1
|
Tregub PP, Averchuk AS, Baranich TI, Ryazanova MV, Salmina AB. Physiological and Pathological Remodeling of Cerebral Microvessels. Int J Mol Sci 2022; 23:12683. [PMID: 36293539 PMCID: PMC9603917 DOI: 10.3390/ijms232012683] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/10/2022] [Accepted: 10/18/2022] [Indexed: 11/13/2022] Open
Abstract
There is growing evidence that the remodeling of cerebral microvessels plays an important role in plastic changes in the brain associated with development, experience, learning, and memory consolidation. At the same time, abnormal neoangiogenesis, and deregulated regulation of microvascular regression, or pruning, could contribute to the pathogenesis of neurodevelopmental diseases, stroke, and neurodegeneration. Aberrant remodeling of microvesselsis associated with blood-brain barrier breakdown, development of neuroinflammation, inadequate microcirculation in active brain regions, and leads to the dysfunction of the neurovascular unit and progressive neurological deficits. In this review, we summarize current data on the mechanisms of blood vessel regression and pruning in brain plasticity and in Alzheimer's-type neurodegeneration. We discuss some novel approaches to modulating cerebral remodeling and preventing degeneration-coupled aberrant microvascular activity in chronic neurodegeneration.
Collapse
Affiliation(s)
- Pavel P. Tregub
- Federal State Budgetary Scientific Institution Research Center of Neurology, 125367 Moscow, Russia
| | | | | | | | | |
Collapse
|
2
|
Abosamak M, Shama A, Ng K, Shahen M. Effect of adding midazolam to intrathecal bupivacaine in children undergoing lower abdominal surgeries: A randomised controlled trial. Indian J Anaesth 2022; 66:200-206. [PMID: 35497697 PMCID: PMC9053896 DOI: 10.4103/ija.ija_466_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 09/24/2021] [Accepted: 03/01/2022] [Indexed: 11/04/2022] Open
|
3
|
Al-Rasheedi KA, Alqasoumi AA, Emara AM. Effect of inhaled anaesthetics gases on cytokines and oxidative stress alterations for the staff health status in hospitals. Int Arch Occup Environ Health 2021; 94:1953-1962. [PMID: 33959815 PMCID: PMC8490262 DOI: 10.1007/s00420-021-01705-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 04/06/2021] [Indexed: 11/29/2022]
Abstract
OBJECTIVES The present study aimed to evaluate the effects of waste anaesthetic gases on cytokines and oxidative stress of hospital health team members following exposure to waste anaesthetic gases (WAGs). SUBJECTS AND METHODS In total, 180 participants took part in this study; 60 of these were healthy male controls and the 120 participants in the intervention group were staff who work in the operating room. This latter group comprises six occupational subgroups (1) surgeons, (2) surgical assistants, (3) anaesthesiologists (4) anaesthesiology assistants, (5) nurses and (6) janitors. The following parameters were assessed: catalase (CAT), glutathione peroxidase (GSHpx) and superoxide dismutase (SOD) activities, plasma fluoride, serum interferon gamma (IFN-γ), serum interleukin 2 (IL2), serum interleukin 4 (IL4) and plasma thiobarbituric acid reactive substances (TBARS). RESULTS Anaesthesiologists and their assistants exhibited the highest levels of plasma fluoride, serum IFN-γ and IL 2, exceeding the levels in detected in all the other occupational subgroups. Furthermore, the serum levels of IL4 were significantly raised in anaesthesiologists and the difference between this group and other groups was statistically significant. However, compared with the other subgroups, surgeons exhibited elevated plasma TBARS and reduced CAT, GSHpx and SOD; these variances were also statistically significant. CONCLUSION AND RECOMMENDATIONS The findings of this study indicate that operating room staff exposed to WAGs are vulnerable to experiencing immunotoxicity as the WAGs are considered to initiate oxidative stress and increase the levels of cytokines in serum. Thus, an education programme is warranted to inform staff working in environments where they may be subjected to WAGs on the effects that the gases can have upon their health and how to minimise their exposure to WAGs. An ongoing effort is also needed to ensure anaesthesia safety standards are maintained at all times. The findings of this study may provide a springboard for future research into occupational exposure to WAGs and their wider effect upon health.
Collapse
Affiliation(s)
- Khaled A Al-Rasheedi
- Khyber General Hospital, Ministry of Health, Khyber, Saudi Arabia
- Department of Pharmacy Practice, College of Pharmacy, Qassim University, Qassim, Saudi Arabia
| | - Abdulmajeed A Alqasoumi
- Department of Pharmacy Practice, College of Pharmacy, Qassim University, Qassim, Saudi Arabia
| | - Ashraf M Emara
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraidah, Qassim, Saudi Arabia.
- Department of Clinical Toxicology, Faculty of Medicine, Tanta University, Tanta, Egypt.
| |
Collapse
|
4
|
Cheng F, Chang H, Yan F, Yang A, Liu J, Liu Y. Agomelatine Attenuates Isoflurane-Induced Inflammation and Damage in Brain Endothelial Cells. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:5589-5598. [PMID: 33376303 PMCID: PMC7755371 DOI: 10.2147/dddt.s281582] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/05/2020] [Indexed: 12/25/2022]
Abstract
Background and Purpose Neurotoxicity of anesthetics has been widely observed by clinicians. It is reported that inflammation and oxidative stress are involved in the pathological process. In the present study, we aimed to assess the therapeutic effects of agomelatine against isoflurane-induced inflammation and damage to brain endothelial cells. Materials and Methods MTT assay was used to detect cell viability in order to determine the optimized concentration of agomelatine. The bEnd.3 brain endothelial cells were treated with 2% isoflurane in the presence or absence of agomelatine (5, 10 μM) for 24 h. LDH release was evaluated and the ROS levels were checked using DHE staining assay. The expressions of IL-6, IL-8, TNF-α, VEGF, TF, VCAM-1, and ICAM-1 were evaluated using real-time PCR and ELISA. Real-time PCR and Western blot analysis were used to determine the expression level of Egr-1. Results The decreased cell viability promoted LDH release and elevated ROS levels induced by isoflurane were significantly reversed by the introduction of agomelatine in a dose-dependent manner. The expression levels of IL-6, IL-8, TNF-α, VEGF, TF, VCAM-1, and ICAM-1 were elevated by stimulation with isoflurane, which were significantly suppressed by the administration of agomelatine. The up-regulation of transcriptional factor Egr-1 induced by isoflurane was down-regulated by agomelatine. Conclusion Agomelatine might attenuate isoflurane-induced inflammation and damage via down-regulating Egr-1 in brain endothelial cells.
Collapse
Affiliation(s)
- Fang Cheng
- Department of Anesthesiology and Pain Clinic, The Affiliated Lianyungang Oriental Hospital of Xuzhou Medical University
| | - Huanxian Chang
- Department of Neurology, The Affiliated Lianyungang Oriental Hospital of Xuzhou Medical University
| | - Fengfeng Yan
- Department of Anesthesiology and Pain Clinic, The Affiliated Lianyungang Oriental Hospital of Xuzhou Medical University
| | - Aixing Yang
- Department of Anesthesiology and Pain Clinic, The Affiliated Lianyungang Oriental Hospital of Xuzhou Medical University
| | - Jing Liu
- Department of Anesthesiology and Pain Clinic, The Affiliated Lianyungang Oriental Hospital of Xuzhou Medical University
| | - Yuliang Liu
- Department of Neurosurgery, The Affiliated Lianyungang Oriental Hospital of Xuzhou Medical University, Lianyungang, People's Republic of China
| |
Collapse
|
5
|
Emara AM, Alrasheedi KA, Aldubayan MA, Alhowail AH, Elgarabawy RM. Effect of inhaled waste anaesthetic gas on blood and liver parameters among hospital staff. Hum Exp Toxicol 2020; 39:1585-1595. [DOI: 10.1177/0960327120938840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A significant health risk exists within a section of health workers that are exposed to anaesthetic gas and vapours, found in the atmosphere of treatment or operating rooms. These compounds are classified as waste anaesthetic gases (WAG). The present study aimed at identifying alterations in hepatic and haematological parameters occurring as a result of chronic exposure to WAG potentially affecting the health of team members working in hospitals. Therefore, operating room operatives, vulnerable to long-standing WAG exposure, were recruited for this study. Sevoflurane anaesthesia metabolites (inorganic fluoride and hexafluoroisopropanol (HFIP)), haematological indices and liver toxicity markers (alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, gamma-glutamyl transferase and osteopontin) were measured. The collected results showed increased plasma inorganic fluoride, HFIP and liver toxicity markers, as well as disturbances in haematological parameters. In conclusion, exposure to halogenated inhalational anaesthetics, in general, and Sevoflurane, in particular, induces alterations in hepatic markers and haematological indices.
Collapse
Affiliation(s)
- AM Emara
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah, Saudi Arabia
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - KA Alrasheedi
- Khyber General Hospital, Ministry of Health, Khyber, Saudi Arabia
| | - MA Aldubayan
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah, Saudi Arabia
| | - AH Alhowail
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah, Saudi Arabia
| | - RM Elgarabawy
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah, Saudi Arabia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| |
Collapse
|
6
|
Beck-Schimmer B, Restin T, Muroi C, Roth Z'Graggen B, Keller E, Schläpfer M. Sevoflurane sedation attenuates early cerebral oedema formation through stabilisation of the adherens junction protein beta catenin in a model of subarachnoid haemorrhage: A randomised animal study. Eur J Anaesthesiol 2020; 37:402-412. [PMID: 32068571 DOI: 10.1097/eja.0000000000001161] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Severe neurological impairment is a problem after subarachnoid haemorrhage (SAH). Although volatile anaesthetics, such as sevoflurane, have demonstrated protective properties in many organs, their use in cerebral injury is controversial. Cerebral vasodilation may lead to increased intracranial pressure (ICP), but at the same time volatile anaesthetics are known to stabilise the SAH-injured endothelial barrier. OBJECTIVE To test the effect of sevoflurane on ICP and blood-brain barrier function. DESIGN Randomised study. PARTICIPANTS One hundred male Wistar rats included, 96 analysed. INTERVENTIONS SAH was induced by the endoluminal filament method under ketamine/xylazine anaesthesia. Fifteen minutes after sham surgery or induction of SAH, adult male Wistar rats were randomised to 4 h sedation with either propofol or sevoflurane. MAIN OUTCOME MEASURES Mean arterial pressure (MAP), ICP, extravasation of water (small), Evan's blue (intermediate) and IgG (large molecule) were measured. Zonula occludens-1 (ZO-1) and beta-catenin (β-catenin), as important representatives of tight and adherens junction proteins, were determined by western blot. RESULTS Propofol and sevoflurane sedation did not affect MAP or ICP in SAH animals. Extravasation of small molecules was higher in SAH-propofol compared with SAH-sevoflurane animals (79.1 ± 0.9 vs. 78.0 ± 0.7%, P = 0.04). For intermediate and large molecules, no difference was detected (P = 0.6 and P = 0.2). Both membrane and cytosolic fractions of ZO-1 as well as membrane β-catenin remained unaffected by the injury and type of sedation. Decreased cytosolic fraction of β-catenin in propofol-SAH animals (59 ± 15%) was found to reach values of sham animals (100%) in the presence of sevoflurane in SAH animals (89 ± 21%; P = 0.04). CONCLUSION This experiment demonstrates that low-dose short-term sevoflurane sedation after SAH in vivo did not affect ICP and MAP and at the same time may attenuate early brain oedema formation, potentially by preserving adherens junctions. TRIAL REGISTRATION No 115/2014 Veterinäramt Zürich.
Collapse
Affiliation(s)
- Beatrice Beck-Schimmer
- From the Institute of Physiology and Zurich Centre for Integrative Human Physiology, University of Zurich (BBS, TR, BRZ, MS), Institute of Anaesthesiology, University Hospital Zurich, Zurich, Switzerland (BBS, TR, MS), Department of Anesthesiology, University of Illinois at Chicago, Chicago, USA (BBS) and Neurosurgical Intensive Care Unit, University Hospital Zurich, Zurich, Switzerland (CM, EK)
| | | | | | | | | | | |
Collapse
|
7
|
Yang S, Gu C, Mandeville ET, Dong Y, Esposito E, Zhang Y, Yang G, Shen Y, Fu X, Lo EH, Xie Z. Anesthesia and Surgery Impair Blood-Brain Barrier and Cognitive Function in Mice. Front Immunol 2017; 8:902. [PMID: 28848542 PMCID: PMC5552714 DOI: 10.3389/fimmu.2017.00902] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 07/14/2017] [Indexed: 12/14/2022] Open
Abstract
Blood–brain barrier (BBB) dysfunction, e.g., increase in BBB permeability, has been reported to contribute to cognitive impairment. However, the effects of anesthesia and surgery on BBB permeability, the underlying mechanisms, and associated cognitive function remain largely to be determined. Here, we assessed the effects of surgery (laparotomy) under 1.4% isoflurane anesthesia (anesthesia/surgery) for 2 h on BBB permeability, levels of junction proteins and cognitive function in both 9- and 18-month-old wild-type mice and 9-month-old interleukin (IL)-6 knockout mice. BBB permeability was determined by dextran tracer (immunohistochemistry imaging and spectrophotometric quantification), and protein levels were measured by Western blot and cognitive function was assessed by using both Morris water maze and Barnes maze. We found that the anesthesia/surgery increased mouse BBB permeability to 10-kDa dextran, but not to 70-kDa dextran, in an IL-6-dependent and age-associated manner. In addition, the anesthesia/surgery induced an age-associated increase in blood IL-6 level. Cognitive impairment was detected in 18-month-old, but not 9-month-old, mice after the anesthesia/surgery. Finally, the anesthesia/surgery decreased the levels of β-catenin and tight junction protein claudin, occludin and ZO-1, but not adherent junction protein VE-cadherin, E-cadherin, and p120-catenin. These data demonstrate that we have established a system to study the effects of perioperative factors, including anesthesia and surgery, on BBB and cognitive function. The results suggest that the anesthesia/surgery might induce an age-associated BBB dysfunction and cognitive impairment in mice. These findings would promote mechanistic studies of postoperative cognitive impairment, including postoperative delirium.
Collapse
Affiliation(s)
- Siming Yang
- Key Laboratory of Wound Repair and Regeneration of PLA, College of Life Sciences, General Hospital of PLA, Medical College of PLA, Beijing, China.,Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| | - Changping Gu
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States.,Department of Anesthesiology, Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Emiri T Mandeville
- Neuroprotection Research, Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| | - Yuanlin Dong
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| | - Elga Esposito
- Neuroprotection Research, Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| | - Yiying Zhang
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| | - Guang Yang
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University School of Medicine, New York, NY, United States
| | - Yuan Shen
- Department of Psychiatry, Tenth People's Hospital of Tongji University, Shanghai, China
| | - Xiaobing Fu
- Key Laboratory of Wound Repair and Regeneration of PLA, College of Life Sciences, General Hospital of PLA, Medical College of PLA, Beijing, China
| | - Eng H Lo
- Neuroprotection Research, Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| | - Zhongcong Xie
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| |
Collapse
|
8
|
Cao Y, Gong Y, Liu L, Zhou Y, Fang X, Zhang C, Li Y, Li J. The use of human umbilical vein endothelial cells (HUVECs) as an in vitro
model to assess the toxicity of nanoparticles to endothelium: a review. J Appl Toxicol 2017; 37:1359-1369. [PMID: 28383141 DOI: 10.1002/jat.3470] [Citation(s) in RCA: 168] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 02/23/2017] [Indexed: 12/30/2022]
Affiliation(s)
- Yi Cao
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, Laboratory of Biochemistry, College of Chemistry; Xiangtan University; Xiangtan 411105 China
- Institute of Bast Fiber Crops; Chinese Academy of Agricultural Sciences; Changsha 410205 China
| | - Yu Gong
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, Laboratory of Biochemistry, College of Chemistry; Xiangtan University; Xiangtan 411105 China
| | - Liangliang Liu
- Institute of Bast Fiber Crops; Chinese Academy of Agricultural Sciences; Changsha 410205 China
| | - Yiwei Zhou
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, Laboratory of Biochemistry, College of Chemistry; Xiangtan University; Xiangtan 411105 China
- Institute of Bast Fiber Crops; Chinese Academy of Agricultural Sciences; Changsha 410205 China
| | - Xin Fang
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, Laboratory of Biochemistry, College of Chemistry; Xiangtan University; Xiangtan 411105 China
- Institute of Bast Fiber Crops; Chinese Academy of Agricultural Sciences; Changsha 410205 China
| | - Cao Zhang
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, Laboratory of Biochemistry, College of Chemistry; Xiangtan University; Xiangtan 411105 China
| | - Yining Li
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, Laboratory of Biochemistry, College of Chemistry; Xiangtan University; Xiangtan 411105 China
| | - Juan Li
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, Laboratory of Biochemistry, College of Chemistry; Xiangtan University; Xiangtan 411105 China
| |
Collapse
|
9
|
Huang Y, Tan Q, Chen R, Cao B, Li W. Sevoflurane prevents lipopolysaccharide-induced barrier dysfunction in human lung microvascular endothelial cells: Rho-mediated alterations of VE-cadherin. Biochem Biophys Res Commun 2015; 468:119-24. [PMID: 26529544 DOI: 10.1016/j.bbrc.2015.10.150] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Accepted: 10/28/2015] [Indexed: 12/24/2022]
Abstract
Acute lung injury (ALI) mainly occurs as increased permeability of lung tissue and pleural effusion. Inhaled anesthetic sevoflurane has been demonstrated to alleviate lung permeability by upregulating junction proteins after ischemia-reperfusion. However, the exact mechanisms of its protective effect on reperfusion injury remain elusive. The aim of this study was to assess possible preconditioning with sevoflurane in an in vitro model of lipopolysaccharide (LPS)-induced barrier dysfunction in human lung microvascular endothelial cells (HMVEC-Ls). In this study, HMVEC-Ls were exposed to minimum alveolar concentration of sevoflurane for 2 h. LPS significantly increased the permeability of HMVEC-L. Moreover, the distribution of junction protein, vascular endothelial (VE)-cadherin, in cell-cell junction area and the total expression in HMVEC-Ls were significantly decreased by LPS treatment. However, the abnormal distribution and decreased expression of VE-cadherin and hyperpermeability of HMVEC-Ls were significantly reversed by pretreatment with sevoflurane. Furthermore, LPS-induced activation of the RhoA/ROCK signaling pathway was significantly inhibited with sevoflurane. Such activation, abnormal distribution and decreased expression of VE-cadherin and hyperpermeability of HMVEC-Ls were significantly inhibited with sevoflurane pretreatment or knockdown of RhoA or ROCK-2. In conclusion, sevoflurane prevented LPS-induced rupture of HMVEC-L monolayers by suppressing the RhoA/ROCK-mediated VE-cadherin signaling pathway. Our results may explain, at least in part, some beneficial effects of sevoflurane on pulmonary dysfunction such as ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Yiran Huang
- Department of Anesthesiology, The 157 Affiliated Hospital, General Hospital of Guangzhou Military Command of PLA, Guangzhou 510510, PR China.
| | - Qindong Tan
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, PR China
| | - Rui Chen
- Department of Anesthesiology, The 157 Affiliated Hospital, General Hospital of Guangzhou Military Command of PLA, Guangzhou 510510, PR China
| | - Biao Cao
- Department of Anesthesiology, The 157 Affiliated Hospital, General Hospital of Guangzhou Military Command of PLA, Guangzhou 510510, PR China
| | - Wenhong Li
- Department of Anesthesiology, The 157 Affiliated Hospital, General Hospital of Guangzhou Military Command of PLA, Guangzhou 510510, PR China
| |
Collapse
|