1
|
Tse YT, Miller CV, Pittman M. Morphological disparity and structural performance of the dromaeosaurid skull informs ecology and evolutionary history. BMC Ecol Evol 2024; 24:39. [PMID: 38622512 PMCID: PMC11020771 DOI: 10.1186/s12862-024-02222-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/11/2024] [Indexed: 04/17/2024] Open
Abstract
Non-avialan theropod dinosaurs had diverse ecologies and varied skull morphologies. Previous studies of theropod cranial morphology mostly focused on higher-level taxa or characteristics associated with herbivory. To better understand morphological disparity and function within carnivorous theropod families, here we focus on the Dromaeosauridae, 'raptors' traditionally seen as agile carnivorous hunters.We applied 2D geometric morphometrics to quantify skull shape, performed mechanical advantage analysis to assess the efficiency of bite force transfer, and performed finite element analysis to examine strain distribution in the skull during biting. We find that dromaeosaurid skull morphology was less disparate than most non-avialan theropod groups. Their skulls show a continuum of form between those that are tall and short and those that are flat and long. We hypothesise that this narrower morphological disparity indicates developmental constraint on skull shape, as observed in some mammalian families. Mechanical advantage indicates that Dromaeosaurus albertensis and Deinonychus antirrhopus were adapted for relatively high bite forces, while Halszkaraptor escuilliei was adapted for high bite speed, and other dromaeosaurids for intermediate bite forces and speeds. Finite element analysis indicates regions of high strain are consistent within dromaeosaurid families but differ between them. Average strain levels do not follow any phylogenetic pattern, possibly due to ecological convergence between distantly-related taxa.Combining our new morphofunctional data with a re-evaluation of previous evidence, we find piscivorous reconstructions of Halszkaraptor escuilliei to be unlikely, and instead suggest an invertivorous diet and possible adaptations for feeding in murky water or other low-visibility conditions. We support Deinonychus antirrhopus as being adapted for taking large vertebrate prey, but we find that its skull is relatively less resistant to bite forces than other dromaeosaurids. Given the recovery of high bite force resistance for Velociraptor mongoliensis, which is believed to have regularly engaged in scavenging behaviour, we suggest that higher bite force resistance in a dromaeosaurid taxon may reflect a greater reliance on scavenging rather than fresh kills.Comparisons to the troodontid Gobivenator mongoliensis suggest that a gracile rostrum like that of Velociraptor mongoliensis is ancestral to their closest common ancestor (Deinonychosauria) and the robust rostra of Dromaeosaurus albertensis and Deinonychus antirrhopus are a derived condition. Gobivenator mongoliensis also displays a higher jaw mechanical advantage and lower resistance to bite force than the examined dromaeosaurids, but given the hypothesised ecological divergence of troodontids from dromaeosaurids it is unclear which group, if either, represents the ancestral condition. Future work extending sampling to troodontids would therefore be invaluable and provide much needed context to the origin of skull form and function in early birds. This study illustrates how skull shape and functional metrics can discern non-avialan theropod ecology at lower taxonomic levels and identify variants of carnivorous feeding.
Collapse
Affiliation(s)
- Yuen Ting Tse
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Case Vincent Miller
- Department of Earth Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Michael Pittman
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| |
Collapse
|
2
|
Meade LE, Pittman M, Balanoff A, Lautenschlager S. Cranial functional specialisation for strength precedes morphological evolution in Oviraptorosauria. Commun Biol 2024; 7:436. [PMID: 38600295 PMCID: PMC11006937 DOI: 10.1038/s42003-024-06137-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/02/2024] [Indexed: 04/12/2024] Open
Abstract
Oviraptorosaurians were a theropod dinosaur group that reached high diversity in the Late Cretaceous. Within oviraptorosaurians, the later diverging oviraptorids evolved distinctive crania which were extensively pneumatised, short and tall, and had a robust toothless beak, interpreted as providing a powerful bite for their herbivorous to omnivorous diet. The present study explores the ability of oviraptorid crania to resist large mechanical stresses compared with other theropods and where this adaptation originated within oviraptorosaurians. Digital 3D cranial models were constructed for the earliest diverging oviraptorosaurian, Incisivosaurus gauthieri, and three oviraptorids, Citipati osmolskae, Conchoraptor gracilis, and Khaan mckennai. Finite element analyses indicate oviraptorosaurian crania were stronger than those of other herbivorous theropods (Erlikosaurus and Ornithomimus) and were more comparable to the large, carnivorous Allosaurus. The cranial biomechanics of Incisivosaurus align with oviraptorids, indicating an early establishment of distinctive strengthened cranial biomechanics in Oviraptorosauria, even before the highly modified oviraptorid cranial morphology. Bite modelling, using estimated muscle forces, suggests oviraptorid crania may have functioned closer to structural safety limits. Low mechanical stresses around the beaks of oviraptorids suggest a convergently evolved, functionally distinct rhamphotheca, serving as a cropping/feeding tool rather than for stress reduction, when compared with other herbivorous theropods.
Collapse
Affiliation(s)
- Luke E Meade
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK.
| | - Michael Pittman
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Amy Balanoff
- Center for Functional Anatomy and Evolution, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Stephan Lautenschlager
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
3
|
Bels V, Le Floch G, Kirchhoff F, Gastebois G, Davenport J, Baguette M. Food transport in Reptilia: a comparative viewpoint. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220542. [PMID: 37839442 PMCID: PMC10577028 DOI: 10.1098/rstb.2022.0542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 07/19/2023] [Indexed: 10/17/2023] Open
Abstract
Reptilia exploit a large diversity of food resources from plant materials to living mobile prey. They are among the first tetrapods that needed to drink to maintain their water homeostasis. Here were compare the feeding and drinking mechanisms in Reptilia through an empirical approach based on the available data to open perspectives in our understanding of the evolution of the various mechanisms determined in these Tetrapoda for exploiting solid and liquid food resources. This article is part of the theme issue 'Food processing and nutritional assimilation in animals'.
Collapse
Affiliation(s)
- Vincent Bels
- Institut Systématique, Evolution, et Biodiversité (ISYEB), UMR 7205 Museum d'Histoire Naturelle (MNHN), CNRS, Sorbonne Université, EPHE, Université des Antilles, 75005 Paris, France
| | - Glenn Le Floch
- Institut Systématique, Evolution, et Biodiversité (ISYEB), UMR 7205 Museum d'Histoire Naturelle (MNHN), CNRS, Sorbonne Université, EPHE, Université des Antilles, 75005 Paris, France
| | - Florence Kirchhoff
- Institut Systématique, Evolution, et Biodiversité (ISYEB), UMR 7205 Museum d'Histoire Naturelle (MNHN), CNRS, Sorbonne Université, EPHE, Université des Antilles, 75005 Paris, France
| | | | - John Davenport
- School of Biological, Earth and Environmental Sciences, Distillery Fields, North Mall, University College Cork, Ireland T23 N73K
| | - Michel Baguette
- Institut Systématique, Evolution, et Biodiversité (ISYEB), UMR 7205 Museum d'Histoire Naturelle (MNHN), CNRS, Sorbonne Université, EPHE, Université des Antilles, 75005 Paris, France
- Station d'Ecologie Théorique et Expérimentale, CNRS UAR 2029, Route du CNRS, F-09200 Moulis, France
| |
Collapse
|
4
|
Clark AD, Hu H, Benson RBJ, O’Connor JK. Reconstructing the dietary habits and trophic positions of the Longipterygidae (Aves: Enantiornithes) using neontological and comparative morphological methods. PeerJ 2023; 11:e15139. [PMID: 37009163 PMCID: PMC10062354 DOI: 10.7717/peerj.15139] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 03/07/2023] [Indexed: 03/29/2023] Open
Abstract
The Longipterygidae are a unique clade among the enantiornithines in that they exhibit elongate rostra (≥60% total skull length) with dentition restricted to the distal tip of the rostrum, and pedal morphologies suited for an arboreal lifestyle (as in other enantiornithines). This suite of features has made interpretations of this group’s diet and ecology difficult to determine due to the lack of analogous taxa that exhibit similar morphologies together. Many extant bird groups exhibit rostral elongation, which is associated with several disparate ecologies and diets (e.g., aerial insectivory, piscivory, terrestrial carnivory). Thus, the presence of rostral elongation in the Longipterygidae only somewhat refines trophic predictions of this clade. Anatomical morphologies do not function singularly but as part of a whole and thus, any dietary or ecological hypothesis regarding this clade must also consider other features such as their unique dentition. The only extant group of dentulous volant tetrapods are the chiropterans, in which tooth morphology and enamel thickness vary depending upon food preference. Drawing inferences from both avian bill proportions and variations in the dental morphology of extinct and extant taxa, we provide quantitative data to support the hypothesis that the Longipterygidae were animalivorous, with greater support for insectivory.
Collapse
Affiliation(s)
- Alexander D. Clark
- Cincinnati Museum Center, Geier Collections & Research Center, Cincinnati, Ohio, United States
| | - Han Hu
- Department of Earth Sciences, University of Oxford, Oxford, United Kingdom
| | - Roger BJ Benson
- American Museum of Natural History, New York City, New York, United States
| | | |
Collapse
|
5
|
Macroanatomical, Histological and Microtomographic Study of the Teeth of the Komodo Dragon ( Varanus komodoensis)-Adaptation to Hunting. BIOLOGY 2023; 12:biology12020247. [PMID: 36829525 PMCID: PMC9953444 DOI: 10.3390/biology12020247] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023]
Abstract
The present study aimed to characterize the macrostructure and microstructure of the mandibular teeth of the Komodo dragon (Varanus komodoensis) and the methods it uses to obtain food. Examinations were performed using a stereoscopic microscope, autofluorescence method, histological method and computed microtomography. A detailed macro- and micro-structural description of V. komodoensis mandibular teeth were made. The mandibular teeth are laterally flattened along their entire length and the dental crown is hooked caudally. The part of the nasal margin of the tooth crown is irregular, while the caudal margin of the tooth is characteristically serrated, except for the tooth base area. There are longitudinal grooves on the lingual and vestibular surfaces up to the lower third of the tooth height. The mandibular tooth is surrounded by a cuff made of the oral mucosa, containing the opening of the venom gland. In the histological structure of the tooth, the enamel covering the tooth crown and the dentin under the enamel are distinguished. The inside of the tooth, except its basal part, is filled with the tooth chamber, while the inside of the lower part of the tooth is filled with plicidentine, which corresponds to external furrows on the enamel. The plicidentine arrangement resembles a honeycomb. A small amount of dentine folds reach up to the tooth apex. Characteristic features of the structure of the mandibular teeth in V. komodoensis may indicate their significant role, in addition to the venom glands, in obtaining food in the natural environment of this species.
Collapse
|
6
|
Chatar N, Fischer V, Tseng ZJ. Many-to-one function of cat-like mandibles highlights a continuum of sabre-tooth adaptations. Proc Biol Sci 2022; 289:20221627. [PMID: 36475442 PMCID: PMC9727663 DOI: 10.1098/rspb.2022.1627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cat-like carnivorans are a textbook example of convergent evolution, with distinct morphological differences between taxa with short or elongated upper canines, the latter often being interpreted as an adaptation to bite at large angles and subdue large prey. This interpretation of the sabre-tooth condition is reinforced by a reduced taxonomic sampling in some studies, often focusing on highly derived taxa or using simplified morphological models. Moreover, most biomechanical analyses focus on biting scenarios at small gapes, ideal for modern carnivora but ill-suited to test for subduction of large prey by sabre-toothed taxa. In this contribution, we present the largest three-dimensional collection-based muscle-induced biting simulations on cat-like carnivorans by running a total of 1074 analyses on 17 different taxa at three different biting angles (30°, 60° and 90°) including both morphologies. While our results show a clear adaptation of extreme sabre-toothed taxa to bite at larger angles in terms of stress distribution, other performance variables display surprising similarities between all forms at the different angles tested, highlighting a continuous rather than bipolar spectrum of hunting methods in cat-like carnivorans and demonstrating a wide functional disparity and nuances of the sabre-tooth condition that cannot simply be characterized by specialized feeding biomechanics.
Collapse
Affiliation(s)
- Narimane Chatar
- Evolution and Diversity Dynamics lab, UR Geology, Université de Liège, Building B18, Quartier Agora, Allée du Six Août 14, Liège, 4000, Belgium
| | - Valentin Fischer
- Evolution and Diversity Dynamics lab, UR Geology, Université de Liège, Building B18, Quartier Agora, Allée du Six Août 14, Liège, 4000, Belgium
| | - Z. Jack Tseng
- Department of Integrative Biology and Museum of Paleontology, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
7
|
Law CJ, Blackwell EA, Curtis AA, Dickinson E, Hartstone-Rose A, Santana SE. Decoupled evolution of the cranium and mandible in carnivoran mammals. Evolution 2022; 76:2959-2974. [PMID: 35875871 DOI: 10.1111/evo.14578] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/06/2022] [Accepted: 06/17/2022] [Indexed: 01/22/2023]
Abstract
The relationship between skull morphology and diet is a prime example of adaptive evolution. In mammals, the skull consists of the cranium and the mandible. Although the mandible is expected to evolve more directly in response to dietary changes, dietary regimes may have less influence on the cranium because additional sensory and brain-protection functions may impose constraints on its morphological evolution. Here, we tested this hypothesis by comparing the evolutionary patterns of cranium and mandible shape and size across 100+ species of carnivoran mammals with distinct feeding ecologies. Our results show decoupled modes of evolution in cranial and mandibular shape; cranial shape follows clade-based evolutionary shifts, whereas mandibular shape evolution is linked to broad dietary regimes. These results are consistent with previous hypotheses regarding hierarchical morphological evolution in carnivorans and greater evolutionary lability of the mandible with respect to diet. Furthermore, in hypercarnivores, the evolution of both cranial and mandibular size is associated with relative prey size. This demonstrates that dietary diversity can be loosely structured by craniomandibular size within some guilds. Our results suggest that mammal skull morphological evolution is shaped by mechanisms beyond dietary adaptation alone.
Collapse
Affiliation(s)
- Chris J Law
- Department of Integrative Biology, University of Texas, Austin, Texas, 78712.,Department of Biology, University of Washington, Seattle, Washington, 98105.,Burke Museum of Natural History and Culture, University of Washington, Seattle, Washington, 98105.,Richard Gilder Graduate School, American Museum of Natural History, New York, New York, 10024.,Department of Mammalogy, American Museum of Natural History, New York, New York, 10024.,Division of Paleontology, American Museum of Natural History, New York, New York, 10024
| | - Emily A Blackwell
- Richard Gilder Graduate School, American Museum of Natural History, New York, New York, 10024.,Department of Mammalogy, American Museum of Natural History, New York, New York, 10024.,Division of Paleontology, American Museum of Natural History, New York, New York, 10024.,Department of Biological Sciences, Smith College, Northampton, Massachusetts, 01063
| | - Abigail A Curtis
- Department of Biology, University of Washington, Seattle, Washington, 98105.,Burke Museum of Natural History and Culture, University of Washington, Seattle, Washington, 98105
| | - Edwin Dickinson
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, 27695.,Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, New York, New York, 11545
| | - Adam Hartstone-Rose
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, 27695
| | - Sharlene E Santana
- Department of Biology, University of Washington, Seattle, Washington, 98105.,Burke Museum of Natural History and Culture, University of Washington, Seattle, Washington, 98105
| |
Collapse
|
8
|
Do common dispersal influences inform a large lizard’s landscape-scale gene flow? Evol Ecol 2022. [DOI: 10.1007/s10682-022-10208-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Johnson MM, Foffa D, Young MT, Brusatte SL. The ecological diversification and evolution of Teleosauroidea (Crocodylomorpha, Thalattosuchia), with insights into their mandibular biomechanics. Ecol Evol 2022; 12:e9484. [PMID: 36415878 PMCID: PMC9674474 DOI: 10.1002/ece3.9484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/13/2022] [Accepted: 10/19/2022] [Indexed: 11/20/2022] Open
Abstract
Throughout the Jurassic, a plethora of marine reptiles dominated ocean waters, including ichthyosaurs, plesiosaurs and thalattosuchian crocodylomorphs. These Jurassic ecosystems were characterized by high niche partitioning and spatial variation in dietary ecology. However, while the ecological diversity of many marine reptile lineages is well known, the overall ecological diversification of Teleosauroidea (one of the two major groups within thalattosuchian crocodylomorphs) has never been explored. Teleosauroids were previously deemed to have a morphologically conservative body plan; however, they were in actuality morphofunctionally more diverse than previously thought. Here we investigate the ecology and feeding specializations of teleosauroids, using morphological and functional cranio-dental characteristics. We assembled the most comprehensive dataset to date of teleosauroid taxa (approximately 20 species) and ran a series of principal component analyses (PC) to categorize them into various feeding ecomorphotypes based on 17 dental characteristics (38 specimens) and 16 functionally significant mandibular characters (18 specimens). The results were examined in conjunction with a comprehensive thalattosuchian phylogeny (153 taxa and 502 characters) to evaluate macroevolutionary patterns and significant ecological shifts. Machimosaurids display a well-developed ecological shift from: (1) slender, pointed tooth apices and an elongate gracile mandible; to (2) more robust, pointed teeth with a slightly deeper mandible; and finally, (3) rounded teeth and a deep-set, shortened mandible with enlarged musculature. Overall, there is limited mandibular functional variability in teleosaurids and machimosaurids, despite differing cranial morphologies and habitat preferences in certain taxa. This suggests a narrow feeding ecological divide between teleosaurids and machimosaurids. Resource partitioning was primarily related to snout and skull length as well as habitat; only twice did teleosauroids manage to make a major evolutionary leap to feed distinctly differently, with only the derived machimosaurines successfully radiating into new feeding ecologies.
Collapse
Affiliation(s)
| | - Davide Foffa
- Department of GeosciencesVirginia TechBlacksburgVirginiaUSA
- School of Geography, Earth and Environmental SciencesUniversity of BirminghamBirminghamUK
- National Museum of ScotlandEdinburghUK
| | - Mark T. Young
- School of GeoSciences, Grant InstituteUniversity of EdinburghEdinburghUK
- LWL‐Museum für NaturkundeMünsterGermany
| | - Stephen L. Brusatte
- National Museum of ScotlandEdinburghUK
- School of GeoSciences, Grant InstituteUniversity of EdinburghEdinburghUK
| |
Collapse
|
10
|
Pollock TI, Panagiotopoulou O, Hocking DP, Evans AR. Taking a stab at modelling canine tooth biomechanics in mammalian carnivores with beam theory and finite-element analysis. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220701. [PMID: 36300139 PMCID: PMC9579775 DOI: 10.1098/rsos.220701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Canine teeth are vital to carnivore feeding ecology, facilitating behaviours related to prey capture and consumption. Forms vary with specific feeding ecologies; however, the biomechanics that drive these relationships have not been comprehensively investigated. Using a combination of beam theory analysis (BTA) and finite-element analysis (FEA) we assessed how aspects of canine shape impact tooth stress, relating this to feeding ecology. The degree of tooth lateral compression influenced tolerance of multidirectional loads, whereby canines with more circular cross-sections experienced similar maximum stresses under pulling and shaking loads, while more ellipsoid canines experienced higher stresses under shaking loads. Robusticity impacted a tooth's ability to tolerate stress and appears to be related to prey materials. Robust canines experience lower stresses and are found in carnivores regularly encountering hard foods. Slender canines experience higher stresses and are associated with carnivores biting into muscle and flesh. Curvature did not correlate with tooth stress; however, it did impact bending during biting. Our simulations help identify scenarios where canine forms are likely to break and pinpoint areas where this breakage may occur. These patterns demonstrate how canine shape relates to tolerating the stresses experienced when killing and feeding, revealing some of the form-function relationships that underpin mammalian carnivore ecologies.
Collapse
Affiliation(s)
- Tahlia I. Pollock
- School of Biological Sciences, Monash University, Clayton 3800, Australia
| | - Olga Panagiotopoulou
- Monash Biomedicine Discovery Institute, Department of Anatomy & Developmental Biology, Monash University, Clayton 3800, Australia
| | - David P. Hocking
- School of Biological Sciences, Monash University, Clayton 3800, Australia
- Zoology, Tasmanian Museum and Art Gallery, Hobart, Australia
| | - Alistair R. Evans
- School of Biological Sciences, Monash University, Clayton 3800, Australia
- Geosciences, Museums Victoria, Melbourne, Victoria, Australia
| |
Collapse
|
11
|
Dong L, Wang YQ, Zhao Q, Vasilyan D, Wang Y, Evans SE. A new stem-varanid lizard (Reptilia, Squamata) from the early Eocene of China. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210041. [PMID: 35125002 PMCID: PMC8819366 DOI: 10.1098/rstb.2021.0041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Monitor lizards (genus Varanus) are today distributed across Asia, Africa and Australasia and represent one of the most recognizable and successful lizard lineages. They include charismatic living species like the Komodo dragon of Indonesia and the even larger extinct Varanus prisca (Megalania) of Australia. The fossil record suggests that living varanids had their origins in a diverse assemblage of stem (varaniform) species known from the Late Cretaceous of China and Mongolia. However, determining the biogeographic origins of crown-varanids has proved problematic, with Asia, Africa and Australia each being proposed. The problem is complicated by the fragmentary nature of many attributed specimens, and the fact that the most widely accepted, and most complete, fossil of a stem-varanid, that of Saniwa ensidens, is from North America. In this paper, we describe a well-preserved skull and skeleton of a new genus of stem-varanid from the Eocene of China. Phylogenetic analysis places the new genus as the sister taxon of Varanus, suggesting that the transition from Cretaceous varaniform lizards to Varanus occurred in East Asia before the origin and dispersal of Varanus to other regions. The discovery of the new specimen thus fills an important gap in the fossil record of monitor lizards. The similar lengths of the fore- and hindlimbs in this new taxon are unusual among the total group Varanidae and suggest it may have had a different lifestyle, at least from the contemporaneous North American S. ensidens. This article is part of the theme issue 'The impact of Chinese palaeontology on evolutionary research'.
Collapse
Affiliation(s)
- Liping Dong
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, People's Republic of China.,CAS Center for Excellence in Life and Paleoenvironment, Beijing, People's Republic of China
| | - Yuan-Qing Wang
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, People's Republic of China.,CAS Center for Excellence in Life and Paleoenvironment, Beijing, People's Republic of China
| | - Qi Zhao
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, People's Republic of China.,CAS Center for Excellence in Life and Paleoenvironment, Beijing, People's Republic of China
| | - Davit Vasilyan
- JURASSICA Museum, Porrentruy, Switzerland.,Department of the Geosciences, University of Fribourg, Fribourg, Switzerland
| | - Yuan Wang
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, People's Republic of China.,CAS Center for Excellence in Life and Paleoenvironment, Beijing, People's Republic of China
| | - Susan E Evans
- Centre for Integrative Anatomy, Department of Cell and Developmental Biology, University College London, London, UK
| |
Collapse
|
12
|
Bestwick J, Jones AS, Nesbitt SJ, Lautenschlager S, Rayfield EJ, Cuff AR, Button DJ, Barrett PM, Porro LB, Butler RJ. Cranial functional morphology of the pseudosuchian Effigia and implications for its ecological role in the Triassic. Anat Rec (Hoboken) 2021; 305:2435-2462. [PMID: 34841701 DOI: 10.1002/ar.24827] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 09/10/2021] [Accepted: 10/07/2021] [Indexed: 11/06/2022]
Abstract
Pseudosuchians, archosaurian reptiles more closely related to crocodylians than to birds, exhibited high morphological diversity during the Triassic with numerous examples of morphological convergence described between Triassic pseudosuchians and post-Triassic dinosaurs. One example is the shuvosaurid Effigia okeeffeae which exhibits an "ostrich-like" bauplan comprising a gracile skeleton with edentulous jaws and large orbits, similar to ornithomimid dinosaurs and extant palaeognaths. This bauplan is regarded as an adaptation for herbivory, but this hypothesis assumes morphological convergence confers functional convergence, and has received little explicit testing. Here, we restore the skull morphology of Effigia, perform myological reconstructions, and apply finite element analysis to quantitatively investigate skull function. We also perform finite element analysis on the crania of the ornithomimid dinosaur Ornithomimus edmontonicus, the extant palaeognath Struthio camelus and the extant pseudosuchian Alligator mississippiensis to assess the degree of functional convergence with a taxon that exhibit "ostrich-like" bauplans and its closest extant relatives. We find that Effigia possesses a mosaic of mechanically strong and weak features, including a weak mandible that likely restricted feeding to the anterior portion of the jaws. We find limited functional convergence with Ornithomimus and Struthio and limited evidence of phylogenetic constraints with extant pseudosuchians. We infer that Effigia was a specialist herbivore that likely fed on softer plant material, a niche unique among the study taxa and potentially among contemporaneous Triassic herbivores. This study increases the known functional diversity of pseudosuchians and highlights that superficial morphological similarity between unrelated taxa does not always imply functional and ecological convergence.
Collapse
Affiliation(s)
- Jordan Bestwick
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Andrew S Jones
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
| | | | - Stephan Lautenschlager
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
| | | | - Andrew R Cuff
- Centre for Anatomical and Human Sciences, Hull York Medical School, University of York, York, UK
| | - David J Button
- Department of Earth Sciences, The Natural History Museum, London, UK
| | - Paul M Barrett
- Department of Earth Sciences, The Natural History Museum, London, UK
| | - Laura B Porro
- Centre for Integrative Anatomy, Department of Cell and Developmental Biology, University College London, London, UK
| | - Richard J Butler
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
13
|
Carnosaurs as Apex Scavengers: Agent-based simulations reveal possible vulture analogues in late Jurassic Dinosaurs. Ecol Modell 2021. [DOI: 10.1016/j.ecolmodel.2021.109706] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
14
|
Jessop TS, Holmes B, Sendjojo A, Thorpe MO, Ritchie EG. Assessing the benefits of integrated introduced predator management for recovery of native predators. Restor Ecol 2021. [DOI: 10.1111/rec.13419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tim S. Jessop
- Centre for Integrative Ecology, School of Life and Environmental Sciences Deakin University Geelong Victoria 3216 Australia
| | - Ben Holmes
- Wimmera Catchment Management Authority Horsham Victoria 3400 Australia
| | - Arvel Sendjojo
- Centre for Integrative Ecology, School of Life and Environmental Sciences Deakin University Geelong Victoria 3216 Australia
| | - Mary O. Thorpe
- Centre for Integrative Ecology, School of Life and Environmental Sciences Deakin University Geelong Victoria 3216 Australia
| | - Euan G. Ritchie
- Centre for Integrative Ecology, School of Life and Environmental Sciences Deakin University Geelong Victoria 3216 Australia
| |
Collapse
|
15
|
White HE, Goswami A, Tucker AS. The Intertwined Evolution and Development of Sutures and Cranial Morphology. Front Cell Dev Biol 2021; 9:653579. [PMID: 33842480 PMCID: PMC8033035 DOI: 10.3389/fcell.2021.653579] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 03/08/2021] [Indexed: 12/21/2022] Open
Abstract
Phenotypic variation across mammals is extensive and reflects their ecological diversification into a remarkable range of habitats on every continent and in every ocean. The skull performs many functions to enable each species to thrive within its unique ecological niche, from prey acquisition, feeding, sensory capture (supporting vision and hearing) to brain protection. Diversity of skull function is reflected by its complex and highly variable morphology. Cranial morphology can be quantified using geometric morphometric techniques to offer invaluable insights into evolutionary patterns, ecomorphology, development, taxonomy, and phylogenetics. Therefore, the skull is one of the best suited skeletal elements for developmental and evolutionary analyses. In contrast, less attention is dedicated to the fibrous sutural joints separating the cranial bones. Throughout postnatal craniofacial development, sutures function as sites of bone growth, accommodating expansion of a growing brain. As growth frontiers, cranial sutures are actively responsible for the size and shape of the cranial bones, with overall skull shape being altered by changes to both the level and time period of activity of a given cranial suture. In keeping with this, pathological premature closure of sutures postnatally causes profound misshaping of the skull (craniosynostosis). Beyond this crucial role, sutures also function postnatally to provide locomotive shock absorption, allow joint mobility during feeding, and, in later postnatal stages, suture fusion acts to protect the developed brain. All these sutural functions have a clear impact on overall cranial function, development and morphology, and highlight the importance that patterns of suture development have in shaping the diversity of cranial morphology across taxa. Here we focus on the mammalian cranial system and review the intrinsic relationship between suture development and morphology and cranial shape from an evolutionary developmental biology perspective, with a view to understanding the influence of sutures on evolutionary diversity. Future work integrating suture development into a comparative evolutionary framework will be instrumental to understanding how developmental mechanisms shaping sutures ultimately influence evolutionary diversity.
Collapse
Affiliation(s)
- Heather E White
- Department of Life Sciences, Natural History Museum, London, United Kingdom.,Centre for Craniofacial and Regenerative Biology, King's College London, London, United Kingdom.,Division of Biosciences, University College London, London, United Kingdom
| | - Anjali Goswami
- Department of Life Sciences, Natural History Museum, London, United Kingdom.,Division of Biosciences, University College London, London, United Kingdom
| | - Abigail S Tucker
- Centre for Craniofacial and Regenerative Biology, King's College London, London, United Kingdom
| |
Collapse
|
16
|
Dutel H, Gröning F, Sharp AC, Watson PJ, Herrel A, Ross CF, Jones MEH, Evans SE, Fagan MJ. Comparative cranial biomechanics in two lizard species: impact of variation in cranial design. J Exp Biol 2021; 224:jeb.234831. [PMID: 33504585 PMCID: PMC7970069 DOI: 10.1242/jeb.234831] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 01/18/2021] [Indexed: 12/19/2022]
Abstract
Cranial morphology in lepidosaurs is highly disparate and characterised by the frequent loss or reduction of bony elements. In varanids and geckos, the loss of the postorbital bar is associated with changes in skull shape, but the mechanical principles underlying this variation remain poorly understood. Here, we sought to determine how the overall cranial architecture and the presence of the postorbital bar relate to the loading and deformation of the cranial bones during biting in lepidosaurs. Using computer-based simulation techniques, we compared cranial biomechanics in the varanid Varanus niloticus and the teiid Salvator merianae, two large, active foragers. The overall strain magnitude and distribution across the cranium were similar in the two species, despite lower strain gradients in V. niloticus. In S. merianae, the postorbital bar is important for resistance of the cranium to feeding loads. The postorbital ligament, which in varanids partially replaces the postorbital bar, does not affect bone strain. Our results suggest that the reduction of the postorbital bar impaired neither biting performance nor the structural resistance of the cranium to feeding loads in V. niloticus. Differences in bone strain between the two species might reflect demands imposed by feeding and non-feeding functions on cranial shape. Beyond variation in cranial bone strain related to species-specific morphological differences, our results reveal that similar mechanical behaviour is shared by lizards with distinct cranial shapes. Contrary to the situation in mammals, the morphology of the circumorbital region, calvaria and palate appears to be important for withstanding high feeding loads in these lizards. Summary:In vivo measurements and computer-based simulations of the cranial mechanics of two large lizards indicate that similar mechanical behaviour is shared by lizards with distinct cranial architecture, and show the importance of the postorbital bar in resisting the feeding loads.
Collapse
Affiliation(s)
- Hugo Dutel
- School of Earth Sciences, University of Bristol, Bristol, BS8 1TQ, UK .,Department of Engineering, Medical and Biological Engineering Research Group, University of Hull, Hull, HU6 7RX, UK
| | - Flora Gröning
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| | - Alana C Sharp
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, L7 8TX, UK.,Centre for Integrative Anatomy, Research Department of Cell and Developmental Biology, University College London, Anatomy Building, Gower Street, London, WCIE 6BT, UK
| | - Peter J Watson
- Department of Engineering, Medical and Biological Engineering Research Group, University of Hull, Hull, HU6 7RX, UK
| | - Anthony Herrel
- UMR 7179 MECADEV, MNHN - CNRS, Département Adaptations du Vivant, Muséum national d'Histoire naturelle, 75005 Paris, France
| | - Callum F Ross
- Organismal Biology and Anatomy, University of Chicago, 1027 East 57th Street, Chicago, IL 60637, USA
| | - Marc E H Jones
- Centre for Integrative Anatomy, Research Department of Cell and Developmental Biology, University College London, Anatomy Building, Gower Street, London, WCIE 6BT, UK
| | - Susan E Evans
- Centre for Integrative Anatomy, Research Department of Cell and Developmental Biology, University College London, Anatomy Building, Gower Street, London, WCIE 6BT, UK
| | - Michael J Fagan
- Department of Engineering, Medical and Biological Engineering Research Group, University of Hull, Hull, HU6 7RX, UK
| |
Collapse
|
17
|
Bestwick J, Unwin DM, Henderson DM, Purnell MA. Dental microwear texture analysis along reptile tooth rows: complex variation with non-dietary variables. ROYAL SOCIETY OPEN SCIENCE 2021; 8:201754. [PMID: 33972864 PMCID: PMC8074666 DOI: 10.1098/rsos.201754] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 01/06/2021] [Indexed: 06/01/2023]
Abstract
Dental microwear texture analysis (DMTA) is a powerful technique for reconstructing the diets of extant and extinct taxa. Few studies have investigated intraspecific microwear differences along with tooth rows and the influence of endogenous non-dietary variables on texture characteristics. Sampling teeth that are minimally affected by non-dietary variables is vital for robust dietary reconstructions, especially for taxa with non-occlusal (non-chewing) dentitions as no standardized sampling strategies currently exist. Here, we apply DMTA to 13 species of extant reptile (crocodilians and monitor lizards) to investigate intraspecific microwear differences along with tooth rows and to explore the influence of three non-dietary variables on exhibited differences: (i) tooth position, (ii) mechanical advantage, and (iii) tooth aspect ratio. Five species exhibited intraspecific microwear differences. In several crocodilians, the distally positioned teeth exhibited the 'roughest' textures, and texture characteristics correlated with all non-dietary variables. By contrast, the mesial teeth of the roughneck monitor (Varanus rudicollis) exhibited the 'roughest' textures, and texture characteristics did not correlate with aspect ratio. These results are somewhat consistent with how reptiles preferentially use their teeth during feeding. We argue that DMTA has the potential to track mechanical and behavioural differences in tooth use which should be taken into consideration in future dietary reconstructions.
Collapse
Affiliation(s)
- Jordan Bestwick
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
- Centre for Palaeobiology Research, School of Geography, Geology and the Environment, University of Leicester, Leicester LE1 7RH, UK
| | - David M. Unwin
- Centre for Palaeobiology Research, School of Museum Studies, University of Leicester, Leicester LE1 7RF, UK
| | | | - Mark A. Purnell
- Centre for Palaeobiology Research, School of Geography, Geology and the Environment, University of Leicester, Leicester LE1 7RH, UK
| |
Collapse
|
18
|
Ariefiandy A, Purwandana D, Benu YJ, Letnic M, Jessop TS. Knee deep in trouble: rusa deer use an aquatic escape behaviour to delay attack by Komodo dragons. AUSTRALIAN MAMMALOGY 2020. [DOI: 10.1071/am18052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We document six observations of an aquatic behaviour used by rusa deer (Rusa timorensis) to delay an imminent attack from Komodo dragons (Varanus komodoensis). This unusual behaviour arose after rusa deer fled into the nearby seawater following an attack from a solitary Komodo dragon. Once in the sea, rusa deer remained relatively stationary by standing in shallow water (<1 m deep) for up to 4 h. This behaviour generally allowed rusa deer to avoid an in-water attack from Komodo dragons. However, if rusa did not die from injuries, they moved back onto land and were subsequently killed by Komodo dragons. The aquatic behaviour delays subsequent attacks on rusa deer by Komodo dragons, but this appears only to postpone, rather than prevent, the deer’s death.
Collapse
|
19
|
Wilken AT, Middleton KM, Sellers KC, Cost IN, Holliday CM. The roles of joint tissues and jaw muscles in palatal biomechanics of the savannah monitor ( Varanus exanthematicus) and their significance for cranial kinesis. ACTA ACUST UNITED AC 2019; 222:jeb.201459. [PMID: 31481636 DOI: 10.1242/jeb.201459] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 08/23/2019] [Indexed: 12/16/2022]
Abstract
Numerous vertebrates exhibit cranial kinesis, or movement between bones of the skull and mandible other than at the jaw joint. Many kinetic species possess a particular suite of features to accomplish this movement, including flexible cranial joints and protractor musculature. Whereas the musculoskeletal anatomy of these kinetic systems is well understood, how these joints are biomechanically loaded, how different soft tissues affect joint loading and kinetic capacity, and how the protractor musculature loads the skull remain poorly understood. Here, we present a finite element model of the savannah monitor, Varanus exanthematicus, a modestly kinetic lizard, to better elucidate the roles of soft tissue in mobile joints and protractor musculature in cranial loading. We describe the 3D resultants of jaw muscles and the histology of palatobasal, otic and jaw joints. We tested the effects of joint tissue type, bite point and muscle load to evaluate the biomechanical role of muscles on the palate and braincase. We found that the jaw muscles have significant mediolateral components that can impart stability across palatocranial joints. Articular tissues affect the magnitude of strains experienced around the palatobasal and otic joints. Without protractor muscle loading, the palate, quadrate and braincase experience higher strains, suggesting this muscle helps insulate the braincase and palatoquadrate from high loads. We found that the cross-sectional properties of the bones of V. exanthematicus are well suited for performing under torsional loads. These findings suggest that torsional loading regimes may have played a more important role in the evolution of cranial kinesis in lepidosaurs than previously appreciated.
Collapse
Affiliation(s)
- Alec T Wilken
- Department of Pathology and Anatomical Sciences, University of Missouri, M263, Medical Sciences Building, Columbia, MO 65212, USA
| | - Kevin M Middleton
- Department of Pathology and Anatomical Sciences, University of Missouri, M263, Medical Sciences Building, Columbia, MO 65212, USA
| | - Kaleb C Sellers
- Department of Pathology and Anatomical Sciences, University of Missouri, M263, Medical Sciences Building, Columbia, MO 65212, USA
| | - Ian N Cost
- Department of Pathology and Anatomical Sciences, University of Missouri, M263, Medical Sciences Building, Columbia, MO 65212, USA
| | - Casey M Holliday
- Department of Pathology and Anatomical Sciences, University of Missouri, M263, Medical Sciences Building, Columbia, MO 65212, USA
| |
Collapse
|
20
|
Bestwick J, Unwin DM, Purnell MA. Dietary differences in archosaur and lepidosaur reptiles revealed by dental microwear textural analysis. Sci Rep 2019; 9:11691. [PMID: 31406164 PMCID: PMC6690991 DOI: 10.1038/s41598-019-48154-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 07/30/2019] [Indexed: 11/09/2022] Open
Abstract
Reptiles are key components of modern ecosystems, yet for many species detailed characterisations of their diets are lacking. Data currently used in dietary reconstructions are limited either to the last few meals or to proxy records of average diet over temporal scales of months to years, providing only coarse indications of trophic level(s). Proxies that record information over weeks to months would allow more accurate reconstructions of reptile diets and better predictions of how ecosystems might respond to global change drivers. Here, we apply dental microwear textural analysis (DMTA) to dietary guilds encompassing both archosaurian and lepidosaurian reptiles, demonstrating its value as a tool for characterising diets over temporal scales of weeks to months. DMTA, involving analysis of the three-dimensional, sub-micrometre scale textures created on tooth surfaces by interactions with food, reveals that the teeth of reptiles with diets dominated by invertebrates, particularly invertebrates with hard exoskeletons (e.g. beetles and snails), exhibit rougher microwear textures than reptiles with vertebrate-dominated diets. Teeth of fish-feeding reptiles exhibit the smoothest textures of all guilds. These results demonstrate the efficacy of DMTA as a dietary proxy in taxa from across the phylogenetic range of extant reptiles. This method is applicable to extant taxa (living or museum specimens) and extinct reptiles, providing new insights into past, present and future ecosystems.
Collapse
Affiliation(s)
- Jordan Bestwick
- School of Geography, Geology and the Environment, University of Leicester, Leicester, LE1 7RH, United Kingdom.
| | - David M Unwin
- School of Museum Studies, University of Leicester, Leicester, LE1 7RF, United Kingdom
| | - Mark A Purnell
- School of Geography, Geology and the Environment, University of Leicester, Leicester, LE1 7RH, United Kingdom.
| |
Collapse
|
21
|
Noto CR, Drumheller SK, Adams TL, Turner AH. An Enigmatic Small Neosuchian Crocodyliform from the Woodbine Formation of Texas. Anat Rec (Hoboken) 2019; 303:801-812. [PMID: 31173481 DOI: 10.1002/ar.24174] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 11/22/2018] [Accepted: 11/29/2018] [Indexed: 11/05/2022]
Abstract
New discoveries at the Arlington Archosaur Site (AAS), a Cenomanian (Late Cretaceous) locality in north-central Texas, are filling gaps in our knowledge of mid-Cretaceous Appalachian ecosystems, which remain poorly characterized. The AAS is notable because it preserves a diverse crocodyliform record. As seen in other sites that preserve four or more crocodyliform taxa, the species present at the AAS exhibit different snout shapes and body sizes, indicating that this high diversity of sympatric species was likely sustainable due to niche partitioning. Here we describe Scolomastax sahlsteini gen. et sp. nov., a new species of crocodyliform from the AAS, currently known from a partial right mandibular ramus. This species differs from other crocodyliforms in possessing features associated with durophagy or omnivory, including a shortened mandible, reduced tooth count, heterodonty, a dorsally expanded surangular, and enlarged attachments for jaw adductor muscles. Our phylogenetic analysis places this new taxon within Eusuchia as a member of Paralligatoridae and sister taxon to Paralligator gradilifrons. Scolomastax sahlsteini extends the record of paralligatorids into the Late Cretaceous of North America. This discovery represents the first appearance of this clade on the poorly known landmass of Appalachia, supporting a biogeographic connection between North America and Asia in the Early Cretaceous prior to completion of the Western Interior Seaway. However, relationships among other endemic crocodyliforms and tree instability within Paralligatoridae suggest further analysis is needed to resolve phylogenetic and biogeographic relationships (http://zoobank.org/urn:lsid:zoobank.org:pub:DC114471-6687-4BB5-8FAE-96F7278B1DAF). Anat Rec, 303:801-812, 2020. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Christopher R Noto
- Department of Biological Sciences, University of Wisconsin-Parkside, Kenosha, Wisconsin
| | - Stephanie K Drumheller
- Department of Earth and Planetary Sciences, University of Tennessee-Knoxville, Knoxville, Tennessee
| | | | - Alan H Turner
- Department of Anatomical Sciences, Stony Brook University, Stony Brook, New York
| |
Collapse
|
22
|
Feilich KL, López-Fernández H. When Does Form Reflect Function? Acknowledging and Supporting Ecomorphological Assumptions. Integr Comp Biol 2019; 59:358-370. [DOI: 10.1093/icb/icz070] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
Ecomorphology is the study of relationships between organismal morphology and ecology. As such, it is the only way to determine if morphometric data can be used as an informative proxy for ecological variables of interest. To achieve this goal, ecomorphology often depends on, or directly tests, assumptions about the nature of the relationships among morphology, performance, and ecology. We discuss three approaches to the study of ecomorphology: morphometry-driven, function-driven, and ecology-driven and study design choices inherent to each approach. We also identify 10 assumptions that underlie ecomorphological research: 4 of these are central to all ecomorphological studies and the remaining 6 are variably applicable to some of the specific approaches described above. We discuss how these assumptions may impact ecomorphological studies and affect the interpretation of their findings. We also point out some limitations of ecomorphological studies, and highlight some ways by which we can strengthen, validate, or eliminate systematic assumptions.
Collapse
Affiliation(s)
- Kara L Feilich
- Museum of Paleontology, University of Michigan, 1105 North University Ave, Ann Arbor, MI 48109, USA
| | - Hernán López-Fernández
- Department of Ecology and Evolutionary Biology and Museum of Zoology, University of Michigan, 1105 North University Ave, Ann Arbor, MI 48109, USA
| |
Collapse
|
23
|
Jessop TS, Ariefiandy A, Purwandana D, Benu YJ, Hyatt M, Letnic M. Little to fear: largest lizard predator induces weak defense responses in ungulate prey. Behav Ecol 2019. [DOI: 10.1093/beheco/ary200] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Tim S Jessop
- Centre for Integrative Ecology, School of Life and Environmental Science, Deakin University, Waurn Ponds, Victoria, Australia
- Komodo Survival Program, Denpasar, Bali, Indonesia
| | | | | | | | - Matthew Hyatt
- Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, University of New South Wales, Kensington, New South Wales, Australia
| | - Mike Letnic
- Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, University of New South Wales, Kensington, New South Wales, Australia
| |
Collapse
|
24
|
Bels V, Paindavoine AS, Zghikh LN, Paulet E, Pallandre JP, Montuelle SJ. Feeding in Lizards: Form–Function and Complex Multifunctional System. FEEDING IN VERTEBRATES 2019. [DOI: 10.1007/978-3-030-13739-7_13] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
25
|
Jones MEH, Gröning F, Dutel H, Sharp A, Fagan MJ, Evans SE. The biomechanical role of the chondrocranium and sutures in a lizard cranium. J R Soc Interface 2017; 14:20170637. [PMID: 29263126 PMCID: PMC5746569 DOI: 10.1098/rsif.2017.0637] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 11/28/2017] [Indexed: 11/30/2022] Open
Abstract
The role of soft tissues in skull biomechanics remains poorly understood. Not least, the chondrocranium, the portion of the braincase which persists as cartilage with varying degrees of mineralization. It also remains commonplace to overlook the biomechanical role of sutures despite evidence that they alter strain distribution. Here, we examine the role of both the sutures and the chondrocranium in the South American tegu lizard Salvator merianae We use multi-body dynamics analysis (MDA) to provide realistic loading conditions for anterior and posterior unilateral biting and a detailed finite element model to examine strain magnitude and distribution. We find that strains within the chondrocranium are greatest during anterior biting and are primarily tensile; also that strain within the cranium is not greatly reduced by the presence of the chondrocranium unless it is given the same material properties as bone. This result contradicts previous suggestions that the anterior portion (the nasal septum) acts as a supporting structure. Inclusion of sutures to the cranium model not only increases overall strain magnitudes but also leads to a more complex distribution of tension and compression rather than that of a beam under sagittal bending.
Collapse
Affiliation(s)
- Marc E H Jones
- School of Biological Sciences, The University of Adelaide, North Terrace, Adelaide, South Australia 5005, Australia
- South Australian Museum, North Terrace, Adelaide, South Australia 5001, Australia
| | - Flora Gröning
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Hugo Dutel
- School of Engineering and Computer Science, Medical and Biological Engineering Research Group, University of Hull, Hull HU6 7RX, UK
| | - Alana Sharp
- Research Department of Cell and Developmental Biology, UCL, University College London, Anatomy Building, Gower Street, London WCIE 6BT, UK
| | - Michael J Fagan
- School of Engineering and Computer Science, Medical and Biological Engineering Research Group, University of Hull, Hull HU6 7RX, UK
| | - Susan E Evans
- Research Department of Cell and Developmental Biology, UCL, University College London, Anatomy Building, Gower Street, London WCIE 6BT, UK
| |
Collapse
|
26
|
Geometric Morphometrics Provides an Alternative Approach for Interpreting the Affinity of Fossil Lizard Jaws. J HERPETOL 2017. [DOI: 10.1670/16-145] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
27
|
McCurry M, Walmsley C, Fitzgerald E, McHenry C. The biomechanical consequences of longirostry in crocodilians and odontocetes. J Biomech 2017; 56:61-70. [DOI: 10.1016/j.jbiomech.2017.03.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 03/02/2017] [Accepted: 03/03/2017] [Indexed: 11/29/2022]
|
28
|
Openshaw GH, D'Amore DC, Vidal-García M, Keogh JS. Combining geometric morphometric analyses of multiple 2D observation views improves interpretation of evolutionary allometry and shape diversification in monitor lizard (Varanus) crania. Biol J Linn Soc Lond 2016. [DOI: 10.1111/bij.12899] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Gabrielle H. Openshaw
- Division of Evolution; Ecology and Genetics; Research School of Biology; The Australian National University; Canberra ACT Australia
| | | | - Marta Vidal-García
- Division of Evolution; Ecology and Genetics; Research School of Biology; The Australian National University; Canberra ACT Australia
| | - J. Scott Keogh
- Division of Evolution; Ecology and Genetics; Research School of Biology; The Australian National University; Canberra ACT Australia
| |
Collapse
|
29
|
Ecological allometries and niche use dynamics across Komodo dragon ontogeny. Naturwissenschaften 2016; 103:27. [DOI: 10.1007/s00114-016-1351-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 12/29/2015] [Accepted: 02/16/2016] [Indexed: 10/22/2022]
|