1
|
Pan J, Geng X, Cai Y, Yu Y, Hou Y, Liu Y, Ya C, Liu Q. Identification, fermentation optimization, and biocontrol efficacy of actinomycete YG-5 for the prevention of Alternaria leaf spot disease in star anise. Sci Rep 2024; 14:18621. [PMID: 39127793 PMCID: PMC11316780 DOI: 10.1038/s41598-024-69733-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 08/08/2024] [Indexed: 08/12/2024] Open
Abstract
Star anise (Illicium verum), a valuable spice tree, faces significant threats from fungal diseases, particularly Alternaria leaf spot. This study investigates the potential of a soil-derived actinomycete strain, YG-5, as a biocontrol agent against Alternaria tenuissima, the causative pathogen on Alternaria leaf spot in star anise. Through comprehensive morphology, physiology, biochemistry, and genetic analyses, we identified the isolate as Streptomyces sp. YG-5. The strain exhibited broad-spectrum antimicrobial activity against several plant pathogens, with inhibition rates ranging between 36.47 to 80.34%. We systematically optimized the fermentation conditions for YG-5, including medium composition and cultivation parameters. The optimized process resulted in an 89.56% inhibition rate against A. tenuissima, a 14.72% improvement over non-optimized conditions. Notably, the antimicrobial compounds produced by YG-5 demonstrated stability across various temperatures, pH levels, and UV irradiation. In vivo efficacy trials showed promising results, with YG-5 fermentation broth reducing Alternaria leaf spot incidence on star anise leaves by 56.95%. These findings suggest that Streptomyces sp. YG-5 holds significant potential as a biocontrol agent against Alternaria leaf spot in star anise cultivation, offering a sustainable approach to disease management in this valuable crop.
Collapse
Affiliation(s)
- Jieming Pan
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Yulin Normal University, Yulin, 537000, China
- Guangxi Agricultural Vocational Technical University, Nanning, 530007, Guangxi, China
| | - Xiaoshan Geng
- Guangxi Agricultural Vocational Technical University, Nanning, 530007, Guangxi, China
| | - Yujing Cai
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Yulin Normal University, Yulin, 537000, China
| | - Ye Yu
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Yulin Normal University, Yulin, 537000, China
| | - Yanrong Hou
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Yulin Normal University, Yulin, 537000, China
| | - Yao Liu
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Yulin Normal University, Yulin, 537000, China
| | - Caina Ya
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Yulin Normal University, Yulin, 537000, China
| | - Qin Liu
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Yulin Normal University, Yulin, 537000, China.
- Guangxi Agricultural Vocational Technical University, Nanning, 530007, Guangxi, China.
| |
Collapse
|
2
|
Ruan YN, Nong C, Jintrawet A, Fan H, Fu L, Zheng SJ, Li S, Wang ZY. A smooth vetch ( Vicia villosa var.) strain endogenous to the broad-spectrum antagonist Bacillus siamensis JSZ06 alleviates banana wilt disease. FRONTIERS IN PLANT SCIENCE 2024; 15:1410197. [PMID: 38978518 PMCID: PMC11229777 DOI: 10.3389/fpls.2024.1410197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 05/13/2024] [Indexed: 07/10/2024]
Abstract
Fusarium wilt, caused by Fusarium oxysporum f. sp. cubense Tropical Race 4 (Foc TR4), poses a significant threat to banana production globally, thereby necessitating effective biocontrol methods to manage this devastating disease. This study investigates the potential of Bacillus siamensis strain JSZ06, isolated from smooth vetch, as a biocontrol agent against Foc TR4. To this end, we conducted a series of in vitro and in vivo experiments to evaluate the antifungal activity of strain JSZ06 and its crude extracts. Additionally, genomic analyses were performed to identify antibiotic synthesis genes, while metabolomic profiling was conducted to characterize bioactive compounds. The results demonstrated that strain JSZ06 exhibited strong inhibitory activity against Foc TR4, significantly reducing mycelial growth and spore germination. Moreover, scanning and transmission electron microscopy revealed substantial ultrastructural damage to Foc TR4 mycelia treated with JSZ06 extracts. Genomic analysis identified several antibiotic synthesis genes, and metabolomic profiling revealed numerous antifungal metabolites. Furthermore, in pot trials, the application of JSZ06 fermentation broth significantly enhanced banana plant growth and reduced disease severity, achieving biocontrol efficiencies of 76.71% and 79.25% for leaves and pseudostems, respectively. In conclusion, Bacillus siamensis JSZ06 is a promising biocontrol agent against Fusarium wilt in bananas, with its dual action of direct antifungal activity and plant growth promotion underscoring its potential for integrated disease management strategies.
Collapse
Affiliation(s)
- Yan-Nan Ruan
- Institute of Agricultural Environment and Resources, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, China
- College of Agronomy and Life Sciences, Kunming Universities, Kunming, Yunnan, China
| | - Caihong Nong
- Institute of Agricultural Environment and Resources, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, China
- College of Agronomy and Life Sciences, Kunming Universities, Kunming, Yunnan, China
| | | | - Huacai Fan
- Institute of Agricultural Environment and Resources, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, China
| | - Libo Fu
- Institute of Agricultural Environment and Resources, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, China
| | - Si-Jun Zheng
- Institute of Agricultural Environment and Resources, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, China
| | - Shu Li
- Institute of Agricultural Environment and Resources, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, China
| | - Zhi-Yuan Wang
- Institute of Agricultural Environment and Resources, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, China
| |
Collapse
|
3
|
Tavarideh F, Pourahmad F, Nemati M. Diversity and antibacterial activity of endophytic bacteria associated with medicinal plant, Scrophularia striata. VETERINARY RESEARCH FORUM : AN INTERNATIONAL QUARTERLY JOURNAL 2022; 13:409-415. [PMID: 36320307 PMCID: PMC9548236 DOI: 10.30466/vrf.2021.529714.3174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 07/20/2021] [Indexed: 01/24/2023]
Abstract
To search endophytic bacteria diversity and evaluate their antibacterial activity, healthy medicinal plant of Scrophularia striata was chosen in this study. One hundred endophytic bacteria were isolated from surface-sterilized tissues (root, stem and leaf) of S. striata. Using sequence analysis targeting 16S rRNA gene, eight genera, including Agrococcus, Arthrobacter, Bacillus, Chryseobacterium, Delftia, Kocuria, Pseudomonas and Sphingomonas were identified. Antibacterial activity of endophytic bacteria was examined against some test bacteria, employing agar well diffusion method. Out of 31 endophytic bacterial isolates, 24(77.42%) isolates showed significant antimicrobial activity against Bacillus cereus, 17(54.84%) isolates exhibited maximum activity against Staphylococcus aureus, 14(45.16%) isolates against Escherichia coli and 5(16.13%) isolates showed positive activity against Proteus mirabilis.The results obtained in this study suggested that the medicinal plant, S. striatais is a potent source of endophytic bacteria with antibacterial activity and offers promise for discovery of more impressive biological compounds.
Collapse
Affiliation(s)
| | - Fazel Pourahmad
- Correspondence Fazel Pourahmad. DVM, PhD Department of Microbiology, Faculty of Veterinary Sciences, Ilam University, Ilam, Iran. E-mail:
| | | |
Collapse
|
4
|
Ahmad T, Bashir A, Farooq S, Riyaz-Ul-Hassan S. Burkholderia gladioli E39CS3, an endophyte of Crocus sativus Linn., induces host resistance against corm-rot caused by Fusarium oxysporum. J Appl Microbiol 2021; 132:495-508. [PMID: 34170610 DOI: 10.1111/jam.15190] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/19/2021] [Accepted: 06/13/2021] [Indexed: 01/02/2023]
Abstract
AIM To investigate the role of the leading saffron endophyte Burkholderia gladioli strain E39CS3 (BG-E39) in the inhibition of corm-rot and induced systemic resistance (ISR) in the host against the saffron specific pathogen, Fusarium oxysporum. METHODS AND RESULTS We studied the interaction between BG-E39 and the corm-rot pathogen F. oxysporum in vitro and in vivo. BG-E39 strongly inhibited both the F. oxysporum strains and other saffron-specific and non-specific pathogens used in this study. Confrontation and microscopic analyses revealed that the endophyte possessed fungicidal activity against the pathogens and effectively induced cell death in the mycelia. The endophyte produced chitinases as well as β-1,3-glucanase that may be involved in the pathogen cell wall degradation. BG-E39 did not cause corm-rot in Crocus sativus and the closely related plant, Gladiolus, thus establishing that it is non-pathogenic to these plants. The endophyte reduced corm-rot through antibiosis and enhanced the endogenous jasmonic acid (JA) levels and expression of JA-regulated and other plant defence genes. CONCLUSIONS The bacterial endophyte BG-E39 provides resistance to the host plant against F. oxysporum corm-rot in nature. SIGNIFICANCE AND IMPACT OF THE STUDY The current study discovers the role of the saffron endophyte BG-E39 in providing resistance to the host against corm-rot. Therefore, this endophyte is a potential candidate for developing a microbial formulation for the biocontrol of the most common disease of C. sativus.
Collapse
Affiliation(s)
- Tanveer Ahmad
- Fermentation and Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Srinagar, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Abid Bashir
- Fermentation and Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Srinagar, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sadaqat Farooq
- Fermentation and Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Srinagar, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Syed Riyaz-Ul-Hassan
- Fermentation and Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Srinagar, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
5
|
Nakkeeran S, Rajamanickam S, Saravanan R, Vanthana M, Soorianathasundaram K. Bacterial endophytome-mediated resistance in banana for the management of Fusarium wilt. 3 Biotech 2021; 11:267. [PMID: 34017673 DOI: 10.1007/s13205-021-02833-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 05/07/2021] [Indexed: 12/11/2022] Open
Abstract
Banana (Musa spp.), a major cash and staple fruit crop in many parts of the world, is infected by Fusarium wilt, which contributes up to 100% yield loss and causes social consequences. Race 1 and race 2 of Panama wilt caused by Fusarium oxysporum f. sp. cubense (Foc) are prevalent worldwide and seriously affect many traditional varieties. The threat of Foc tropical race 4 (Foc TR4) is looming large in African counties. However, its incidence in India has been confined to Bihar (Katihar and Purnea), Uttar Pradesh (Faizabad), Madhya Pradesh (Burhanpur) and Gujarat (Surat). Management of Foc races by employing fungicides is often not a sustainable option as the disease spread is rapid and they negatively alter the biodiversity of beneficial ectophytes and endophytes. Besides, soil drenching with carbendazim/trifloxystrobin + tebuconazole is also not effective in suppressing the Fusarium wilt of banana. Improvement of resistance to Fusarium wilt in susceptible cultivars is being addressed through both conventional and advanced breeding approaches. However, engineering of banana endosphere with bacterial endophytes from resistant genotypes like Pisang lilly and YKM5 will induce the immune response against Foc, irrespective of races. The composition of the bacterial endomicrobiome in different banana cultivars is dominated by the phyla Proteobacteria, Bacteroidetes and Actinobacteria. The major bacterial endophytic genera antagonistic to Foc are Bacillus, Brevibacillus, Paenibacillus, Virgibacillus, Staphylococcus, Cellulomonas, Micrococcus, Corynebacterium, Kocuria spp., Paracoccus sp., Acinetobacter spp. Agrobacterium, Aneurinibacillus, Enterobacter, Klebsiella, Lysinibacillus, Micrococcus, Rhizobium, Sporolactobacillus, Pantoea, Pseudomonas, Serratia, Microbacterium, Rhodococcus, Stenotrophomonas, Pseudoxanthomonas, Luteimonas, Dokdonella, Rhodanobacter, Luteibacter, Steroidobacter, Nevskia, Aquicella, Rickettsiella, Legionella, Tatlockia and Streptomyces. These bacterial endophytes promote the growth of banana plantlets by solubilising phosphate, producing indole acetic acid and siderophores. Application of banana endophytes during the hardening phase of tissue-cultured clones serves as a shield against Foc. Hitherto, MAMP molecules of endophytes including flagellin, liposaccharides, peptidoglycans, elongation factor, cold shock proteins and hairpins induce microbe-associated molecular pattern (MAMP)-triggered immunity to suppress plant pathogens. The cascade of events associated with ISR and SAR is induced through MAPK and transcription factors including WRKY and MYC. Studies are underway to exploit the potential of antagonistic bacterial endophytes against Foc isolates and to develop an understanding of the MAMP-triggered immunity and metabolomics cross talk modulating resistance. This review explores the possibility of harnessing the potential bacterial endomicrobiome against Foc and developing nanoformulations with bacterial endophytes for increased efficacy against lethal pathogenic races of Foc infecting banana. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-02833-5.
Collapse
Affiliation(s)
- S Nakkeeran
- Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore, India
| | - S Rajamanickam
- Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore, India
| | - R Saravanan
- Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore, India
| | - M Vanthana
- Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore, India
| | | |
Collapse
|
6
|
Tian D, Song X, Li C, Zhou W, Qin L, Wei L, Di W, Huang S, Li B, Huang Q, Long S, He Z, Wei S. Antifungal mechanism of Bacillus amyloliquefaciens strain GKT04 against Fusarium wilt revealed using genomic and transcriptomic analyses. Microbiologyopen 2021; 10:e1192. [PMID: 34180606 PMCID: PMC8142399 DOI: 10.1002/mbo3.1192] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/13/2021] [Accepted: 04/14/2021] [Indexed: 12/14/2022] Open
Abstract
The application of endophytic bacteria, particularly members of the genus Bacillus, offers a promising strategy for the biocontrol of plant fungal diseases, owing to their sustainability and ecological safety. Although multiple secondary metabolites that demonstrate antifungal capacity have been identified in diverse endophytic bacteria, the regulatory mechanisms of their biosynthesis remain largely unknown. To elucidate this, we sequenced the entire genome of Bacillus amyloliquefaciens GKT04, a strain isolated from banana root, which showed high inhibitory activity against Fusarium oxysporum f. sp. cubense race 4 (FOC4). The GKT04 genome consists of a circular chromosome and a circular plasmid, which harbors 4,087 protein‐coding genes and 113 RNA genes. Eight gene clusters that could potentially encode antifungal components were identified. We further applied RNA‐Seq analysis to survey genome‐wide changes in the gene expression of strain GKT04 during its inhibition of FOC4. In total, 575 upregulated and 242 downregulated genes enriched in several amino acid and carbohydrate metabolism pathways were identified. Specifically, gene clusters associated with difficidin, bacillibactin, and bacilysin were significantly upregulated, and their gene regulatory networks were constructed. Our work thereby provides insights into the genomic features and gene expression patterns of this B. amyloliquefaciens strain, which presents an excellent potential for the biocontrol of Fusarium wilt.
Collapse
Affiliation(s)
- Dandan Tian
- Biotechnology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Xiupeng Song
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Chaosheng Li
- Biotechnology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Wei Zhou
- Biotechnology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Liuyan Qin
- Biotechnology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Liping Wei
- Biotechnology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Wei Di
- Biotechnology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Sumei Huang
- Biotechnology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Baoshen Li
- Biotechnology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Quyan Huang
- Biotechnology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Shengfeng Long
- Biotechnology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Zhangfei He
- Biotechnology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Shaolong Wei
- Biotechnology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| |
Collapse
|
7
|
Lin P, Zhang M, Wang M, Li Y, Liu J, Chen Y. Inoculation with arbuscular mycorrhizal fungus modulates defense-related genes expression in banana seedlings susceptible to wilt disease. PLANT SIGNALING & BEHAVIOR 2021; 16:1884782. [PMID: 33793381 PMCID: PMC8078516 DOI: 10.1080/15592324.2021.1884782] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 05/15/2023]
Abstract
Banana as an important economic crop worldwide, often suffers from serious damage caused by Fusarium oxysporum f. sp. Cubense. Arbuscular mycorrhizal (AM) fungi have been considered as one of the promising plant biocontrol agents in preventing from root pathogens. This study examined the effect of AM fungal inoculation on plant growth and differential expressions of growth- and defense-related genes in banana seedlings. Tissue-cultured seedlings of Brazilian banana (Musa acuminate Cavendish cv. Brail) were inoculated with AM fungus (Rhizophagus irregularis, Ri), and developed good mycorrhizal symbiosis from 4 to 11 weeks after inoculation with an infection rate up to 71.7% of the roots system. Microbial abundance revealed that Ri abundance in banana roots was 1.85×106 copies/ml at 11 weeks after inoculaiton. Inoculation improved plant dry weights by 47.5, 124, and 129% for stem, leaf, and the whole plant, respectively, during phosphate depletion. Among a total of 1411 differentially expressed genes (DEGs) obtained from the transcriptome data analysis, genes related to plant resistance (e.g. POD, PAL, PYR, and HBP-1b) and those related to plant growth (e.g. IAA, GH3, SAUR, and ARR8) were up-regulated in AM plants. This study demonstrates that AM fungus effectively promoted the growth of banana plants and induced defense-related genes which could help suppress wilt disease. The outcomes of this study form a basis for further study on the mechanism of banana disease resistance induced by AM fungi.
Collapse
Affiliation(s)
- Ping Lin
- Institute of Horticulture Science and Engineering, Huaqiao University, Xiamen, China
| | - Minyu Zhang
- Institute of Horticulture Science and Engineering, Huaqiao University, Xiamen, China
- College of Life Science, Zhaoqing University, Zhaoqing, China
| | - Mingyuan Wang
- Institute of Horticulture Science and Engineering, Huaqiao University, Xiamen, China
| | - Yuqing Li
- Institute of Horticulture Science and Engineering, Huaqiao University, Xiamen, China
| | - Jianfu Liu
- Institute of Horticulture Science and Engineering, Huaqiao University, Xiamen, China
| | - Yinglong Chen
- The UWA Institute of Agriculture, and School of Agriculture and Environment, the University of Western Australia, Perth, Australia
| |
Collapse
|
8
|
Win TT, Bo B, Malec P, Fu P. The effect of a consortium of Penicillium sp. and Bacillus spp. in suppressing banana fungal diseases caused by Fusarium sp. and Alternaria sp. J Appl Microbiol 2021; 131:1890-1908. [PMID: 33694313 DOI: 10.1111/jam.15067] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 02/12/2021] [Accepted: 02/28/2021] [Indexed: 12/19/2022]
Abstract
AIMS This study sought to utilize indigenous soil micro-organisms to suppress wilt-causing fungal pathogens of the banana. METHODS AND RESULTS Fungal pathogens were isolated from wilt-affected rhizospheric soil, and potential antagonistic bacterial strains were isolated from healthy rhizospheric soil in the same area from which fungal pathogens were isolated. The antifungal activity of isolated micro-organisms against fungal pathogens was studied both in vitro and in vivo against fungal pathogens. It was found that Fusarium oxysporum and Alternaria sp. were pathogenic, while Penicillium sp., Bacillus velezensis and Bacillus subtilis were antagonistic. Moreover, it was seen that B. velezensis, B. subtilis and Penicillium sp. inhibited the growth of the two fungal pathogens in both in vitro and in vivo experiments. Further investigation indicated that B. velezensis, B. subtilis and Penicillium sp. were able to produce enzymatic antifungal compounds (chitinase and β-1,3-glucanase). The spray application around rhizome revealed that a combination of Bacillus spp. and Penicillium sp. in greenhouse conditions gave the highest reduction in disease severity by up to 60% to both fungal pathogens among the treatments. CONCLUSIONS Banana disease is seen to be induced not only by F. oxysporum but also by Alternaria sp. The isolated indigenous micro-organisms can effectively control both the pathogens. The combination of isolated antagonistic micro-organisms has thus demonstrated substantial potential for suppressing banana disease. SIGNIFICANCE AND IMPACT OF THE STUDY An antagonistic consortium isolated in this study has demonstrated remarkable potential for controlling fungal diseases caused by Fusarium sp. and Alternaria sp. Therefore, the use of indigenous microflora to improve disease suppression of banana plants against soil-borne pathogens is a preferable approach.
Collapse
Affiliation(s)
- T T Win
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China.,Biotechnology Research Department, Ministry of Education, Kyaukse, 05151, Myanmar
| | - B Bo
- Biotechnology Research Department, Ministry of Education, Kyaukse, 05151, Myanmar
| | - P Malec
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - P Fu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| |
Collapse
|
9
|
Damodaran T, Rajan S, Muthukumar M, Ram Gopal, Yadav K, Kumar S, Ahmad I, Kumari N, Mishra VK, Jha SK. Biological Management of Banana Fusarium Wilt Caused by Fusarium oxysporum f. sp. cubense Tropical Race 4 Using Antagonistic Fungal Isolate CSR-T-3 ( Trichoderma reesei). Front Microbiol 2021; 11:595845. [PMID: 33391212 PMCID: PMC7772460 DOI: 10.3389/fmicb.2020.595845] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/26/2020] [Indexed: 12/21/2022] Open
Abstract
Fusarium wilt in bananas is one of the most devastating diseases that poses a serious threat to the banana industry globally. With no effective control measures available to date, biological control has been explored to restrict the spread and manage the outbreak. We studied the effective biological control potential of different Trichoderma spp. in the management of Fusarium oxysporum f. sp. cubense tropical race 4 (Foc TR4). Expression of the defense related genes and metabolites in banana plants inoculated with Foc TR4 and treated with effective Trichoderma sp interactions were also studied. The in vitro growth inhibition of Foc TR4 by Trichoderma reesei isolate CSR-T-3 was 85.19% indicating a higher antagonistic potential than other Trichoderma isolates used in the study. Further, in in vivo assays, the banana plants treated with the isolate CSR-T-3 T. reesei had a significant reduction in the disease severity index (0.75) and also had increased phenological indices with respect to Foc TR4 treated plants. Enhanced activity of defense enzymes, such as β-1, 3-glucanase, peroxidase, chitinase, polyphenol oxidase, and phenylalanine ammonia lyase with higher phenol contents were found in the Trichoderma isolate CSR-T-3 treated banana plants challenge-inoculated with Foc TR4. Fusarium toxins, such as fusaristatin A, fusarin C, chlamydosporal, and beauveric acid were identified by LC-MS in Foc TR4-infected banana plants while high intensity production of antifungal compounds, such as ß-caryophyllene, catechin-o-gallate, soyasapogenol rhamnosyl glucoronide, peptaibols, fenigycin, iturin C19, anthocyanin, and gallocatechin-o-gallate were detected in T. reesei isolate CSR-T-3 treated plants previously inoculated with Foc TR4. Gene expression analysis indicated the upregulation of TrCBH1/TrCBH2, TrXYL1, TrEGL1, TrTMK1, TrTGA1, and TrVEL1 genes in CSR-T-3 treatment. LC-MS and gene expression analysis could ascertain the upregulation of genes involved in mycoparasitism and the signal transduction pathway leading to secondary metabolite production under CSR-T-3 treatment. The plants in the field study showed a reduced disease severity index (1.14) with high phenological growth and yield indices when treated with T. reesei isolate CSR-T-3 formulation. We report here an effective biocontrol-based management technological transformation from lab to the field for successful control of Fusarium wilt disease caused by Foc TR4 in bananas.
Collapse
Affiliation(s)
- Thukkaram Damodaran
- Indian Council of Agricultural Research-Central Soil Salinity Research Institute, Regional Research Station, Lucknow, India
| | - Shailendra Rajan
- Indian Council of Agricultural Research-Central Institute for Subtropical Horticulture, Lucknow, India
| | - Manoharan Muthukumar
- Indian Council of Agricultural Research-Central Institute for Subtropical Horticulture, Lucknow, India
| | - Ram Gopal
- Indian Council of Agricultural Research-Central Soil Salinity Research Institute, Regional Research Station, Lucknow, India
| | - Kavita Yadav
- Indian Council of Agricultural Research-Central Soil Salinity Research Institute, Regional Research Station, Lucknow, India
| | - Sandeep Kumar
- Indian Council of Agricultural Research-Central Institute for Subtropical Horticulture, Lucknow, India
| | - Israr Ahmad
- Indian Council of Agricultural Research-Central Institute for Subtropical Horticulture, Lucknow, India
| | - Nidhi Kumari
- Indian Council of Agricultural Research-Central Institute for Subtropical Horticulture, Lucknow, India
| | - Vinay K Mishra
- Indian Council of Agricultural Research-Central Soil Salinity Research Institute, Regional Research Station, Lucknow, India
| | - Sunil K Jha
- Indian Council of Agricultural Research-Central Soil Salinity Research Institute, Regional Research Station, Lucknow, India
| |
Collapse
|
10
|
Wu X, Shan Y, Li Y, Li Q, Wu C. The Soil Nutrient Environment Determines the Strategy by Which Bacillus velezensis HN03 Suppresses Fusarium wilt in Banana Plants. FRONTIERS IN PLANT SCIENCE 2020; 11:599904. [PMID: 33304372 PMCID: PMC7701294 DOI: 10.3389/fpls.2020.599904] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 10/27/2020] [Indexed: 06/12/2023]
Abstract
Biological control agents (BCAs) are considered as one of the most important strategies for controlling Fusarium wilt, and bioorganic fertilizer, in particular, has been extensively investigated. However, little is known regarding how a biocontrol microorganism affects the suppression mechanisms when combined with different amendments. In this study, a pot experiment was performed using banana plants to investigate the different mechanisms by which the biocontrol bacterium Bacillus velezensis HN03 (isolated from our laboratory) and amendments suppress Fusarium wilt. The incidence of banana wilt was decreased under HN03 and was reduced further when HN03 was combined with compost, particularly wormcast. In the suppression of Fusarium wilt, HN03 was found to influence the soil environment in various ways. HN03 increased the peroxidase level, which improves plant defense, and was highest when combined with wormcast, being 69 times higher than when combined with cow dung compost. The high accumulation of Mg and P in the "HN03 + wormcast" and Zn and Mn in the "HN03 + cow dung" treatments was negatively correlated with disease incidence. Furthermore, HN03 re-established the microbial community destroyed by the pathogen and further increased the level of suppression in the wormcast. HN03 also enhanced the functional traits of the soil, including defensive mechanism-related traits, and these traits were further enhanced by the combination of HN03 + wormcast.
Collapse
Affiliation(s)
- Xiaoyan Wu
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Danzhou, China
| | - Ying Shan
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Danzhou Scientific Observing and Experimental Station of Agro-Environment, Ministry of Agriculture and Rural Affairs, Danzhou, China
| | - Yi Li
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Danzhou Scientific Observing and Experimental Station of Agro-Environment, Ministry of Agriculture and Rural Affairs, Danzhou, China
- Hainan Engineering Research Center for Non-point Source and Heavy Metal Pollution Control, Haikou, China
| | - Qinfen Li
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Danzhou Scientific Observing and Experimental Station of Agro-Environment, Ministry of Agriculture and Rural Affairs, Danzhou, China
| | - Chunyuan Wu
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Danzhou Scientific Observing and Experimental Station of Agro-Environment, Ministry of Agriculture and Rural Affairs, Danzhou, China
- Hainan Engineering Research Center for Non-point Source and Heavy Metal Pollution Control, Haikou, China
| |
Collapse
|
11
|
Tan D, Fu L, Sun X, Xu L, Zhang J. Genetic Analysis and Immunoelectron Microscopy of Wild and Mutant Strains of the Rubber Tree Endophytic Bacterium Serratia marcescens Strain ITBB B5-1 Reveal Key Roles of a Macrovesicle in Storage and Secretion of Prodigiosin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:5606-5615. [PMID: 32227934 DOI: 10.1021/acs.jafc.0c00078] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Rubber tree is an economically important tropical crop. Its endophytic bacterial strain Serratia marcescens ITBB B5-1 contains an intracellular macrovesicle and red pigment. In this research, the red pigment was identified as prodigiosin by quadrupole time-of-flight mass spectrometry. Prodigiosin has a wide range of potential medical values such as anticancer and antiorgan transplant rejection. The strain ITBB B5-1 accumulated prodigiosin up to 2000 mg/L, which is higher production compared to most known Serratia strains. The formation of the macrovesicle and prodigiosin biosynthesis were highly associated and were both temporal- and temperature-dependent. A mutant strain B5-1mu that failed to produce prodigiosin was obtained by ultraviolet mutagenesis. Whole genome sequencing of wild-type and mutant strains indicated that the PigC gene encoding the last-step enzyme in the prodigiosin biosynthesis pathway was mutated in B5-1mu by a 17-bp deletion. Transmission electron microscopy analysis showed that the macrovesicle was absent in the mutant strain, indicating that formation of the macrovesicle relied on prodigiosin biosynthesis. Immunoelectron microscopy using prodigiosin-specific antiserum showed the presence of prodigiosin in the macrovesicle, the cell wall, and the extracellular vesicles, while immuno-reaction was not observed in the mutant cell. These results indicate that the macrovesicle serves as a storage organelle of prodigiosin, and secretes prodigiosin into cell envelop and culture medium as extracellular vesicles.
Collapse
Affiliation(s)
- Deguan Tan
- Institute of Tropical Bioscience and Biotechnology, MOA Key Laboratory of Tropical Crops Biology and Genetic Resources, CATAS, Xueyuan Road 4, Haikou 571101, China
- Hainan Academy of Tropical Agricultural Resource, CATAS, Xueyuan Road 4, Haikou 571101, China
| | - Lili Fu
- Institute of Tropical Bioscience and Biotechnology, MOA Key Laboratory of Tropical Crops Biology and Genetic Resources, CATAS, Xueyuan Road 4, Haikou 571101, China
| | - Xuepiao Sun
- Institute of Tropical Bioscience and Biotechnology, MOA Key Laboratory of Tropical Crops Biology and Genetic Resources, CATAS, Xueyuan Road 4, Haikou 571101, China
| | - Long Xu
- College of Life Sciences, Nanjing Agricultural University, Weigang 1, Nanjing, Jiangshu 210095, China
| | - Jiaming Zhang
- Institute of Tropical Bioscience and Biotechnology, MOA Key Laboratory of Tropical Crops Biology and Genetic Resources, CATAS, Xueyuan Road 4, Haikou 571101, China
- Hainan Academy of Tropical Agricultural Resource, CATAS, Xueyuan Road 4, Haikou 571101, China
| |
Collapse
|
12
|
Duan Y, Chen J, He W, Chen J, Pang Z, Hu H, Xie J. Fermentation optimization and disease suppression ability of a Streptomyces ma. FS-4 from banana rhizosphere soil. BMC Microbiol 2020; 20:24. [PMID: 32005152 PMCID: PMC6995205 DOI: 10.1186/s12866-019-1688-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 12/17/2019] [Indexed: 12/03/2022] Open
Abstract
Background Fusarium wilt of banana is one of the most destructive diseases in banana-growing regions worldwide. Soil-borne diseases and soil microbial communities are closely related. The screening of antagonistic bacteria from soil microorganisms in areas with Fusarium wilt of banana is of great practical significance for controlling this disease. Results A strain designated FS-4 was isolated from healthy banana rhizosphere soil in an area affected by Fusarium wilt. This strain exhibited a significant antagonistic effect on the pathogen. Pot experiments revealed that the fermentation broth of strain FS-4 not only decreased the incidence of banana Fusarium wilt, but also promoted the growth of banana seedlings. The strain was identified as Streptomyces ma. by its morphological, physiological, and biochemical characteristics and 16S rRNA gene sequence analysis. The culture and fermentation conditions for this strain were optimized by single-factor and response surface experiments. The optimum culture conditions for Streptomyces ma. FS-4 were as follows: peptone 0.5%, saccharose 2.4, 0.05% K2HPO4, 0.05% MgCl2, and 0.05% NaCl at an initial pH of 7.0; 180 g at 28 °C; and inoculation size of 6% for 62 h. The diameter of bacteriostasis circle for Bacillus subtilis reached 26.7 mm. Conclusion Streptomyces ma. FS-4 is an important microbial resource as a biological agent for the control of plant pathogenic fungi and can be used to promote banana growth.
Collapse
Affiliation(s)
- Yajie Duan
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture, Chinese Academy of Tropical Agricultural Science, South Subtropical Crop Research Institute, Zhanjiang, 524091, China
| | - Jian Chen
- College of Food Science and Technology, Hainan University, Haikou, 570228, China
| | - Wei He
- College of Food Science and Technology, Hainan University, Haikou, 570228, China
| | - Jingjing Chen
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture, Chinese Academy of Tropical Agricultural Science, South Subtropical Crop Research Institute, Zhanjiang, 524091, China
| | - Zhencai Pang
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture, Chinese Academy of Tropical Agricultural Science, South Subtropical Crop Research Institute, Zhanjiang, 524091, China
| | - Huigang Hu
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture, Chinese Academy of Tropical Agricultural Science, South Subtropical Crop Research Institute, Zhanjiang, 524091, China.
| | - Jianghui Xie
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture, Chinese Academy of Tropical Agricultural Science, South Subtropical Crop Research Institute, Zhanjiang, 524091, China.
| |
Collapse
|
13
|
Bubici G, Kaushal M, Prigigallo MI, Gómez-Lama Cabanás C, Mercado-Blanco J. Biological Control Agents Against Fusarium Wilt of Banana. Front Microbiol 2019; 10:616. [PMID: 31024469 PMCID: PMC6459961 DOI: 10.3389/fmicb.2019.00616] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 03/11/2019] [Indexed: 11/13/2022] Open
Abstract
In the last century, the banana crop and industry experienced dramatic losses due to an epidemic of Fusarium wilt of banana (FWB), caused by Fusarium oxysporum f.sp. cubense (Foc) race 1. An even more dramatic menace is now feared due to the spread of Foc tropical race 4. Plant genetic resistance is generally considered as the most plausible strategy for controlling effectively such a devastating disease, as occurred for the first round of FWB epidemic. Nevertheless, with at least 182 articles published since 1970, biological control represents a large body of knowledge on FWB. Remarkably, many studies deal with biological control agents (BCAs) that reached the field-testing stage and even refer to high effectiveness. Some selected BCAs have been repeatedly assayed in independent trials, suggesting their promising value. Overall under field conditions, FWB has been controlled up to 79% by using Pseudomonas spp. strains, and up to 70% by several endophytes and Trichoderma spp. strains. Lower biocontrol efficacy (42-55%) has been obtained with arbuscular mycorrhizal fungi, Bacillus spp., and non-pathogenic Fusarium strains. Studies on Streptomyces spp. have been mostly limited to in vitro conditions so far, with very few pot-experiments, and none conducted in the field. The BCAs have been applied with diverse procedures (e.g., spore suspension, organic amendments, bioformulations, etc.) and at different stages of plant development (i.e., in vitro, nursery, at transplanting, post-transplanting), but there has been no evidence for a protocol better than another. Nonetheless, new bioformulation technologies (e.g., nanotechnology, formulation of microbial consortia and/or their metabolites, etc.) and tailor-made consortia of microbial strains should be encouraged. In conclusion, the literature offers many examples of promising BCAs, suggesting that biocontrol can greatly contribute to limit the damage caused by FWB. More efforts should be done to further validate the currently available outcomes, to deepen the knowledge on the most valuable BCAs, and to improve their efficacy by setting up effective formulations, application protocols, and integrated strategies.
Collapse
Affiliation(s)
- Giovanni Bubici
- Consiglio Nazionale delle Ricerche (CNR), Istituto per la Protezione Sostenibile delle Piante (IPSP), Bari, Italy
| | - Manoj Kaushal
- International Institute of Tropical Agriculture (IITA), Dar es Salaam, Tanzania
| | - Maria Isabella Prigigallo
- Consiglio Nazionale delle Ricerche (CNR), Istituto per la Protezione Sostenibile delle Piante (IPSP), Bari, Italy
| | | | - Jesús Mercado-Blanco
- Department of Crop Protection, Institute for Sustainable Agriculture (CSIC), Córdoba, Spain
| |
Collapse
|
14
|
Devi AR, Sharma GD, Majumdar PB, Pandey P. A multispecies consortium of bacteria having plant growth promotion and antifungal activities, for the management of Fusarium wilt complex disease in potato (Solanum tuberosum L.). BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2018. [DOI: 10.1016/j.bcab.2018.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
15
|
Eckelmann D, Spiteller M, Kusari S. Spatial-temporal profiling of prodiginines and serratamolides produced by endophytic Serratia marcescens harbored in Maytenus serrata. Sci Rep 2018; 8:5283. [PMID: 29588473 PMCID: PMC5869619 DOI: 10.1038/s41598-018-23538-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 03/15/2018] [Indexed: 12/21/2022] Open
Abstract
An endophytic bacterium, Serratia marcescens MSRBB2, isolated from inner bark of a Cameroonian Maytenus serrata plant, was subjected to the OSMAC (One Strain Many Compounds) approach and metabolic profiling using HPLC-HRMSn. We identified 7 prodiginines along with 26 serratamolides. Their biosynthetic pathways were elucidated by feeding with labeled precursors in combination with HRMSn. Dual-culture confrontation/restriction assays of the bacterial endophyte were devised with coexisting fungal endophytes (Pestalotiopsis virgatula, Aspergillus caesiellus and Pichia spp.) as well as with unrelated, non-endophytic fungi belonging to the same genera. The assays were combined with scanning electron microscopy (SEM) as well as matrix-assisted laser desorption ionization imaging high-resolution mass spectrometry (MALDI-imaging-HRMS) for visualizing, both in high spatial and temporal resolution, the distribution and interplay of the compounds during microbial interactions. We demonstrated the effect of prodigiosin produced by endophytic S. marcescens MSRBB2 as an allelochemical that specifically inhibits coexisting endophytic fungi. Our results provide new insights into the physiological and ecological relevance of prodiginines and serratamolides within the context of allelopathy and chemical defense interaction occurring between coexisting endophytes harbored in M. serrata.
Collapse
Affiliation(s)
- Dennis Eckelmann
- Institute of Environmental Research (INFU), Department of Chemistry and Chemical Biology, Chair of Environmental Chemistry and Analytical Chemistry, TU Dortmund, Otto-Hahn-Straße 6, 44221, Dortmund, Germany
| | - Michael Spiteller
- Institute of Environmental Research (INFU), Department of Chemistry and Chemical Biology, Chair of Environmental Chemistry and Analytical Chemistry, TU Dortmund, Otto-Hahn-Straße 6, 44221, Dortmund, Germany
| | - Souvik Kusari
- Institute of Environmental Research (INFU), Department of Chemistry and Chemical Biology, Chair of Environmental Chemistry and Analytical Chemistry, TU Dortmund, Otto-Hahn-Straße 6, 44221, Dortmund, Germany.
| |
Collapse
|
16
|
Dhar Purkayastha G, Mangar P, Saha A, Saha D. Evaluation of the biocontrol efficacy of a Serratia marcescens strain indigenous to tea rhizosphere for the management of root rot disease in tea. PLoS One 2018; 13:e0191761. [PMID: 29466418 PMCID: PMC5821441 DOI: 10.1371/journal.pone.0191761] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 01/10/2018] [Indexed: 11/19/2022] Open
Abstract
The aim of the present study is to evaluate plant growth promoting and biocontrol efficacy of a Serratia marcescens strain ETR17 isolated from tea rhizosphere for the effective management of root rot disease in tea. Isolated bacterial culture ETR17 showed significant level of in vitro antagonism against nine different foliar and root pathogens of tea. The phenotypic and molecular characterization of ETR17 revealed the identity of the bacterium as Serratia marcescens. The bacterium was found to produce several hydrolytic enzymes like chitinase, protease, lipase, cellulase and plant growth promoting metabolites like IAA and siderophore. Scanning electron microscopic studies on the interaction zone between pathogen and antagonistic bacterial isolate revealed severe deformities in the fungal mycelia. Spectral analyses (LC-ESI-MS, UV-VIS spectrophotometry and HPLC) and TLC indicated the presence of the antibiotics pyrrolnitrin and prodigiosin in the extracellular bacterial culture extracts. Biofilm formation by ETR17 on polystyrene surface was also observed. In vivo application of talc-based formulations prepared with the isolate ETR17 in tea plantlets under green house conditions revealed effective reduction of root-rot disease as well as plant growth promotion to a considerable extent. Viability studies with the ETR17 talc formulation showed the survivability of the isolate up to six months at room temperature. The sustenance of ETR17 (concentration of 8-9x108 cfu g-1) in the soil after the application of talc formulation was recorded by ELISA. Safety studies revealed that ETR17 did not produce hemolysin as observed in pathogenic Serratia strains. The biocontrol strain reported in this study can be used for field application in order to minimize the use of chemical fungicides for disease control in tea gardens.
Collapse
Affiliation(s)
| | - Preeti Mangar
- Department of Botany, University of North Bengal, Siliguri, West Bengal, India
| | - Aniruddha Saha
- Department of Botany, University of North Bengal, Siliguri, West Bengal, India
| | - Dipanwita Saha
- Department of Biotechnology, University of North Bengal, Siliguri, West Bengal, India
| |
Collapse
|
17
|
Wei Y, Liu W, Hu W, Liu G, Wu C, Liu W, Zeng H, He C, Shi H. Genome-wide analysis of autophagy-related genes in banana highlights MaATG8s in cell death and autophagy in immune response to Fusarium wilt. PLANT CELL REPORTS 2017; 36:1237-1250. [PMID: 28451821 DOI: 10.1007/s00299-017-2149-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 04/22/2017] [Indexed: 05/02/2023]
Abstract
KEY MESSAGE MaATG8s play important roles in hypersensitive-like cell death and immune response, and autophagy is essential for disease resistance against Foc in banana. Autophagy is responsible for the degradation of damaged cytoplasmic constituents in the lysosomes or vacuoles. Although the effects of autophagy have been extensively revealed in model plants, the possible roles of autophagy-related gene in banana remain unknown. In this study, 32 MaATGs were identified in the draft genome, and the profiles of several MaATGs in response to fungal pathogen Fusarium oxysporum f. sp. cubense (Foc) were also revealled. We found that seven MaATG8s were commonly regulated by Foc. Through transient expression in Nicotiana benthamiana leaves, we highlight the novel roles of MaATG8s in conferring hypersensitive-like cell death, and MaATG8s-mediated hypersensitive response-like cell death is dependent on autophagy. Notablly, autophagy inhibitor 3-methyladenine (3-MA) treatment resulted in decreased disease resistance in response to Foc4, and the effect of 3-MA treatment could be rescued by exogenous salicylic acid, jasmonic acid and ethylene, indicating the involvement of autophagy-mediated plant hormones in banana resistance to Fusarium wilt. Taken together, this study may extend our understanding the putative role of MaATG8s in hypersensitive-like cell death and the essential role of autophagy in immune response against Foc in banana.
Collapse
Affiliation(s)
- Yunxie Wei
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources and College of Biology, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Wen Liu
- Biotechnology Research Center, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, 443002, Hubei, China
| | - Wei Hu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Haikou, 571101, Hainan, China
| | - Guoyin Liu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources and College of Biology, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Chunjie Wu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources and College of Biology, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Wei Liu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources and College of Biology, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Hongqiu Zeng
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources and College of Biology, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Chaozu He
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources and College of Biology, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Haitao Shi
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources and College of Biology, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China.
| |
Collapse
|
18
|
Comparative morphology and transcriptome analysis reveals distinct functions of the primary and secondary laticifer cells in the rubber tree. Sci Rep 2017; 7:3126. [PMID: 28600566 PMCID: PMC5466658 DOI: 10.1038/s41598-017-03083-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 04/24/2017] [Indexed: 12/27/2022] Open
Abstract
Laticifers are highly specialized cells that synthesize and store natural rubber. Rubber trees (Hevea brasiliensis Muell. Arg.) contain both primary and secondary laticifers. Morphological and functional differences between the two types of laticifers are largely unknown, but such information is important for breeding and cultivation practices. Morphological comparison using paraffin sections revealed only distribution differences: the primary laticifers were distributed randomly, while the secondary laticifers were distributed in concentric rings. Using isolated laticifer networks, the primary laticifers were shown to develop via intrusive "budding" and formed necklace-like morphology, while the secondary laticifers developed straight and smooth cell walls. Comparative transcriptome analysis indicated that genes involved in cell wall modification, such as pectin esterase, lignin metabolic enzymes, and expansins, were highly up-regulated in the primary laticifers and correspond to its necklace-like morphology. Genes involved in defense against biotic stresses and rubber biosynthesis were highly up-regulated in the primary laticifers, whereas genes involved in abiotic stresses and dormancy were up-regulated in the secondary laticifers, suggesting that the primary laticifers are more adequately prepared to defend against biotic stresses, while the secondary laticifers are more adequately prepared to defend against abiotic stresses. Therefore, the two types of laticifers are morphologically and functionally distinct.
Collapse
|
19
|
Madison JD, Berg EA, Abarca JG, Whitfield SM, Gorbatenko O, Pinto A, Kerby JL. Characterization of Batrachochytrium dendrobatidis Inhibiting Bacteria from Amphibian Populations in Costa Rica. Front Microbiol 2017; 8:290. [PMID: 28293222 PMCID: PMC5329008 DOI: 10.3389/fmicb.2017.00290] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 02/13/2017] [Indexed: 01/21/2023] Open
Abstract
Global amphibian declines and extinction events are occurring at an unprecedented rate. While several factors are responsible for declines and extinction, the fungal pathogen Batrachochytrium dendrobatidis (Bd) has been cited as a major constituent in these events. While the effects of this chytrid fungus have been shown to cause broad scale population declines and extinctions, certain individuals and relict populations have shown resistance. This resistance has been attributed in part to the cutaneous bacterial microbiome. Here, we present the first study characterizing anti-Bd bacterial isolates from amphibian populations in Costa Rica, including the characterization of two strains of Serratia marcescens presenting strong anti-Bd activity. Transcriptome sequencing was utilized for delineation of shifts in gene expression of the two previously uncharacterized strains of S. marcescens grown in three different treatments comprising Bd, heat-killed Bd, and a no Bd control. These results revealed up- and down-regulation of key genes associated with different metabolic and regulatory pathways. This information will be valuable in continued efforts to develop a bacterial-based approach for amphibian protection as well as providing direction for continued mechanistic inquiries of the bacterial anti-Bd response.
Collapse
Affiliation(s)
- Joseph D Madison
- Department of Biology, University of South Dakota Vermillion, SD, USA
| | - Elizabeth A Berg
- Department of Biology, University of South Dakota Vermillion, SD, USA
| | - Juan G Abarca
- Centro de Investigación en Estructuras Microscópicas, Universidad de Costa Rica San Pedro de Montes de Oca, Costa Rica
| | | | - Oxana Gorbatenko
- Life Science Laboratory, Westcore DNA Sequencing Facility, Black Hills State University Spearfish, SD, USA
| | - Adrian Pinto
- Centro de Investigación en Estructuras Microscópicas, Universidad de Costa RicaSan Pedro de Montes de Oca, Costa Rica; Departamento de Bioquímica, Escuela de Medicina, Centro de Investigación en Biología Celular y Molecular, Universidad de Costa RicaSan Pedro de Montes de Oca, Costa Rica
| | - Jacob L Kerby
- Department of Biology, University of South Dakota Vermillion, SD, USA
| |
Collapse
|
20
|
Wei Y, Hu W, Wang Q, Zeng H, Li X, Yan Y, Reiter RJ, He C, Shi H. Identification, transcriptional and functional analysis of heat-shock protein 90s in banana (Musa acuminata L.) highlight their novel role in melatonin-mediated plant response to Fusarium wilt. J Pineal Res 2017; 62. [PMID: 27627033 DOI: 10.1111/jpi.12367] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 09/09/2016] [Indexed: 12/25/2022]
Abstract
As one popular fresh fruit, banana (Musa acuminata) is cultivated in the world's subtropical and tropical areas. In recent years, pathogen Fusarium oxysporum f. sp. cubense (Foc) has been widely and rapidly spread to banana cultivated areas, causing substantial yield loss. However, the molecular mechanism of banana response to Foc remains unclear, and functional identification of disease-related genes is also very limited. In this study, nine 90 kDa heat-shock proteins (HSP90s) were genomewide identified. Moreover, the expression profile of them in different organs, developmental stages, and in response to abiotic and fungal pathogen Foc were systematically analyzed. Notably, we found that the transcripts of 9 MaHSP90s were commonly regulated by melatonin (N-acetyl-5-methoxytryptamine) and Foc infection. Further studies showed that exogenous application of melatonin improved banana resistance to Fusarium wilt, but the effect was lost when cotreated with HSP90 inhibitor (geldanamycin, GDA). Moreover, melatonin and GDA had opposite effect on auxin level in response to Foc4, while melatonin and GDA cotreated plants had no significant effect, suggesting the involvement of MaHSP90s in the cross talk of melatonin and auxin in response to fungal infection. Taken together, this study demonstrated that MaHSP90s are essential for melatonin-mediated plant response to Fusarium wilt, which extends our understanding the putative roles of MaHSP90s as well as melatonin in the biological control of banana Fusarium wilt.
Collapse
Affiliation(s)
- Yunxie Wei
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Agriculture, Hainan University, Haikou, China
| | - Wei Hu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan Province, China
| | - Qiannan Wang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Agriculture, Hainan University, Haikou, China
| | - Hongqiu Zeng
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Agriculture, Hainan University, Haikou, China
| | - Xiaolin Li
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Agriculture, Hainan University, Haikou, China
| | - Yu Yan
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Agriculture, Hainan University, Haikou, China
| | - Russel J Reiter
- Department of Cellular and Structural Biology, The University of Texas Health Science Center, San Antonio, TX, USA
| | - Chaozu He
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Agriculture, Hainan University, Haikou, China
| | - Haitao Shi
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Agriculture, Hainan University, Haikou, China
| |
Collapse
|
21
|
Heat shock transcription factors in banana: genome-wide characterization and expression profile analysis during development and stress response. Sci Rep 2016; 6:36864. [PMID: 27857174 PMCID: PMC5114564 DOI: 10.1038/srep36864] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 10/21/2016] [Indexed: 12/01/2022] Open
Abstract
Banana (Musa acuminata) is one of the most popular fresh fruits. However, the rapid spread of fungal pathogen Fusarium oxysporum f. sp. cubense (Foc) in tropical areas severely affected banana growth and production. Thus, it is very important to identify candidate genes involved in banana response to abiotic stress and pathogen infection, as well as the molecular mechanism and possible utilization for genetic breeding. Heat stress transcription factors (Hsfs) are widely known for their common involvement in various abiotic stresses and plant-pathogen interaction. However, no MaHsf has been identified in banana, as well as its possible role. In this study, genome-wide identification and further analyses of evolution, gene structure and conserved motifs showed closer relationship of them in every subgroup. The comprehensive expression profiles of MaHsfs revealed the tissue- and developmental stage-specific or dependent, as well as abiotic and biotic stress-responsive expressions of them. The common regulation of several MaHsfs by abiotic and biotic stress indicated the possible roles of them in plant stress responses. Taken together, this study extended our understanding of MaHsf gene family and identified some candidate MaHsfs with specific expression profiles, which may be used as potential candidates for genetic breeding in banana.
Collapse
|