotechnology for Active Substances, Ministry of Education, Chongqing Normal University, Chongqing 401331, China
| | - Xiao-Tong Ran
- Engineering Research Centre of Biological Control, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
- Engineering Research Center of Biotechnology for Active Substances, Ministry of Education, Chongqing Normal University, Chongqing 401331, China
| | - Yu-Yang Huang
- Engineering Research Centre of Biological Control, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Wen Sang
- Engineering Research Centre of Biological Control, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | | | - Bao-Li Qiu
- Engineering Research Centre of Biological Control, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Engineering Research Center of Biotechnology for Active Substances, Ministry of Education, Chongqing Normal University, Chongqing 401331, China
| |
Collapse
|
4
|
Hussain M, Zhong Y, Tao T, Xiu B, Ye F, Gao J, Mao R. Effect of tree height and spraying methods on Diaphorina citri kuwayama endosymbionts in the context of Huanglongbing disease management in citrus orchards. PEST MANAGEMENT SCIENCE 2024; 80:1484-1500. [PMID: 37948354 DOI: 10.1002/ps.7880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/02/2023] [Accepted: 11/11/2023] [Indexed: 11/12/2023]
Abstract
BACKGROUND Huanglongbing (HLB) (caused by Candidatus Liberibacter asiaticus) is the most damaging disease of citrus around the world. This study investigated the effects of citrus tree height on Diaphorina citri Kuwayama mortality, endosymbiont responses, and HLB distribution. RESULTS The results reveal that the age of citrus trees plays a significant role in psyllid mortality. Interestingly, the cumulative mean mortality (%) of psyllids over the seven-day observation period was higher (31.50±0.03) when four-year-old (501A1, 502A2, 501A3) citrus trees were sprayed with a US-SMART mechanical sprayer. In contrast, the psyllids mortality was 0.09±0.23 for the 13-year-old citrus trees (104A2, 104A3, 104C1) sprayed with a US-SMART mechanical sprayer and 9.10±0.05 for 13-year-old (502A2, 502B2, 502D1) citrus trees sprayed with a fixed US-SMART mechanical sprayer. Our findings also revealed that psyllids from both four- and 13-year-old citrus trees carried Candidatus Carsonella ruddii species and Wolbachia, the primary and secondary endosymbionts, respectively. Surprisingly, infection rates of these endosymbionts remained consistent across different age groups, as confirmed by quantitative polymerase chain reaction analysis. Furthermore, our study highlights the significance of tree height as a proxy for tree age in influencing HLB occurrence. Specifically, four-year-old citrus trees subjected to the US-SMART mechanical sprayer for citrus psyllid control demonstrated effective disease management compared to 13-year-old (104A2, 104A3, 104C1) citrus trees sprayed with US-SMART mechanical sprayers. Additionally, the investigation explored the impact of tree height on HLB distribution. In four-year-old trees, no significant correlation between HLB disease and tree height was observed, potentially due to effective spray coverage with US-SMART mechanical sprayer. However, in 13-year-old (104A2, 104A3, 104C1) citrus tree sprayed with US-SMART mechanical sprayer, a positive correlation between tree height and HLB disease was evident. CONCLUSION This research provides valuable insights into the complex interaction between citrus tree age, psyllid endosymbionts responses, and HLB distribution. These results emphasize effective HLB management strategies, especially in orchards with diverse tree age populations, ultimately contributing to the long-term sustainability of citrus cultivation. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Mubasher Hussain
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Engineering Research Center for Mineral Oil Pesticides, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, 510260, China
| | - Yun Zhong
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Province Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou, 510640, China
| | - Tonglai Tao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Engineering Research Center for Mineral Oil Pesticides, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, 510260, China
| | - Baolin Xiu
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Engineering Research Center for Mineral Oil Pesticides, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, 510260, China
| | - Fengxian Ye
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Engineering Research Center for Mineral Oil Pesticides, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, 510260, China
| | - Jing Gao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Engineering Research Center for Mineral Oil Pesticides, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, 510260, China
| | - Runqian Mao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Engineering Research Center for Mineral Oil Pesticides, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, 510260, China
| |
Collapse
|
5
|
Liu L, Chen J, Jiang J, Liang J, Song Y, Chen Q, Yan F, Bai Z, Song Z, Liu J. Detection of Candidatus Liberibacter asiaticus and five viruses in individual Asian citrus psyllid in China. FRONTIERS IN PLANT SCIENCE 2024; 15:1357163. [PMID: 38379950 PMCID: PMC10877018 DOI: 10.3389/fpls.2024.1357163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 01/18/2024] [Indexed: 02/22/2024]
Abstract
Introduction Asian citrus psyllid (ACP, Diaphorina citri) is an important transmission vector of "Candidatus Liberibacter asiaticus" (CLas), the causal agent of Huanglongbing (HLB), the most destructive citrus disease in the world. As there are currently no HLB-resistant rootstocks or varieties, the control of ACP is an important way to prevent HLB. Some viruses of insect vectors can be used as genetically engineered materials to control insect vectors. Methods To gain knowledge on viruses in ACP in China, the prevalence of five RNA and DNA viruses was successfully determined by optimizing reverse transcription polymerase chain reaction (RT-PCR) in individual adult ACPs. The five ACP-associated viruses were identified as follows: diaphorina citri bunyavirus 2, which was newly identified by high-throughput sequencing in our lab, diaphorina citri reovirus (DcRV), diaphorina citri picorna-like virus (DcPLV), diaphorina citri bunyavirus (DcBV), and diaphorina citri densovirus-like virus (DcDV). Results DcPLV was the most prevalent and widespread ACP-associated virus, followed by DcBV, and it was detected in more than 50% of all samples tested. DcPLV was also demonstrated to propagate vertically and found more in salivary glands among different tissues. Approximately 60% of all adult insect samples were co-infected with more than one insect pathogen, including the five ACP-associated viruses and CLas. Discussion This is the first time these viruses, including the newly identified ACP-associated virus, have been detected in individual adult ACPs from natural populations in China's five major citrus-producing provinces. These results provide valuable information about the prevalence of ACP-associated viruses in China, some of which have the potential to be used as biocontrol agents. In addition, analysis of the change in prevalence of pathogens in a single insect vector is the basis for understanding the interactions between CLas, ACP, and insect viruses.
Collapse
Affiliation(s)
- Luqin Liu
- Citrus Research Institute, Southwest University/National Citrus Engineering Research Center, Chongqing, China
| | - Jing Chen
- Citrus Research Institute, Southwest University/National Citrus Engineering Research Center, Chongqing, China
| | - Junyao Jiang
- Citrus Research Institute, Southwest University/National Citrus Engineering Research Center, Chongqing, China
| | - Jiamei Liang
- Citrus Research Institute, Southwest University/National Citrus Engineering Research Center, Chongqing, China
| | - Yaqin Song
- Guangxi Academy of Specialty Crops, Guangxi Citrus Breeding and Cultivation Research Center of Engineering Technology, Guangxi, China
| | - Qi Chen
- Citrus Research Institute, Southwest University/National Citrus Engineering Research Center, Chongqing, China
| | - Fuling Yan
- Citrus Research Institute, Southwest University/National Citrus Engineering Research Center, Chongqing, China
| | - Ziqin Bai
- Fruit Research Institute, Guizhou Provincial Academy of Agricultural Sciences, Guizhou, China
| | - Zhen Song
- Citrus Research Institute, Southwest University/National Citrus Engineering Research Center, Chongqing, China
| | - Jinxiang Liu
- Citrus Research Institute, Southwest University/National Citrus Engineering Research Center, Chongqing, China
| |
Collapse
|
6
|
Fisher TW, Munyaneza JE, Brown JK. Sub-optimal temperatures lead to altered expression of stress-related genes and increased 'C andidatus Liberibacter solanacearum' accumulation in potato psyllid. FRONTIERS IN INSECT SCIENCE 2024; 3:1279365. [PMID: 38469510 PMCID: PMC10926459 DOI: 10.3389/finsc.2023.1279365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/23/2023] [Indexed: 03/13/2024]
Abstract
Introduction The potato psyllid Bactericera cockerelli is the insect vector of the fastidious bacterium 'Candidatus Liberibacter solanacearum'. The bacterium infects both B. cockerelli and plant species, causing zebra chip (ZC) disease of potato and vein-greening disease of tomato. Temperatures are known to influence the initiation and progression of disease symptom in the host plant, and seasonal transitions from moderate to high temperatures trigger psyllid dispersal migration to facilitate survival. Methods 'Ca. L. solanacearum' -infected and uninfected psyllids were reared at previously established 'permissible', optimal, and 'non-permissible' and temperatures of 18°C, 24°C, and 30°C, respectively. Gene expression profiles for 'Ca. L. solanacearum'-infected and -uninfected adult psyllids reared at different temperatures were characterized by Illumina RNA-Seq analysis. Bacterial genome copy number was quantified by real-time quantitative-PCR (qPCR) amplification. Results Relative gene expression profiles varied in psyllids reared at the three experimental temperatures. Psyllids reared at 18°C and 30°C exhibited greater fold-change increased expression of stress- and 'Ca. L. solanacearum' invasion-related proteins. Quantification by qPCR of bacterial genome copy number revealed that 'Ca. L. solanacearum' accumulation was significantly lower in psyllids reared at 18°C and 30°C, compared to 24°C. Discussion Temperature is a key factor in the life history of potato psyllid and multiplication/accumulation of 'Ca. L. solanacearum' in both the plant and psyllid host, influences the expression of genes associated with thermal stress tolerance, among others, and may have been instrumental in driving the co-evolution of the pathosystem.
Collapse
Affiliation(s)
- Tonja W. Fisher
- School of Plant Sciences, The University of Arizona, Tucson, AZ, United States
| | - Joseph E. Munyaneza
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Yakima Agricultural Research Laboratory (YARL), Wapato, WA, United States
| | - Judith K. Brown
- School of Plant Sciences University of Arizona, Tucson, AZ, United States
| |
Collapse
|
7
|
Arad N, Paredes-Montero JR, Mondal MH, Ponvert N, Brown JK. RNA interference-mediated knockdown of genes involved in sugar transport and metabolism disrupts psyllid Bactericera cockerelli (Order: Hemiptera) gut physiology and results in high mortality. FRONTIERS IN INSECT SCIENCE 2023; 3:1283334. [PMID: 38469486 PMCID: PMC10926392 DOI: 10.3389/finsc.2023.1283334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/02/2023] [Indexed: 03/13/2024]
Abstract
Introduction The causal agent of zebra chip of potato and vein-greening diseases of tomato is "Candidatus Liberibacter solanacearum" (CLso), a fastidious bacterium transmitted by the potato psyllid. In the absence of disease-resistant cultivars, disease management has relied on minimizing vector population size to reduce CLso transmission, which requires frequent insecticide applications. There is growing interest in the use of RNA interference (RNAi) technology to supplant traditional insecticides with biopesticides. This requires knowledge of genes essential for insect livelihood whose knockdown leads to significant mortality or other phenotypes. Such candidate genes can be evaluated by reverse genetics approaches to further corroborate predicted gene function. Methods Here, five potato psyllid genes involved in sugar homeostasis in the potato psyllid gut, α-glucosidase1 (AGLU1), aquaporin2 (AQP2), facilitated trehalose transporter1 (TRET1), Trehalase1 (TRE1), and Trehalase2 (TRE2), were investigated as candidates for effective gene silencing. Potato psyllid dsRNAs were designed to optimize knockdown of gene targets. Third instar PoP nymphs were given a 48-hr ingestion-access period (IAP) on individual or groups of dsRNA in 20% sucrose. Mortality was recorded 0, 3, 5, 7, and 9 days post-IAP. Gene knockdown was analyzed 9 days post-IAP by quantitative real-time reverse-transcriptase polymerase chain reaction amplification. Results The individual or stacked dsRNA combinations resulted in 20-60% and 20-40% knockdown, respectively, while subsequent psyllid mortality ranged from 20-40% to >60% for single and stacked dsRNA combinations, respectively. Reverse genetics analysis showed that simultaneous knockdown of the five selected candidate genes with predicted functions in pathways involved in sugar-homeostasis, metabolism, and -transport yielded the highest mortality, when compared with single or combinations of targets. Discussion Results confirmed the functions afforded by psyllid gut genes responsible for osmotic homeostasis and sugar metabolism/transport are essential for livelihood, identifying them as potentially lucrative RNAi biopesticide targets and highlighted the translational relevance of targeting multiple nodes in a physiological pathway simultaneously.
Collapse
Affiliation(s)
- Neda Arad
- School of Plant Sciences, The University of Arizona, Tucson, AZ, United States
| | - Jorge R. Paredes-Montero
- School of Plant Sciences, The University of Arizona, Tucson, AZ, United States
- Facultad de Ciencias de la Vida, Escuela Superior Politécnica del Litoral, ESPOL, Guayaquil, Guayas, Ecuador
| | | | - Nathaniel Ponvert
- School of Plant Sciences, The University of Arizona, Tucson, AZ, United States
| | - Judith K. Brown
- School of Plant Sciences, The University of Arizona, Tucson, AZ, United States
| |
Collapse
|
8
|
Ibanez F, Vieira Rocha S, Dawson WO, El-Mohtar C, Robertson C, Stelinski LL, Soares-Costa A. Gene silencing of cathepsins B and L using CTV-based, plant-mediated RNAi interferes with ovarial development in Asian citrus psyllid (ACP), Diaphorina citri. FRONTIERS IN PLANT SCIENCE 2023; 14:1219319. [PMID: 37841623 PMCID: PMC10570424 DOI: 10.3389/fpls.2023.1219319] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 09/12/2023] [Indexed: 10/17/2023]
Abstract
Diaphorina citri Kuwayama (Hemiptera: Liviidae) is a vector of the bacteria Candidatus Liberibacter americanus (CLam) and Candidatus Liberibacter asiaticus (CLas), which are phloem-restricted and associated with the most important and destructive worldwide citrus disease, Huanglongbing (HLB). Currently, no cure for HLB has been described. Therefore, measures have focused on reducing D. citri populations. In these insects, cathepsin B (DCcathB) and L (DCcathL) enzymes play an important role in digestion, and are involved in embryogenesis, immune defense, and ecdysis. In this study, we used a CTV-based vector to deliver dsRNA (CTV-dsRNA) into Citrus macrophylla plants targeting DCcathB and DCcathL genes in D. citri that fed on the phloem of these CTV-RNAi infected plants. Subsequently, we evaluated expression of DCcathB and DCcathL genes as well as the Vitellogenin (Vg) gene by RT-qPCR in D. citri fed on CTV-dsRNA occurring in plant phloem. It was found that a defective phenotype in D. citri females as a result of knockdown of DCcathB and DCcathL genes mediated by CTV dsRNA. These results showed that Psyllids fed on plants treated with the CTV-dsRNA exhibited downregulation of the Vg gene, one of the most important genes associated with embryogenic and female development, which was associated with dsRNA-mediated silencing of the two cathepsin genes. Based on our findings, a CTV-based strategy for delivering RNAi via plants that targets DCcathB and DCcathL genes may represent a suitable avenue for development of dsRNA-based tools to manage D. citri that limits the spread of HLB.
Collapse
Affiliation(s)
- Freddy Ibanez
- Department of Entomology, Texas A&M AgriLife Research, Weslaco, TX, ;United States
| | - Sâmara Vieira Rocha
- Department of Genetics and Evolution, Federal University of São Carlos, São Carlos, SP, ;Brazil
| | - William O. Dawson
- Plant Pathology Department, Citrus Research and Education Center, University of Florida, Lake Alfred, FL, ;United States
| | - Choaa El-Mohtar
- Plant Pathology Department, Citrus Research and Education Center, University of Florida, Lake Alfred, FL, ;United States
| | - Cecile Robertson
- Plant Pathology Department, Citrus Research and Education Center, University of Florida, Lake Alfred, FL, ;United States
| | - Lukasz L. Stelinski
- Department of Entomology and Nematology, Citrus Research and Education Center, University of Florida, Lake Alfred, FL, ;United States
| | - Andrea Soares-Costa
- Plant Pathology Department, Citrus Research and Education Center, University of Florida, Lake Alfred, FL, ;United States
| |
Collapse
|
9
|
Sarkar P, Jassar O, Ghanim M. The plant pathogenic bacterium Candidatus Liberibacter solanacearum induces calcium-regulated autophagy in midgut cells of its insect vector Bactericera trigonica. Microbiol Spectr 2023; 11:e0130123. [PMID: 37768086 PMCID: PMC10581152 DOI: 10.1128/spectrum.01301-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 08/11/2023] [Indexed: 09/29/2023] Open
Abstract
Autophagy plays an important role against pathogen infection in many organisms; however, little has been done with regard to vector-borne plant and animal pathogens, that sometimes replicate and cause deleterious effects in their vectors. Candidatus Liberibacter solanacearum (CLso) is a fastidious gram-negative phloem-restricted plant pathogen and vectored by the carrot psyllid, Bactericera trigonica. The plant disease caused by this bacterium is called carrot yellows and has recently gained much importance due to worldwide excessive economical losses. Here, we demonstrate that calcium ATPase, cytosolic calcium, and most importantly Beclin-1 have a role in regulating autophagy and its association with Liberibacter inside the psyllid. The presence of CLso generates reactive oxygen species and induces the expression of detoxification enzymes in the psyllid midguts, a main site for bacteria transmission. CLso also induces the expression of both sarco/endoplasmic reticulum Ca2+pump (SERCA) and 1,4,5-trisphosphate receptors (ITPR) in midguts, resulting in high levels of calcium in the cellular cytosol. Silencing these genes individually disrupted the calcium levels in the cytosol and resulted in direct effects on autophagy and subsequently on Liberibacter persistence and transmission. Inhibiting Beclin1-phosphorylation through different calcium-induced kinases altered the expression of autophagy and CLso titers and persistence. Based on our results obtained from the midgut, we suggest the existence of a direct correlation between cytosolic calcium levels, autophagy, and CLso persistence and transmission by the carrot psyllid. IMPORTANCE Plant diseases caused by vector-borne Liberibacter species are responsible for the most important economic losses in many agricultural sectors. Preventing these diseases relies mostly on chemical sprays against the insect vectors. Knowledge-based interference with the bacteria-vector interaction remains a promising approach as a sustainable solution. For unravelling how Liberibacter exploits molecular pathways in its insect vector for transmission, here, we show that the bacterium manipulates calcium levels on both sides of the endoplasmic reticulum membrane, resulting in manipulating autophagy. Silencing genes associated with these pathways disrupted the calcium levels in the cytosol and resulted in direct effects on autophagy and Liberibacter transmission. These results demonstrate major pathways that could be exploited for manipulating and controlling the disease transmission.
Collapse
Affiliation(s)
- Poulami Sarkar
- Department of Entomology, Volcani Institute, Rishon LeZion, Israel
| | - Ola Jassar
- Department of Entomology, Volcani Institute, Rishon LeZion, Israel
- Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, Israel
| | - Murad Ghanim
- Department of Entomology, Volcani Institute, Rishon LeZion, Israel
| |
Collapse
|
10
|
He R, Fisher TW, Saha S, Peiz-Stelinski K, Willis MA, Gang DR, Brown JK. Differential gene expression of Asian citrus psyllids infected with ' Ca. Liberibacter asiaticus' reveals hyper-susceptibility to invasion by instar fourth-fifth and teneral adult stages. FRONTIERS IN PLANT SCIENCE 2023; 14:1229620. [PMID: 37662178 PMCID: PMC10470031 DOI: 10.3389/fpls.2023.1229620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/10/2023] [Indexed: 09/05/2023]
Abstract
The bacterial pathogen Candidatus Liberibacter asiaticus (CLas) is the causal agent of citrus greening disease. This unusual plant pathogenic bacterium also infects its psyllid host, the Asian citrus psyllid (ACP). To investigate gene expression profiles with a focus on genes involved in infection and circulation within the psyllid host of CLas, RNA-seq libraries were constructed from CLas-infected and CLas-free ACP representing the five different developmental stages, namely, nymphal instars 1-2, 3, and 4-5, and teneral and mature adults. The Gbp paired-end reads (296) representing the transcriptional landscape of ACP across all life stages and the official gene set (OGSv3) were annotated based on the chromosomal-length v3 reference genome and used for de novo transcript discovery resulting in 25,410 genes with 124,177 isoforms. Differential expression analysis across all ACP developmental stages revealed instar-specific responses to CLas infection, with greater overall responses by nymphal instars, compared to mature adults. More genes were over-or under-expressed in the 4-5th nymphal instars and young (teneral) adults than in instars 1-3, or mature adults, indicating that late immature instars and young maturing adults were highly responsive to CLas infection. Genes identified with potential for direct or indirect involvement in the ACP-CLas circulative, propagative transmission pathway were predominantly responsive during early invasion and infection processes and included canonical cytoskeletal remodeling and endo-exocytosis pathway genes. Genes with predicted functions in defense, development, and immunity exhibited the greatest responsiveness to CLas infection. These results shed new light on ACP-CLas interactions essential for pathogenesis of the psyllid host, some that share striking similarities with effector protein-animal host mechanisms reported for other culturable and/or fastidious bacterial- or viral- host pathosystems.
Collapse
Affiliation(s)
- Ruifeng He
- Institute of Biological Chemistry, Washington State University, Pullman, WA, United States
- Soybean Genomics and Improvement Laboratory, US Department of Agriculture (USDA)-Agricultural Research Service (ARS), Beltsville, MD, United States
| | - Tonja W. Fisher
- School of Plant Sciences, University of Arizona, Tucson, AZ, United States
| | - Surya Saha
- Sol Genomics Network, Boyce Thompson Institute, Ithaca, NY, United States
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, United States
| | - Kirsten Peiz-Stelinski
- Citrus Research and Education Center, Department of Entomology and Nematology, University of Florida, Lake Alfred, FL, United States
| | - Mark A. Willis
- Institute of Biological Chemistry, Washington State University, Pullman, WA, United States
| | - David R. Gang
- Institute of Biological Chemistry, Washington State University, Pullman, WA, United States
| | - Judith K. Brown
- School of Plant Sciences, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
11
|
Li Y, Tan Z, Wang X, Hou L. Metabolic changes and potential biomarkers in " Candidatus Liberibacter solanacearum"-infected potato psyllids: implications for psyllid-pathogen interactions. FRONTIERS IN PLANT SCIENCE 2023; 14:1204305. [PMID: 37538064 PMCID: PMC10394617 DOI: 10.3389/fpls.2023.1204305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/03/2023] [Indexed: 08/05/2023]
Abstract
Psyllid yellows, vein-greening (VG), and zebra chip (ZC) diseases, which are primarily transmitted by potato psyllid (PoP) carrying Candidatus Liberibacter solanacearum (CLso), have caused significant losses in solanaceous crop production worldwide. Pathogens interact with their vectors at the organic and cellular levels, while the potential changes that may occur at the biochemical level are less well reported. In this study, the impact of CLso on the metabolism of PoP and the identification of biomarkers from infected psyllids were examined. Using ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) analysis, metabolomic changes in CLso-infected psyllids were compared to uninfected ones. A total of 34 metabolites were identified as potential biomarkers of CLso infection, which were primarily related to amino acid, carbohydrate, and lipid metabolism. The significant increase in glycerophospholipids is thought to be associated with CLso evading the insect vector's immune defense. Matrix-assisted Laser Desorption Ionization Mass Spectrometry Imaging (MALDI-MSI) was used to map the spatial distribution of these biomarkers, revealing that 15-keto-Prostaglandin E2 and alpha-D-Glucose were highly expressed in the abdomen of uninfected psyllids but down-regulated in infected psyllids. It is speculated that this down-regulation may be due to CLso evading surveillance by immune suppression in the PoP midgut. Overall, valuable biochemical information was provided, a theoretical basis for a better understanding of psyllid-pathogen interactions was offered, and the findings may aid in breaking the transmission cycle of these diseases.
Collapse
Affiliation(s)
- Yelin Li
- School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Zhiqing Tan
- School of Life Sciences, Guangzhou University, Guangzhou, China
- School of Life Sciences, Zhaoqing University, Zhaoqing, China
| | - Xiaolan Wang
- School of Life Sciences, Guangzhou University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou University, Guangzhou, China
| | - Liping Hou
- School of Life Sciences, Guangzhou University, Guangzhou, China
| |
Collapse
|
12
|
Tang XT, Levy J, Tamborindeguy C. Potato psyllids mount distinct gut responses against two different 'Candidatus Liberibacter solanacearum' haplotypes. PLoS One 2023; 18:e0287396. [PMID: 37327235 PMCID: PMC10275445 DOI: 10.1371/journal.pone.0287396] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 06/05/2023] [Indexed: 06/18/2023] Open
Abstract
'Candidatus Liberibacter solanacearum' (Lso) is a bacterial pathogen infecting several crops and causing damaging diseases. Several Lso haplotypes have been identified. Among the seven haplotypes present in North America, LsoA and LsoB are transmitted by the potato psyllid, Bactericera cockerelli (Šulc), in a circulative and persistent manner. The gut, which is the first organ pathogen encounters, could be a barrier for Lso transmission. However, the molecular interactions between Lso and the psyllid vector at the gut interface remain largely unknown. In this study, we investigated the global transcriptional responses of the adult psyllid gut upon infection with two Lso haplotypes (LsoA and LsoB) using Illumina sequencing. The results showed that each haplotype triggers a unique transcriptional response, with most of the distinct genes elicited by the highly virulent LsoB. The differentially expressed genes were mainly associated with digestion and metabolism, stress response, immunity, detoxification as well as cell proliferation and epithelium renewal. Importantly, distinct immune pathways were triggered by LsoA and LsoB in the gut of the potato psyllid. The information in this study will provide an understanding of the molecular basis of the interactions between the potato psyllid gut and Lso, which may lead to the discovery of novel molecular targets for the control of these pathogens.
Collapse
Affiliation(s)
- Xiao-Tian Tang
- Department of Entomology, Texas A&M University, College Station, Texas, United States of America
| | - Julien Levy
- Department of Horticultural Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Cecilia Tamborindeguy
- Department of Entomology, Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|
13
|
Peng T, Yuan Y, Huang A, He J, Fu S, Duan S, Yi L, Yuan C, Yuan H, Wang X, Zhou C. Interaction between the flagellum of Candidatus Liberibacter asiaticus and the vitellogenin-like protein of Diaphorina citri significantly influences CLas titer. Front Microbiol 2023; 14:1119619. [PMID: 37143541 PMCID: PMC10152367 DOI: 10.3389/fmicb.2023.1119619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/10/2023] [Indexed: 05/06/2023] Open
Abstract
Huanglongbing (HLB) is a global devastating citrus disease that is mainly caused by "Candidatus Liberibacter asiaticus" (CLas). It is mostly transmitted by the insect Asian citrus psyllid (ACP, Diaphorina citri) in a persistent and proliferative manner. CLas traverses multiple barriers to complete an infection cycle and is likely involved in multiple interactions with D. citri. However, the protein-protein interactions between CLas and D. citri are largely unknown. Here, we report on a vitellogenin-like protein (Vg_VWD) in D. citri that interacts with a CLas flagellum (flaA) protein. We found that Vg_VWD was upregulated in CLas-infected D. citri. Silencing of Vg_VWD in D. citri via RNAi silencing significantly increased the CLas titer, suggesting that Vg_VWD plays an important role in the CLas-D. citri interaction. Agrobacterium-mediated transient expression assays indicated that Vg_VWD inhibits BAX- and INF1-triggered necrosis and suppresses the callose deposition induced by flaA in Nicotiana benthamiana. These findings provide new insights into the molecular interaction between CLas and D. citri.
Collapse
Affiliation(s)
- Tao Peng
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing, China
| | - Yingzhe Yuan
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing, China
| | - Aijun Huang
- National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou, China
| | - Jun He
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing, China
| | - Shimin Fu
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing, China
| | - Shuo Duan
- National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou, China
| | - Long Yi
- National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou, China
| | - Chenyang Yuan
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Huizhu Yuan
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Beijing, China
- *Correspondence: Huizhu Yuan, ; Xuefeng Wang, ; Changyong Zhou,
| | - Xuefeng Wang
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing, China
- *Correspondence: Huizhu Yuan, ; Xuefeng Wang, ; Changyong Zhou,
| | - Changyong Zhou
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing, China
- *Correspondence: Huizhu Yuan, ; Xuefeng Wang, ; Changyong Zhou,
| |
Collapse
|
14
|
Mondal M, Carver M, Brown JK. Characteristics of environmental RNAi in potato psyllid, Bactericera cockerelli (Sulc) (Hemiptera: Psylloidea: Triozidae). Front Physiol 2022; 13:931951. [PMID: 36330211 PMCID: PMC9623324 DOI: 10.3389/fphys.2022.931951] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 09/20/2022] [Indexed: 11/23/2022] Open
Abstract
RNA interference (RNAi) has potential to become a major tool for integrated management of insect pests of agricultural crops based on sequence-specificity and low doses of rapidly biodegradable dsRNA. Deploying ‘environmental RNAi’ for control of insect vectors of plant pathogens is of increasing interest for combatting emerging plant diseases. Hemipteran insect vectors, including psyllids, are vascular feeders, making their development difficult to control specifically by targeting with pesticidal chemistries. Psyllids transmit “Candidatus Liberibacter solanacearum” the causal organism of potato zebra chip and tomato vein greening diseases, transmitted, respectively, by the potato or tomato psyllid (PoP). Until now, the optimal effective concentration(s) of double-stranded RNA (dsRNA) required for significant gene knockdown and RNAi persistence in PoP have not been determined. The objective of this study was to optimize RNAi in young PoP adults and 3rd instars for screening by oral delivery of dsRNAs. The minimal effective dsRNA concentrations required for robust knockdown and persistence were evaluated by delivering seven concentrations spanning 0.1 ng/μL to 500 ng/μL over post ingestion-access periods (IAP) ranging from 48 h to 12 days. The PoP gene candidates evaluated as targets were vacuolar ATPase subunit A, clathrin heavy chain, and non-fermenting protein 7, which were evaluated for knockdown by qPCR amplification. The minimum and/or the second most effective dsRNA concentration resulting in effective levels of gene knockdown was 100 ng/μL for all three targets. Higher concentrations did not yield further knockdown, indicating potential RISC saturation at the higher doses. Gene silencing post-IAP of 100 ng/μL dsRNA persisted for 3–5 days in adults and nymphs, with the PoP 3rd instar, followed by teneral and mature adults, respectively, exhibiting the most robust RNAi-response.
Collapse
Affiliation(s)
- Mosharrof Mondal
- School of Plant Sciences, The University of Arizona, Tucson, AZ, United States
- RNAissance Ag LLC, St. Louis, MO, United States
| | - Megan Carver
- School of Plant Sciences, The University of Arizona, Tucson, AZ, United States
| | - Judith K. Brown
- School of Plant Sciences, The University of Arizona, Tucson, AZ, United States
- *Correspondence: Judith K. Brown,
| |
Collapse
|
15
|
Sarkar P, Ghanim M. Interaction of Liberibacter Solanacearum with Host Psyllid Vitellogenin and Its Association with Autophagy. Microbiol Spectr 2022; 10:e0157722. [PMID: 35863005 PMCID: PMC9430699 DOI: 10.1128/spectrum.01577-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/14/2022] [Indexed: 12/28/2022] Open
Abstract
Candidatus Liberibacter solanacearum (CLso) haplotype D, transmitted by the carrot psyllid Bactericera trigonica, is a major constraint for carrot production in Israel. Unveiling the molecular interactions between the psyllid vector and CLso can facilitate the development of nonchemical approaches for controlling the disease caused by CLso. Bacterial surface proteins are often known to be involved in adhesion and virulence; however, interactions of CLso with carrot psyllid proteins that have a role in the transmission process has remained unexplored. In this study, we used CLso outer membrane protein (OmpA) and flagellin as baits to screen for psyllid interacting proteins in a yeast two-hybrid system assay. We identified psyllid vitellogenin (Vg) to interact with both OmpA and flagellin of CLso. As Vg and autophagy are often tightly linked, we also studied the expression of autophagy-related genes to further elucidate this interaction. We used the juvenile hormone (JH-III) to induce the expression of Vg, thapsigargin for suppressing autophagy, and rapamycin for inducing autophagy. The results revealed that Vg negatively regulates autophagy. Induced Vg expression significantly suppressed autophagy-related gene expression and the levels of CLso significantly increased, resulting in a significant mortality of the insect. Although the specific role of Vg remains obscure, the findings presented here identify Vg as an important component in the insect immune responses against CLso and may help in understanding the initial molecular response in the vector against Liberibacter. IMPORTANCE Pathogen transmission by vectors involves multiple levels of interactions, and for the transmission of liberibacter species by psyllid vectors, much of these interactions are yet to be explored. Candidatus Liberibacter solanacearum (CLso) haplotype D inflicts severe economic losses to the carrot industry. Understanding the specific interactions at different stages of infection is hence fundamental and could lead to the development of better management strategies to disrupt the transmission of the bacteria to new host plants. Here, we show that two liberibacter membrane proteins interact with psyllid vitellogenin and also induce autophagy. Altering vitellogenin expression directly influences autophagy and CLso abundance in the psyllid vector. Although the exact mechanism underlying this interaction remains unclear, this study highlights the importance of immune responses in the transmission of this disease agent.
Collapse
Affiliation(s)
- Poulami Sarkar
- Department of Entomology, Agricultural Research Organization, Volcani Institute, Rishon LeZion, Israel
| | - Murad Ghanim
- Department of Entomology, Agricultural Research Organization, Volcani Institute, Rishon LeZion, Israel
| |
Collapse
|
16
|
Paredes-Montero JR, Arif U, Brown JK. Knockdown of ecdysteroid synthesis genes results in impaired molting and high mortality in Bactericera cockerelli (Hemiptera: Triozidae). PEST MANAGEMENT SCIENCE 2022; 78:2204-2214. [PMID: 35191190 DOI: 10.1002/ps.6848] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 02/11/2022] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND RNA-mediated interference (RNAi) has become a promising biopesticide technology with which to direct sequence-specific gene knockdown of key targets in the potato psyllid (PoP) Bactericera cockerelli, resulting in significant mortality. In this study, three strategically selected target genes, ATF4, C7 and D24, essential for the biosynthesis and regulation of ecdysteroids, were evaluated for knockdown and mortality using oral delivery of individual, paired and all three double-stranded RNAs (dsRNAs), in five replicated experiments. Knockdown was determined as the fold-change in gene expression using a quantitative polymerase chain reaction. RESULTS Knockdown of the D24 target, at 39%-45%, resulted in 51% PoP mortality by 10 days post-ingestion (dpi) of dsRNA. Knockdown of C7, at 38%-61%, resulted in 53% mortality by 10 dpi, whereas dsD24 ingestion resulted in 65% mortality by 10 dpi when dsD24 and dsC7 were co-delivered. Three phenotypes, INCOMEC, PREMEC and SWOLLEN, were observed at a frequency of 4%-12%, and are consistent with incomplete ecdysis in immature and/or adult PoP. Adult PoP exhibiting INCOMEC survived for several days but were unable to mate or fly, whereas SWOLLEN and PREMEC were lethal to the immature instars. Knockdown of ATF4 did not result in the mortality or malformations in immature and adult PoP. CONCLUSIONS Compared with knockdown of individual D24 and C7 targets, significantly greater RNAi penetrance was achieved following delivery of combined dsRNAs. The highest knockdown that resulted in incomplete ecdysis and/or mortality was obtained for targets with predicted involvement in the same or interacting pathway(s). Knockdown of ATF4 was apparently "rescued" by uncharacterized compensatory gene(s) or effects. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jorge R Paredes-Montero
- School of Plant Sciences, The University of Arizona, Tucson, AZ, USA
- Facultad de Ciencias de la Vida, Escuela Superior Politécnica del Litoral, ESPOL, Guayaquil, Ecuador
| | - Usman Arif
- Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
| | - Judith K Brown
- School of Plant Sciences, The University of Arizona, Tucson, AZ, USA
| |
Collapse
|
17
|
Shippy TD, Hosmani PS, Flores-Gonzalez M, Mueller LA, Hunter WB, Brown SJ, D’Elia T, Saha S. Annotation of Hox cluster and Hox cofactor genes in the Asian citrus psyllid, Diaphorina citri, reveals novel features. GIGABYTE 2022; 2022:gigabyte49. [PMID: 36824511 PMCID: PMC9933525 DOI: 10.46471/gigabyte.49] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 04/06/2022] [Indexed: 11/09/2022] Open
Abstract
Hox genes and their cofactors are essential developmental genes specifying regional identity in animals. Hox genes have a conserved arrangement in clusters in the same order in which they specify identity along the anterior-posterior axis. A few insect species have breaks in the cluster, but these are exceptions. We annotated the 10 Hox genes of the Asian citrus psyllid Diaphorina citri, and found a split in its Hox cluster between the Deformed and Sex combs reduced genes - the first time a break at this position has been observed in an insect Hox cluster. We also annotated D. citri orthologs of the Hox cofactor genes homothorax, PKNOX and extradenticle and found an additional copy of extradenticle in D. citri that appears to be a retrogene. Expression data and sequence conservation suggest that the extradenticle retrogene may have retained the original extradenticle function and allowed divergence of the parental extradenticle gene.
Collapse
Affiliation(s)
- Teresa D. Shippy
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | | | | | | | - Wayne B. Hunter
- USDA-ARS, U.S. Horticultural Research Laboratory, Fort Pierce, FL 34945, USA
| | - Susan J. Brown
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Tom D’Elia
- Indian River State College, Fort Pierce, FL 34981, USA
| | - Surya Saha
- Boyce Thompson Institute, Ithaca, NY 14853, USA
- Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
18
|
Shippy TD, Miller S, Tamayo B, Hosmani PS, Flores-Gonzalez M, Mueller LA, Hunter WB, Brown SJ, D’Elia T, Saha S. Manual curation and phylogenetic analysis of chitinase family genes in the Asian citrus psyllid, Diaphorina citri. GIGABYTE 2022; 2022:gigabyte46. [PMID: 36824529 PMCID: PMC9933517 DOI: 10.46471/gigabyte.46] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 03/11/2022] [Indexed: 11/09/2022] Open
Abstract
Chitinases are enzymes that digest the polysaccharide polymer chitin. During insect development, breakdown of chitin is an essential step in molting of the exoskeleton. Knockdown of chitinases required for molting is lethal to insects, making chitinase genes an interesting target for RNAi-based pest control methods. The Asian citrus psyllid, Diaphorina citri, carries the bacterium causing Huanglongbing, or citrus greening disease, a devastating citrus disease. We identified and annotated 12 chitinase family genes from D. citri as part of a community effort to create high-quality gene models to aid the design of interdictory molecules for pest control. We categorized the D. citri chitinases according to an established classification scheme and re-evaluated the classification of chitinases in other hemipterans. In addition to chitinases from known groups, we identified a novel class of chitinases present in D. citri and several related hemipterans that appears to be the result of horizontal gene transfer.
Collapse
Affiliation(s)
- Teresa D. Shippy
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Sherry Miller
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
- Allen County Community College, Burlingame, KS 66413, USA
| | - Blessy Tamayo
- Indian River State College, Fort Pierce, FL 34981, USA
| | | | | | | | - Wayne B. Hunter
- USDA-ARS, US Horticultural Research Laboratory, Fort Pierce, FL 34945, USA
| | - Susan J. Brown
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Tom D’Elia
- Indian River State College, Fort Pierce, FL 34981, USA
| | - Surya Saha
- Boyce Thompson Institute, Ithaca, NY 14853, USA
- Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
19
|
Tamayo B, Kercher K, Vosburg C, Massimino C, Jernigan MR, Hasan DL, Harper D, Mathew A, Adkins S, Shippy T, Hosmani PS, Flores-Gonzalez M, Panitz N, Mueller LA, Hunter WB, Benoit JB, Brown SJ, D’Elia T, Saha S. Annotation of glycolysis, gluconeogenesis, and trehaloneogenesis pathways provide insight into carbohydrate metabolism in the Asian citrus psyllid. GIGABYTE 2022; 2022:gigabyte41. [PMID: 36824510 PMCID: PMC9933520 DOI: 10.46471/gigabyte.41] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 02/11/2022] [Indexed: 11/09/2022] Open
Abstract
Citrus greening disease is caused by the pathogen Candidatus Liberibacter asiaticus and transmitted by the Asian citrus psyllid, Diaphorina citri. No curative treatment or significant prevention mechanism exists for this disease, which causes economic losses from reduced citrus production. A high-quality genome of D. citri is being manually annotated to provide accurate gene models to identify novel control targets and increase understanding of this pest. Here, we annotated 25 D. citri genes involved in glycolysis and gluconeogenesis, and seven in trehaloneogenesis. Comparative analysis showed that glycolysis genes in D. citri are highly conserved but copy numbers vary. Analysis of expression levels revealed upregulation of several enzymes in the glycolysis pathway in the thorax, consistent with the primary use of glucose by thoracic flight muscles. Manually annotating these core metabolic pathways provides accurate genomic foundation for developing gene-targeting therapeutics to control D. citri.
Collapse
Affiliation(s)
- Blessy Tamayo
- Indian River State College, Fort Pierce, FL 34981, USA
| | - Kyle Kercher
- Indian River State College, Fort Pierce, FL 34981, USA
| | - Chad Vosburg
- Indian River State College, Fort Pierce, FL 34981, USA
| | | | | | | | | | - Anuja Mathew
- Indian River State College, Fort Pierce, FL 34981, USA
| | - Samuel Adkins
- Indian River State College, Fort Pierce, FL 34981, USA
| | - Teresa Shippy
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | | | | | | | | | - Wayne B. Hunter
- US Department of Agriculture-Agricultural Research Service (USDA-ARS), US Horticultural Research Laboratory, Fort Pierce, FL 34945, USA
| | - Joshua B. Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Susan J. Brown
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Tom D’Elia
- Indian River State College, Fort Pierce, FL 34981, USA
| | - Surya Saha
- Boyce Thompson InstituteIthaca, NY 14853, USA
- Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
20
|
Grace R, Massimino C, Shippy TD, Tank W, Hosmani PS, Flores-Gonzalez M, Mueller LA, Hunter WB, Benoit JB, Brown SJ, D’Elia T, Saha S. Genomic identification, annotation, and comparative analysis of Vacuolar-type ATP synthase subunits in Diaphorina citri. GIGABYTE 2022; 2022:gigabyte39. [PMID: 36824519 PMCID: PMC9933544 DOI: 10.46471/gigabyte.39] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 02/04/2022] [Indexed: 11/09/2022] Open
Abstract
The hemipteran insect Diaphorina citri, or Asian citrus psyllid, is a vector for Candidatus Liberibacter asiaticus (CLas), the bacterium causing citrus greening disease, or Huanglongbing (HLB). Millions of citrus trees have been destroyed, and every grove in Florida, USA, has been directly affected by this disease. In eukaryotes, vacuolar-type ATP synthase (V-ATPase) is an abundant heterodimeric enzyme that serves the cell with essential compartment acidification through the active processes that transport protons across the membrane. Fifteen putative V-ATPase genes in the D. citri genome were manually curated. Comparative genomic analysis revealed that D. citri V-ATPase subunits share domains and motifs with other insects, including the V-ATPase-A superfamily domain. Phylogenetic analysis separates D. citri V-ATPase subunits into expected clades with orthologous sequences. Annotation of the D. citri genome is a critical step towards developing directed pest management strategies to reduce the spread of HLB throughout the citrus industry.
Collapse
Affiliation(s)
- Rebecca Grace
- Indian River State College, Fort Pierce, FL 34981, USA
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | | | - Teresa D. Shippy
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Will Tank
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | | | | | | | - Wayne B. Hunter
- USDA-ARS, US Horticultural Research Laboratory, Fort Pierce, FL 34945, USA
| | - Joshua B. Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Susan J. Brown
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Tom D’Elia
- Indian River State College, Fort Pierce, FL 34981, USA
| | - Surya Saha
- Boyce Thompson Institute, Ithaca, NY 14853, USA
- Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
21
|
Killiny N. Made for Each Other: Vector-Pathogen Interfaces in the Huanglongbing Pathosystem. PHYTOPATHOLOGY 2022; 112:26-43. [PMID: 34096774 DOI: 10.1094/phyto-05-21-0182-fi] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Citrus greening, or huanglongbing (HLB), currently is the most destructive disease of citrus. HLB disease is putatively caused by the phloem-restricted α-proteobacterium 'Candidatus Liberibacter asiaticus'. This bacterium is transmitted primarily by the Asian citrus psyllid Diaphorina citri (Hemiptera: Liviidae). Most animal pathogens are considered pathogenic to their insect vectors, whereas the relationships between plant pathogens and their insect vectors are variable. Lately, the relationship of 'Ca. L. asiaticus' with its insect vector, D. citri, has been well investigated at the molecular, biochemical, and biological levels in many studies. Herein, the findings concerning this relationship are discussed and molecular features of the acquisition of 'Ca. L. asiaticus' from the plant host and its growth and circulation within D. citri, as well as its transmission to plants, are presented. In addition, the effects of 'Ca. L. asiaticus' on the energy metabolism (respiration, tricarboxylic acid cycle, and adenosine triphosphate production), metabolic pathways, immune system, endosymbionts, and detoxification enzymes of D. citri are discussed together with other impacts such as shorter lifespan, altered feeding behavior, and higher fecundity. Overall, although 'Ca. L. asiaticus' has significant negative effects on its insect vector, it increases its vector fitness, indicating that it develops a mutualistic relationship with its vector. This review will help in understanding the specific interactions between 'Ca. L. asiaticus' and its psyllid vector in order to design innovative management strategies.
Collapse
Affiliation(s)
- Nabil Killiny
- Citrus Research and Education Center, IFAS, University of Florida, Lake Alfred, FL 33850
| |
Collapse
|
22
|
Pandey SS, Hendrich C, Andrade MO, Wang N. Candidatus Liberibacter: From Movement, Host Responses, to Symptom Development of Citrus Huanglongbing. PHYTOPATHOLOGY 2022; 112:55-68. [PMID: 34609203 DOI: 10.1094/phyto-08-21-0354-fi] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Candidatus Liberibacter spp. are fastidious α-proteobacteria that cause multiple diseases on plant hosts of economic importance, including the most devastating citrus disease: Huanglongbing (HLB). HLB was reported in Asia a century ago but has since spread worldwide. Understanding the pathogenesis of Candidatus Liberibacter spp. remains challenging as they are yet to be cultured in artificial media and infect the phloem, a sophisticated environment that is difficult to manipulate. Despite those challenges, tremendous progress has been made on Ca. Liberibacter pathosystems. Here, we first reviewed recent studies on genetic information of flagellar and type IV pili biosynthesis, their expression profiles, and movement of Ca. Liberibacter spp. inside the plant and insect hosts. Next, we reviewed the transcriptomic, proteomic, and metabolomic studies of susceptible and tolerant plant genotypes to Ca. Liberibacter spp. infection and how Ca. Liberibacter spp. adapt in plants. Analyses of the interactions between plants and Ca. Liberibacter spp. imply the involvement of immune response in the Ca. Liberibacter pathosystems. Lastly, we reviewed how Ca. Liberibacter spp. movement inside and interactions with plants lead to symptom development.
Collapse
Affiliation(s)
- Sheo Shankar Pandey
- Citrus Research and Education Center, Department of Microbiology and Cell Sciences, University of Florida, Lake Alfred, FL 33850, U.S.A
| | - Connor Hendrich
- Citrus Research and Education Center, Department of Microbiology and Cell Sciences, University of Florida, Lake Alfred, FL 33850, U.S.A
| | - Maxuel O Andrade
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Centre for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil
| | - Nian Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Sciences, University of Florida, Lake Alfred, FL 33850, U.S.A
| |
Collapse
|
23
|
Lin CY, Achor D, Levy A. Intracellular Life Cycle of ' Candidatus Liberibacter asiaticus' Inside Psyllid Gut Cells. PHYTOPATHOLOGY 2022; 112:145-153. [PMID: 34689612 DOI: 10.1094/phyto-07-21-0301-fi] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
'Candidatus Liberibacter asiaticus' (CLas), the devastating pathogen related to Huanglongbing (HLB), is a phloem-limited, fastidious, insect-borne bacterium. Rapid spread of HLB disease relies on CLas-efficient propagation in the vector, the Asian citrus psyllid Diaphorina citri, in a circulative manner. Understanding the intracellular lifecycle of CLas in psyllid midgut, the major organ for CLas transmission, is fundamental to improving current management strategies. Using a microscopic approach within CLas-infected insect midgut, we observed the entry of CLas into gut cells inside vesicles, termed Liberibacter-containing vacuoles (LCVs), by endocytosis. Endocytosis is followed by the formation of endoplasmic reticulum-related and replication permissive vacuoles (rLCVs). Additionally, we observed the formation of double membrane autophagosome-like structure, termed autophagy-related vacuole (aLCV). Vesicles containing CLas egress from aLCV and fuse with the cell membrane. Immunolocalization studies showed that CLas uses endocytosis- and exocytosis-like mechanisms that mediates bacterial invasion and egress. Upregulation of autophagy-related genes indicated subversion of host autophagy by CLas in psyllid vector to promote infection. These results indicate that CLas interacts with host cellular machineries to undergo a multistage intracellular cycle through endocytic, secretory, autophagic, and exocytic pathways via complex machineries. Potential tactics for HLB control can be made depending on further investigations on the knowledge of the molecular mechanisms of CLas intracellular cycle.
Collapse
Affiliation(s)
- Chun-Yi Lin
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850
| | - Diann Achor
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850
| | - Amit Levy
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611
| |
Collapse
|
24
|
Yu HZ, Xie YX, Wang J, Wang Y, Du YM, Wang HG, Zhong BL, Zhu B, Yu XD, Lu ZJ. Integrated transcriptome sequencing and RNA interference reveals molecular changes in Diaphorina citri after exposure to validamycin. INSECT SCIENCE 2021; 28:1690-1707. [PMID: 33118290 DOI: 10.1111/1744-7917.12880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/10/2020] [Accepted: 09/17/2020] [Indexed: 06/11/2023]
Abstract
Validamycin has been widely used as a specific competitive inhibitor of trehalase. In our previous research, validamycin significantly inhibited trehalase activity and chitin synthesis in Diaphorina citri, resulting in abnormal phenotypes. However, the mechanism of validamycin's action on D. citri remains unclear. Here, using a comparative transcriptome analysis, 464 differentially expressed genes (DEGs) in D. citri were identified after validamycin treatment. A Gene Ontology enrichment analysis revealed that these DEGs were mainly involved in "small molecule process", "structural molecule activity" and "transition metal ion binding". DEGs involved in chitin metabolism, cuticle synthesis and insecticide detoxification were validated by reverse transcription quantitative polymerase chain reaction. The RNA interference of D. citri chitinase-like protein ENO3 and D. citri cuticle protein 7 genes significantly affected D. citri molting. Moreover, the recombinant chitinase-like protein ENO3 exhibited a chitin-binding property, and an antimicrobial activity against Bacillus subtilis. This study provides a first insight into the molecular changes in D. citri after exposure to validamycin and identifies two effective RNA interference targets for D. citri control.
Collapse
Affiliation(s)
- Hai-Zhong Yu
- College of Life Sciences, Gannan Normal University, Ganzhou, Jiangxi Province, China
- National Navel Orange Engineering Research Center, Ganzhou, Jiangxi Province, China
| | - Yan-Xin Xie
- College of Life Sciences, Gannan Normal University, Ganzhou, Jiangxi Province, China
| | - Jie Wang
- College of Life Science, Anhui Agricultural University, Hefei, China
| | - Ying Wang
- College of Life Sciences, Gannan Normal University, Ganzhou, Jiangxi Province, China
- National Navel Orange Engineering Research Center, Ganzhou, Jiangxi Province, China
| | - Yi-Min Du
- College of Life Sciences, Gannan Normal University, Ganzhou, Jiangxi Province, China
- National Navel Orange Engineering Research Center, Ganzhou, Jiangxi Province, China
| | - He-Gui Wang
- College of Life Sciences, Gannan Normal University, Ganzhou, Jiangxi Province, China
- National Navel Orange Engineering Research Center, Ganzhou, Jiangxi Province, China
| | - Ba-Lian Zhong
- College of Life Sciences, Gannan Normal University, Ganzhou, Jiangxi Province, China
- National Navel Orange Engineering Research Center, Ganzhou, Jiangxi Province, China
| | - Bo Zhu
- College of Life Sciences, Gannan Normal University, Ganzhou, Jiangxi Province, China
- National Navel Orange Engineering Research Center, Ganzhou, Jiangxi Province, China
| | - Xiu-Dao Yu
- College of Life Sciences, Gannan Normal University, Ganzhou, Jiangxi Province, China
- National Navel Orange Engineering Research Center, Ganzhou, Jiangxi Province, China
| | - Zhan-Jun Lu
- College of Life Sciences, Gannan Normal University, Ganzhou, Jiangxi Province, China
- National Navel Orange Engineering Research Center, Ganzhou, Jiangxi Province, China
| |
Collapse
|
25
|
Qasim M, Xiao H, He K, Omar MAA, Hussain D, Noman A, Rizwan M, Khan KA, Al-Zoubi OM, Alharbi SA, Wang L, Li F. Host-pathogen interaction between Asian citrus psyllid and entomopathogenic fungus (Cordyceps fumosorosea) is regulated by modulations in gene expression, enzymatic activity and HLB-bacterial population of the host. Comp Biochem Physiol C Toxicol Pharmacol 2021; 248:109112. [PMID: 34153507 DOI: 10.1016/j.cbpc.2021.109112] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/09/2021] [Accepted: 06/13/2021] [Indexed: 12/15/2022]
Abstract
The host-pathogen interaction has been explored by several investigations, but the impact of fungal pathogens against insect resistance is still ambiguous. Therefore, we assessed the enzymatic activity and defense-related gene expression of Asian citrus psyllid (ACP) nymphal and adult populations on Huanglongbing-diseased citrus plants under the attack of Cordyceps fumosorosea. Overall, five enzymes viz. superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), glutathione S-transferase (GST), carboxylesterase (CarE), and four genes, namely SOD, 16S, CYP4C68, CYP4BD1, were selected for respective observations from ACP populations. Enzymatic activity of four enzymes (SOD, POD, GST, CarE) was significantly decreased after 5-days post-treatment (dpt) and 3-dpt fungal exposure in fungal treated ACP adult and nymphal populations, respectively, whereas the activity of CAT was boosted substantially post-treatment time schedule. Besides, we recorded drastic fluctuations in the expression of CYP4 genes among fungal treated ACP populations. After 24 hours post-treatment (hpt), expression of both CYP4 genes was boosted in fungal treated populations than controlled populations (adult and nymph). After 3-dpt, however, the expression of CYP4 genes was declined in the given populations. Likewise, fungal attack deteriorated the resistance of adult and nymphal of ACP population, as SOD expression was down-regulated in fungal-treated adult and nymphs after 5-dpt and 3-dpt exposure, respectively. Moreover, bacterial expression via the 16S gene was significantly increased in fungal-treated adult and nymphal ACP populations with increasing post-treatment time. Overall, our data illustrate that the fungal application disrupted the insect defense system. The expression of these genes and enzymes suppress the immune function of adult and nymphal ACP populations. As it is reported first time that the applications of C. fumosorosea against ACP reduce insect resistance by interfering with the CYP4 and SOD system. Therefore, we propose new strategies to discover the role of certain toxic compounds from fungus, which can reduce insect resistance, focusing on resistance-related genes and enzymes.
Collapse
Affiliation(s)
- Muhammad Qasim
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Science, Zhejiang University, Hangzhou 310058, PR China; State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China.
| | - Huamei Xiao
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Science, Zhejiang University, Hangzhou 310058, PR China; Key Laboratory of Crop Growth and Development Regulation of Jiangxi Province, College of Life Sciences and Resource Environment, Yichun University, Yichun 336000, PR China
| | - Kang He
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Science, Zhejiang University, Hangzhou 310058, PR China
| | - Mohamed A A Omar
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Science, Zhejiang University, Hangzhou 310058, PR China
| | - Dilbar Hussain
- Entomological Research Institute, Ayub Agricultural Research Institute, Faisalabad 38850, Pakistan
| | - Ali Noman
- Department of Botany, Government College University, Faisalabad 38040, Pakistan
| | - Muhammad Rizwan
- Department of Entomology, University of Agriculture, Faisalabad 38040, Pakistan
| | - Khalid Ali Khan
- Research Center for Advanced Materials Science (RCAMS), Unit of Bee Research and Honey Production, Biology Department, Faculty of Science, King Khalid University, Abha 61413, Saudi Arabia
| | | | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O Box 2455, Riyadh 11451, Saudi Arabia
| | - Liande Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China.
| | - Fei Li
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Science, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
26
|
Bento FMM, Darolt JC, Merlin BL, Penã L, Wulff NA, Cônsoli FL. The molecular interplay of the establishment of an infection - gene expression of Diaphorina citri gut and Candidatus Liberibacter asiaticus. BMC Genomics 2021; 22:677. [PMID: 34544390 PMCID: PMC8454146 DOI: 10.1186/s12864-021-07988-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 09/03/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Candidatus Liberibacter asiaticus (CLas) is one the causative agents of greening disease in citrus, an unccurable, devastating disease of citrus worldwide. CLas is vectored by Diaphorina citri, and the understanding of the molecular interplay between vector and pathogen will provide additional basis for the development and implementation of successful management strategies. We focused in the molecular interplay occurring in the gut of the vector, a major barrier for CLas invasion and colonization. RESULTS We investigated the differential expression of vector and CLas genes by analyzing a de novo reference metatranscriptome of the gut of adult psyllids fed of CLas-infected and healthy citrus plants for 1-2, 3-4 and 5-6 days. CLas regulates the immune response of the vector affecting the production of reactive species of oxygen and nitrogen, and the production of antimicrobial peptides. Moreover, CLas overexpressed peroxiredoxin, probably in a protective manner. The major transcript involved in immune expression was related to melanization, a CLIP-domain serine protease we believe participates in the wounding of epithelial cells damaged during infection, which is supported by the down-regulation of pangolin. We also detected that CLas modulates the gut peristalsis of psyllids through the down-regulation of titin, reducing the elimination of CLas with faeces. The up-regulation of the neuromodulator arylalkylamine N-acetyltransferase implies CLas also interferes with the double brain-gut communication circuitry of the vector. CLas colonizes the gut by expressing two Type IVb pilin flp genes and several chaperones that can also function as adhesins. We hypothesized biofilm formation occurs by the expression of the cold shock protein of CLas. CONCLUSIONS The thorough detailed analysis of the transcritome of Ca. L. asiaticus and of D. citri at different time points of their interaction in the gut tissues of the host led to the identification of several host genes targeted for regulation by L. asiaticus, but also bacterial genes coding for potential effector proteins. The identified targets and effector proteins are potential targets for the development of new management strategies directed to interfere with the successful utilization of the psyllid vector by this pathogen.
Collapse
Affiliation(s)
- Flavia Moura Manoel Bento
- Insect Interactions Laboratory, Department of Entomology and Acarology, Luiz de Queiroz College of Agriculture, University of São Paulo, Avenida Pádua Dias 11, Piracicaba, São Paulo 13418-900 Brazil
| | - Josiane Cecília Darolt
- Fund for Citrus Protection (FUNDECITRUS), Araraquara, São Paulo 14807-040 Brazil
- Institute of Chemistry, São Paulo State University – UNESP, Araraquara, São Paulo Brazil
| | - Bruna Laís Merlin
- Insect Interactions Laboratory, Department of Entomology and Acarology, Luiz de Queiroz College of Agriculture, University of São Paulo, Avenida Pádua Dias 11, Piracicaba, São Paulo 13418-900 Brazil
| | - Leandro Penã
- Fund for Citrus Protection (FUNDECITRUS), Araraquara, São Paulo 14807-040 Brazil
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universidad Politécnica de Valencia (UPV), 46022 Valencia, Spain
| | - Nelson Arno Wulff
- Fund for Citrus Protection (FUNDECITRUS), Araraquara, São Paulo 14807-040 Brazil
- Institute of Chemistry, São Paulo State University – UNESP, Araraquara, São Paulo Brazil
| | - Fernando Luis Cônsoli
- Insect Interactions Laboratory, Department of Entomology and Acarology, Luiz de Queiroz College of Agriculture, University of São Paulo, Avenida Pádua Dias 11, Piracicaba, São Paulo 13418-900 Brazil
| |
Collapse
|
27
|
Awan UA, Meng L, Xia S, Raza MF, Zhang Z, Zhang H. Isolation, fermentation, and formulation of entomopathogenic fungi virulent against adults of Diaphorina citri. PEST MANAGEMENT SCIENCE 2021; 77:4040-4053. [PMID: 33896118 DOI: 10.1002/ps.6429] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 04/13/2021] [Accepted: 04/25/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Mycopesticides are important for integrated management of the Asian citrus psyllid, Diaphorina citri. However, there are few reports on the fermentation and formulation for mycopesticides with high virulence against D. citri. RESULTS From four different locations in South China, 12 fungal strains were isolated and classified into Beauveria bassiana (two isolates), Fusarium fujikuroi (five isolates), and Cordyceps javanica (five isolates) based on the phylogenetic analysis of ITS1-5.8S rDNA-ITS4 and morphology of colonies and conidia. Based on the highest initial virulence (86.52 ± 2.35%) and best growth characteristics, F-HY002-ACPHali was further optimized for biphasic fermentation (7.85 ± 2.62 × 109 g-1 dry substrate) with soybean meal + cottonseed flour (1:1) as the solid substrate and full light as the light/dark cycle. Furthermore, the oil-based conidial formulation was optimized with sesame oil as an effective carrier, which significantly enhanced conidial shelf life up to 16 weeks at 26 °C and 4 °C, thermo-stress (50 °C) and UV-B stress resistance, and virulence against adults of D. citri with increased mortalities and decreased LT50 in comparison to that of unformulated conidia. CONCLUSION Our results not only provide a valuable native strain with high virulence against adults of D. citri, but also imply the soybean meal + cottonseed flour as valuable solid substrate, full-light exposure as environmental stimuli for solid-state fermentation, and the sesame oil as an effective carrier for the formulation of the C. javanica. These findings will facilitate the development of a potential mycopesticide for the biological control of Asian citrus psyllid.
Collapse
Affiliation(s)
- Umar Anwar Awan
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Horticultural Plant Biology (MOE), College of Plant Science and Technology, Institute of Urban and Horticultural Entomology, Huazhong Agricultural University, Wuhan, China
| | - Lixue Meng
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Shuang Xia
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Horticultural Plant Biology (MOE), College of Plant Science and Technology, Institute of Urban and Horticultural Entomology, Huazhong Agricultural University, Wuhan, China
| | - Muhammad Fahim Raza
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Horticultural Plant Biology (MOE), College of Plant Science and Technology, Institute of Urban and Horticultural Entomology, Huazhong Agricultural University, Wuhan, China
| | - Zhenyu Zhang
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Horticultural Plant Biology (MOE), College of Plant Science and Technology, Institute of Urban and Horticultural Entomology, Huazhong Agricultural University, Wuhan, China
| | - Hongyu Zhang
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Horticultural Plant Biology (MOE), College of Plant Science and Technology, Institute of Urban and Horticultural Entomology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
28
|
Miller S, Shippy TD, Tamayo B, Hosmani PS, Flores-Gonzalez M, Mueller LA, Hunter WB, Brown SJ, D’Elia T, Saha S. In silico characterization of chitin deacetylase genes in the Diaphorina citri genome. GIGABYTE 2021; 2021:gigabyte25. [PMID: 36824334 PMCID: PMC9632012 DOI: 10.46471/gigabyte.25] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 06/09/2021] [Indexed: 11/09/2022] Open
Abstract
Chitin deacetylases (CDAs) are one of the least understood components of insect chitin metabolism. The partial deacetylation of chitin polymers appears to be important for the proper formation of higher order chitin structures, such as long fibers and bundles, which contribute to the integrity of the insect exoskeleton and other structures. Some CDAs may also be involved in bacterial defense. Here, we report the manual annotation of four CDA genes from the Asian citrus psyllid, Diaphorina citri, laying the groundwork for future study of these genes.
Collapse
Affiliation(s)
- Sherry Miller
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
- Allen County Community College, Burlingame, KS 66413, USA
| | - Teresa D. Shippy
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Blessy Tamayo
- Indian River State College, Fort Pierce, FL 34981, USA
| | | | | | | | - Wayne B. Hunter
- USDA-ARS, U.S. Horticultural Research Laboratory, Fort Pierce, FL 34945, USA
| | - Susan J. Brown
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Tom D’Elia
- Indian River State College, Fort Pierce, FL 34981, USA
| | - Surya Saha
- Boyce Thompson Institute, Ithaca, NY 14853, USA
- Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
29
|
Massimino C, Vosburg C, Shippy T, Hosmani PS, Flores-Gonzalez M, Mueller LA, Hunter WB, Benoit JB, Brown SJ, D’Elia T, Saha S. Annotation of yellow genes in Diaphorina citri, the vector for Huanglongbing disease. GIGABYTE 2021; 2021:gigabyte20. [PMID: 36824344 PMCID: PMC9631960 DOI: 10.46471/gigabyte.20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 05/18/2021] [Indexed: 11/09/2022] Open
Abstract
Huanglongbing (HLB), also known as citrus greening disease, is caused by the bacterium Candidatus Liberibacter asiaticus (CLas). It is a serious threat to global citrus production. This bacterium is transmitted by the Asian citrus psyllid, Diaphorina citri (Hemiptera). There are no effective in planta treatments for CLas. Therefore, one strategy is to manage the psyllid population. Manual annotation of the D. citri genome can identify and characterize gene families that could be novel targets for psyllid control. The yellow gene family is an excellent target because yellow genes, which have roles in melanization, are linked to development and immunity. Combined analysis of the genome with RNA-seq datasets, sequence homology, and phylogenetic trees were used to identify and annotate nine yellow genes in the D. citri genome. Manual curation of genes in D. citri provided in-depth analysis of the yellow family among hemipteran insects and provides new targets for molecular control of this psyllid pest. Manual annotation was done as part of a collaborative Citrus Greening community annotation project.
Collapse
Affiliation(s)
| | - Chad Vosburg
- Indian River State College, Fort Pierce, FL 34981, USA
| | - Teresa Shippy
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | | | | | | | - Wayne B. Hunter
- USDA-ARS, US Horticultural Research Laboratory, Fort Pierce, FL 34945, USA
| | - Joshua B. Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Susan J. Brown
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Tom D’Elia
- Indian River State College, Fort Pierce, FL 34981, USA
| | - Surya Saha
- Boyce Thompson Institute, Ithaca, NY 14853, USA
- Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
30
|
Hosseinzadeh S, Higgins SA, Ramsey J, Howe K, Griggs M, Castrillo L, Heck M. Proteomic Polyphenism in Color Morphotypes of Diaphorina citri, Insect Vector of Citrus Greening Disease. J Proteome Res 2021; 20:2851-2866. [PMID: 33890474 DOI: 10.1021/acs.jproteome.1c00089] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Diaphorina citri is a vector of "Candidatus Liberibacter asiaticus" (CLas), associated with citrus greening disease. D. citri exhibit at least two color morphotypes, blue and non-blue, the latter including gray and yellow morphs. Blue morphs have a greater capacity for long-distance flight and transmit CLas less efficiently as compared to non-blue morphs. Differences in physiology and immunity between color morphs of the insect vector may influence disease epidemiology and biological control strategies. We evaluated the effect of CLas infection on color morph and sex-specific proteomic profiles of D. citri. Immunity-associated proteins were more abundant in blue morphs as compared to non-blue morphs but were upregulated at a higher magnitude in response to CLas infection in non-blue insects. To test for differences in color morph immunity, we measured two phenotypes: (1) survival of D. citri when challenged with the entomopathogenic fungus Beauveria bassiana and (2) microbial load of the surface and internal microbial communities. Non-blue color morphs showed higher mortality at four doses of B. bassinana, but no differences in microbial load were observed. Thus, color morph polyphenism is associated with two distinct proteomic immunity phenotypes in D. citri that may impact transmission of CLas and resistance to B. bassiana under some conditions.
Collapse
Affiliation(s)
- Saeed Hosseinzadeh
- Section of Plant Pathology and Plant-Microbe Biology, School of Integrated Plant Sciences, Cornell University, Ithaca, New York 14853, United States.,Boyce Thompson Institute, Ithaca, New York 14853, United States
| | - Steven A Higgins
- Section of Plant Pathology and Plant-Microbe Biology, School of Integrated Plant Sciences, Cornell University, Ithaca, New York 14853, United States.,Emerging Pests and Pathogens Research Unit, Robert W. Holley Center, USDA ARS, Ithaca, New York 14853, United States
| | - John Ramsey
- Emerging Pests and Pathogens Research Unit, Robert W. Holley Center, USDA ARS, Ithaca, New York 14853, United States
| | - Kevin Howe
- Emerging Pests and Pathogens Research Unit, Robert W. Holley Center, USDA ARS, Ithaca, New York 14853, United States
| | - Michael Griggs
- Emerging Pests and Pathogens Research Unit, Robert W. Holley Center, USDA ARS, Ithaca, New York 14853, United States
| | - Louela Castrillo
- Emerging Pests and Pathogens Research Unit, Robert W. Holley Center, USDA ARS, Ithaca, New York 14853, United States
| | - Michelle Heck
- Section of Plant Pathology and Plant-Microbe Biology, School of Integrated Plant Sciences, Cornell University, Ithaca, New York 14853, United States.,Boyce Thompson Institute, Ithaca, New York 14853, United States.,Emerging Pests and Pathogens Research Unit, Robert W. Holley Center, USDA ARS, Ithaca, New York 14853, United States
| |
Collapse
|
31
|
Moussa A, Passera A, Sanna F, Faccincani M, Casati P, Bianco PA, Mori N, Quaglino F. Bacterial microbiota associated with insect vectors of grapevine Bois noir disease in relation to phytoplasma infection. FEMS Microbiol Ecol 2021; 96:5917978. [PMID: 33016318 DOI: 10.1093/femsec/fiaa203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/29/2020] [Indexed: 02/05/2023] Open
Abstract
Bois noir is a grapevine disease causing severe yield loss in vineyards worldwide. It is associated with 'Candidatus Phytoplasma solani', a phloem-limited bacterium transmitted by polyphagous insects. Due to its complex epidemiology, it is difficult to organize effective containment measures. This study aimed to describe the bacterial microbiota associated with 'Candidatus Phytoplasma solani' infected and non-infected insect hosts and vectors to investigate if phytoplasma presence can shape the microbiota. Alpha-diversity analysis showed a low microbiota diversity in these insects, in which few genera were highly abundant. Beta-diversity analysis revealed that the xylem- and phloem-feeding behavior influences the microbiota structure. Moreover, it highlighted that phytoplasma infection is associated with a restructuring of microbiota exclusively in Deltocephalinae insect vectors. Obtained data showed that 'Candidatus Phytoplasma solani' may have adverse effects on the endosymbionts Sulcia and Wolbachia, suggesting a possible fitness modification in the insects. The phytoplasma-antagonistic Dyella was not found in any of the examined insect species. The results indicate an interesting perspective regarding the microbial signatures associated with xylem- and phloem-feeding insects, and determinants that could be relevant to establish whether an insect species can be a vector or not, opening up new avenues for developing microbial resource management-based approaches.
Collapse
Affiliation(s)
- Abdelhameed Moussa
- Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia, Università degli Studi di Milano, via Celoria 2, 20133, Milano, Italy.,Pests and Plant Protection Department, Agricultural & Biological Research Division, National Research Centre, 33 El-Buhouth St, Dokki, Giza, 12622, Egypt
| | - Alessandro Passera
- Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia, Università degli Studi di Milano, via Celoria 2, 20133, Milano, Italy
| | - Francesco Sanna
- Dipartimento di Agronomia Animali Alimenti Risorse Naturali e Ambiente, Università degli Studi di Padova, Agripolis, viale dell'Università 16, Legnaro, Padova, Italy
| | - Monica Faccincani
- Consorzio per la Tutela del Franciacorta, via G. Verdi 53, 25030, Erbusco, BS, Italy
| | - Paola Casati
- Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia, Università degli Studi di Milano, via Celoria 2, 20133, Milano, Italy
| | - Piero Attilio Bianco
- Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia, Università degli Studi di Milano, via Celoria 2, 20133, Milano, Italy
| | - Nicola Mori
- Dipartimento di Biotecnologie, Università di Verona, Cà Vignal 1, Strada Le Grazie 15, 37134 Verona, Italy
| | - Fabio Quaglino
- Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia, Università degli Studi di Milano, via Celoria 2, 20133, Milano, Italy
| |
Collapse
|
32
|
Liu K, He J, Guan Z, Zhong M, Pang R, Han Q. Transcriptomic and Metabolomic Analyses of Diaphorina citri Kuwayama Infected and Non-infected With Candidatus Liberibacter Asiaticus. Front Physiol 2021; 11:630037. [PMID: 33716757 PMCID: PMC7943627 DOI: 10.3389/fphys.2020.630037] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 12/21/2020] [Indexed: 11/13/2022] Open
Abstract
The Asian citrus psyllid Diaphorina citri is the transmission vector of Huanglongbing (HLB), a devastating disease of citrus plants. The bacterium “Candidatus Liberibacter asiaticus” (CLas) associated with HLB is transmitted between host plants by D. citri in a circulative manner. Understanding the interaction between CLas and its insect vector is key for protecting citrus cultivation from HLB damage. Here, we used RNA sequencing and liquid chromatography-mass spectrometry (LC-MS) to analyze the transcriptome and metabolome of D. citri interacting with CLas. We identified 662 upregulated and 532 downregulated genes in CLas-infected insects. These genes were enriched in pathways involving carbohydrate metabolism, the insects’ immune system, and metabolism of cofactors and vitamins. We also detected 105 differential metabolites between CLas-infected and non-infected insects, including multiple nucleosides and lipid-related molecules. The integrated analysis revealed nine pathways—including those of the glycine, serine, threonine, and purine metabolism—affected by the differentially expressed genes from both groups. The network for these pathways was subsequently constructed. Our results thus provide insights regarding the cross-talk between the transcriptomic and metabolomic changes in D. citri in response to CLas infection, as well as information on the pathways and genes/metabolites related to the CLas–D. citri interaction.
Collapse
Affiliation(s)
- Kai Liu
- College of Agriculture and Biology, Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Jiawei He
- College of Agriculture and Biology, Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Ziying Guan
- College of Agriculture and Biology, Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Mingzhao Zhong
- College of Agriculture and Biology, Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Rui Pang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Qunxin Han
- College of Agriculture and Biology, Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| |
Collapse
|
33
|
Jaiswal D, Sidharthan VK, Sharma SK, Rai R, Choudhary N, Ghosh A, Baranwal VK. Candidatus Liberibacter asiaticus manipulates the expression of vitellogenin, cytoskeleton, and endocytotic pathway-related genes to become circulative in its vector, Diaphorina citri (Hemiptera: Psyllidae). 3 Biotech 2021; 11:88. [PMID: 33520575 DOI: 10.1007/s13205-021-02641-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 01/03/2021] [Indexed: 11/30/2022] Open
Abstract
Citrus greening disease or huanglongbing (HLB) caused by Candidatus Liberibacter asiaticus (CLas) limits citrus production worldwide. CLas is transmitted by the Asian citrus psyllid (ACP), Diaphorina citri (Hemiptera: Psyllidae) in a persistent-propagative manner. Understanding the molecular interaction between CLas and ACP and interrupting the interrelationship can provide an alternative to insecticides for managing citrus greening disease. Transcriptome analysis of ACP in response to CLas showed differential expression of 3911 genes (2196 upregulated, and 1715 downregulated) including the key genes of ACP involved in cytoskeleton synthesis and nutrition-related proteins, such as vitellogenins, extensin, laminin, tropomyosin, troponin C, and flightin. Majority of the differentially expressed genes were categorized under molecular functions followed by cellular components and biological processes. KEGG pathway analysis showed differential regulation of carbohydrate, nucleotide, and energy metabolic pathways, the endocytotic pathway, and the defense-related pathways. Differential regulation of genes associated with the key pathways might favour CLas to become systemic and propagate in its insect vector. The study provides an understanding of genes involved in circulation of CLas in ACP. The candidate genes involved in key physiological processes and CLas transmission by ACP would be potential targets for sustainable management of ACP and CLas. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-02641-x.
Collapse
Affiliation(s)
- Damini Jaiswal
- Advanced Centre for Plant Virology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
| | - V Kavi Sidharthan
- Advanced Centre for Plant Virology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
| | | | - Richa Rai
- Advanced Centre for Plant Virology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Nandlal Choudhary
- Amity Institute of Virology and Immunology, Amity University, Sector-125, Noida, 201313 India
| | - Amalendu Ghosh
- Advanced Centre for Plant Virology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Virendra Kumar Baranwal
- Advanced Centre for Plant Virology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
| |
Collapse
|
34
|
The Actin Cytoskeleton Mediates Transmission of " Candidatus Liberibacter solanacearum" by the Carrot Psyllid. Appl Environ Microbiol 2021; 87:AEM.02393-20. [PMID: 33188004 DOI: 10.1128/aem.02393-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 10/30/2020] [Indexed: 12/30/2022] Open
Abstract
Several vector-borne plant pathogens have evolved mechanisms to exploit and to hijack vector host cellular, molecular, and defense mechanisms for their transmission. In the past few years, Liberibacter species, which are transmitted by several psyllid vectors, have become an economically important group of pathogens that have devastated the citrus industry and caused tremendous losses to many other important crops worldwide. The molecular mechanisms underlying the interactions of Liberibacter species with their psyllid vectors are poorly studied. "Candidatus Liberibacter solanacearum," which is associated with important vegetable diseases, is transmitted by the carrot psyllid Bactericera trigonica in a persistent manner. Here, we elucidated the role of the B. trigonica Arp2/3 protein complex, which plays a major role in regulation of the actin cytoskeleton, in the transmission of "Ca Liberibacter solanacearum." "Ca Liberibacter solanacearum" colocalized with ArpC2, a key protein in this complex, and this colocalization was strongly associated with actin filaments. Silencing of the psyllid ArpC2 disrupted the colocalization and the dynamics of F-actin. Silencing of RhoGAP21 and Cdc42, which act in the signaling cascade leading to upregulation of Arp2/3 and F-actin bundling, showed similar results. On the other hand, silencing of ArpC5, another component of the complex, did not induce any significant effects on F-actin formation. Finally, ArpC2 silencing caused a 73.4% reduction in "Ca Liberibacter solanacearum" transmission by psyllids, strongly suggesting that transmission of "Ca Liberibacter solanacearum" by B. trigonica is cytoskeleton dependent and "Ca Liberibacter solanacearum" interacts with ArpC2 to exploit the intracellular actin nucleation process for transmission. Targeting this unique interaction could lead to the development of a novel strategy for the management of Liberibacter-associated diseases.IMPORTANCE Plant diseases caused by vector-borne pathogens are responsible for tremendous losses and threaten some of the most important agricultural crops. A good example is the citrus greening disease, which is caused by bacteria of the genus Liberibacter and is transmitted by psyllids; it has devastated the citrus industry in the United States, China, and Brazil. Here, we show that psyllid-transmitted "Candidatus Liberibacter solanacearum" employs the actin cytoskeleton of psyllid gut cells, specifically the ArpC2 protein in the Arp2/3 complex of this system, for movement and transmission in the vector. Silencing of ArpC2 dramatically influenced the interaction of "Ca Liberibacter solanacearum" with the cytoskeleton and decreased the bacterial transmission to plants. This system could be targeted to develop a novel approach for the control of Liberibacter-associated diseases.
Collapse
|
35
|
Tang XT, Fortuna K, Mendoza Herrera A, Tamborindeguy C. Liberibacter, A Preemptive Bacterium: Apoptotic Response Repression in the Host Gut at the Early Infection to Facilitate Its Acquisition and Transmission. Front Microbiol 2020; 11:589509. [PMID: 33424791 PMCID: PMC7786102 DOI: 10.3389/fmicb.2020.589509] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 12/04/2020] [Indexed: 12/20/2022] Open
Abstract
“Candidatus Liberibacter solanacearum” (Lso) is a phloem-limited Gram-negative bacterium that infects crops worldwide. In North America, two haplotypes of Lso (LsoA and LsoB) are transmitted by the potato psyllid, Bactericera cockerelli (Šulc), in a circulative and persistent manner. Both haplotypes cause damaging plant diseases (e.g., zebra chip in potatoes). The psyllid gut is the first organ Lso encounters and could be a barrier for its transmission. However, little is known about the psyllid gut immune responses triggered upon Lso infection. In this study, we focused on the apoptotic response in the gut of adult potato psyllids at the early stage of Lso infection. We found that there was no evidence of apoptosis induced in the gut of the adult potato psyllids upon infection with either Lso haplotype based on microscopic observations. However, the expression of the inhibitor of apoptosis IAPP5.2 gene (survivin-like) was significantly upregulated during the period that Lso translocated into the gut cells. Interestingly, silencing of IAPP5.2 gene significantly upregulated the expression of two effector caspases and induced apoptosis in the psyllid gut cells. Moreover, RNA interference (RNAi) of IAPP5.2 significantly decreased the Lso titer in the gut of adult psyllids and reduced their transmission efficiency. Taken together, these observations suggest that Lso might repress the apoptotic response in the psyllid guts by inducing the anti-apoptotic gene IAPP5.2 at an early stage of the infection, which may favor Lso acquisition in the gut cells and facilitate its transmission by potato psyllid.
Collapse
Affiliation(s)
- Xiao-Tian Tang
- Department of Entomology, Texas A&M University, College Station, TX, United States
| | - Kelsy Fortuna
- Department of Entomology, Texas A&M University, College Station, TX, United States
| | | | | |
Collapse
|
36
|
Weil T, Ometto L, Esteve-Codina A, Gómez-Garrido J, Oppedisano T, Lotti C, Dabad M, Alioto T, Vrhovsek U, Hogenhout S, Anfora G. Linking omics and ecology to dissect interactions between the apple proliferation phytoplasma and its psyllid vector Cacopsylla melanoneura. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 127:103474. [PMID: 33007407 DOI: 10.1016/j.ibmb.2020.103474] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 09/08/2020] [Accepted: 09/17/2020] [Indexed: 06/11/2023]
Abstract
Phytoplasmas are bacterial plant pathogens that are detrimental to many plants and cause devastating effects on crops. They are not viable outside their host plants and depend on specific insect vectors for their transmission. So far, research has largely focused on plant-pathogen interactions, while the complex interactions between phytoplasmas and insect vectors are far less understood. Here, we used next-generation sequencing to investigate how transcriptional profiles of the vector psyllid Cacopsylla melanoneura (Hemiptera, Psyllidae) are altered during infection by the bacterium Candidatus Phytoplasma mali (P. mali), which causes the economically important apple proliferation disease. This first de novo transcriptome assembly of an apple proliferation vector revealed that mainly genes involved in small GTPase mediated signal transduction, nervous system development, adhesion, reproduction, actin-filament based and rhythmic processes are significantly altered upon P. mali infection. Furthermore, the presence of P. mali is accompanied by significant changes in carbohydrate and polyol levels, as revealed by metabolomics analysis. Taken together, our results suggest that infection with P. mali impacts on the insect vector physiology, which in turn likely affects the ability of the vector to transmit phytoplasma.
Collapse
Affiliation(s)
- Tobias Weil
- Research and Innovation Center, Fondazione E. Mach, 38010, San Michele all'Adige (TN), Italy.
| | - Lino Ometto
- Research and Innovation Center, Fondazione E. Mach, 38010, San Michele all'Adige (TN), Italy; Department of Biology and Biotechnology, University of Pavia, 27100, Pavia, Italy
| | - Anna Esteve-Codina
- CNAG-CRG, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08028, Barcelona, Spain
| | - Jèssica Gómez-Garrido
- CNAG-CRG, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08028, Barcelona, Spain
| | - Tiziana Oppedisano
- Research and Innovation Center, Fondazione E. Mach, 38010, San Michele all'Adige (TN), Italy; Present address: Hermiston Agricultural Research and Extension Center, Oregon State University, Hermiston (OR, USA
| | - Cesare Lotti
- Research and Innovation Center, Fondazione E. Mach, 38010, San Michele all'Adige (TN), Italy
| | - Marc Dabad
- CNAG-CRG, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08028, Barcelona, Spain
| | - Tyler Alioto
- CNAG-CRG, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08028, Barcelona, Spain; Universitat Pompeu Fabra (UPF), 08003, Barcelona, Spain
| | - Urska Vrhovsek
- Research and Innovation Center, Fondazione E. Mach, 38010, San Michele all'Adige (TN), Italy
| | - Saskia Hogenhout
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Gianfranco Anfora
- Research and Innovation Center, Fondazione E. Mach, 38010, San Michele all'Adige (TN), Italy; Centre Agriculture Food Environment, University of Trento, 38010, San Michele all'Adige (TN), Italy
| |
Collapse
|
37
|
Fleites LA, Johnson R, Kruse AR, Nachman RJ, Hall DG, MacCoss M, Heck ML. Peptidomics Approaches for the Identification of Bioactive Molecules from Diaphorina citri. J Proteome Res 2020; 19:1392-1408. [PMID: 32037832 DOI: 10.1021/acs.jproteome.9b00509] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Huanglongbing (HLB), a deadly citrus disease, is primarily associated with Candidatus Liberibacter asiaticus (CLas) and spread by the hemipteran insect Diaphorina citri. Control strategies to combat HLB are urgently needed. In this work, we developed and compared workflows for the extraction of the D. citri peptidome, a dynamic set of polypeptides produced by proteolysis and other cellular processes. High-resolution mass spectrometry revealed bias among methods reflecting the physiochemical properties of the peptides: while TCA/acetone-based methods resulted in enrichment of C-terminally amidated peptides, a modification characteristic of bioactive peptides, larger peptides were overrepresented in the aqueous phase of chloroform/methanol extracts, possibly indicative of reduced co-analytical degradation during sample preparation. Parallel reaction monitoring (PRM) was used to validate the structure and upregulation of peptides derived from hemocyanin, a D. citri immune system protein, in insects reared on healthy and CLas-infected trees. Mining of the data sets also revealed 122 candidate neuropeptides, including PK/PBAN family neuropeptides and kinins, biostable analogs of which have known insecticidal properties. Taken together, this information yields new, in-depth insights into peptidomics methodology. Additionally, the putative neuropeptides identified may lead to psyllid mortality if applied to or expressed in citrus, consequently blocking the spread of HLB disease in citrus groves.
Collapse
Affiliation(s)
- Laura A Fleites
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853, United States.,USDA Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, New York, 14853-2901, United States.,Department of Plant Pathology and Plant Microbe Biology, Cornell University, Ithaca, New York 14850-5905, United States
| | - Richard Johnson
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, United States
| | - Angela R Kruse
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853, United States.,Department of Plant Pathology and Plant Microbe Biology, Cornell University, Ithaca, New York 14850-5905, United States
| | - Ronald J Nachman
- USDA Agricultural Research Service, Insect Control and Cotton Disease Research Unit, College Station, Texas 77845, United States
| | - David G Hall
- USDA Agricultural Research Service, US Horticulture Research Laboratory, Fort Pierce, Florida 34945, United States
| | - Michael MacCoss
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, United States
| | - Michelle L Heck
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853, United States.,USDA Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, New York, 14853-2901, United States.,Department of Plant Pathology and Plant Microbe Biology, Cornell University, Ithaca, New York 14850-5905, United States
| |
Collapse
|
38
|
Chen XD, Gill TA, Nguyen CD, Killiny N, Pelz-Stelinski KS, Stelinski LL. Insecticide toxicity associated with detoxification enzymes and genes related to transcription of cuticular melanization among color morphs of Asian citrus psyllid. INSECT SCIENCE 2019; 26:843-852. [PMID: 29485745 DOI: 10.1111/1744-7917.12582] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/09/2018] [Accepted: 02/24/2018] [Indexed: 06/08/2023]
Abstract
The Asian citrus psyllid (Diaphorina citri Kuwayama) is known to exhibit abdominal color polymorphisms. In the current study, susceptibility to four insecticides was compared among orange/yellow, blue/green and gray/brown color morphs of field collected D. citri. The LD50 values and 95% fiducial limits were quantified for each insecticide and color morph combination and ranged between 0.10 ng/μL (0.06-0.10) and 6.16 ng/μL (3.30-12.50). Second, we measured the detoxification enzyme activity levels of orange/yellow, blue/green and gray/brown color morphs for cytochrome P450, glutathione S-transferase, and general esterase. The mean P450 activity (equivalent units) was significantly lower in gray/brown (0.152 ± 0.006) and blue/green morphs (0.149 ± 0.005) than in the orange/yellow morphs (0.179 ± 0.008). GST activity (μmol/min/mg protein) was significantly lower in the orange/yellow morph (299.70 ±1.24) than gray/brown (350.86 ± 1.19) and blue/green (412.25 ± 1.37) morphs. The mean EST activity (μmol/min/mg protein) was significantly higher in blue/green (416.72 ± 5.12) and gray/brown morphs (362.19 ± 4.69) than in the orange/yellow morphs (282.56 ± 2.93). Additionally, we analyzed the relative expression of assortment genes involved in cuticular melanization and basal immunity. The transcripts of Dopa Decarboxylase and Tyrosine Hydroxylase were expressed higher in blue/green and gray/brown than orange/yellow morphs. The transcription results paralleled the susceptibility of D. citri to organophosphate, neonicotinoid and pyrethroid insecticides. GST and EST activity may also be correlated with low levels of insecticide susceptibility. Cuticular melanization could be a factor for the development of resistance to insecticides among different color morphs.
Collapse
Affiliation(s)
- Xue Dong Chen
- Entomology and Nematology Department, Citrus Research and Education Center, University of Florida, Lake Alfred, Florida, USA
| | - Torrence A Gill
- Entomology and Nematology Department, Citrus Research and Education Center, University of Florida, Lake Alfred, Florida, USA
| | - Chi D Nguyen
- Environmental Horticulture Department, Mid-Florida Research and Education Center, University of Florida, Apopka, Florida, USA
| | - Nabil Killiny
- Plant Pathology Department, Citrus Research and Education Center, University of Florida, Lake Alfred, Florida, USA
| | - Kirsten S Pelz-Stelinski
- Entomology and Nematology Department, Citrus Research and Education Center, University of Florida, Lake Alfred, Florida, USA
| | - Lukasz L Stelinski
- Entomology and Nematology Department, Citrus Research and Education Center, University of Florida, Lake Alfred, Florida, USA
| |
Collapse
|
39
|
Ghosh S, Jassar O, Kontsedalov S, Lebedev G, Wang C, Turner D, Levy A, Ghanim M. A Transcriptomics Approach Reveals Putative Interaction of Candidatus Liberibacter Solanacearum with the Endoplasmic Reticulum of Its Psyllid Vector. INSECTS 2019; 10:insects10090279. [PMID: 31480697 PMCID: PMC6780682 DOI: 10.3390/insects10090279] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/21/2019] [Accepted: 08/28/2019] [Indexed: 12/14/2022]
Abstract
Candidatus Liberibacter solanacerum (CLso), transmitted by Bactericera trigonica in a persistent and propagative mode causes carrot yellows disease, inflicting hefty economic losses. Understanding the process of transmission of CLso by psyllids is fundamental to devise sustainable management strategies. Persistent transmission involves critical steps of adhesion, cell invasion, and replication before passage through the midgut barrier. This study uses a transcriptomic approach for the identification of differentially expressed genes with CLso infection in the midguts, adults, and nymphs of B. trigonica and their putative involvement in CLso transmission. Several genes related to focal adhesion and cellular invasion were upregulated after CLso infection. Interestingly, genes involved with proper functionality of the endoplasmic reticulum (ER) were upregulated in CLso infected samples. Notably, genes from the endoplasmic reticulum associated degradation (ERAD) and the unfolded protein response (UPR) pathway were overexpressed after CLso infection. Marker genes of the ERAD and UPR pathways were also upregulated in Diaphorina citri when infected with Candidatus Liberibacter asiaticus (CLas). Upregulation of the ERAD and UPR pathways indicate induction of ER stress by CLso/CLas in their psyllid vector. The role of ER in bacteria–host interactions is well-documented; however, the ER role following pathogenesis of CLso/CLas is unknown and requires further functional validation.
Collapse
Affiliation(s)
- Saptarshi Ghosh
- Department of Entomology, the Volcani Center, Rishon LeZion 7505101, Israel
| | - Ola Jassar
- Department of Entomology, the Volcani Center, Rishon LeZion 7505101, Israel
| | | | - Galina Lebedev
- Department of Entomology, the Volcani Center, Rishon LeZion 7505101, Israel
| | - Chunxia Wang
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850, USA
| | - Donielle Turner
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850, USA
| | - Amit Levy
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850, USA
- Department of Plant Pathology, University of Florida, Gainesville, FL 32601, USA
| | - Murad Ghanim
- Department of Entomology, the Volcani Center, Rishon LeZion 7505101, Israel.
| |
Collapse
|
40
|
Molki B, Ha PT, Cohen AL, Crowder DW, Gang DR, Omsland A, Brown JK, Beyenal H. The infection of its insect vector by bacterial plant pathogen "Candidatus Liberibacter solanacearum" is associated with altered vector physiology. Enzyme Microb Technol 2019; 129:109358. [PMID: 31307582 DOI: 10.1016/j.enzmictec.2019.109358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 06/03/2019] [Accepted: 06/07/2019] [Indexed: 01/06/2023]
Abstract
Many bacterial and viral plant pathogens are transmitted by insect vectors, and pathogen-mediated alterations of plant physiology often influence insect vector behavior and fitness. It remains largely unknown for most plant pathogens whether, and how, they might directly alter the physiology of their insect vectors in ways that promote pathogen transmission. Here we examined whether the presence of "Candidatus Liberibacter solanacearum" ("Ca. L. solanacearum"), an obligate bacterial pathogen of plants and of its psyllid vector alters the physiochemical environment within its insect vector, the potato psyllid (Bactericera cockerelli). Microelectrodes were used to measure the local pH and oxygen tension within the abdomen of "Ca. L. solanacearum"-free psyllids and those infected with "Ca. L. solanacearum". The hemolymph of infected psyllids had higher pH at 9.09 ± 0.12, compared to "Ca. L. solanacearum"-free psyllids (8.32 ± 0.11) and a lower oxygen tension of 33.99% vs. 67.83%, respectively. The physicochemical conditions inside "Ca. L. solanacearum"-free and -infected psyllids body differed significantly with the infected psyllids having a higher hemolymph pH and lower oxygen tension than "Ca. L. solanacearum"-free psyllids. Notably, the bacterial titer increased under conditions of higher pH and lower oxygen tension values. This suggests that the vector's physiology is altered by the presence of the pathogen, potentially, resulting in a more conducive environment for "Ca. L. solanacearum" survival and subsequent transmission.
Collapse
Affiliation(s)
- Banafsheh Molki
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, USA.
| | - Phuc Thi Ha
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, USA.
| | - Abigail L Cohen
- Department of Entomology, Washington State University, Pullman, Washington, USA.
| | - David W Crowder
- Department of Entomology, Washington State University, Pullman, Washington, USA.
| | - David R Gang
- Institute of Biological Chemistry, Washington State University, Pullman, USA.
| | - Anders Omsland
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, Washington, USA.
| | - Judith K Brown
- School of Plant Sciences, University of Arizona, Tucson, Arizona, USA.
| | - Haluk Beyenal
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, USA.
| |
Collapse
|
41
|
Hosseinzadeh S, Shams-Bakhsh M, Mann M, Fattah-Hosseini S, Bagheri A, Mehrabadi M, Heck M. Distribution and Variation of Bacterial Endosymbiont and "Candidatus Liberibacter asiaticus" Titer in the Huanglongbing Insect Vector, Diaphorina citri Kuwayama. MICROBIAL ECOLOGY 2019; 78:206-222. [PMID: 30474731 DOI: 10.1007/s00248-018-1290-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 11/07/2018] [Indexed: 06/09/2023]
Abstract
The Asian citrus psyllid (ACP), Diaphorina citri Kuwayama, is an economic insect pest in most citrus-growing regions and the vector of 'Candidatus Liberibacter asiaticus' (CLas), one of at least three known bacteria associated with Huanglongbing (HLB or citrus greening disease). D. citri harbors bacterial endosymbionts, including Wolbachia pipientis (strain Wolbachia wDi), 'Candidatus Carsonella ruddii,' and 'Candidatus Profftella armatura.' Many important functions of these bacteria can be inferred from their genome sequences, but their interactions with each other, CLas, and their D. citri host are poorly understood. In the present study, the titers of the endosymbionts in different tissues, in each sex, and in insects reared on healthy citrus (referred to as unexposed) and CLas-infected citrus (referred to as CLas-exposed) D. citri were investigated using real-time, quantitative PCR (qPCR) using two different quantitative approaches. Wolbachia and CLas were detected in all insect tissues. The titer of Wolbachia was higher in heads of CLas-exposed males as compared to unexposed males. In males and females, Wolbachia titer was highest in the Malpighian tubules. The highest titer of CLas was observed in the gut. Profftella and Carsonella titers were significantly reduced in the bacteriome of CLas-exposed males compared with that of unexposed males, but this effect was not observed in females. In ovaries of CLas-exposed females, the Profftella and Carsonella titers were increased as compared to non-exposed females. CLas appeared to influence the overall levels of the symbionts but did not drastically perturb the overall microbial community structure. In all the assessed tissues, CLas titer in males was significantly higher than that of females using absolute quantification. These data provide a better understanding of multi-trophic interactions regulating symbiont dynamics in the HLB pathosystem.
Collapse
Affiliation(s)
- Saeed Hosseinzadeh
- Department of Plant Pathology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
- Boyce Thompson Institute, Ithaca, NY, USA
| | - Masoud Shams-Bakhsh
- Department of Plant Pathology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran.
| | - Marina Mann
- Boyce Thompson Institute, Ithaca, NY, USA
- Plant Pathology and Plant Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | | | - Abdoolnabi Bagheri
- Plant Protection Research Department, Hormozgan Agricultural and Natural Resources Research and Education Center, Agricultural Research Education and Extension Organization (AREEO), Bandar Abbas, Iran
| | - Mohammad Mehrabadi
- Department of Entomology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Michelle Heck
- Boyce Thompson Institute, Ithaca, NY, USA.
- Plant Pathology and Plant Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA.
- USDA ARS Emerging Pests and Pathogens Research Unit, Robert W. Holley Center for Agriculture and Health, Ithaca, NY, USA.
| |
Collapse
|
42
|
Mendis HC, Ozcan A, Santra S, De La Fuente L. A novel Zn chelate (TSOL) that moves systemically in citrus plants inhibits growth and biofilm formation of bacterial pathogens. PLoS One 2019; 14:e0218900. [PMID: 31233560 PMCID: PMC6590827 DOI: 10.1371/journal.pone.0218900] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 06/11/2019] [Indexed: 11/19/2022] Open
Abstract
Ternary solution (TSOL) is a novel Zn chelate-based systemic antimicrobial formulation designed for treating citrus bacterial pathogens 'Candidatus Liberibacter asiaticus' and Xanthomonas citri subsp. citri. TSOL is a component of MS3T, a novel multifunctional surface/sub-surface/systemic therapeutic formulation. Antimicrobial activity of TSOL was compared with the antimicrobial compound ZnO against X. citri subsp. citri and 'Ca. L. asiaticus' surrogate Liberibacter crescens in batch cultures. X. citri subsp. citri and L. crescens were also introduced into microfluidic chambers, and the inhibitory action of TSOL against biofilm formation was evaluated. The minimum inhibitory concentration of TSOL for both X. citri subsp. citri and L. crescens was 40ppm. TSOL was bactericidal to X. citri subsp. citri and L. crescens above 150 ppm and 200 ppm, respectively. On the contrary, ZnO was more effective as a bactericidal agent against L. crescens than X. citri subsp. citri. TSOL was more effective in controlling growth and biofilm formation of X. citri subsp. citri in batch cultures compared to ZnO. Time-lapse video imaging microscopy showed that biofilm formation of X. citri subsp. citri was inhibited in microfluidic chambers treated with 60 ppm TSOL. TSOL also inhibited further growth of already formed X. citri subsp. citri and L. crescens biofilms in microfluidic chambers. Leaf spraying of TSOL showed higher plant uptake and systemic movement in citrus (Citrus reshni) plants compared to that of ZnO, suggesting that TSOL is a promising antimicrobial compound to control vascular plant pathogens such as 'Ca. L. asiaticus'.
Collapse
Affiliation(s)
- Hajeewaka C. Mendis
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, United States of America
- NanoScience Technology Center, University of Central Florida, Orlando, FL, United States of America
| | - Ali Ozcan
- NanoScience Technology Center, University of Central Florida, Orlando, FL, United States of America
- Department of Chemistry, University of Central Florida, Orlando, FL, United States of America
| | - Swadeshmukul Santra
- NanoScience Technology Center, University of Central Florida, Orlando, FL, United States of America
- Department of Chemistry, University of Central Florida, Orlando, FL, United States of America
- Department of Materials Science and Engineering, University of Central Florida, Orlando, FL, United States of America
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, United States of America
| | - Leonardo De La Fuente
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, United States of America
| |
Collapse
|
43
|
Gonella E, Mandrioli M, Tedeschi R, Crotti E, Pontini M, Alma A. Activation of Immune Genes in Leafhoppers by Phytoplasmas and Symbiotic Bacteria. Front Physiol 2019; 10:795. [PMID: 31281266 PMCID: PMC6598074 DOI: 10.3389/fphys.2019.00795] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 06/06/2019] [Indexed: 11/17/2022] Open
Abstract
Insect immunity is a crucial process in interactions between host and microorganisms and the presence of pathogenic, commensal, or beneficial bacteria may result in different immune responses. In Hemiptera vectors of phytoplasmas, infected insects are amenable to carrying high loads of phytopathogens, besides hosting other bacterial affiliates, which have evolved different strategies to be retained; adaptation to host response and immunomodulation are key aspects of insect-symbiont interactions. Most of the analyses published to date has investigated insect immune response to pathogens, whereas few studies have focused on the role of host immunity in microbiota homeostasis and vectorial capacity. Here the expression of immune genes in the leafhopper vector of phytoplasmas Euscelidius variegatus was investigated following exposure to Asaia symbiotic bacteria, previously demonstrated to affect phytoplasma acquisition by leafhoppers. The expression of four genes related to major components of immunity was measured, i.e., defensin, phenoloxidase, kazal type 1 serine protease inhibitor and Raf, a component of the Ras/Raf pathway. The response was separately tested in whole insects, midguts and cultured hemocytes. Healthy individuals were assessed along with specimens undergoing early- and late-stage phytoplasma infection. In addition, the adhesion grade of Asaia strains was examined to assess whether symbionts could establish a physical barrier against phytoplasma colonization. Our results revealed a specific activation of Raf in midguts after double infection by Asaia and flavescence dorée phytoplasma. Increased expression was observed already in early stages of phytoplasma colonization. Gut-specific localization and timing of Raf activation are consistent with the role played by Asaia in limiting phytoplasma acquisition by E. variegatus, supporting the involvement of this gene in the anti-pathogen activity. However, limited attachment capability was found for Asaia under in vitro experimental conditions, suggesting a minor contribution of physical phytoplasma exclusion from the vector gut wall. By providing evidence of immune modulation played by Asaia, these results contribute to elucidating the molecular mechanisms regulating interference with phytoplasma infection in E. variegatus. The involvement of Raf suggests that in the presence of reduced immunity (reported in Hemipterans), immune genes can be differently regulated and recruited to play additional functions, generally played by genes lost by hemipterans.
Collapse
Affiliation(s)
- Elena Gonella
- Dipartimento di Scienze Agrarie, Forestali e Alimentari (DISAFA), Università degli Studi di Torino, Grugliasco, Italy
| | - Mauro Mandrioli
- Dipartimento di Scienze della Vita (DSV), Università degli Studi di Modena e Reggio Emilia, Modena, Italy
| | - Rosemarie Tedeschi
- Dipartimento di Scienze Agrarie, Forestali e Alimentari (DISAFA), Università degli Studi di Torino, Grugliasco, Italy
| | - Elena Crotti
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente (DeFENS), Università degli Studi di Milano, Milan, Italy
| | - Marianna Pontini
- Dipartimento di Scienze Agrarie, Forestali e Alimentari (DISAFA), Università degli Studi di Torino, Grugliasco, Italy
| | - Alberto Alma
- Dipartimento di Scienze Agrarie, Forestali e Alimentari (DISAFA), Università degli Studi di Torino, Grugliasco, Italy
| |
Collapse
|
44
|
Wu F, Qureshi JA, Huang J, Fox EGP, Deng X, Wan F, Liang G, Cen Y. Host Plant-Mediated Interactions Between 'Candidatus Liberibacter asiaticus' and Its Vector Diaphorina citri Kuwayama (Hemiptera: Liviidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2018; 111:2038-2045. [PMID: 30010958 DOI: 10.1093/jee/toy182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Indexed: 05/27/2023]
Abstract
The Diaphorina citri Kuwayama (Hemiptera: Liviidae) also known as Asian citrus psyllid transmits 'Candidatus Liberibacter asiaticus' (CLas) associated with the citrus Huanglongbing (HLB). Minimizing Asian citrus psyllid populations is one of the most important methods for HLB control. The development and survival of Asian citrus psyllid were evaluated on CLas+ and CLas- plants of Citrus reticulata Blanco. cv. Mashuiju (Sapindales: Rutaceae) or Citrus sunki Hort. ex Tanaka (Sapindales: Rutaceae) to assess the effects of CLas infection on vector populations. The development times were unaffected between CLas+ and CLas- plants for eggs and first to third instar nymphs but decreased for fourth instars, fifth instars, and total nymphal life on CLas+ plants. The survival rates of eggs and first and second instar nymphs were significantly lower, while those of third to fifth instar nymphs were significantly higher on CLas+ plants. However, overall nymphal survival did not differ between CLas+ and CLas- plants. The pre-oviposition period of Asian citrus psyllid on CLas+ plants decreased, while oviposition period increased, resulting in significantly higher fecundity and population trend index compared with those on CLas- plants, illustrating an overall fitness benefit of CLas infection to Asian citrus psyllid. On the other hand, the longevity and resistance to starvation and lower temperatures of adults from CLas+ plants were significantly lower than those from CLas- plants suggesting that there may be a fitness cost for Asian citrus psyllid on CLas+ plants. The development time of eggs and nymphs and adult longevity were always shorter on C. reticulata regardless of infection status. This knowledge of host plant, pathogen, and vector interactions is useful for developing Asian citrus psyllid-HLB management programs.
Collapse
Affiliation(s)
- Fengnian Wu
- Citrus Huanglongbing Research Laboratory/Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Guangzhou, China
| | - Jawwad A Qureshi
- Department of Entomology and Nematology, University of Florida, Institute of Food and Agricultural Sciences, Indian River Research and Education Center, Fort Pierce, FL
| | - Jiaquan Huang
- Citrus Huanglongbing Research Laboratory/Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Guangzhou, China
| | - Eduardo Gonçalves Paterson Fox
- Citrus Huanglongbing Research Laboratory/Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Guangzhou, China
| | - Xiaoling Deng
- Citrus Huanglongbing Research Laboratory/Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Guangzhou, China
| | - Fanghao Wan
- Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guangwen Liang
- Citrus Huanglongbing Research Laboratory/Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Guangzhou, China
| | - Yijing Cen
- Citrus Huanglongbing Research Laboratory/Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Guangzhou, China
| |
Collapse
|
45
|
Kruse A, Ramsey JS, Johnson R, Hall DG, MacCoss MJ, Heck M. Candidatus Liberibacter asiaticus Minimally Alters Expression of Immunity and Metabolism Proteins in Hemolymph of Diaphorina citri, the Insect Vector of Huanglongbing. J Proteome Res 2018; 17:2995-3011. [DOI: 10.1021/acs.jproteome.8b00183] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Angela Kruse
- Section of Plant Pathology and Plant-Microbe Biology, School of Integrated Plant Sciences, Cornell University, Ithaca, New York 14853, United States
- Boyce Thompson
Institute, Ithaca, New York 14853, United States
| | - John S. Ramsey
- Boyce Thompson
Institute, Ithaca, New York 14853, United States
- Emerging Pests and Pathogens Research Unit, Robert W. Holley Center, United States Department of Agriculature Agricultural Research Service (USDA ARS), Ithaca, New York 14853, United States
| | - Richard Johnson
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, United States
| | - David G. Hall
- U.S. Horticultural Research Laboratory, Subtropical Insects and Horticulture Research Unit, USDA Agricultural Research Service, Fort Pierce, Florida 34945, United States
| | - Michael J. MacCoss
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, United States
| | - Michelle Heck
- Section of Plant Pathology and Plant-Microbe Biology, School of Integrated Plant Sciences, Cornell University, Ithaca, New York 14853, United States
- Boyce Thompson
Institute, Ithaca, New York 14853, United States
- Emerging Pests and Pathogens Research Unit, Robert W. Holley Center, United States Department of Agriculature Agricultural Research Service (USDA ARS), Ithaca, New York 14853, United States
| |
Collapse
|
46
|
Zheng JC, Sun SL, Yue XR, Liu TX, Jing X. Phylogeny and evolution of the cholesterol transporter NPC1 in insects. JOURNAL OF INSECT PHYSIOLOGY 2018; 107:157-166. [PMID: 29649482 DOI: 10.1016/j.jinsphys.2018.04.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 04/08/2018] [Accepted: 04/08/2018] [Indexed: 06/08/2023]
Abstract
Sterols are essential nutrients for eukaryotes. Insects are obligate sterol auxotrophs and must acquire this key nutrient from their diets. The digestive tract is the organ for absorbing nutrients as well as sterols from food. In mice, the Niemann-Pick type C1 Like 1 (NPC1L1) gene is highly expressed in the intestine and is critical for cholesterol absorption. In contrast, the molecular mechanisms for the absorption of dietary sterols in insects have not been well studied. We annotated NPC1 genes in 39 insects from 10 orders using available genomic and transcriptomic information and inferred phylogenetic relationships. Insect NPC1 genes were grouped into two sister-clades, NPC1a and NPC1b, suggesting a likely duplication in the ancestor of insects. The former exhibited weaker gut-biased expression or a complete lack of tissue-biased expression, depending on the species, while the latter was highly enriched in the gut of three lepidopteran species. This result is similar to previous findings in Drosophila melanogaster. In insects, NPC1a accumulated non-synonymous substitutions at a lower rate than NPC1b. This pattern was consistent across orders, indicating that NPC1a evolved under stronger molecular constraint than NPC1b.
Collapse
Affiliation(s)
- Jin-Cheng Zheng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shao-Lei Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiao-Rong Yue
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tong-Xian Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Xiangfeng Jing
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
47
|
The quest for a non-vector psyllid: Natural variation in acquisition and transmission of the huanglongbing pathogen 'Candidatus Liberibacter asiaticus' by Asian citrus psyllid isofemale lines. PLoS One 2018; 13:e0195804. [PMID: 29652934 PMCID: PMC5898736 DOI: 10.1371/journal.pone.0195804] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 03/29/2018] [Indexed: 01/24/2023] Open
Abstract
Genetic variability in insect vectors is valuable to study vector competence determinants and to select non-vector populations that may help reduce the spread of vector-borne pathogens. We collected and tested vector competency of 15 isofemale lines of Asian citrus psyllid, Diaphorina citri, vector of ‘Candidatus Liberibacter asiaticus’ (CLas). CLas is associated with huanglongbing (citrus greening), the most serious citrus disease worldwide. D. citri adults were collected from orange jasmine (Murraya paniculata) hedges in Florida, and individual pairs (females and males) were caged on healthy Murraya plants for egg laying. The progeny from each pair that tested CLas-negative by qPCR were maintained on Murraya plants and considered an isofemale line. Six acquisition tests on D. citri adults that were reared as nymphs on CLas-infected citrus, from various generations of each line, were conducted to assess their acquisition rates (percentage of qPCR-positive adults). Three lines with mean acquisition rates of 28 to 32%, were classified as ‘good’ acquirers and three other lines were classified as ‘poor’ acquirers, with only 5 to 8% acquisition rates. All lines were further tested for their ability to inoculate CLas by confining CLas-exposed psyllids for one week onto healthy citrus leaves (6–10 adults/leaf/week), and testing the leaves for CLas by qPCR. Mean inoculation rates were 19 to 28% for the three good acquirer lines and 0 to 3% for the three poor acquirer lines. Statistical analyses indicated positive correlations between CLas acquisition and inoculation rates, as well as between CLas titer in the psyllids and CLas acquisition or inoculation rates. Phenotypic and molecular characterization of one of the good and one of the poor acquirer lines revealed differences between them in color morphs and hemocyanin expression, but not the composition of bacterial endosymbionts. Understanding the genetic architecture of CLas transmission will enable the development of new tools for combating this devastating citrus disease.
Collapse
|
48
|
Meng L, Wang Y, Wei WH, Zhang H. Population genetic structure of Diaphorina citri Kuwayama (Hemiptera: Liviidae): host-driven genetic differentiation in China. Sci Rep 2018; 8:1473. [PMID: 29367741 PMCID: PMC5784137 DOI: 10.1038/s41598-018-19533-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 01/04/2018] [Indexed: 11/09/2022] Open
Abstract
The Asian citrus psyllid Diaphorina citri Kuwayama is a major pest in citrus production, transmitting Candidatus Liberibacter asiaticus. It has spread widely across eastern and southern China. Unfortunately, little is known about the genetic diversity and population structure of D. citri, making pest control difficult. In this study, nine specifically developed SSR markers and three known mitochondrial DNA were used for population genetics study of D. citri using 225 samples collected from all 7 distribution regions in China. Based on the SSR data, D. citri was found highly diverse with a mean observed heterozygosity of 0.50, and three subgroups were structured by host plant: (i) Shatangju, NF mandarin and Ponkan; (ii) Murraya paniculata and Lemon; (iii) Citrus unshiu, Bingtangcheng, Summer orange and Navel. No significant genetic differences were found with mtDNA data. We suggested the host-associated divergence is likely to have occurred very recently. A unimodal distribution of paired differences, the negative and significant Tajima’s D and Fu’s FS parameters among mtDNA suggested a recent demographic expansion. The extensive citrus cultivation and increased suitable living habitat was recommended as a key for this expansion event.
Collapse
Affiliation(s)
- Lixue Meng
- Key Laboratory of Horticultural Plant Biology (MOE), State Key Laboratory of Agricultural Microbiology, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.,Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, P.R. China
| | - Yongmo Wang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, P.R. China
| | - Wen-Hua Wei
- Department of Women's and Children's Health, Dunedin School of Medicine, University of Otago, Dunedin, 9016, New Zealand
| | - Hongyu Zhang
- Key Laboratory of Horticultural Plant Biology (MOE), State Key Laboratory of Agricultural Microbiology, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China. .,Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, P.R. China.
| |
Collapse
|
49
|
Sétamou M, Alabi OJ, Simpson CR, Jifon JL. Contrasting amino acid profiles among permissive and non-permissive hosts of Candidatus Liberibacter asiaticus, putative causal agent of Huanglongbing. PLoS One 2017; 12:e0187921. [PMID: 29236706 PMCID: PMC5728503 DOI: 10.1371/journal.pone.0187921] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 10/27/2017] [Indexed: 12/13/2022] Open
Abstract
Huanglongbing is a devastating disease of citrus. In this study, a comprehensive profile of phloem sap amino acids (AA) in four permissive host plants of Candidatus Liberibacter asiaticus (CLas) and three non-permissive Rutaceae plants was conducted to gain a better understanding of host factors that may promote or suppress the bacterium. The AA profiles of Diaphorina citri nymphs and adults were similarly analyzed. A total of 38 unique AAs were detected in phloem sap of the various plants and D. citri samples, with phloem sap of young shoots containing more AAs and at higher concentrations than their mature counterparts. All AAs detected in phloem sap of non-permissive plants were also present in CLas -permissive hosts plus additional AAs in the latter class of plants. However, the relative composition of 18 commonly shared AAs varied between CLas -permissive hosts and non-permissive plants. Multivariate analysis with a partial least square discriminant methodology revealed a total of 12 AAs as major factors affecting CLas host status, of which seven were positively related to CLas tolerance/resistance and five positively associated with CLas susceptibility. Most of the AAs positively associated with CLas susceptibility were predominantly of the glutamate family, notably stressed-induced AAs such as arginine, GABA and proline. In contrast, AAs positively correlated with CLas tolerance/resistance were mainly of the serine family. Further analysis revealed that whereas the relative proportions of AAs positively associated with CLas susceptibility did not vary with host developmental stages, those associated with CLas tolerance/resistance increased with flush shoot maturity. Significantly, the proline-to-glycine ratio was determined to be an important discriminating factor for CLas permissivity with higher values characteristic of CLas -permissive hosts. This ratio could be exploited as a biomarker in HLB-resistance breeding programs.
Collapse
Affiliation(s)
- Mamoudou Sétamou
- Texas A&M University-Kingsville Citrus Center, Weslaco, United States of America
| | - Olufemi J. Alabi
- Department of Plant Pathology & Microbiology, Texas A&M AgriLife Research and Extension Center, Weslaco, TX, United States of America
| | - Catherine R. Simpson
- Texas A&M University-Kingsville Citrus Center, Weslaco, United States of America
| | - John L. Jifon
- Department of Horticultural Sciences, Texas A&M AgriLife Research and Extension Center, Weslaco, TX, United States of America
| |
Collapse
|
50
|
Ghanim M, Achor D, Ghosh S, Kontsedalov S, Lebedev G, Levy A. 'Candidatus Liberibacter asiaticus' Accumulates inside Endoplasmic Reticulum Associated Vacuoles in the Gut Cells of Diaphorina citri. Sci Rep 2017; 7:16945. [PMID: 29208900 PMCID: PMC5717136 DOI: 10.1038/s41598-017-16095-w] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 11/06/2017] [Indexed: 01/10/2023] Open
Abstract
Citrus greening disease known also as Huanglongbing (HLB) caused by the phloem-limited bacterium 'Candidatus Liberibacter asiaticus' (CLas) has resulted in tremendous losses and the death of millions of trees worldwide. CLas is transmitted by the Asian citrus psyllid Diaphorina citri. The closely-related bacteria 'Candidatus Liberibacter solanacearum' (CLso), associated with vegetative disorders in carrots, is transmitted by the carrot psyllid Bactericera trigonica. A promising approach to prevent the transmission of these pathogens is to interfere with the vector-pathogen interactions, but our understanding of these processes is limited. It was recently reported that CLas induced changes in the nuclear architecture, and activated programmed cell death, in D. citri midgut cells. Here, we used electron and fluorescent microscopy and show that CLas induces the formation of endoplasmic reticulum (ER)-associated bodies. The bacterium recruits those ER structures into Liberibacter containing vacuoles (LCVs), in which bacterial cells seem to propagate. ER- associated LCV formation was unique to CLas, as we could not detect these bodies in B. trigonica infected with CLso. ER recruitment is hypothesized to generate a safe replicative body to escape cellular immune responses in the insect gut. Understanding the molecular interactions that undelay these responses will open new opportunities for controlling CLas.
Collapse
Affiliation(s)
- Murad Ghanim
- Department of Entomology, Volcani Center, Rishon LeZion, Israel.
| | - Diann Achor
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, USA
| | - Saptarshi Ghosh
- Department of Entomology, Volcani Center, Rishon LeZion, Israel
| | | | - Galina Lebedev
- Department of Entomology, Volcani Center, Rishon LeZion, Israel
| | - Amit Levy
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, USA.
- Department of Plant Pathology, University of Florida, Gainesville, FL, USA.
| |
Collapse
|