1
|
Zheng H, Mao X, Lin Y, Fu K, Qi Z, Wu Y. Reconstructing the biological invasion of noxious invasive weed Parthenium hysterophorus and invasion risk assessment in China. FRONTIERS IN PLANT SCIENCE 2024; 15:1430576. [PMID: 39363921 PMCID: PMC11446801 DOI: 10.3389/fpls.2024.1430576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/30/2024] [Indexed: 10/05/2024]
Abstract
Invasive alien plants (IAPs) present a severe threat to native ecosystems and biodiversity. Comprehending the potential distribution patterns of these plant invaders and their responses to climate change is essential. Parthenium hysterophorus, native to the Americas, has become an aggressively invasive species since its introduction to China in the 1930s. This study aims to collect and reconstruct the historical occurrence and invasion of P. hysterophorus. Using the optimal MaxEnt model, the potential geographical distributions of P. hysterophorus were predicted based on screened species occurrences and environmental variables under the current and three future scenarios in the 2030s, 2050s, and 2070s (i.e., SSP1-2.6, SSP2-4.5, and SSP5-8.5), and the invasion risk of P. hysterophorus in Chinese cities, croplands, forests, and grasslands was assessed. The results show that: (1) The species initially invaded highly suitable areas and further spread to regions with non-analogous climate conditions. (2) Under the current climatic conditions, the overall potential distribution of P. hysterophorus is characterized by more in the southeast and less in the northwest. Climate variables, including mean annual temperature (bio1), precipitation in the wettest month (bio13), isothermality (bio3), and temperature seasonality (bio4), are the primary factors influencing its distribution. (3) The potential distribution of P. hysterophorus will expand further under future climate scenarios, particularly toward higher latitudes. (4) Forests and crop lands are the areas with the most serious potential invasion risk of P. hysterophorus. Therefore, we suggest that the government should strengthen the monitoring and management of P. hysterophorus to prevent its spread and protect agro-ecosystems and human habitats. Depending on the potential risk areas, measures such as quarantine, removal, and publicity should be taken to mitigate the threat of P. hysterophorus invasion and to raise awareness of P. hysterophorus invasion prevention.
Collapse
Affiliation(s)
- Huisen Zheng
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Xinjie Mao
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Yi Lin
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Keyi Fu
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Zanyi Qi
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Yongbin Wu
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
2
|
Neta A, Levi Y, Morin E, Morin S. Seasonal forecasting of pest population dynamics based on downscaled SEAS5 forecasts. Ecol Modell 2023. [DOI: 10.1016/j.ecolmodel.2023.110326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
|
3
|
Shabbir A, Zalucki MP, Dhileepan K, Khan N, Adkins SW. The Current and Potential Distribution of Parthenium Weed and Its Biological Control Agent in Pakistan. PLANTS (BASEL, SWITZERLAND) 2023; 12:1381. [PMID: 36987069 PMCID: PMC10055816 DOI: 10.3390/plants12061381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 06/19/2023]
Abstract
Parthenium hysterophorus L. (Asteraceae), commonly known as parthenium weed, is a highly invasive weed spreading rapidly from northern to southern parts of Pakistan. The persistence of parthenium weed in the hot and dry southern districts suggests that the weed can survive under more extreme conditions than previously thought. The development of a CLIMEX distribution model, which considered this increased tolerance to drier and warmer conditions, predicted that the weed could still spread to many other parts of Pakistan as well as to other regions of south Asia. This CLIMEX model satisfied the present distribution of parthenium weed within Pakistan. When an irrigation scenario was added to the CLIMEX program, more parts of the southern districts of Pakistan (Indus River basin) became suitable for parthenium weed growth, as well as the growth of its biological control agent, Zygogramma bicolorata Pallister. This expansion from the initially predicted range was due to irrigation producing extra moisture to support its establishment. In addition to the weed moving south in Pakistan due to irrigation, it will also move north due to temperature increases. The CLIMEX model indicated that there are many more areas within South Asia that are suitable for parthenium weed growth, both under the present and a future climate scenario. Most of the south-western and north-eastern parts of Afghanistan are suitable under the current climate, but more areas are likely to become suitable under climate change scenarios. Under climate change, the suitability of southern parts of Pakistan is likely to decrease.
Collapse
Affiliation(s)
- Asad Shabbir
- Weeds Research Unit, Invasive Species Biosecurity, New South Wales Department of Primary Industries, Orange, NSW 2800, Australia
- School of Agriculture & Food Sciences, The University of Queensland, Gatton, QLD 4343, Australia
| | - Myron P. Zalucki
- School of Biological Sciences, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Kunjithapatham Dhileepan
- Biosecurity Queensland, Department of Agriculture, Fisheries and Forestry, Ecosciences Precinct, Dutton Park, Brisbane, QLD 4102, Australia
| | - Naeem Khan
- Department of Weed Science and Botany, The University of Agriculture, Peshawar 25000, Pakistan
| | - Steve W. Adkins
- School of Agriculture & Food Sciences, The University of Queensland, Gatton, QLD 4343, Australia
| |
Collapse
|
4
|
Adhikari P, Lee YH, Poudel A, Lee G, Hong SH, Park YS. Predicting the Impact of Climate Change on the Habitat Distribution of Parthenium hysterophorus around the World and in South Korea. BIOLOGY 2023; 12:biology12010084. [PMID: 36671776 PMCID: PMC9855788 DOI: 10.3390/biology12010084] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/14/2022] [Accepted: 12/27/2022] [Indexed: 01/06/2023]
Abstract
The global climate change, including increases in temperature and precipitation, may exacerbate the invasion by P. hysterophorus. Here, MaxEnt modeling was performed to predict P. hysterophorus distribution worldwide and in South Korea under the current and future climate global climate changes, including increases in temperature and precipitation. Under the current climate, P. hysterophorus was estimated to occupy 91.26%, 83.26%, and 62.75% of the total land area of Australia, South America, and Oceania, respectively. However, under future climate scenarios, the habitat distribution of P. hysterophorus would show the greatest change in Europe (56.65%) and would extend up to 65°N by 2081-2100 in South Korea, P. hysterophorus currently potentially colonizing 2.24% of the land area, particularly in six administrative divisions. In the future, P. hysterophorus would spread rapidly, colonizing all administrative divisions, except Incheon, by 2081-2100. Additionally, the southern and central regions of South Korea showed greater habitat suitability than the northern region. These findings suggest that future climate change will increase P. hysterophorus distribution both globally and locally. Therefore, effective control and management strategies should be employed around the world and in South Korea to restrict the habitat expansion of P. hysterophorus.
Collapse
Affiliation(s)
- Pradeep Adhikari
- Institute of Humanities and Ecology Consensus Resilience Lab, Hankyong National University, Anseong 17579, Republic of Korea
| | - Yong-Ho Lee
- Institute of Humanities and Ecology Consensus Resilience Lab, Hankyong National University, Anseong 17579, Republic of Korea
- OJeong Resilience Institute, Korea University, Seoul 02841, Republic of Korea
| | - Anil Poudel
- School of Plant Science and Landscape Architecture, College of Agriculture and Life Sciences, Hankyong National University, Anseong 17579, Republic of Korea
| | - Gaeun Lee
- Institute of Humanities and Ecology Consensus Resilience Lab, Hankyong National University, Anseong 17579, Republic of Korea
| | - Sun-Hee Hong
- School of Plant Science and Landscape Architecture, College of Agriculture and Life Sciences, Hankyong National University, Anseong 17579, Republic of Korea
- Correspondence: (S.-H.H.); (Y.-S.P.)
| | - Yong-Soon Park
- Department of Plant Resources, College of Industrial Sciences, Kongju National University, Yesan 32439, Republic of Korea
- Correspondence: (S.-H.H.); (Y.-S.P.)
| |
Collapse
|
5
|
Khan A, Ali S, Khan M, Hamayun M, Moon YS. Parthenium hysterophorus's Endophytes: The Second Layer of Defense against Biotic and Abiotic Stresses. Microorganisms 2022; 10:2217. [PMID: 36363809 PMCID: PMC9696505 DOI: 10.3390/microorganisms10112217] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 09/10/2023] Open
Abstract
Parthenium hysterophorus L. is considered an obnoxious weed due to its rapid dispersal, fast multiplications, and agricultural and health hazards. In addition to its physio-molecular and phytotoxic allelochemical usage, this weed most probably uses endophytic flora as an additional line of defense to deal with stressful conditions and tolerate both biotic and abiotic stresses. The aim of this article is to report the diversity of endophytic flora (fungi and bacteria) in P. hysterophorus and their role in the stress mitigation (biotic and abiotic) of other important crops. Various endophytes were reported from P. hysterophorus and their roles in crops evaluated under biotic and abiotic stressed conditions. These endophytes have the potential to alleviate different stresses by improving crops/plants growth, development, biomass, and photosynthetic and other physiological traits. The beneficial role of the endophytes may be attributed to stress-modulating enzymes such as the antioxidants SOD, POD and APX and ACC deaminases. Additionally, the higher production of different classes of bioactive secondary metabolites, i.e., flavonoids, proline, and glutathione may also overcome tissue damage to plants under stressed conditions. Interestingly, a number of medicinally important phytochemicals such as anhydropseudo-phlegmcin-9, 10-quinone-3-amino-8-O methyl ether 'anhydropseudophlegmacin-9, 10-quinone-3-amino-8-Omethyl ether were reported from the endophytic flora of P. hysterophorus. Moreover, various reports revealed that fungal and bacterial endophytes of P. hysterophorus enhance plant growth-promoting attributes and could be added to the consortium of biofertilizers.
Collapse
Affiliation(s)
- Asif Khan
- Laboratory of Phytochemistry, Department of Botany, University of São Paulo, São Paulo 05508-090, Brazil
| | - Sajid Ali
- Department of Horticulture and Life Science, Yeungnam University, Gyeongsan 712-749, Korea
| | - Murtaza Khan
- Department of Horticulture and Life Science, Yeungnam University, Gyeongsan 712-749, Korea
| | - Muhammad Hamayun
- Department of Botany, Garden Campus, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Yong-Sun Moon
- Department of Horticulture and Life Science, Yeungnam University, Gyeongsan 712-749, Korea
| |
Collapse
|
6
|
Non-linear physiological responses to climate change: the case of Ceratitis capitata distribution and abundance in Europe. Biol Invasions 2021. [DOI: 10.1007/s10530-021-02639-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
AbstractUnderstanding how climate change might influence the distribution and abundance of crop pests is fundamental for the development and the implementation of pest management strategies. Here we present and apply a modelling framework assessing the non-linear physiological responses of the life-history strategies of the Mediterranean fruit fly (Ceratitis capitata, Wiedemann) to temperature. The model is used to explore how climate change might influence the distribution and abundance of this pest in Europe. We estimated the change in the distribution, abundance and activity of this species under current (year 2020) and future (years 2030 and 2050) climatic scenarios. The effects of climate change on the distribution, abundance and activity of C. capitata are heterogeneous both in time and in space. A northward expansion of the species, an increase in the altitudinal limit marking the presence of the species, and an overall increase in population abundance is expected in areas that might become more suitable under a changing climate. On the contrary, stable or reduced population abundances can be expected in areas where climate change leads to equally suitable or less suitable conditions. This heterogeneity reflects the contribution of both spatial variability in the predicted climatic patterns and non-linearity in the responses of the species’ life-history strategies to temperature.
Collapse
|
7
|
Fung KY, Leung HM, Yung KKL. Comparative assessment of soil quality parameters after implementing afforestation programme in forest areas of Hong Kong. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:25051-25059. [PMID: 28695496 DOI: 10.1007/s11356-017-9550-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 06/14/2017] [Indexed: 06/07/2023]
Abstract
The objective of this research is to investigate and compare the alteration of soil parameters with and without afforestation programme in a Hong Kong forest, analysed by Principal Component Analysis (PCA). One hundred soil samples were collected from the following sites: Pak Ngau Shek (PNS), Shing Mun (SM), Tai Po Kau (TPK), Tai Tong (TT) (forest with afforestation programme) and Lantau Peak (LP) (control site). A significant difference was found in only two out of 16 parameters: pH (8.34-8.87) and PAHs (4.35-6.32 μg/kg) by comparing the soils taken in the forest with and without an afforestation programme implemented. Three principle components are responsible for soil quality variations in the studied sites. The first, second and third components included pH (0.167) and EC (0.176), PAHs (0.331) and PAHs (0.207), respectively. This framework provides information on the least disturbance of soil properties for the afforestation programme. To conclude, a rigorous monitoring of soil quality is necessary to assess forest health after an afforestation programme. Besides, in the long term, an appropriate forest preservation programme should be implemented to achieve rural area sustainability.
Collapse
Affiliation(s)
- Kim Yung Fung
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Ho Man Leung
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
- Institute of Vocational Education, Hong Kong Vocational Training Council, Hong Kong, China
- Department of History, Hong Kong Shue Yan University, Hong Kong, China
- Upper Iowa University, 605 Washington St, Fayette, IA, 52142, USA
| | - Ken Kin Lam Yung
- Department of Biology, Hong Kong Baptist University, Hong Kong, China.
| |
Collapse
|
8
|
Chhogyel N, Kumar L, Bajgai Y. Invasion status and impacts of parthenium weed (Parthenium hysterophorus) in West-Central region of Bhutan. Biol Invasions 2021. [DOI: 10.1007/s10530-021-02534-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
9
|
Modelled distribution of an invasive alien plant species differs at different spatiotemporal scales under changing climate: a case study of Parthenium hysterophorus L. Trop Ecol 2021. [DOI: 10.1007/s42965-020-00135-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Stoeckli S, Felber R, Haye T. Current distribution and voltinism of the brown marmorated stink bug, Halyomorpha halys, in Switzerland and its response to climate change using a high-resolution CLIMEX model. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2020; 64:2019-2032. [PMID: 32860106 PMCID: PMC7658091 DOI: 10.1007/s00484-020-01992-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 08/06/2020] [Accepted: 08/10/2020] [Indexed: 06/11/2023]
Abstract
Climate change can alter the habitat suitability of invasive species and promote their establishment. The highly polyphagous brown marmorated stinkbug, Halyomorpha halys Stål (Hemiptera: Pentatomidae), is native to East Asia and invasive in Europe and North America, damaging a wide variety of fruit and vegetable crops. In Switzerland, crop damage and increasing populations have been observed since 2017 and related to increasing temperatures. We studied the climatic suitability, population growth, and the number of generations under present and future climate conditions for H. halys in Switzerland, using a modified version of the bioclimatic model package CLIMEX. To address the high topographic variability in Switzerland, model simulations were based on climate data of high spatial resolution (approx. 2 km), which significantly increased their explanatory power, and identified many more climatically suitable areas in comparison to previous models. The validation of the CLIMEX model using observational records collected in a citizen science initiative between 2004 and 2019 revealed that more than 15 years after its accidental introduction, H. halys has colonised nearly all bioclimatic suitable areas in Switzerland and there is limited potential for range expansion into new areas under present climate conditions. Simulations with climate change scenarios suggest an extensive range expansion into higher altitudes, an increase in generations per year, an earlier start of H. halys activity in spring and a prolonged period for nymphs to complete development in autumn. A permanent shift from one to two generations per year and the associated population growth of H. halys may result in increasing crop damages in Switzerland. These results highlight the need for monitoring the spread and population development in the north-western part of Switzerland and higher altitudes of the valleys of the south.
Collapse
Affiliation(s)
- Sibylle Stoeckli
- Research Institute of Organic Agriculture (FiBL), Ackerstrasse 113, P.O. Box 219, 5070 Frick, Switzerland
| | - Raphael Felber
- Agroscope, Reckenholzstrasse 191, 8046 Zurich, Switzerland
- Now at: Office for Environment, Canton of Zug, Aabachstrasse 5, 6300 Zug, Switzerland
| | - Tim Haye
- CABI, Rue des Grillons 1, 2800 Delémont, Switzerland
| |
Collapse
|
11
|
Witt AB, Nunda W, Beale T, Kriticos DJ. A preliminary assessment of the presence and distribution of invasive and potentially invasive alien plant species in Laikipia County, Kenya, a biodiversity hotspot. KOEDOE: AFRICAN PROTECTED AREA CONSERVATION AND SCIENCE 2020. [DOI: 10.4102/koedoe.v62i1.1605] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
12
|
Shabbir A, Dhileepan K, Zalucki MP, Khan N, Adkins SW. Reducing the fitness of an invasive weed, Parthenium hysterophorus: Complementing biological control with plant competition. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 254:109790. [PMID: 31733483 DOI: 10.1016/j.jenvman.2019.109790] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 10/21/2019] [Accepted: 10/26/2019] [Indexed: 06/10/2023]
Abstract
We studied the effects of a biological control agent, Epiblema strenuana Walker (Lepidoptera: Tortricidae) alone and together with a sown native grass, Astrebla squarrosa C.E. Hubb. and an introduced pasture plant, Clitoria ternatea L. on growth and seed production of Parthenium hysterophorus L. Astrebla squarrosa and C. ternatea individually reduced shoot dry biomass of P. hysterophorus by 30 and 42%, respectively; and by 48 and 70%, respectively in the presence of biological control agent, E. strenuana. Similarly, A. squarrosa and C. ternatea individually reduced weed seed production up to 48 and 64%, respectively; and by 73 and 81%, respectively in the presence of E. strenuana. In the presence of E. strenuana, the biomass of A. squarrosa and C. ternatea was increased by 13 and 10%, respectively. The biological control agent induced more galls per P. hysterophorus plant when either of the competing plants were present than when grown alone. The abundance of galls increased with pasture competition, but only for C. ternatea, and not for A. squarrosa. The biological control agent worked synergistically with the two competitive plants to reduce the growth and production of viable seed, which should lead to a decrease in the P. hysterophorus soil seed banks in the field, and eventually seedling recruitment in future generations of P. hysterophorus.
Collapse
Affiliation(s)
- Asad Shabbir
- The University of Sydney, School of Life and Environmental Sciences, Narrabri, 2390, Australia; School of Agriculture & Food Sciences, The University of Queensland, Gatton, 4343, Australia; Department of Botany, University of the Punjab, Lahore, 54590, Pakistan.
| | - Kunjithapatham Dhileepan
- Biosecurity Queensland, Department of Agriculture and Fisheries, Ecosciences Precinct, Dutton Park, 4102, Australia
| | - Myron P Zalucki
- School of Biological Sciences, The University of Queensland, St Lucia, 4072, Australia
| | - Naeem Khan
- Department of Weed Science, The University of Agriculture, Peshawar, 25130, Pakistan
| | - Steve W Adkins
- School of Agriculture & Food Sciences, The University of Queensland, Gatton, 4343, Australia
| |
Collapse
|
13
|
Yonow T, Ramirez-Villegas J, Abadie C, Darnell RE, Ota N, Kriticos DJ. Black Sigatoka in bananas: Ecoclimatic suitability and disease pressure assessments. PLoS One 2019; 14:e0220601. [PMID: 31412052 PMCID: PMC6693783 DOI: 10.1371/journal.pone.0220601] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 07/21/2019] [Indexed: 12/04/2022] Open
Abstract
Black leaf streak disease, or black Sigatoka, is caused by the fungus Pseudocercospora fijiensis, and has been identified as a major constraint to global production of banana and plantain. We fitted a climatic niche model (CLIMEX) for P. fijiensis to gain an understanding of the patterns of climate suitability, and hence hazard from this disease. We then calibrated the climate suitability patterns against the results of an expert elicitation of disease pressure patterns. We found a moderately strong non-linear relationship between modelled climate suitability for P.°fijiensis and the expert ratings for disease pressure. The strength of the relationship provides a cross-validation between the CLIMEX model and the expert elicitation process. The bulk of global banana production experiences high potential threat from P. fijiensis, and the higher yielding areas for banana and plantain production are at greatest threat. By explicitly considering the role of irrigation we have been able to identify how strategic irrigation could be used to support banana production in areas that are at low risk from P. fijiensis.
Collapse
Affiliation(s)
- Tania Yonow
- HarvestChoice, InSTePP, University of Minnesota, St. Paul, MN, United States of America
- CSIRO, Canberra ACT, Australia
| | - Julian Ramirez-Villegas
- International Center for Tropical Agriculture (CIAT), Cali, Colombia
- CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS), Cali, Colombia
- Visiting Research Fellow, School of Earth and Environment, University of Leeds, Leeds, United Kingdom
| | - Catherine Abadie
- BGPI, Univ Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
- CIRAD, UMR BGPI, F-97130 Capesterre Belle-Eau, Guadeloupe, France
| | | | | | - Darren J. Kriticos
- HarvestChoice, InSTePP, University of Minnesota, St. Paul, MN, United States of America
- CSIRO, Canberra ACT, Australia
- The University of Queensland, School of Biological Sciences, St. Lucia, QLD, Australia
- * E-mail:
| |
Collapse
|
14
|
Kaur A, Kaur S, Singh HP, Batish DR, Kohli RK. Phenotypic variations alter the ecological impact of invasive alien species: Lessons from Parthenium hysterophorus. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 241:187-197. [PMID: 31003061 DOI: 10.1016/j.jenvman.2019.03.129] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/28/2019] [Accepted: 03/29/2019] [Indexed: 05/24/2023]
Abstract
Invasive plant species constantly adjust their behavior with ecological shifts by virtue of phenotypic plasticity and/or local adaptations. Changes in the phenotype of an invasive species may also trigger variations in its community level impacts, which is an acceptable, yet unexplored aspect of invasion biology. Our study attempts to fill important knowledge gaps on the basic behavior and ecological interactions of invasive species. Parthenium hysterophorus, a widely distributed invasive alien species of tropical and sub-tropical regions, was evaluated for variations in its morpho-functional traits and ecological performance at a common spatial and temporal scale. Field surveys were conducted in Chandigarh, India, in five sites identified as invaded with P. hysterophorus. Individuals of P. hysterophorus randomly sampled from these sites, showed from trait analyses that the population is differentiated into two morphotypes, PA and PB. Morphotype PB exhibits traits comparable to the shrub life-form in terms of woody stem (with higher stem circumference [+32.26%], stem specific density [+128.57%], twig dry matter content [+25.15%]); profuse branching (+46.38%); larger canopy (+91.16%); and better reproductive output (+190.29%) compared to PA. PA, on the other hand, reflected herbaceous characteristics with greater leaf area (+67.58%) and higher content of chlorophyll (+21.92%) compared to PB. Based on these morphotypes, the plots were divided into three invasion categories: areas invaded by PA [IPA], areas invaded by PB [IPB] and uninvaded areas [UI]. Ecological indices and soil chemical properties were compared across IPA, IPB and UI. Shannon's index (p < 0.001), evenness index (p = 0.008), and richness index (p < 0.001) were significantly lower in IPB compared to IPA. UI areas were found to have higher soil pH, phenolics, organic matter, and concentrations of N, P and K, compared to IPA and IPB, but lower Ca and Mg. Results suggest that phenotypic variations within population of P. hysterophorus regulate its ecological impact on associated vegetation. Conservation managers would benefit from studying its invasion patterns and identifying the morphotype with higher ecological impact to prioritize management efforts. Monitoring these behavioral and ecological patterns in P. hysterophorus over the long-term may also help in anticipating challenges to preventive measures.
Collapse
Affiliation(s)
- Amarpreet Kaur
- Department of Botany, Panjab University, Chandigarh, 160 014, India
| | - Shalinder Kaur
- Department of Botany, Panjab University, Chandigarh, 160 014, India
| | - Harminder Pal Singh
- Department of Environment Studies, Panjab University, Chandigarh, 160 014, India
| | - Daizy Rani Batish
- Department of Botany, Panjab University, Chandigarh, 160 014, India.
| | - Ravinder Kumar Kohli
- Department of Botany, Panjab University, Chandigarh, 160 014, India; Central University of Punjab, Mansa Road, Bathinda, 151 001, India
| |
Collapse
|
15
|
Projecting potential distribution of Eucryptorrhynchus scrobiculatus Motschulsky and E. brandti (Harold) under historical climate and RCP 8.5 scenario. Sci Rep 2017; 7:9163. [PMID: 28831145 PMCID: PMC5567332 DOI: 10.1038/s41598-017-09659-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 07/27/2017] [Indexed: 11/09/2022] Open
Abstract
Ailanthus altissima (Mill.) Swingle and its variant A. altissima var. Qiantouchun are notorious invasive weeds. Two weevils, Eucryptorrhynchus scrobiculatus (ESC) and E. brandti (EBR) are considered as candidates for biological control of A. altissima. The aim of this study was to model the potential distributions of ESC and EBR using CLIMEX 4.0. The projected potential distributions of ESC and EBR included almost all current distribution areas of A. altissima, except Southeast Asia. Under historical climate, potential distribution area of EBR is larger than that of ESC, 46.67 × 106 km2 and 35.65 × 106 km2, respectively. For both ESC and EBR, climate change expanded the northern boundary of potential distributions northward approximately 600 km by the middle of 21st century, and 1000 km by the end of 21st century under RCP 8.5. However, the suitable range decreased to the south in the Southern Hemisphere because of heat stress. The modelled potential distributions of ESC and EBR in the United States demonstrated that the climate was suitable for both weevils. Therefore, considering only climate suitability, both ESC and EBR can be considered as potential biological control agents against A. altissima with some confidence that climatic conditions are likely suitable.
Collapse
|
16
|
de Villiers M, Kriticos DJ, Veldtman R. Including irrigation in niche modelling of the invasive wasp Vespula germanica (Fabricius) improves model fit to predict potential for further spread. PLoS One 2017; 12:e0181397. [PMID: 28715452 PMCID: PMC5513550 DOI: 10.1371/journal.pone.0181397] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 07/02/2017] [Indexed: 11/20/2022] Open
Abstract
The European wasp, Vespula germanica (Fabricius) (Hymenoptera: Vespidae), is of Palaearctic origin, being native to Europe, northern Africa and Asia, and introduced into North America, Chile, Argentina, Iceland, Ascension Island, South Africa, Australia and New Zealand. Due to its polyphagous nature and scavenging behaviour, V. germanica threatens agriculture and silviculture, and negatively affects biodiversity, while its aggressive nature and venomous sting pose a health risk to humans. In areas with warmer winters and longer summers, queens and workers can survive the winter months, leading to the build-up of large nests during the following season; thereby increasing the risk posed by this species. To prevent or prepare for such unwanted impacts it is important to know where the wasp may be able to establish, either through natural spread or through introduction as a result of human transport. Distribution data from Argentina and Australia, and seasonal phenology data from Argentina were used to determine the potential distribution of V. germanica using CLIMEX modelling. In contrast to previous models, the influence of irrigation on its distribution was also investigated. Under a natural rainfall scenario, the model showed similarities to previous models. When irrigation is applied, dry stress is alleviated, leading to larger areas modelled climatically suitable compared with previous models, which provided a better fit with the actual distribution of the species. The main areas at risk of invasion by V. germanica include western USA, Mexico, small areas in Central America and in the north-western region of South America, eastern Brazil, western Russia, north-western China, Japan, the Mediterranean coastal regions of North Africa, and parts of southern and eastern Africa.
Collapse
Affiliation(s)
- Marelize de Villiers
- Department of Conservation Ecology and Entomology, Stellenbosch University, Stellenbosch, South Africa
- * E-mail:
| | - Darren J. Kriticos
- CSIRO, Canberra, Australia
- The University of Queensland, St. Lucia, Queensland, Australia
| | - Ruan Veldtman
- Department of Conservation Ecology and Entomology, Stellenbosch University, Stellenbosch, South Africa
- South African National Biodiversity Institute, Cape Town, South Africa
| |
Collapse
|
17
|
Witt AB, Kiambi S, Beale T, Van Wilgen BW. A preliminary assessment of the extent and potential impacts of alien plant invasions in the Serengeti-Mara ecosystem, East Africa. KOEDOE: AFRICAN PROTECTED AREA CONSERVATION AND SCIENCE 2017. [DOI: 10.4102/koedoe.v59i1.1426] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
This article provides a preliminary list of alien plant species in the Serengeti-Mara ecosystem in East Africa. The list is based on broad-scale roadside surveys in the area and is supplemented by more detailed surveys of tourist facilities in the Masai-Mara National Reserve and adjoining conservancies. We encountered 245 alien plant species; significantly more than previous studies, of which 62 (25%) were considered to have established self-perpetuating populations in areas away from human habitation. These included species which had either been intentionally or accidentally introduced. Of the 245 alien plants, 212 (including four species considered to be native to the region) were intentionally introduced into gardens in the National Reserve and 51 (24%) had established naturalised populations within the boundaries of these tourism facilities. Of the 51 naturalised species, 23 (11% of the 212 alien species) were recorded as being invasive within the ecosystem, outside of lodges and away from other human habitation. Currently, the Serengeti-Mara ecosystem is relatively free of widespread and abundant invasive alien plants, with a few exceptions, but there are extensive populations outside of the ecosystem, particularly to the west, from where they could spread. We address the potential impacts of six species that we consider to pose the highest risks (Parthenium hysterophorus, Opuntia stricta, Tithonia diversifolia, Lantana camara, Chromolaena odorata and Prosopis juliflora). Although invasive alien plants pose substantial threats to the integrity of the ecosystem, this has not yet been widely recognised. We predict that in the absence of efforts to contain, or reverse the spread of invasive alien plants, the condition of rangelands will deteriorate, with severe negative impacts on migrating large mammals, especially wildebeest, zebra and gazelles. This will, in turn, have a substantial negative impact on tourism, which is a major economic activity in the area.Conservation implications: Invasive alien plants pose significant threats to the integrity of the Serengeti-Mara ecosystem and steps will need to be taken to prevent these impacts. The most important of these would be the removal of alien species from tourist facilities, especially those which are known to be naturalised or invasive, the introduction of control programmes aimed at eliminating outlier invasive plant populations to slow down the spread, and the widespread use of biological control wherever possible.
Collapse
|
18
|
Harris RMB, Kriticos DJ, Remenyi T, Bindoff N. Unusual suspects in the usual places: a phylo-climatic framework to identify potential future invasive species. Biol Invasions 2016. [DOI: 10.1007/s10530-016-1334-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
19
|
Bajwa AA, Chauhan BS, Farooq M, Shabbir A, Adkins SW. What do we really know about alien plant invasion? A review of the invasion mechanism of one of the world's worst weeds. PLANTA 2016; 244:39-57. [PMID: 27056056 DOI: 10.1007/s00425-016-2510-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 03/26/2016] [Indexed: 05/27/2023]
Abstract
This review provides an insight into alien plant invasion taking into account the invasion mechanism of parthenium weed ( Parthenium hysterophorus L.). A multi-lateral understanding of the invasion biology of this weed has pragmatic implications for weed ecology and management. Biological invasions are one of the major drivers of restructuring and malfunctioning of ecosystems. Invasive plant species not only change the dynamics of species composition and biodiversity but also hinder the system productivity and efficiency in invaded regions. Parthenium weed, a well-known noxious invasive species, has invaded diverse climatic and biogeographic regions in more than 40 countries across five continents. Efforts are under way to minimize the parthenium weed-induced environmental, agricultural, social, and economic impacts. However, insufficient information regarding its invasion mechanism and interference with ecosystem stability is available. It is hard to devise effective management strategies without understanding the invasion process. Here, we reviewed the mechanism of parthenium weed invasion. Our main conclusions are: (1) morphological advantages, unique reproductive biology, competitive ability, escape from natural enemies in non-native regions, and a C3/C4 photosynthesis are all likely to be involved in parthenium weed invasiveness. (2) Tolerance to abiotic stresses and ability to grow in wide range of edaphic conditions are thought to be additional invasion tools on a physiological front. (3) An allelopathic potential of parthenium weed against crop, weed and pasture species, with multiple modes of allelochemical expression, may also be responsible for its invasion success. Moreover, the release of novel allelochemicals in non-native environments might have a pivotal role in parthenium weed invasion. (4) Genetic diversity found among different populations and biotypes of parthenium weed, based on geographic, edaphic, climatic, and ecological ranges, might also be a strong contributor towards its invasion success. (5) Rising temperatures and atmospheric carbon dioxide (CO2) concentrations and changing rainfall patterns, all within the present day climate change prediction range are favorable for parthenium weed growth, its reproductive output, and therefore its future spread and infestation. (6) Parthenium weed invasion in South Asia depicts the relative and overlapping contribution of all the above-mentioned mechanisms. Such an understanding of the core phenomena regulating the invasion biology has pragmatic implications for its management. A better understanding of the interaction of physiological processes, ecological functions, and genetic makeup within a range of environments may help to devise appropriate management strategies for parthenium weed.
Collapse
Affiliation(s)
- Ali Ahsan Bajwa
- School of Agriculture and Food Sciences, The University of Queensland, Gatton, QLD, 4343, Australia.
- The Centre for Plant Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Toowoomba, QLD, 4350, Australia.
| | - Bhagirath Singh Chauhan
- The Centre for Plant Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Toowoomba, QLD, 4350, Australia
| | - Muhammad Farooq
- Department of Agronomy, University of Agriculture, Faisalabad, 38040, Pakistan
- The UWA Institute of Agriculture, The University of Western Australia, Crawley, WA, 6009, Australia
- College of Food and Agricultural Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Asad Shabbir
- Department of Botany, University of the Punjab, Lahore, 54590, Pakistan
| | - Steve William Adkins
- School of Agriculture and Food Sciences, The University of Queensland, Gatton, QLD, 4343, Australia
- The Centre for Plant Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Toowoomba, QLD, 4350, Australia
| |
Collapse
|