1
|
Dabaj I, Ducatez F, Marret S, Bekri S, Tebani A. Neuromuscular disorders in the omics era. Clin Chim Acta 2024; 553:117691. [PMID: 38081447 DOI: 10.1016/j.cca.2023.117691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/30/2023] [Accepted: 12/02/2023] [Indexed: 12/18/2023]
Abstract
Neuromuscular disorders encompass a spectrum of conditions characterized by primary lesions within the peripheral nervous system, which include the anterior horn cell, peripheral nerve, neuromuscular junction, and muscle. In pediatrics, most of these disorders are linked to genetic causes. Despite the considerable progress, the diagnosis of these disorders remains a challenging due to wide clinical presentation, disease heterogeneity and rarity. It is noteworthy that certain neuromuscular disorders, once deemed untreatable, can now be effectively managed through novel therapies. Biomarkers emerge as indispensable tools, serving as objective measures that not only refine diagnostic accuracy but also provide guidance for therapeutic decision-making and the ongoing monitoring of long-term outcomes. Herein a comprehensive review of biomarkers in neuromuscular disorders is provided. We highlight the role of omics-based technologies that further characterize neuromuscular pathophysiology as well as identify potential therapeutic targets to guide treatment strategies.
Collapse
Affiliation(s)
- Ivana Dabaj
- Normandie Univ, UNIROUEN, INSERM U1245, Nord/Est/Ile de France Neuromuscular Reference Center CHU Rouen, Department of Neonatalogy, Pediatric Intensive Care, and Neuropediatrics, F-76000 Rouen, France.
| | - Franklin Ducatez
- Normandie Univ, UNIROUEN, INSERM U1245, Nord/Est/Ile de France Neuromuscular Reference Center CHU Rouen, Department of Neonatalogy, Pediatric Intensive Care, and Neuropediatrics, F-76000 Rouen, France
| | - Stéphane Marret
- Normandie Univ, UNIROUEN, INSERM U1245, Nord/Est/Ile de France Neuromuscular Reference Center CHU Rouen, Department of Neonatalogy, Pediatric Intensive Care, and Neuropediatrics, F-76000 Rouen, France
| | - Soumeya Bekri
- Normandie Univ, UNIROUEN, INSERM U1245, CHU Rouen, Department of Metabolic Biochemistry, F-76000 Rouen, France
| | - Abdellah Tebani
- Normandie Univ, UNIROUEN, INSERM U1245, CHU Rouen, Department of Metabolic Biochemistry, F-76000 Rouen, France
| |
Collapse
|
2
|
Navarro-Martínez A, Vicente-García C, Carvajal JJ. NMJ-related diseases beyond the congenital myasthenic syndromes. Front Cell Dev Biol 2023; 11:1216726. [PMID: 37601107 PMCID: PMC10436495 DOI: 10.3389/fcell.2023.1216726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/21/2023] [Indexed: 08/22/2023] Open
Abstract
Neuromuscular junctions (NMJs) are a special type of chemical synapse that transmits electrical stimuli from motor neurons (MNs) to their innervating skeletal muscle to induce a motor response. They are an ideal model for the study of synapses, given their manageable size and easy accessibility. Alterations in their morphology or function lead to neuromuscular disorders, such as the congenital myasthenic syndromes, which are caused by mutations in proteins located in the NMJ. In this review, we highlight novel potential candidate genes that may cause or modify NMJs-related pathologies in humans by exploring the phenotypes of hundreds of mouse models available in the literature. We also underscore the fact that NMJs may differ between species, muscles or even sexes. Hence the importance of choosing a good model organism for the study of NMJ-related diseases: only taking into account the specific features of the mammalian NMJ, experimental results would be efficiently translated to the clinic.
Collapse
Affiliation(s)
| | - Cristina Vicente-García
- Centro Andaluz de Biología del Desarrollo, CSIC-UPO-JA, Universidad Pablo de Olavide, Sevilla, Spain
| | | |
Collapse
|
3
|
Blatnik AJ, Macleod Burghes AH. An Hspa8 variant is a shocking modifier of spinal muscular atrophy in mice. Neuron 2023; 111:1349-1350. [PMID: 37141858 DOI: 10.1016/j.neuron.2023.03.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 05/06/2023]
Abstract
In this issue of Neuron, Kim et al.1 show that an Hspa8 variant modifies disease phenotypes in a mouse model of spinal muscular atrophy. Hspa8 facilitates the correct folding of proteins, enhances SNARE assembly, and influences SMN2 splicing.
Collapse
Affiliation(s)
- Anton James Blatnik
- Department of Biological Chemistry & Pharmacology, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA.
| | - Arthur Harry Macleod Burghes
- Department of Biological Chemistry & Pharmacology, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
4
|
Hennlein L, Ghanawi H, Gerstner F, Palominos García E, Yildirim E, Saal-Bauernschubert L, Moradi M, Deng C, Klein T, Appenzeller S, Sauer M, Briese M, Simon C, Sendtner M, Jablonka S. Plastin 3 rescues cell surface translocation and activation of TrkB in spinal muscular atrophy. J Cell Biol 2023; 222:e202204113. [PMID: 36607273 PMCID: PMC9827530 DOI: 10.1083/jcb.202204113] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 10/12/2022] [Accepted: 12/08/2022] [Indexed: 01/07/2023] Open
Abstract
Plastin 3 (PLS3) is an F-actin-bundling protein that has gained attention as a modifier of spinal muscular atrophy (SMA) pathology. SMA is a lethal pediatric neuromuscular disease caused by loss of or mutations in the Survival Motor Neuron 1 (SMN1) gene. Pathophysiological hallmarks are cellular maturation defects of motoneurons prior to degeneration. Despite the observed beneficial modifying effect of PLS3, the mechanism of how it supports F-actin-mediated cellular processes in motoneurons is not yet well understood. Our data reveal disturbed F-actin-dependent translocation of the Tropomyosin receptor kinase B (TrkB) to the cell surface of Smn-deficient motor axon terminals, resulting in reduced TrkB activation by its ligand brain-derived neurotrophic factor (BDNF). Improved actin dynamics by overexpression of hPLS3 restores membrane recruitment and activation of TrkB and enhances spontaneous calcium transients by increasing Cav2.1/2 "cluster-like" formations in SMA axon terminals. Thus, our study provides a novel role for PLS3 in supporting correct alignment of transmembrane proteins, a key mechanism for (moto)-neuronal development.
Collapse
Affiliation(s)
- Luisa Hennlein
- Institute of Clinical Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Hanaa Ghanawi
- Institute of Clinical Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Florian Gerstner
- Carl-Ludwig-Institute for Physiology, Leipzig University, Leipzig, Germany
| | | | - Ezgi Yildirim
- Institute of Clinical Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | | | - Mehri Moradi
- Institute of Clinical Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Chunchu Deng
- Institute of Clinical Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Teresa Klein
- Department of Biotechnology and Biophysics, Biocenter, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Silke Appenzeller
- Comprehensive Cancer Center Mainfranken; Core Unit Bioinformatics, University Hospital Würzburg, Würzburg, Germany
| | - Markus Sauer
- Department of Biotechnology and Biophysics, Biocenter, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Michael Briese
- Institute of Clinical Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Christian Simon
- Carl-Ludwig-Institute for Physiology, Leipzig University, Leipzig, Germany
| | - Michael Sendtner
- Institute of Clinical Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Sibylle Jablonka
- Institute of Clinical Neurobiology, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
5
|
Butchbach MER, Scott RC. Biological networks and complexity in early-onset motor neuron diseases. Front Neurol 2022; 13:1035406. [PMID: 36341099 PMCID: PMC9634177 DOI: 10.3389/fneur.2022.1035406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/10/2022] [Indexed: 11/16/2022] Open
Abstract
Motor neuron diseases (MNDs) are neuromuscular disorders where the spinal motor neurons-either the cell bodies themselves or their axons-are the primary cells affected. To date, there are 120 different genes that are lost or mutated in pediatric-onset MNDs. Most of these childhood-onset disorders, aside from spinal muscular atrophy (SMA), lack viable therapeutic options. Previous research on MNDs has focused on understanding the pathobiology of a single, specific gene mutation and targeting therapies to that pathobiology. This reductionist approach has yielded therapeutic options for a specific disorder, in this case SMA. Unfortunately, therapies specific for SMA have not been effective against other pediatric-onset MNDs. Pursuing the same approach for the other defined MNDs would require development of at least 120 independent treatments raising feasibility issues. We propose an alternative to this this type of reductionist approach by conceptualizing MNDs in a complex adaptive systems framework that will allow identification of common molecular and cellular pathways which form biological networks that are adversely affected in early-onset MNDs and thus MNDs with similar phenotypes despite diverse genotypes. This systems biology approach highlights the complexity and self-organization of the motor system as well as the ways in which it can be affected by these genetic disorders. Using this integrated approach to understand early-onset MNDs, we would be better poised to expand the therapeutic repertoire for multiple MNDs.
Collapse
Affiliation(s)
- Matthew E. R. Butchbach
- Division of Neurology, Nemours Children's Hospital Delaware, Wilmington, DE, United States,Department of Pediatrics, Thomas Jefferson University, Philadelphia, PA, United States,Department of Biological Sciences, University of Delaware, Newark, DE, United States,*Correspondence: Matthew E. R. Butchbach
| | - Rod C. Scott
- Division of Neurology, Nemours Children's Hospital Delaware, Wilmington, DE, United States,Department of Pediatrics, Thomas Jefferson University, Philadelphia, PA, United States,Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, United States,Neurosciences Unit, Institute of Child Health, University College London, London, United Kingdom,Rod C. Scott
| |
Collapse
|
6
|
Pino MG, Rich KA, Kolb SJ. Update on Biomarkers in Spinal Muscular Atrophy. Biomark Insights 2021; 16:11772719211035643. [PMID: 34421296 PMCID: PMC8371741 DOI: 10.1177/11772719211035643] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 07/07/2021] [Indexed: 11/25/2022] Open
Abstract
The availability of disease modifying therapies for spinal muscular atrophy (SMA) has created an urgent need to identify clinically meaningful biomarkers. Biomarkers present a means to measure and evaluate neurological disease across time. Changes in biomarkers provide insight into disease progression and may reveal biologic, physiologic, or pharmacologic phenomena occurring prior to clinical detection. Efforts to identify biomarkers for SMA, a genetic motor neuron disease characterized by motor neuron degeneration and weakness, have culminated in a number of putative molecular and physiologic markers that evaluate biological media (eg, blood and cerebrospinal fluid [CSF]) or nervous system function. Such biomarkers include SMN2 copy number, SMN mRNA and protein levels, neurofilament proteins (NFs), plasma protein analytes, creatine kinase (CK) and creatinine (Crn), and various electrophysiology and imaging measures. SMN2 copy number inversely correlates with disease severity and is the best predictor of clinical outcome in untreated individuals. SMN mRNA and protein are commonly measured in the blood or CSF of patients receiving SMA therapies, particularly those aimed at increasing SMN protein expression, and provide insight into current disease state. NFs have proven to be robust prognostic, disease progression, and pharmacodynamic markers for SMA infants undergoing treatment, but less so for adolescents and adults. Select plasma proteins are altered in SMA individuals and may track response to therapy. CK and Crn from blood correlate with motor function and disease severity status and are useful for predicting which individuals will respond to therapy. Electrophysiology measures comprise the most reliable means for monitoring motor function throughout disease course and are sensitive enough to detect neuromuscular changes before overt clinical manifestation, making them robust predictive and pharmacodynamic biomarkers. Finally, magnetic resonance imaging and muscle ultrasonography are non-invasive techniques for studying muscle structure and physiology and are useful diagnostic tools, but cannot reliably track disease progression. Importantly, biomarkers can provide information about the underlying mechanisms of disease as well as reveal subclinical disease progression, allowing for more appropriate timing and dosing of therapy for individuals with SMA. Recent therapeutic advancements in SMA have shown promising results, though there is still a great need to identify and understand the impact of biomarkers in modulating disease onset and progression.
Collapse
Affiliation(s)
- Megan G Pino
- Department of Neurology, The Ohio State
University Wexner Medical Center, Columbus, OH, USA
| | - Kelly A Rich
- Department of Neurology, The Ohio State
University Wexner Medical Center, Columbus, OH, USA
| | - Stephen J Kolb
- Department of Neurology, The Ohio State
University Wexner Medical Center, Columbus, OH, USA
- Department of Biological Chemistry and
Pharmacology, The Ohio State University Wexner Medical Center, Columbus, OH,
USA
| |
Collapse
|
7
|
Blatnik AJ, McGovern VL, Burghes AHM. What Genetics Has Told Us and How It Can Inform Future Experiments for Spinal Muscular Atrophy, a Perspective. Int J Mol Sci 2021; 22:8494. [PMID: 34445199 PMCID: PMC8395208 DOI: 10.3390/ijms22168494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/28/2021] [Accepted: 08/04/2021] [Indexed: 02/06/2023] Open
Abstract
Proximal spinal muscular atrophy (SMA) is an autosomal recessive neurodegenerative disorder characterized by motor neuron loss and subsequent atrophy of skeletal muscle. SMA is caused by deficiency of the essential survival motor neuron (SMN) protein, canonically responsible for the assembly of the spliceosomal small nuclear ribonucleoproteins (snRNPs). Therapeutics aimed at increasing SMN protein levels are efficacious in treating SMA. However, it remains unknown how deficiency of SMN results in motor neuron loss, resulting in many reported cellular functions of SMN and pathways affected in SMA. Herein is a perspective detailing what genetics and biochemistry have told us about SMA and SMN, from identifying the SMA determinant region of the genome, to the development of therapeutics. Furthermore, we will discuss how genetics and biochemistry have been used to understand SMN function and how we can determine which of these are critical to SMA moving forward.
Collapse
Affiliation(s)
| | | | - Arthur H. M. Burghes
- Department of Biological Chemistry & Pharmacology, The Ohio State University Wexner Medical Center, Rightmire Hall, Room 168, 1060 Carmack Road, Columbus, OH 43210, USA; (A.J.B.III); (V.L.M.)
| |
Collapse
|
8
|
Butchbach MER. Genomic Variability in the Survival Motor Neuron Genes ( SMN1 and SMN2): Implications for Spinal Muscular Atrophy Phenotype and Therapeutics Development. Int J Mol Sci 2021; 22:ijms22157896. [PMID: 34360669 PMCID: PMC8348669 DOI: 10.3390/ijms22157896] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/14/2021] [Accepted: 07/21/2021] [Indexed: 02/07/2023] Open
Abstract
Spinal muscular atrophy (SMA) is a leading genetic cause of infant death worldwide that is characterized by loss of spinal motor neurons leading to muscle weakness and atrophy. SMA results from the loss of survival motor neuron 1 (SMN1) gene but retention of its paralog SMN2. The copy numbers of SMN1 and SMN2 are variable within the human population with SMN2 copy number inversely correlating with SMA severity. Current therapeutic options for SMA focus on increasing SMN2 expression and alternative splicing so as to increase the amount of SMN protein. Recent work has demonstrated that not all SMN2, or SMN1, genes are equivalent and there is a high degree of genomic heterogeneity with respect to the SMN genes. Because SMA is now an actionable disease with SMN2 being the primary target, it is imperative to have a comprehensive understanding of this genomic heterogeneity with respect to hybrid SMN1–SMN2 genes generated by gene conversion events as well as partial deletions of the SMN genes. This review will describe this genetic heterogeneity in SMA and its impact on disease phenotype as well as therapeutic efficacy.
Collapse
Affiliation(s)
- Matthew E. R. Butchbach
- Center for Applied Clinical Genomics, Nemours Children’s Health Delaware, Wilmington, DE 19803, USA;
- Center for Pediatric Research, Nemours Children’s Health Delaware, Wilmington, DE 19803, USA
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
- Department of Pediatrics, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
9
|
Chaytow H, Faller KM, Huang YT, Gillingwater TH. Spinal muscular atrophy: From approved therapies to future therapeutic targets for personalized medicine. Cell Rep Med 2021; 2:100346. [PMID: 34337562 PMCID: PMC8324491 DOI: 10.1016/j.xcrm.2021.100346] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Spinal muscular atrophy (SMA) is a devastating childhood motor neuron disease that, in the most severe cases and when left untreated, leads to death within the first two years of life. Recent therapeutic advances have given hope to families and patients by compensating for the deficiency in survival motor neuron (SMN) protein via gene therapy or other genetic manipulation. However, it is now apparent that none of these therapies will cure SMA alone. In this review, we discuss the three currently licensed therapies for SMA, briefly highlighting their respective advantages and disadvantages, before considering alternative approaches to increasing SMN protein levels. We then explore recent preclinical research that is identifying and targeting dysregulated pathways secondary to, or independent of, SMN deficiency that may provide adjunctive opportunities for SMA. These additional therapies are likely to be key for the development of treatments that are effective across the lifespan of SMA patients.
Collapse
Affiliation(s)
- Helena Chaytow
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK
- Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| | - Kiterie M.E. Faller
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK
- Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK
- Royal (Dick) School of Veterinary Studies, University of Edinburgh, UK
| | - Yu-Ting Huang
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK
- Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| | - Thomas H. Gillingwater
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK
- Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
10
|
In Search of a Cure: The Development of Therapeutics to Alter the Progression of Spinal Muscular Atrophy. Brain Sci 2021; 11:brainsci11020194. [PMID: 33562482 PMCID: PMC7915832 DOI: 10.3390/brainsci11020194] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 12/19/2022] Open
Abstract
Until the recent development of disease-modifying therapeutics, spinal muscular atrophy (SMA) was considered a devastating neuromuscular disease with a poor prognosis for most affected individuals. Symptoms generally present during early childhood and manifest as muscle weakness and progressive paralysis, severely compromising the affected individual’s quality of life, independence, and lifespan. SMA is most commonly caused by the inheritance of homozygously deleted SMN1 alleles with retention of one or more copies of a paralog gene, SMN2, which inversely correlates with disease severity. The recent advent and use of genetically targeted therapies have transformed SMA into a prototype for monogenic disease treatment in the era of genetic medicine. Many SMA-affected individuals receiving these therapies achieve traditionally unobtainable motor milestones and survival rates as medicines drastically alter the natural progression of this disease. This review discusses historical SMA progression and underlying disease mechanisms, highlights advances made in therapeutic research, clinical trials, and FDA-approved medicines, and discusses possible second-generation and complementary medicines as well as optimal temporal intervention windows in order to optimize motor function and improve quality of life for all SMA-affected individuals.
Collapse
|
11
|
Keinath MC, Prior DE, Prior TW. Spinal Muscular Atrophy: Mutations, Testing, and Clinical Relevance. APPLICATION OF CLINICAL GENETICS 2021; 14:11-25. [PMID: 33531827 PMCID: PMC7846873 DOI: 10.2147/tacg.s239603] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 01/15/2021] [Indexed: 12/12/2022]
Abstract
Spinal muscular atrophy (SMA) is a heritable neuromuscular disorder that causes degeneration of the alpha motor neurons from anterior horn cells in the spinal cord, which causes severe progressive hypotonia and muscular weakness. With a carrier frequency of 1 in 40–50 and an estimated incidence of 1 in 10,000 live births, SMA is the second most common autosomal recessive disorder. Affected individuals with SMA have a homozygous loss of function of the survival motor neuron gene SMN1 on 5q13 but keep the modifying SMN2 gene. The most common mutation causing SMA is a homozygous deletion of the SMN1 exon 7, which can be readily detected and used as a sensitive diagnostic test. Because SMN2 produces a reduced number of full-length transcripts, the number of SMN2 copies can modify the clinical phenotype and as such, becomes an essential predictive factor. Population-based SMA carrier screening identifies carrier couples that may pass on this genetic disorder to their offspring and allows the carriers to make informed reproductive choices or prepare for immediate treatment for an affected child. Three treatments have recently been approved by the Food and Drug Administration (FDA). Nusinersen increases the expression levels of the SMN protein using an antisense oligonucleotide to alter splicing of the SMN2 transcript. Onasemnogene abeparvovec is a gene therapy that utilizes an adeno-associated virus serotype 9 vector to increase low functional SMN protein levels. Risdiplam is a small molecule that alters SMN2 splicing in order to increase functional SMN protein. Newborn screening for SMA has been shown to be successful in allowing infants to be treated before the loss of motor neurons and has resulted in improved clinical outcomes. Several of the recommendations and guidelines in the review are based on studies performed in the United States.
Collapse
Affiliation(s)
- Melissa C Keinath
- Pathology, University Hospitals Center for Human Genetics, Cleveland, OH, USA
| | - Devin E Prior
- Neurology, Mount Auburn Hospital, Cambridge, MA, USA
| | - Thomas W Prior
- Pathology, University Hospitals Center for Human Genetics, Cleveland, OH, USA
| |
Collapse
|
12
|
Wirth B. Spinal Muscular Atrophy: In the Challenge Lies a Solution. Trends Neurosci 2021; 44:306-322. [PMID: 33423791 DOI: 10.1016/j.tins.2020.11.009] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 11/08/2020] [Accepted: 11/30/2020] [Indexed: 12/16/2022]
Abstract
The path from gene discovery to therapy in spinal muscular atrophy (SMA) has been a highly challenging endeavor, but also led to one of the most successful stories in neurogenetics. In SMA, a neuromuscular disorder with an often fatal outcome until recently, with those affected never able to sit, stand, or walk, children now achieve these motoric abilities and almost age-based development when treated presymptomatically. This review summarizes the challenges along this 30-year journey. It is also meant to inspire early-career scientists not to give up when things become difficult but to try to uncover the biological underpinnings and transform the challenge into the next big discovery. Without doubt, the improvements seen with the three therapeutic strategies in SMA are impressive; many open questions remain and are discussed in this review.
Collapse
Affiliation(s)
- Brunhilde Wirth
- Institute of Human Genetics, Center for Molecular Medicine, Center for Rare Disorders, University of Cologne, Kerpener Str. 34, 50931 Cologne, Germany.
| |
Collapse
|
13
|
McGovern VL, Kray KM, Arnold WD, Duque SI, Iyer CC, Massoni-Laporte A, Workman E, Patel A, Battle DJ, Burghes AHM. Intragenic complementation of amino and carboxy terminal SMN missense mutations can rescue Smn null mice. Hum Mol Genet 2020; 29:3493-3503. [PMID: 33084884 PMCID: PMC7788290 DOI: 10.1093/hmg/ddaa235] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/18/2020] [Accepted: 10/15/2020] [Indexed: 01/15/2023] Open
Abstract
Spinal muscular atrophy is caused by reduced levels of SMN resulting from the loss of SMN1 and reliance on SMN2 for the production of SMN. Loss of SMN entirely is embryonic lethal in mammals. There are several SMN missense mutations found in humans. These alleles do not show partial function in the absence of wild-type SMN and cannot rescue a null Smn allele in mice. However, these human SMN missense allele transgenes can rescue a null Smn allele when SMN2 is present. We find that the N- and C-terminal regions constitute two independent domains of SMN that can be separated genetically and undergo intragenic complementation. These SMN protein heteromers restore snRNP assembly of Sm proteins onto snRNA and completely rescue both survival of Smn null mice and motor neuron electrophysiology demonstrating that the essential functional unit of SMN is the oligomer.
Collapse
Affiliation(s)
- Vicki L McGovern
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA
| | - Kaitlyn M Kray
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA
| | - W David Arnold
- Department of Neurology, The Ohio State University, Columbus, OH 43210, USA
| | - Sandra I Duque
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA
| | - Chitra C Iyer
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA
| | - Aurélie Massoni-Laporte
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA
| | - Eileen Workman
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA
| | - Aalapi Patel
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA
| | - Daniel J Battle
- Department of Biological Chemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Arthur H M Burghes
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA
- Department of Neurology, The Ohio State University, Columbus, OH 43210, USA
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
14
|
Walsh MB, Janzen E, Wingrove E, Hosseinibarkooie S, Muela NR, Davidow L, Dimitriadi M, Norabuena EM, Rubin LL, Wirth B, Hart AC. Genetic modifiers ameliorate endocytic and neuromuscular defects in a model of spinal muscular atrophy. BMC Biol 2020; 18:127. [PMID: 32938453 PMCID: PMC7495824 DOI: 10.1186/s12915-020-00845-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 08/11/2020] [Indexed: 12/31/2022] Open
Abstract
Background Understanding the genetic modifiers of neurodegenerative diseases can provide insight into the mechanisms underlying these disorders. Here, we examine the relationship between the motor neuron disease spinal muscular atrophy (SMA), which is caused by reduced levels of the survival of motor neuron (SMN) protein, and the actin-bundling protein Plastin 3 (PLS3). Increased PLS3 levels suppress symptoms in a subset of SMA patients and ameliorate defects in SMA disease models, but the functional connection between PLS3 and SMN is poorly understood. Results We provide immunohistochemical and biochemical evidence for large protein complexes localized in vertebrate motor neuron processes that contain PLS3, SMN, and members of the hnRNP F/H family of proteins. Using a Caenorhabditis elegans (C. elegans) SMA model, we determine that overexpression of PLS3 or loss of the C. elegans hnRNP F/H ortholog SYM-2 enhances endocytic function and ameliorates neuromuscular defects caused by decreased SMN-1 levels. Furthermore, either increasing PLS3 or decreasing SYM-2 levels suppresses defects in a C. elegans ALS model. Conclusions We propose that hnRNP F/H act in the same protein complex as PLS3 and SMN and that the function of this complex is critical for endocytic pathways, suggesting that hnRNP F/H proteins could be potential targets for therapy development.
Collapse
Affiliation(s)
- Melissa B Walsh
- Department of Neuroscience, Brown University, 185 Meeting Street, Mailbox GL-N, Providence, RI, 02912, USA
| | - Eva Janzen
- Institute of Human Genetics, Center for Molecular Medicine Cologne, Institute of Genetics, and Center for Rare Disorders, University of Cologne, Cologne, Germany
| | - Emily Wingrove
- Department of Neuroscience, Brown University, 185 Meeting Street, Mailbox GL-N, Providence, RI, 02912, USA
| | - Seyyedmohsen Hosseinibarkooie
- Institute of Human Genetics, Center for Molecular Medicine Cologne, Institute of Genetics, and Center for Rare Disorders, University of Cologne, Cologne, Germany
| | - Natalia Rodriguez Muela
- Department of Stem Cell & Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Lance Davidow
- Department of Stem Cell & Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Maria Dimitriadi
- Department of Biological and Environmental Sciences, University of Hertfordshire, Hertfordshire, UK
| | - Erika M Norabuena
- Department of Stem Cell & Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Lee L Rubin
- Department of Stem Cell & Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Brunhilde Wirth
- Institute of Human Genetics, Center for Molecular Medicine Cologne, Institute of Genetics, and Center for Rare Disorders, University of Cologne, Cologne, Germany
| | - Anne C Hart
- Department of Neuroscience, Brown University, 185 Meeting Street, Mailbox GL-N, Providence, RI, 02912, USA.
| |
Collapse
|
15
|
Fabian L, Dowling JJ. Zebrafish Models of LAMA2-Related Congenital Muscular Dystrophy (MDC1A). Front Mol Neurosci 2020; 13:122. [PMID: 32742259 PMCID: PMC7364686 DOI: 10.3389/fnmol.2020.00122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/11/2020] [Indexed: 01/28/2023] Open
Abstract
LAMA2-related congenital muscular dystrophy (CMD; LAMA2-MD), also referred to as merosin deficient CMD (MDC1A), is a severe neonatal onset muscle disease caused by recessive mutations in the LAMA2 gene. LAMA2 encodes laminin α2, a subunit of the extracellular matrix (ECM) oligomer laminin 211. There are currently no treatments for MDC1A, and there is an incomplete understanding of disease pathogenesis. Zebrafish, due to their high degree of genetic conservation with humans, large clutch sizes, rapid development, and optical clarity, have emerged as an excellent model system for studying rare Mendelian diseases. They are particularly suitable as a model for muscular dystrophy because they contain at least one orthologue to all major human MD genes, have muscle that is similar to human muscle in structure and function, and manifest obvious and easily measured MD related phenotypes. In this review article, we present the existing zebrafish models of MDC1A, and discuss their contribution to the understanding of MDC1A pathomechanisms and therapy development.
Collapse
Affiliation(s)
- Lacramioara Fabian
- Program for Genetics and Genome Biology, Hospital for Sick Children, Toronto, ON, Canada
| | - James J Dowling
- Program for Genetics and Genome Biology, Hospital for Sick Children, Toronto, ON, Canada.,Division of Neurology, Hospital for Sick Children, Toronto, ON, Canada.,Departments of Pediatrics and Molecular Genetics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
16
|
Smeriglio P, Langard P, Querin G, Biferi MG. The Identification of Novel Biomarkers Is Required to Improve Adult SMA Patient Stratification, Diagnosis and Treatment. J Pers Med 2020; 10:jpm10030075. [PMID: 32751151 PMCID: PMC7564782 DOI: 10.3390/jpm10030075] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/22/2020] [Accepted: 07/24/2020] [Indexed: 12/12/2022] Open
Abstract
Spinal muscular atrophy (SMA) is currently classified into five different subtypes, from the most severe (type 0) to the mildest (type 4) depending on age at onset, best motor function achieved, and copy number of the SMN2 gene. The two recent approved treatments for SMA patients revolutionized their life quality and perspectives. However, upon treatment with Nusinersen, the most widely administered therapy up to date, a high degree of variability in therapeutic response was observed in adult SMA patients. These data, together with the lack of natural history information and the wide spectrum of disease phenotypes, suggest that further efforts are needed to develop precision medicine approaches for all SMA patients. Here, we compile the current methods for functional evaluation of adult SMA patients treated with Nusinersen. We also present an overview of the known molecular changes underpinning disease heterogeneity. We finally highlight the need for novel techniques, i.e., -omics approaches, to capture phenotypic differences and to understand the biological signature in order to revise the disease classification and device personalized treatments.
Collapse
Affiliation(s)
- Piera Smeriglio
- Centre of Research in Myology, Institute of Myology, Sorbonne Université, INSERM, 75013 Paris, France; (P.L.); (G.Q.)
- Correspondence: (P.S.); (M.G.B.)
| | - Paul Langard
- Centre of Research in Myology, Institute of Myology, Sorbonne Université, INSERM, 75013 Paris, France; (P.L.); (G.Q.)
| | - Giorgia Querin
- Centre of Research in Myology, Institute of Myology, Sorbonne Université, INSERM, 75013 Paris, France; (P.L.); (G.Q.)
- Association Institut de Myologie, Plateforme Essais Cliniques Adultes, 75013 Paris, France
- APHP, Service de Neuromyologie, Hôpital Pitié-Salpêtrière, 75013 Paris, France
| | - Maria Grazia Biferi
- Centre of Research in Myology, Institute of Myology, Sorbonne Université, INSERM, 75013 Paris, France; (P.L.); (G.Q.)
- Correspondence: (P.S.); (M.G.B.)
| |
Collapse
|
17
|
Tan CA, Westbrook MJ, Truty R, Kvitek DJ, Kennemer M, Winder TL, Shieh PB. Incorporating Spinal Muscular Atrophy Analysis by Next-Generation Sequencing into a Comprehensive Multigene Panel for Neuromuscular Disorders. Genet Test Mol Biomarkers 2020; 24:616-624. [PMID: 32721234 DOI: 10.1089/gtmb.2019.0282] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background: Spinal muscular atrophy (SMA) is traditionally molecularly diagnosed by multiplex ligation-dependent probe amplification or quantitative polymerase chain reaction (qPCR). SMA analyses are not routinely incorporated into gene panel analyses for individuals with suspected SMA or broader neuromuscular indications. Aim: We sought to determine whether a next-generation sequencing (NGS) approach that integrates SMA analyses into a multigene neuromuscular disorders panel could detect undiagnosed SMA. Materials and Methods: Sequence and copy number variants of the SMN1/SMN2 genes were simultaneously analyzed in samples from 5304 unselected individuals referred for testing using an NGS-based 122-gene neuromuscular panel. This diagnostic approach was validated using DNA from 68 individuals who had been previously diagnosed with SMA via quantitative PCR for SMN1/SMN2. Results: Homozygous loss of SMN1 was detected in 47 unselected individuals. Heterozygous loss of SMN1 was detected in 118 individuals; 8 had an indeterminate variant in "SMN1 or SMN2" that supported an SMA diagnosis but required additional disambiguation. Of the remaining SMA carriers, 44 had pathogenic variants in other genes. Concordance rates between NGS and qPCR were 100% and 93% for SMN1 and SMN2 copy numbers, respectively. Where there was disagreement, phenotypes were more consistent with the SMN2 results from NGS. Conclusion: Integrating NGS-based SMA testing into a multigene neuromuscular panel allows a single assay to diagnose SMA while comprehensively assessing the spectrum of variants that can occur in individuals with broad differential diagnoses or nonspecific/overlapping neuromuscular features.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Perry B Shieh
- Department of Neurology, University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
18
|
Kariyawasam DST, D'Silva A, Lin C, Ryan MM, Farrar MA. Biomarkers and the Development of a Personalized Medicine Approach in Spinal Muscular Atrophy. Front Neurol 2019; 10:898. [PMID: 31481927 PMCID: PMC6709682 DOI: 10.3389/fneur.2019.00898] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 08/02/2019] [Indexed: 12/11/2022] Open
Abstract
Recent unprecedented advances in treatment for spinal muscular atrophy (SMA) enabled patients to access the first approved disease modifying therapy for the condition. There are however many uncertainties, regarding timing of treatment initiation, response to intervention, treatment effects and long-term outcomes, which are complicated by the evolving phenotypes seen in the post-treatment era for patients with SMA. Biomarkers of disease, with diagnostic, prognostic, predictive, and pharmacodynamic value are thus urgently required, to facilitate a wider understanding in this dynamic landscape. A spectrum of these candidate biomarkers, will be evaluated in this review, including genetic, epigenetic, proteomic, electrophysiological, and imaging measures. Of these, SMN2 appears to be the most significant modifier of phenotype to date, and its use in prognostication shows considerable clinical utility. Longitudinal studies in patients with SMA highlight an emerging role of circulatory markers such as neurofilament, in tracking disease progression and response to treatment. Furthermore, neurophysiological biomarkers such as CMAP and MUNE values show considerable promise in the real word setting, in following the dynamic response and output of the motor unit to therapeutic intervention. The specific value for these possible biomarkers across diagnosis, prognosis, prediction of treatment response, efficacy, and safety will be central to guide future patient-targeted treatments, the design of clinical trials, and understanding of the pathophysiological mechanisms of disease and intervention.
Collapse
Affiliation(s)
- Didu S T Kariyawasam
- Department of Neurology, Sydney Children's Hospital, Sydney, NSW, Australia.,School of Women's and Children's Health, University of New South Wales Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Arlene D'Silva
- School of Women's and Children's Health, University of New South Wales Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Cindy Lin
- Department of Neurophysiology, Brain and Mind Center, University of Sydney, Sydney, NSW, Australia
| | - Monique M Ryan
- Department of Neurology, Murdoch Children's Research Institute, Royal Children's Hospital, University of Melbourne, Melbourne, VIC, Australia
| | - Michelle A Farrar
- Department of Neurology, Sydney Children's Hospital, Sydney, NSW, Australia.,School of Women's and Children's Health, University of New South Wales Medicine, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
19
|
Custer SK, Astroski JW, Li HX, Androphy EJ. Interaction between alpha-COP and SMN ameliorates disease phenotype in a mouse model of spinal muscular atrophy. Biochem Biophys Res Commun 2019; 514:530-537. [PMID: 31060774 DOI: 10.1016/j.bbrc.2019.04.176] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 04/26/2019] [Indexed: 11/25/2022]
Abstract
We report that expression of the α-COP protein rescues disease phenotype in a severe mouse model of Spinal Muscular Atrophy (SMA). Lentiviral particles expressing α-COP were injected directly into the testes of genetically pure mouse strain of interest resulting in infection of the spermatagonial stem cells. α-COP was stably expressed in brain, skeletal muscle, and spinal cord without altering SMN protein levels. SMA mice transgenic for α-COP live significantly longer than their non-transgenic littermates, and showed increased body mass and normal muscle morphology at postnatal day 15. We previously reported that binding between SMN and α-COP is required for restoration of neurite outgrowth in cells lacking SMN, and we report similar finding here. Lentiviral-mediated transgenic expression of SMN where the dilysine domain in exon 2b was mutated was not able to rescue the SMA phenotype despite robust expression of the mutant SMN protein in brain, muscle and spinal cord. These results demonstrate that α-COP is a validated modifier of SMA disease phenotype in a mammalian, vertebrate model and is a potential target for development of future SMN-independent therapeutic interventions.
Collapse
Affiliation(s)
- Sara K Custer
- Indiana University School of Medicine, Dermatology, Indianapolis, IN, USA.
| | - Jacob W Astroski
- Indiana University School of Medicine, Dermatology, Indianapolis, IN, USA
| | - Hong Xia Li
- Indiana University School of Medicine, Dermatology, Indianapolis, IN, USA
| | - Elliot J Androphy
- Indiana University School of Medicine, Dermatology, Indianapolis, IN, USA
| |
Collapse
|
20
|
Ruhno C, McGovern VL, Avenarius MR, Snyder PJ, Prior TW, Nery FC, Muhtaseb A, Roggenbuck JS, Kissel JT, Sansone VA, Siranosian JJ, Johnstone AJ, Nwe PH, Zhang RZ, Swoboda KJ, Burghes AHM. Complete sequencing of the SMN2 gene in SMA patients detects SMN gene deletion junctions and variants in SMN2 that modify the SMA phenotype. Hum Genet 2019; 138:241-256. [PMID: 30788592 PMCID: PMC6503527 DOI: 10.1007/s00439-019-01983-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 02/14/2019] [Indexed: 12/11/2022]
Abstract
Spinal muscular atrophy (SMA) is a progressive motor neuron disease caused by loss or mutation of the survival motor neuron 1 (SMN1) gene and retention of SMN2. We performed targeted capture and sequencing of the SMN2, CFTR, and PLS3 genes in 217 SMA patients. We identified a 6.3 kilobase deletion that occurred in both SMN1 and SMN2 (SMN1/2) and removed exons 7 and 8. The deletion junction was flanked by a 21 bp repeat that occurred 15 times in the SMN1/2 gene. We screened for its presence in 466 individuals with the known SMN1 and SMN2 copy numbers. In individuals with 1 SMN1 and 0 SMN2 copies, the deletion occurred in 63% of cases. We modeled the deletion junction frequency and determined that the deletion occurred in both SMN1 and SMN2. We have identified the first deletion junction where the deletion removes exons 7 and 8 of SMN1/2. As it occurred in SMN1, it is a pathogenic mutation. We called variants in the PLS3 and SMN2 genes, and tested for association with mild or severe exception patients. The variants A-44G, A-549G, and C-1897T in intron 6 of SMN2 were significantly associated with mild exception patients, but no PLS3 variants correlated with severity. The variants occurred in 14 out of 58 of our mild exception patients, indicating that mild exception patients with an intact SMN2 gene and without modifying variants occur. This sample set can be used in the association analysis of candidate genes outside of SMN2 that modify the SMA phenotype.
Collapse
Affiliation(s)
- Corey Ruhno
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, USA
| | - Vicki L McGovern
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, USA
| | | | - Pamela J Snyder
- Department of Pathology, The Ohio State University, Columbus, OH, USA
| | - Thomas W Prior
- Department of Pathology, Case Western Reserve Medical Center, Cleveland, OH, USA
| | - Flavia C Nery
- Department of Neurology, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Abdurrahman Muhtaseb
- Department of Neurology, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | | | - John T Kissel
- Department of Neurology, The Ohio State University, Columbus, OH, USA
| | | | - Jennifer J Siranosian
- Department of Neurology, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Alec J Johnstone
- Department of Neurology, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Pann H Nwe
- Department of Neurology, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Ren Z Zhang
- Department of Neurology, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Kathryn J Swoboda
- Department of Neurology, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Arthur H M Burghes
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
21
|
Wadman RI, Jansen MD, Curial CAD, Groen EJN, Stam M, Wijngaarde CA, Medic J, Sodaar P, van Eijk KR, Huibers MMH, van Kuik J, Lemmink HH, van Rheenen W, Veldink JH, van den Berg LH, van der Pol WL. Analysis of FUS, PFN2, TDP-43, and PLS3 as potential disease severity modifiers in spinal muscular atrophy. NEUROLOGY-GENETICS 2019; 6:e386. [PMID: 32042914 PMCID: PMC6975178 DOI: 10.1212/nxg.0000000000000386] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 11/04/2019] [Indexed: 01/23/2023]
Abstract
Objective To investigate mutations in genes that are potential modifiers of spinal muscular atrophy (SMA) severity. Methods We performed a hypothesis-based search into the presence of variants in fused in sarcoma (FUS), transactive response DNA-binding protein 43 (TDP-43), plastin 3 (PLS3), and profilin 2 (PFN2) in a cohort of 153 patients with SMA types 1–4, including 19 families. Variants were detected with targeted next-generation sequencing and confirmed with Sanger sequencing. Functional effects of the identified variants were analyzed in silico and for PLS3, by analyzing expression levels in peripheral blood. Results We identified 2 exonic variants in FUS exons 5 and 6 (p.R216C and p.S135N) in 2 unrelated patients, but clinical effects were not evident. We identified 8 intronic variants in PLS3 in 33 patients. Five PLS3 variants (c.1511+82T>C; c.748+130 G>A; c.367+182C>T; c.891-25T>C (rs145269469); c.1355+17A>G (rs150802596)) potentially alter exonic splice silencer or exonic splice enhancer sites. The variant c.367+182C>T, but not RNA expression levels, corresponded with a more severe phenotype in 1 family. However, this variant or level of PLS3 expression did not consistently correspond with a milder or more severe phenotype in other families or the overall cohort. We found 3 heterozygous, intronic variants in PFN2 and TDP-43 with no correlation with clinical phenotype or effects on splicing. Conclusions PLS3 and FUS sequence variants do not modify SMA severity at the population level. Specific variants in individual patients or families do not consistently correlate with disease severity.
Collapse
Affiliation(s)
- Renske I Wadman
- Department of Neurology (R.I.W., M.D.J., C.A.D.C., E.J.N.G., M.S., C.A.W., J.M., P.S., K.R.E., W.R., J.H.V., L.H.B., W.L.P.), Brain Center Rudolf Magnus, University Medical Center Utrecht; Department of Pathology (M.M.H.H., J.K.), University Medical Center Utrecht; Department of Genetics (M.M.H.H.), University Medical Center Utrecht; and Department of Genetics (H.H.L.), University Medical Center Groningen, The Netherlands
| | - Marc D Jansen
- Department of Neurology (R.I.W., M.D.J., C.A.D.C., E.J.N.G., M.S., C.A.W., J.M., P.S., K.R.E., W.R., J.H.V., L.H.B., W.L.P.), Brain Center Rudolf Magnus, University Medical Center Utrecht; Department of Pathology (M.M.H.H., J.K.), University Medical Center Utrecht; Department of Genetics (M.M.H.H.), University Medical Center Utrecht; and Department of Genetics (H.H.L.), University Medical Center Groningen, The Netherlands
| | - Chantall A D Curial
- Department of Neurology (R.I.W., M.D.J., C.A.D.C., E.J.N.G., M.S., C.A.W., J.M., P.S., K.R.E., W.R., J.H.V., L.H.B., W.L.P.), Brain Center Rudolf Magnus, University Medical Center Utrecht; Department of Pathology (M.M.H.H., J.K.), University Medical Center Utrecht; Department of Genetics (M.M.H.H.), University Medical Center Utrecht; and Department of Genetics (H.H.L.), University Medical Center Groningen, The Netherlands
| | - Ewout J N Groen
- Department of Neurology (R.I.W., M.D.J., C.A.D.C., E.J.N.G., M.S., C.A.W., J.M., P.S., K.R.E., W.R., J.H.V., L.H.B., W.L.P.), Brain Center Rudolf Magnus, University Medical Center Utrecht; Department of Pathology (M.M.H.H., J.K.), University Medical Center Utrecht; Department of Genetics (M.M.H.H.), University Medical Center Utrecht; and Department of Genetics (H.H.L.), University Medical Center Groningen, The Netherlands
| | - Marloes Stam
- Department of Neurology (R.I.W., M.D.J., C.A.D.C., E.J.N.G., M.S., C.A.W., J.M., P.S., K.R.E., W.R., J.H.V., L.H.B., W.L.P.), Brain Center Rudolf Magnus, University Medical Center Utrecht; Department of Pathology (M.M.H.H., J.K.), University Medical Center Utrecht; Department of Genetics (M.M.H.H.), University Medical Center Utrecht; and Department of Genetics (H.H.L.), University Medical Center Groningen, The Netherlands
| | - Camiel A Wijngaarde
- Department of Neurology (R.I.W., M.D.J., C.A.D.C., E.J.N.G., M.S., C.A.W., J.M., P.S., K.R.E., W.R., J.H.V., L.H.B., W.L.P.), Brain Center Rudolf Magnus, University Medical Center Utrecht; Department of Pathology (M.M.H.H., J.K.), University Medical Center Utrecht; Department of Genetics (M.M.H.H.), University Medical Center Utrecht; and Department of Genetics (H.H.L.), University Medical Center Groningen, The Netherlands
| | - Jelena Medic
- Department of Neurology (R.I.W., M.D.J., C.A.D.C., E.J.N.G., M.S., C.A.W., J.M., P.S., K.R.E., W.R., J.H.V., L.H.B., W.L.P.), Brain Center Rudolf Magnus, University Medical Center Utrecht; Department of Pathology (M.M.H.H., J.K.), University Medical Center Utrecht; Department of Genetics (M.M.H.H.), University Medical Center Utrecht; and Department of Genetics (H.H.L.), University Medical Center Groningen, The Netherlands
| | - Peter Sodaar
- Department of Neurology (R.I.W., M.D.J., C.A.D.C., E.J.N.G., M.S., C.A.W., J.M., P.S., K.R.E., W.R., J.H.V., L.H.B., W.L.P.), Brain Center Rudolf Magnus, University Medical Center Utrecht; Department of Pathology (M.M.H.H., J.K.), University Medical Center Utrecht; Department of Genetics (M.M.H.H.), University Medical Center Utrecht; and Department of Genetics (H.H.L.), University Medical Center Groningen, The Netherlands
| | - Kristel R van Eijk
- Department of Neurology (R.I.W., M.D.J., C.A.D.C., E.J.N.G., M.S., C.A.W., J.M., P.S., K.R.E., W.R., J.H.V., L.H.B., W.L.P.), Brain Center Rudolf Magnus, University Medical Center Utrecht; Department of Pathology (M.M.H.H., J.K.), University Medical Center Utrecht; Department of Genetics (M.M.H.H.), University Medical Center Utrecht; and Department of Genetics (H.H.L.), University Medical Center Groningen, The Netherlands
| | - Manon M H Huibers
- Department of Neurology (R.I.W., M.D.J., C.A.D.C., E.J.N.G., M.S., C.A.W., J.M., P.S., K.R.E., W.R., J.H.V., L.H.B., W.L.P.), Brain Center Rudolf Magnus, University Medical Center Utrecht; Department of Pathology (M.M.H.H., J.K.), University Medical Center Utrecht; Department of Genetics (M.M.H.H.), University Medical Center Utrecht; and Department of Genetics (H.H.L.), University Medical Center Groningen, The Netherlands
| | - Joyce van Kuik
- Department of Neurology (R.I.W., M.D.J., C.A.D.C., E.J.N.G., M.S., C.A.W., J.M., P.S., K.R.E., W.R., J.H.V., L.H.B., W.L.P.), Brain Center Rudolf Magnus, University Medical Center Utrecht; Department of Pathology (M.M.H.H., J.K.), University Medical Center Utrecht; Department of Genetics (M.M.H.H.), University Medical Center Utrecht; and Department of Genetics (H.H.L.), University Medical Center Groningen, The Netherlands
| | - Henny H Lemmink
- Department of Neurology (R.I.W., M.D.J., C.A.D.C., E.J.N.G., M.S., C.A.W., J.M., P.S., K.R.E., W.R., J.H.V., L.H.B., W.L.P.), Brain Center Rudolf Magnus, University Medical Center Utrecht; Department of Pathology (M.M.H.H., J.K.), University Medical Center Utrecht; Department of Genetics (M.M.H.H.), University Medical Center Utrecht; and Department of Genetics (H.H.L.), University Medical Center Groningen, The Netherlands
| | - Wouter van Rheenen
- Department of Neurology (R.I.W., M.D.J., C.A.D.C., E.J.N.G., M.S., C.A.W., J.M., P.S., K.R.E., W.R., J.H.V., L.H.B., W.L.P.), Brain Center Rudolf Magnus, University Medical Center Utrecht; Department of Pathology (M.M.H.H., J.K.), University Medical Center Utrecht; Department of Genetics (M.M.H.H.), University Medical Center Utrecht; and Department of Genetics (H.H.L.), University Medical Center Groningen, The Netherlands
| | - Jan Herman Veldink
- Department of Neurology (R.I.W., M.D.J., C.A.D.C., E.J.N.G., M.S., C.A.W., J.M., P.S., K.R.E., W.R., J.H.V., L.H.B., W.L.P.), Brain Center Rudolf Magnus, University Medical Center Utrecht; Department of Pathology (M.M.H.H., J.K.), University Medical Center Utrecht; Department of Genetics (M.M.H.H.), University Medical Center Utrecht; and Department of Genetics (H.H.L.), University Medical Center Groningen, The Netherlands
| | - Leonard H van den Berg
- Department of Neurology (R.I.W., M.D.J., C.A.D.C., E.J.N.G., M.S., C.A.W., J.M., P.S., K.R.E., W.R., J.H.V., L.H.B., W.L.P.), Brain Center Rudolf Magnus, University Medical Center Utrecht; Department of Pathology (M.M.H.H., J.K.), University Medical Center Utrecht; Department of Genetics (M.M.H.H.), University Medical Center Utrecht; and Department of Genetics (H.H.L.), University Medical Center Groningen, The Netherlands
| | - W Ludo van der Pol
- Department of Neurology (R.I.W., M.D.J., C.A.D.C., E.J.N.G., M.S., C.A.W., J.M., P.S., K.R.E., W.R., J.H.V., L.H.B., W.L.P.), Brain Center Rudolf Magnus, University Medical Center Utrecht; Department of Pathology (M.M.H.H., J.K.), University Medical Center Utrecht; Department of Genetics (M.M.H.H.), University Medical Center Utrecht; and Department of Genetics (H.H.L.), University Medical Center Groningen, The Netherlands
| |
Collapse
|
22
|
Evaluation of potential effects of Plastin 3 overexpression and low-dose SMN-antisense oligonucleotides on putative biomarkers in spinal muscular atrophy mice. PLoS One 2018; 13:e0203398. [PMID: 30188931 PMCID: PMC6126849 DOI: 10.1371/journal.pone.0203398] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 08/20/2018] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVES Spinal muscular atrophy (SMA) is a devastating motor neuron disorder caused by homozygous loss of the survival motor neuron 1 (SMN1) gene and insufficient functional SMN protein produced by the SMN2 copy gene. Additional genetic protective modifiers such as Plastin 3 (PLS3) can counteract SMA pathology despite insufficient SMN protein. Recently, Spinraza, an SMN antisense oligonucleotide (ASO) that restores full-length SMN2 transcripts, has been FDA- and EMA-approved for SMA therapy. Hence, the availability of biomarkers allowing a reliable monitoring of disease and therapy progression would be of great importance. Our objectives were (i) to analyse the feasibility of SMN and of six SMA biomarkers identified by the BforSMA study in the Taiwanese SMA mouse model, (ii) to analyse the effect of PLS3 overexpression on these biomarkers, and (iii) to assess the impact of low-dose SMN-ASO therapy on the level of SMN and the six biomarkers. METHODS At P10 and P21, the level of SMN and six putative biomarkers were compared among SMA, heterozygous and wild type mice, with or without PLS3 overexpression, and with or without presymptomatic low-dose SMN-ASO subcutaneous injection. SMN levels were measured in whole blood by ECL immunoassay and of six SMA putative biomarkers, namely Cartilage Oligomeric Matrix Protein (COMP), Dipeptidyl Peptidase 4 (DPP4), Tetranectin (C-type Lectin Family 3 Member B, CLEC3B), Osteopontin (Secreted Phosphoprotein 1, SPP1), Vitronectin (VTN) and Fetuin A (Alpha 2-HS Glycoprotein, AHSG) in plasma. RESULTS SMN levels were significantly discernible between SMA, heterozygous and wild type mice. However, no significant differences were measured upon low-dose SMN-ASO treatment compared to untreated animals. Of the six biomarkers, only COMP and DPP4 showed high and SPP1 moderate correlation with the SMA phenotype. PLS3 overexpression neither influenced the SMN level nor the six biomarkers, supporting the hypothesis that PLS3 acts as an independent protective modifier.
Collapse
|
23
|
Maretina MA, Zheleznyakova GY, Lanko KM, Egorova AA, Baranov VS, Kiselev AV. Molecular Factors Involved in Spinal Muscular Atrophy Pathways as Possible Disease-modifying Candidates. Curr Genomics 2018; 19:339-355. [PMID: 30065610 PMCID: PMC6030859 DOI: 10.2174/1389202919666180101154916] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 12/15/2017] [Accepted: 12/18/2017] [Indexed: 01/07/2023] Open
Abstract
Spinal Muscular Atrophy (SMA) is a neuromuscular disorder caused by mutations in the SMN1 gene. Being a monogenic disease, it is characterized by high clinical heterogeneity. Variations in penetrance and severity of symptoms, as well as clinical discrepancies between affected family members can result from modifier genes influence on disease manifestation. SMN2 gene copy number is known to be the main phenotype modifier and there is growing evidence of additional factors contributing to SMA severity. Potential modifiers of spinal muscular atrophy can be found among the wide variety of different factors, such as multiple proteins interacting with SMN or promoting motor neuron survival, epigenetic modifications, transcriptional or splicing factors influencing SMN2 expression. Study of these factors enables to reveal mechanisms underlying SMA pathology and can have pronounced clinical application.
Collapse
Affiliation(s)
- Marianna A. Maretina
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya line, 3, Saint Petersburg199034, Russia
- Saint Petersburg State University, Universitetskaya emb. 7/9, 199034Saint Petersburg, Russia
| | - Galina Y. Zheleznyakova
- Department of Clinical Neuroscience, Karolinska Institutet, Karolinska Universitetssjukhuset, 171 76 Stockholm, Sweden
| | - Kristina M. Lanko
- Saint Petersburg State Institute of Technology, Moskovsky prospect, 26, Saint Petersburg190013, Russia
| | - Anna A. Egorova
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya line, 3, Saint Petersburg199034, Russia
| | - Vladislav S. Baranov
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya line, 3, Saint Petersburg199034, Russia
- Saint Petersburg State University, Universitetskaya emb. 7/9, 199034Saint Petersburg, Russia
| | - Anton V. Kiselev
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya line, 3, Saint Petersburg199034, Russia
| |
Collapse
|
24
|
Balasubramanian M, Fratzl-Zelman N, O'Sullivan R, Bull M, Fa Peel N, Pollitt RC, Jones R, Milne E, Smith K, Roschger P, Klaushofer K, Bishop NJ. Novel PLS3 variants in X-linked osteoporosis: Exploring bone material properties. Am J Med Genet A 2018; 176:1578-1586. [PMID: 29736964 DOI: 10.1002/ajmg.a.38830] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 02/26/2018] [Accepted: 04/06/2018] [Indexed: 11/07/2022]
Abstract
BACKGROUND Idiopathic Juvenile Osteoporosis (IJO) refers to significantly lower than expected bone mass manifesting in childhood with no identifiable aetiology. IJO classically presents in early pubertal period with multiple fractures including metaphyseal and vertebral crush fractures, and low bone-mass. METHODS Here we describe two patients and provide information on their clinical phenotype, genotype and bone material analysis in one of the patients. RESULTS Patient 1: 40-year old adult male diagnosed with IJO in childhood who re-presented with a hip fracture as an adult. Genetic analysis identified a pathogenic PLS3 hemizygous variant, c.1765del in exon 16. Patient 2: 15-year old boy with multiple vertebral fractures and bone biopsy findings suggestive of IJO who also has a diagnosis of autism spectrum disorder. Genetic analysis identified a maternally inherited PLS3 pathogenic c.1295T>A variant in exon 12. Analyses of the transiliac bone sample revealed severe reduction of trabecular volume and bone turnover indices and elevated bone matrix mineralisation. DISCUSSION We propose that genetic testing for PLS3 should be undertaken in patients presenting with a current or previous history of IJO as this has implications for genetic counselling and cascade screening. The extensive evaluation of the transiliac biopsy sample of Patient 2 revealed a novel bone phenotype. CONCLUSION This report includes a review of IJO and genetic causes of osteoporosis, and suggests that existing cases of IJO should be screened for PLS3. Through analysis of bone material properties in Patient 2, we can conclude that PLS3 does have a role in bone mineralisation.
Collapse
Affiliation(s)
- Meena Balasubramanian
- Highly Specialised Severe, Complex & Atypical OI Service, Sheffield Children's NHS Foundation Trust, UK.,Sheffield Clinical Genetics Service, Sheffield Children's NHS Foundation Trust, UK
| | - Nadja Fratzl-Zelman
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of WGKK and AUVA Trauma Centre, Meidling, 1st Med. Dept. Hanusch Hospital, 1140 Vienna, Austria
| | | | - Mary Bull
- Metabolic Bone Centre, Northern General Hospital, Sheffield, UK
| | - Nicola Fa Peel
- Metabolic Bone Centre, Northern General Hospital, Sheffield, UK
| | - Rebecca C Pollitt
- Sheffield Diagnostic Genetics Service, Sheffield Children's NHS Foundation Trust, UK
| | - Rebecca Jones
- Department of Psychology, Sheffield Children's NHS Foundation Trust, UK
| | | | - Kath Smith
- Sheffield Diagnostic Genetics Service, Sheffield Children's NHS Foundation Trust, UK
| | - Paul Roschger
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of WGKK and AUVA Trauma Centre, Meidling, 1st Med. Dept. Hanusch Hospital, 1140 Vienna, Austria
| | - Klaus Klaushofer
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of WGKK and AUVA Trauma Centre, Meidling, 1st Med. Dept. Hanusch Hospital, 1140 Vienna, Austria
| | | |
Collapse
|
25
|
Bowerman M, Becker CG, Yáñez-Muñoz RJ, Ning K, Wood MJA, Gillingwater TH, Talbot K. Therapeutic strategies for spinal muscular atrophy: SMN and beyond. Dis Model Mech 2018; 10:943-954. [PMID: 28768735 PMCID: PMC5560066 DOI: 10.1242/dmm.030148] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Spinal muscular atrophy (SMA) is a devastating neuromuscular disorder characterized by loss of motor neurons and muscle atrophy, generally presenting in childhood. SMA is caused by low levels of the survival motor neuron protein (SMN) due to inactivating mutations in the encoding gene SMN1. A second duplicated gene, SMN2, produces very little but sufficient functional protein for survival. Therapeutic strategies to increase SMN are in clinical trials, and the first SMN2-directed antisense oligonucleotide (ASO) therapy has recently been licensed. However, several factors suggest that complementary strategies may be needed for the long-term maintenance of neuromuscular and other functions in SMA patients. Pre-clinical SMA models demonstrate that the requirement for SMN protein is highest when the structural connections of the neuromuscular system are being established, from late fetal life throughout infancy. Augmenting SMN may not address the slow neurodegenerative process underlying progressive functional decline beyond childhood in less severe types of SMA. Furthermore, individuals receiving SMN-based treatments may be vulnerable to delayed symptoms if rescue of the neuromuscular system is incomplete. Finally, a large number of older patients living with SMA do not fulfill the present criteria for inclusion in gene therapy and ASO clinical trials, and may not benefit from SMN-inducing treatments. Therefore, a comprehensive whole-lifespan approach to SMA therapy is required that includes both SMN-dependent and SMN-independent strategies that treat the CNS and periphery. Here, we review the range of non-SMN pathways implicated in SMA pathophysiology and discuss how various model systems can serve as valuable tools for SMA drug discovery. Summary: Translational research for spinal muscular atrophy (SMA) should address the development of non-CNS and survival motor neuron (SMN)-independent therapeutic approaches to complement and enhance the benefits of CNS-directed and SMN-dependent therapies.
Collapse
Affiliation(s)
- Melissa Bowerman
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| | - Catherina G Becker
- Euan MacDonald Centre for Motor Neurone Disease Research and Centre for Neuroregeneration, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Rafael J Yáñez-Muñoz
- AGCTlab.org, Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway, University of London, Egham Hill, Egham, Surrey TW20 0EX, UK
| | - Ke Ning
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield S10 2HQ, UK
| | - Matthew J A Wood
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| | - Thomas H Gillingwater
- Euan MacDonald Centre for Motor Neurone Disease Research and Centre for Integrative Physiology, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Kevin Talbot
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | | |
Collapse
|
26
|
Eshraghi M, McFall E, Gibeault S, Kothary R. Effect of genetic background on the phenotype of the Smn2B/- mouse model of spinal muscular atrophy. Hum Mol Genet 2018; 25:4494-4506. [PMID: 28172892 PMCID: PMC5409218 DOI: 10.1093/hmg/ddw278] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 08/03/2016] [Accepted: 08/15/2016] [Indexed: 11/14/2022] Open
Abstract
Spinal muscular atrophy (SMA) is caused by mutations or deletions in the Survival Motor Neuron 1 (SMN1) gene in humans. Modifiers of the SMA symptoms have been identified and genetic background has a substantial effect in the phenotype and survival of the severe mouse model of SMA. Previously, we generated the less severe Smn2B/- mice on a mixed genetic background. To assess the phenotype of Smn deficiency on a pure genetic background, we produced Smn2B/2B congenic mice on either the C57BL/6 (BL6) or FVB strain background and characterized them at the 6th generation by breeding to Smn+/- mice. Smn2B/- mice from these crosses were evaluated for growth, survival, muscle atrophy, motor neuron loss, motor behaviour, and neuromuscular junction pathology. FVB Smn2B/- mice had a shorter life span than BL6 Smn2B/- mice (median of 19 days vs. 25 days). Similarly, all other defects assessed occurred at earlier stages in FVB Smn2B/-mice when compared to BL6 Smn2B/-mice. However, there were no differences in Smn protein levels in the spinal cords of these mice. Interestingly, levels of Plastin 3, a putative modifier of SMA, were significantly induced in spinal cords of BL6 Smn2B/- mice but not of FVB Smn2B/-mice. Our studies demonstrate that the phenotype in Smn2B/-mice is more severe in the FVB background than in the BL6 background, which could potentially be explained by the differential induction of genetic modifiers.
Collapse
Affiliation(s)
- Mehdi Eshraghi
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada,University of Ottawa Centre for Neuromuscular Disease, Ottawa, Ontario, Canada,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Emily McFall
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada,University of Ottawa Centre for Neuromuscular Disease, Ottawa, Ontario, Canada,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Sabrina Gibeault
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada,University of Ottawa Centre for Neuromuscular Disease, Ottawa, Ontario, Canada,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Rashmi Kothary
- Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
27
|
Wu X, Wang SH, Sun J, Krainer AR, Hua Y, Prior TW. A-44G transition in SMN2 intron 6 protects patients with spinal muscular atrophy. Hum Mol Genet 2018; 26:2768-2780. [PMID: 28460014 DOI: 10.1093/hmg/ddx166] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 04/25/2017] [Indexed: 01/14/2023] Open
Abstract
Spinal muscular atrophy (SMA) is a neuromuscular disease caused by reduced expression of survival of motor neuron (SMN), a protein expressed in humans by two paralogous genes, SMN1 and SMN2. These genes are nearly identical, except for 10 single-nucleotide differences and a 5-nucleotide insertion in SMN2. SMA is subdivided into four main types, with type I being the most severe. SMN2 copy number is a key positive modifier of the disease, but it is not always inversely correlated with clinical severity. We previously reported the c.859G > C variant in SMN2 exon 7 as a positive modifier in several patients. We have now identified A-44G as an additional positive disease modifier, present in a group of patients carrying 3 SMN2 copies but displaying milder clinical phenotypes than other patients with the same SMN2 copy number. One of the three SMN2 copies appears to have been converted from SMN1, but except for the C6T transition, no other changes were detected. Analyzed with minigenes, SMN1C6T displayed a ∼20% increase in exon 7 inclusion, compared to SMN2. Through systematic mutagenesis, we found that the improvement in exon 7 splicing is mainly attributable to the A-44G transition in intron 6. Using RNA-affinity chromatography and mass spectrometry, we further uncovered binding of the RNA-binding protein HuR to the -44 region, where it acts as a splicing repressor. The A-44G change markedly decreases the binding affinity of HuR, resulting in a moderate increase in exon 7 inclusion.
Collapse
Affiliation(s)
- Xingxing Wu
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Shu-Huei Wang
- Department of Pathology, Ohio State University, Columbus, OH 43210, USA
| | - Junjie Sun
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Adrian R Krainer
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY 11724, USA
| | - Yimin Hua
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China.,Institute of Neuroscience, Soochow University, Suzhou, Jiangsu 215123, China
| | - Thomas W Prior
- Department of Pathology, Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
28
|
Pane M, Lapenta L, Abiusi E, de Sanctis R, Luigetti M, Palermo C, Ranalli D, Fiori S, Tiziano FD, Mercuri E. Longitudinal assessments in discordant twins with SMA. Neuromuscul Disord 2017; 27:890-893. [PMID: 28797588 DOI: 10.1016/j.nmd.2017.06.559] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 06/18/2017] [Accepted: 06/30/2017] [Indexed: 10/19/2022]
Abstract
We report longitudinal clinical and neurophysiological assessments in twins affected by spinal muscular atrophy (SMA) with discordant phenotypes. The boy had the homozygous deletion of SMN1, a typical type 1 SMA course, and died at the age of eight months. His twin sister, asymptomatic at the time of the diagnosis in her brother, had the same genetic defect but she developed clinical and electrophysiological signs of type 2 SMA. The reduction of tendon reflexes was the first clinical sign at the age of 4 months, followed within few weeks, by a mild decrement in the amplitude of the compound motor action potentials. After the age of 9 months, she showed a sudden clinical and electrophysiological deterioration. Among molecular tests, we determined SMN2 copy number, SMN2 and Plastin 3 transcript levels in peripheral blood, and observed no relevant differences between twins.
Collapse
Affiliation(s)
- Marika Pane
- Paediatric Neurology, Catholic University, Rome, Italy; Centro Clinico Nemo, Policlinico Gemelli, Rome, Italy
| | - Leonardo Lapenta
- Paediatric Neurology, Catholic University, Rome, Italy; Centro Clinico Nemo, Policlinico Gemelli, Rome, Italy
| | - Emanuela Abiusi
- Institute of Genomic Medicine, Catholic University, Rome, Italy
| | | | - Marco Luigetti
- UOC Neurologia, Fondazione Policlinico Gemelli, Rome, Italy
| | | | - Domiziana Ranalli
- Paediatric Neurology, Catholic University, Rome, Italy; Centro Clinico Nemo, Policlinico Gemelli, Rome, Italy
| | - Stefania Fiori
- Institute of Genomic Medicine, Catholic University, Rome, Italy
| | | | - Eugenio Mercuri
- Paediatric Neurology, Catholic University, Rome, Italy; Centro Clinico Nemo, Policlinico Gemelli, Rome, Italy.
| |
Collapse
|
29
|
Kaifer KA, Villalón E, Osman EY, Glascock JJ, Arnold LL, Cornelison DDW, Lorson CL. Plastin-3 extends survival and reduces severity in mouse models of spinal muscular atrophy. JCI Insight 2017; 2:e89970. [PMID: 28289706 PMCID: PMC5333955 DOI: 10.1172/jci.insight.89970] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Spinal muscular atrophy (SMA) is a leading genetic cause of infantile death and is caused by the loss of survival motor neuron-1 (SMN1). Importantly, a nearly identical gene is present called SMN2; however, the majority of SMN2-derived transcripts are alternatively spliced and encode a truncated, dysfunctional protein. Recently, several compounds designed to increase SMN protein have entered clinical trials, including antisense oligonucleotides (ASOs), traditional small molecules, and gene therapy. Expanding beyond SMN-centric therapeutics is important, as it is likely that the breadth of the patient spectrum and the inherent complexity of the disease will be difficult to address with a single therapeutic strategy. Several SMN-independent pathways that could impinge upon the SMA phenotype have been examined with varied success. To identify disease-modifying pathways that could serve as stand-alone therapeutic targets or could be used in combination with an SMN-inducing compound, we investigated adeno-associated virus-mediated (AAV-mediated) gene therapy using plastin-3 (PLS3). Here, we report that AAV9-PLS3 extends survival in an intermediate model of SMA mice as well as in a pharmacologically induced model of SMA using a splice-switching ASO that increases SMN production. PLS3 coadministration improves the phenotype beyond the ASO, demonstrating the potential utility of combinatorial therapeutics in SMA that target SMN-independent and SMN-dependent pathways.
Collapse
Affiliation(s)
- Kevin A Kaifer
- Molecular Pathogeneses and Therapeutics Program.,Bond Life Sciences Center
| | - Eric Villalón
- Bond Life Sciences Center.,Department of Veterinary Pathobiology, College of Veterinary Medicine
| | - Erkan Y Osman
- Bond Life Sciences Center.,Department of Veterinary Pathobiology, College of Veterinary Medicine
| | | | - Laura L Arnold
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, USA
| | - D D W Cornelison
- Bond Life Sciences Center.,Division of Biological Sciences, University of Missouri, Columbia, Missouri, USA
| | - Christian L Lorson
- Molecular Pathogeneses and Therapeutics Program.,Bond Life Sciences Center.,Department of Veterinary Pathobiology, College of Veterinary Medicine
| |
Collapse
|
30
|
Singh RN, Howell MD, Ottesen EW, Singh NN. Diverse role of survival motor neuron protein. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2017; 1860:299-315. [PMID: 28095296 PMCID: PMC5325804 DOI: 10.1016/j.bbagrm.2016.12.008] [Citation(s) in RCA: 195] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 12/23/2016] [Accepted: 12/30/2016] [Indexed: 02/07/2023]
Abstract
The multifunctional Survival Motor Neuron (SMN) protein is required for the survival of all organisms of the animal kingdom. SMN impacts various aspects of RNA metabolism through the formation and/or interaction with ribonucleoprotein (RNP) complexes. SMN regulates biogenesis of small nuclear RNPs, small nucleolar RNPs, small Cajal body-associated RNPs, signal recognition particles and telomerase. SMN also plays an important role in DNA repair, transcription, pre-mRNA splicing, histone mRNA processing, translation, selenoprotein synthesis, macromolecular trafficking, stress granule formation, cell signaling and cytoskeleton maintenance. The tissue-specific requirement of SMN is dictated by the variety and the abundance of its interacting partners. Reduced expression of SMN causes spinal muscular atrophy (SMA), a leading genetic cause of infant mortality. SMA displays a broad spectrum ranging from embryonic lethality to an adult onset. Aberrant expression and/or localization of SMN has also been associated with male infertility, inclusion body myositis, amyotrophic lateral sclerosis and osteoarthritis. This review provides a summary of various SMN functions with implications to a better understanding of SMA and other pathological conditions.
Collapse
Affiliation(s)
- Ravindra N Singh
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States.
| | - Matthew D Howell
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States
| | - Eric W Ottesen
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States
| | - Natalia N Singh
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States
| |
Collapse
|
31
|
Tu WY, Simpson JE, Highley JR, Heath PR. Spinal muscular atrophy: Factors that modulate motor neurone vulnerability. Neurobiol Dis 2017; 102:11-20. [PMID: 28161391 DOI: 10.1016/j.nbd.2017.01.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 01/10/2017] [Accepted: 01/31/2017] [Indexed: 01/07/2023] Open
Abstract
Spinal muscular atrophy (SMA), a leading genetic cause of infant death, is a neurodegenerative disease characterised by the selective loss of particular groups of motor neurones in the anterior horn of the spinal cord with concomitant muscle weakness. To date, no effective treatment is available, however, there are ongoing clinical trials are in place which promise much for the future. However, there remains an ongoing problem in trying to link a single gene loss to motor neurone degeneration. Fortunately, given successful disease models that have been established and intensive studies on SMN functions in the past ten years, we are fast approaching the stage of identifying the underlying mechanisms of SMA pathogenesis Here we discuss potential disease modifying factors on motor neurone vulnerability, in the belief that these factors give insight into the pathological mechanisms of SMA and therefore possible therapeutic targets.
Collapse
Affiliation(s)
- Wen-Yo Tu
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Julie E Simpson
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - J Robin Highley
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Paul R Heath
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK.
| |
Collapse
|
32
|
Yener İH, Topaloglu H, Erdem-Özdamar S, Dayangac-Erden D. Transcript levels of plastin 3 and neuritin 1 modifier genes in spinal muscular atrophy siblings. Pediatr Int 2017; 59:53-56. [PMID: 27279027 DOI: 10.1111/ped.13052] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 04/20/2016] [Accepted: 06/02/2016] [Indexed: 11/29/2022]
Abstract
BACKGROUND In single gene disorders, patients with the same genotype may have variations in severity. One of the main factors affecting disease severity is modifier genes. Spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disorder caused by degeneration of alpha motor neurons. Plastin 3 (PLS3) is a phenotypic modifier of SMA, and neuritin 1 (NRN1) has also been suggested as a possible modifier gene. The aim of the present study was therefore to analyze PLS3 and NRN1 expression in SMA siblings in four families. METHODS The study group consisted of four SMA families with seven with discordant phenotype and two affected siblings. Total RNA was isolated from whole blood. PLS3 and NRN1 expression was analyzed on quantitative real-time polymerase chain reaction. RESULTS In family 1 only NRN1 expression was increased in the mildly affected sister. In family 2 only PLS3 had a modifier effect. Family 3, which had type III siblings with identical clinical phenotypes, had similar PLS3 expression between the siblings but no NRN1 expression. In family 4, neither PLS3 nor NRN1 had any correlation with severity. CONCLUSION On analysis of the expression of NRN1 in SMA patients for the first time, NRN1 could be a potential modifier gene. PLS3 expression does not always modify SMA phenotype. In patients with no modifier effect of known genes, genome sequencing and transcriptome analysis are promising for the identification of novel modifiers and understanding of SMA pathophysiology.
Collapse
Affiliation(s)
- İnci Hande Yener
- Department of Medical Biology, Faculty of Medicine, Hacettepe University, Sihhiye, Ankara, Turkey
| | - Haluk Topaloglu
- Department of Pediatric Neurology, Faculty of Medicine, Hacettepe University, Sihhiye, Ankara, Turkey
| | - Sevim Erdem-Özdamar
- Department of Neurology, Faculty of Medicine, Hacettepe University, Sihhiye, Ankara, Turkey
| | - Didem Dayangac-Erden
- Department of Medical Biology, Faculty of Medicine, Hacettepe University, Sihhiye, Ankara, Turkey
| |
Collapse
|
33
|
Fletcher S, Bellgard MI, Price L, Akkari AP, Wilton SD. Translational development of splice-modifying antisense oligomers. Expert Opin Biol Ther 2016; 17:15-30. [PMID: 27805416 DOI: 10.1080/14712598.2017.1250880] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Antisense nucleic acid analogues can interact with pre-mRNA motifs and influence exon or splice site selection and thereby alter gene expression. Design of antisense molecules to target specific motifs can result in either exon exclusion or exon inclusion during splicing. Novel drugs exploiting the antisense concept are targeting rare, life-limiting diseases; however, the potential exists to treat a wide range of conditions by antisense-mediated splice intervention. Areas covered: In this review, the authors discuss the clinical translation of novel molecular therapeutics to address the fatal neuromuscular disorders Duchenne muscular dystrophy and spinal muscular atrophy. The review also highlights difficulties posed by issues pertaining to restricted participant numbers, variable phenotype and disease progression, and the identification and validation of study endpoints. Expert opinion: Translation of novel therapeutics for Duchenne muscular dystrophy and spinal muscular atrophy has been greatly advanced by multidisciplinary research, academic-industry partnerships and in particular, the engagement and support of the patient community. Sponsors, supporters and regulators are cooperating to deliver new drugs and identify and define meaningful outcome measures. Non-conventional and adaptive trial design could be particularly suited to clinical evaluation of novel therapeutics and strategies to treat serious, rare diseases that may be problematic to study using more conventional clinical trial structures.
Collapse
Affiliation(s)
- S Fletcher
- a Centre for Neuromuscular and Neurological Disorders , University of Western Australia , Nedlands , Western Australia , Australia.,b Western Australian Neuroscience Research Institute , Nedlands , Western Australia , Australia.,c Centre for Comparative Genomics , Murdoch University , Western Australia , Australia
| | - M I Bellgard
- b Western Australian Neuroscience Research Institute , Nedlands , Western Australia , Australia.,c Centre for Comparative Genomics , Murdoch University , Western Australia , Australia
| | - L Price
- a Centre for Neuromuscular and Neurological Disorders , University of Western Australia , Nedlands , Western Australia , Australia.,b Western Australian Neuroscience Research Institute , Nedlands , Western Australia , Australia.,c Centre for Comparative Genomics , Murdoch University , Western Australia , Australia
| | - A P Akkari
- b Western Australian Neuroscience Research Institute , Nedlands , Western Australia , Australia.,c Centre for Comparative Genomics , Murdoch University , Western Australia , Australia.,d Shiraz Pharmaceuticals, Inc , Chapel Hill , NC , USA
| | - S D Wilton
- a Centre for Neuromuscular and Neurological Disorders , University of Western Australia , Nedlands , Western Australia , Australia.,b Western Australian Neuroscience Research Institute , Nedlands , Western Australia , Australia.,c Centre for Comparative Genomics , Murdoch University , Western Australia , Australia
| |
Collapse
|
34
|
Hosseinibarkooie S, Peters M, Torres-Benito L, Rastetter R, Hupperich K, Hoffmann A, Mendoza-Ferreira N, Kaczmarek A, Janzen E, Milbradt J, Lamkemeyer T, Rigo F, Bennett C, Guschlbauer C, Büschges A, Hammerschmidt M, Riessland M, Kye M, Clemen C, Wirth B. The Power of Human Protective Modifiers: PLS3 and CORO1C Unravel Impaired Endocytosis in Spinal Muscular Atrophy and Rescue SMA Phenotype. Am J Hum Genet 2016; 99:647-665. [PMID: 27499521 DOI: 10.1016/j.ajhg.2016.07.014] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 07/14/2016] [Indexed: 12/13/2022] Open
Abstract
Homozygous loss of SMN1 causes spinal muscular atrophy (SMA), the most common and devastating childhood genetic motor-neuron disease. The copy gene SMN2 produces only ∼10% functional SMN protein, insufficient to counteract development of SMA. In contrast, the human genetic modifier plastin 3 (PLS3), an actin-binding and -bundling protein, fully protects against SMA in SMN1-deleted individuals carrying 3-4 SMN2 copies. Here, we demonstrate that the combinatorial effect of suboptimal SMN antisense oligonucleotide treatment and PLS3 overexpression-a situation resembling the human condition in asymptomatic SMN1-deleted individuals-rescues survival (from 14 to >250 days) and motoric abilities in a severe SMA mouse model. Because PLS3 knockout in yeast impairs endocytosis, we hypothesized that disturbed endocytosis might be a key cellular mechanism underlying impaired neurotransmission and neuromuscular junction maintenance in SMA. Indeed, SMN deficit dramatically reduced endocytosis, which was restored to normal levels by PLS3 overexpression. Upon low-frequency electro-stimulation, endocytotic FM1-43 (SynaptoGreen) uptake in the presynaptic terminal of neuromuscular junctions was restored to control levels in SMA-PLS3 mice. Moreover, proteomics and biochemical analysis revealed CORO1C, another F-actin binding protein, whose direct binding to PLS3 is dependent on calcium. Similar to PLS3 overexpression, CORO1C overexpression restored fluid-phase endocytosis in SMN-knockdown cells by elevating F-actin amounts and rescued the axonal truncation and branching phenotype in Smn-depleted zebrafish. Our findings emphasize the power of genetic modifiers to unravel the cellular pathomechanisms underlying SMA and the power of combinatorial therapy based on splice correction of SMN2 and endocytosis improvement to efficiently treat SMA.
Collapse
|
35
|
Burns JK, Kothary R, Parks RJ. Opening the window: The case for carrier and perinatal screening for spinal muscular atrophy. Neuromuscul Disord 2016; 26:551-9. [PMID: 27460292 DOI: 10.1016/j.nmd.2016.06.459] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 06/20/2016] [Accepted: 06/21/2016] [Indexed: 11/26/2022]
Abstract
Spinal muscular atrophy (SMA) is the most common genetically inherited neurodegenerative disease that leads to infant mortality worldwide. SMA is caused by genetic deletion or mutation in the survival of motor neuron 1 (SMN1) gene, which results in a deficiency in SMN protein. For reasons that are still unclear, SMN protein deficiency predominantly affects α-motor neurons, resulting in their degeneration and subsequent paralysis of limb and trunk muscles, progressing to death in severe cases. Emerging evidence suggests that SMN protein deficiency also affects the heart, autonomic nervous system, skeletal muscle, liver, pancreas and perhaps many other organs. Currently, there is no cure for SMA. Patient treatment includes respiratory care, physiotherapy, and nutritional management, which can somewhat ameliorate disease symptoms and increase life span. Fortunately, several novel therapies have advanced to human clinical trials. However, data from studies in animal models of SMA indicate that the greatest therapeutic benefit is achieved through initiating treatment as early as possible, before widespread loss of motor neurons has occurred. In this review, we discuss the merit of carrier and perinatal patient screening for SMA considering the efficacy of emerging therapeutics and the physical, emotional and financial burden of the disease on affected families and society.
Collapse
Affiliation(s)
- Joseph K Burns
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Canada; Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Canada; University of Ottawa Centre for Neuromuscular Disease, Ottawa, Canada
| | - Rashmi Kothary
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Canada; University of Ottawa Centre for Neuromuscular Disease, Ottawa, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada; Department of Medicine, University of Ottawa, Ottawa, Canada
| | - Robin J Parks
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Canada; Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Canada; University of Ottawa Centre for Neuromuscular Disease, Ottawa, Canada; Department of Medicine, University of Ottawa, Ottawa, Canada.
| |
Collapse
|
36
|
Yang CW, Chen CL, Chou WC, Lin HC, Jong YJ, Tsai LK, Chuang CY. An Integrative Transcriptomic Analysis for Identifying Novel Target Genes Corresponding to Severity Spectrum in Spinal Muscular Atrophy. PLoS One 2016; 11:e0157426. [PMID: 27331400 PMCID: PMC4917114 DOI: 10.1371/journal.pone.0157426] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 05/31/2016] [Indexed: 12/31/2022] Open
Abstract
Spinal muscular atrophy (SMA) is an inherited neuromuscular disease resulting from a recessive mutation in the SMN1 gene. This disease affects multiple organ systems with varying degrees of severity. Exploration of the molecular pathological changes occurring in different cell types in SMA is crucial for developing new therapies. This study collected 39 human microarray datasets from ArrayExpress and GEO databases to build an integrative transcriptomic analysis for recognizing novel SMA targets. The transcriptomic analysis was conducted through combining weighted correlation network analysis (WGCNA) for gene module detection, gene set enrichment analysis (GSEA) for functional categorization and filtration, and Cytoscape (visual interaction gene network analysis) for target gene identification. Seven novel target genes (Bmp4, Serpine1, Gata6, Ptgs2, Bcl2, IL6 and Cntn1) of SMA were revealed, and are all known in the regulation of TNFα for controlling neural, cardiac and bone development. Sequentially, the differentially expressed patterns of these 7 target genes in mouse tissues (e.g., spinal cord, heart, muscles and bone) were validated in SMA mice of different severities (pre-symptomatic, mildly symptomatic, and severely symptomatic). In severely symptomatic SMA mice, TNFα was up-regulated with attenuation of Bmp4 and increase of Serpine1 and Gata6 (a pathway in neural and cardiac development), but not in pre-symptomatic and mildly symptomatic SMA mice. The severely symptomatic SMA mice also had the elevated levels of Ptgs2 and Bcl2 (a pathway in skeletal development) as well as IL6 and Cntn1 (a pathway in nervous system development). Thus, the 7 genes identified in this study might serve as potential target genes for future investigations of disease pathogenesis and SMA therapy.
Collapse
Affiliation(s)
- Chung-Wei Yang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Chien-Lin Chen
- Stroke Center and Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Wei-Chun Chou
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Ho-Chen Lin
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Yuh-Jyh Jong
- Graduate Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Departments of Pediatrics and Clinical Laboratory, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
| | - Li-Kai Tsai
- Stroke Center and Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
- * E-mail: (LKT); (CYC)
| | - Chun-Yu Chuang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
- * E-mail: (LKT); (CYC)
| |
Collapse
|
37
|
Ahmad S, Bhatia K, Kannan A, Gangwani L. Molecular Mechanisms of Neurodegeneration in Spinal Muscular Atrophy. J Exp Neurosci 2016; 10:39-49. [PMID: 27042141 PMCID: PMC4807884 DOI: 10.4137/jen.s33122] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 02/22/2016] [Accepted: 02/25/2016] [Indexed: 02/07/2023] Open
Abstract
Spinal muscular atrophy (SMA) is an autosomal recessive motor neuron disease with a high incidence and is the most common genetic cause of infant mortality. SMA is primarily characterized by degeneration of the spinal motor neurons that leads to skeletal muscle atrophy followed by symmetric limb paralysis, respiratory failure, and death. In humans, mutation of the Survival Motor Neuron 1 (SMN1) gene shifts the load of expression of SMN protein to the SMN2 gene that produces low levels of full-length SMN protein because of alternative splicing, which are sufficient for embryonic development and survival but result in SMA. The molecular mechanisms of the (a) regulation of SMN gene expression and (b) degeneration of motor neurons caused by low levels of SMN are unclear. However, some progress has been made in recent years that have provided new insights into understanding of the cellular and molecular basis of SMA pathogenesis. In this review, we have briefly summarized recent advances toward understanding of the molecular mechanisms of regulation of SMN levels and signaling mechanisms that mediate neurodegeneration in SMA.
Collapse
Affiliation(s)
- Saif Ahmad
- Center of Emphasis in Neurosciences, Texas Tech University Health Sciences Center, El Paso, Texas, USA.; Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, Texas, USA
| | - Kanchan Bhatia
- Center of Emphasis in Neurosciences, Texas Tech University Health Sciences Center, El Paso, Texas, USA.; Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, Texas, USA
| | - Annapoorna Kannan
- Center of Emphasis in Neurosciences, Texas Tech University Health Sciences Center, El Paso, Texas, USA.; Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, Texas, USA
| | - Laxman Gangwani
- Center of Emphasis in Neurosciences, Texas Tech University Health Sciences Center, El Paso, Texas, USA.; Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, Texas, USA
| |
Collapse
|
38
|
Feng Z, Ling KKY, Zhao X, Zhou C, Karp G, Welch EM, Naryshkin N, Ratni H, Chen KS, Metzger F, Paushkin S, Weetall M, Ko CP. Pharmacologically induced mouse model of adult spinal muscular atrophy to evaluate effectiveness of therapeutics after disease onset. Hum Mol Genet 2016; 25:964-75. [PMID: 26758873 DOI: 10.1093/hmg/ddv629] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 12/29/2015] [Indexed: 12/21/2022] Open
Abstract
Spinal muscular atrophy (SMA) is a genetic disease characterized by atrophy of muscle and loss of spinal motor neurons. SMA is caused by deletion or mutation of the survival motor neuron 1 (SMN1) gene, and the nearly identical SMN2 gene fails to generate adequate levels of functional SMN protein due to a splicing defect. Currently, several therapeutics targeted to increase SMN protein are in clinical trials. An outstanding issue in the field is whether initiating treatment in symptomatic older patients would confer a therapeutic benefit, an important consideration as the majority of patients with milder forms of SMA are diagnosed at an older age. An SMA mouse model that recapitulates the disease phenotype observed in adolescent and adult SMA patients is needed to address this important question. We demonstrate here that Δ7 mice, a model of severe SMA, treated with a suboptimal dose of an SMN2 splicing modifier show increased SMN protein, survive into adulthood and display SMA disease-relevant pathologies. Increasing the dose of the splicing modifier after the disease symptoms are apparent further mitigates SMA histopathological features in suboptimally dosed adult Δ7 mice. In addition, inhibiting myostatin using intramuscular injection of AAV1-follistatin ameliorates muscle atrophy in suboptimally dosed Δ7 mice. Taken together, we have developed a new murine model of symptomatic SMA in adolescents and adult mice that is induced pharmacologically from a more severe model and demonstrated efficacy of both SMN2 splicing modifiers and a myostatin inhibitor in mice at later disease stages.
Collapse
Affiliation(s)
- Zhihua Feng
- Section of Neurobiology, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089-2520, USA
| | - Karen K Y Ling
- Section of Neurobiology, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089-2520, USA
| | - Xin Zhao
- PTC Therapeutics, Inc., South Plainfield, NJ 07080, USA
| | - Chunyi Zhou
- Section of Neurobiology, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089-2520, USA
| | - Gary Karp
- PTC Therapeutics, Inc., South Plainfield, NJ 07080, USA
| | - Ellen M Welch
- PTC Therapeutics, Inc., South Plainfield, NJ 07080, USA
| | | | - Hasane Ratni
- F. Hoffmann-La Roche Ltd, Pharmaceutical Research and Early Development, Roche Innovation Center Basel, Grenzacherstrasse 124, 4070 Basel, Switzerland and
| | - Karen S Chen
- SMA Foundation, 888 Seventh Avenue, Suite 400, New York, NY 10019, USA
| | - Friedrich Metzger
- F. Hoffmann-La Roche Ltd, Pharmaceutical Research and Early Development, Roche Innovation Center Basel, Grenzacherstrasse 124, 4070 Basel, Switzerland and
| | - Sergey Paushkin
- SMA Foundation, 888 Seventh Avenue, Suite 400, New York, NY 10019, USA
| | - Marla Weetall
- PTC Therapeutics, Inc., South Plainfield, NJ 07080, USA
| | - Chien-Ping Ko
- Section of Neurobiology, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089-2520, USA,
| |
Collapse
|