1
|
Lewis CJ, Chipman SI, Johnston JM, Acosta MT, Toro C, Tifft CJ. Tay-Sachs and Sandhoff Diseases: Diffusion tensor imaging and correlational fiber tractography findings differentiate late-onset GM2 Gangliosidosis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.12.13.24318793. [PMID: 39802759 PMCID: PMC11722463 DOI: 10.1101/2024.12.13.24318793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/21/2025]
Abstract
GM2 gangliosidosis is lysosomal storage disorder caused by deficiency of the heterodimeric enzyme β-hexosaminidase A. Tay-Sachs disease is caused by variants in HEXA encoding the α-subunit and Sandhoff disease is caused by variants in HEXB encoding the β-subunit. Due to shared clinical and biochemical findings, the two have been considered indistinguishable. We applied diffusion tensor imaging (DTI) and correlational fiber tractography to assess phenotypic differences in these two diseases. 40 DTI scans from 16 Late-Onset GM2 patients (NCT00029965) with either Sandhoff (n = 4), or Tay-Sachs (n = 12) disease. DTI metrics including fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD), axial diffusivity (AD), and quantitative anisotropy (QA) were calculated in fiber tracts throughout the whole brain, arcuate fasciculus, corpus callosum, and cerebellum. Correlational tractography was also performed to identify fiber tracts with group wide differences in DTI metrics between Tay-Sachs and Sandhoff patients. A linear mixed effects model was used to analyze the differences between Tay-Sachs and Sandhoff patients. Tay-Sachs patients had higher MD in the left cerebellum (p = 0.003703), right cerebellum (p = 0.003435), superior cerebellar peduncle (SCP, p = 0.007332), and vermis (p = 0.01007). Sandhoff patients had higher FA in the left cerebellum (p = 0.005537), right cerebellum (p = 0.01905), SCP (p = 0.02844), and vermis (p = 0.02469). Correlational fiber tractography identified fiber tracts almost exclusively in cerebellar pathways with higher FA and QA, and lower MD, AD, and RD in Sandhoff patients compared to Tay-Sachs patients. Our study shows neurobiological differences between these two related disorders. To our knowledge, this is the first study using correlational tractography in a lysosomal storage disorder demonstrating these differences. This result indicates a greater burden of cerebellar pathology in Tay-Sachs patients compared with Sandoff patients.
Collapse
Affiliation(s)
- Connor J Lewis
- Office of the Clinical Director and Medical Genetics Branch, National Human Genome Research Institute, 10 Center Drive, Bethesda MD USA
| | - Selby I Chipman
- Office of the Clinical Director and Medical Genetics Branch, National Human Genome Research Institute, 10 Center Drive, Bethesda MD USA
| | - Jean M Johnston
- Office of the Clinical Director and Medical Genetics Branch, National Human Genome Research Institute, 10 Center Drive, Bethesda MD USA
| | - Maria T Acosta
- Office of the Clinical Director and Medical Genetics Branch, National Human Genome Research Institute, 10 Center Drive, Bethesda MD USA
| | - Camilo Toro
- Office of the Clinical Director and Medical Genetics Branch, National Human Genome Research Institute, 10 Center Drive, Bethesda MD USA
| | - Cynthia J Tifft
- Office of the Clinical Director and Medical Genetics Branch, National Human Genome Research Institute, 10 Center Drive, Bethesda MD USA
| |
Collapse
|
2
|
Kirby ED, Andrushko JW, Boyd LA, Koschutnig K, D'Arcy RCN. Sex differences in patterns of white matter neuroplasticity after balance training in young adults. Front Hum Neurosci 2024; 18:1432830. [PMID: 39257696 PMCID: PMC11383771 DOI: 10.3389/fnhum.2024.1432830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/08/2024] [Indexed: 09/12/2024] Open
Abstract
Introduction In past work we demonstrated different patterns of white matter (WM) plasticity in females versus males associated with learning a lab-based unilateral motor skill. However, this work was completed in neurologically intact older adults. The current manuscript sought to replicate and expand upon these WM findings in two ways: (1) we investigated biological sex differences in neurologically intact young adults, and (2) participants learned a dynamic full-body balance task. Methods 24 participants (14 female, 10 male) participated in the balance training intervention, and 28 were matched controls (16 female, 12 male). Correlational tractography was used to analyze changes in WM from pre- to post-training. Results Both females and males demonstrated skill acquisition, yet there were significant differences in measures of WM between females and males. These data support a growing body of evidence suggesting that females exhibit increased WM neuroplasticity changes relative to males despite comparable changes in motor behavior (e.g., balance). Discussion The biological sex differences reported here may represent an important factor to consider in both basic research (e.g., collapsing across females and males) as well as future clinical studies of neuroplasticity associated with motor function (e.g., tailored rehabilitation approaches).
Collapse
Affiliation(s)
- Eric D Kirby
- BrainNet, Health and Technology District, Surrey, BC, Canada
- Faculty of Individualized Interdisciplinary Studies, Simon Fraser University, Burnaby, BC, Canada
- Faculty of Science, Simon Fraser University, Burnaby, BC, Canada
| | - Justin W Andrushko
- Djavad Mowafaghian Center for Brain Health, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, Tyne and Wear, United Kingdom
- Brain Behavior Laboratory, Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Lara A Boyd
- Djavad Mowafaghian Center for Brain Health, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Brain Behavior Laboratory, Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Karl Koschutnig
- Institute of Psychology, BioTechMed Graz, University of Graz, Graz, Austria
| | - Ryan C N D'Arcy
- BrainNet, Health and Technology District, Surrey, BC, Canada
- Djavad Mowafaghian Center for Brain Health, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Faculty of Applied Sciences, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
3
|
Lewis L, Corcoran M, Cho KIK, Kwak Y, Hayes RA, Larsen B, Jalbrzikowski M. Age-associated alterations in thalamocortical structural connectivity in youths with a psychosis-spectrum disorder. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2023; 9:86. [PMID: 38081873 PMCID: PMC10713597 DOI: 10.1038/s41537-023-00411-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/30/2023] [Indexed: 12/23/2023]
Abstract
Psychotic symptoms typically emerge in adolescence. Age-associated thalamocortical connectivity differences in psychosis remain unclear. We analyzed diffusion-weighted imaging data from 1254 participants 8-23 years old (typically developing (TD):N = 626, psychosis-spectrum (PS): N = 329, other psychopathology (OP): N = 299) from the Philadelphia Neurodevelopmental Cohort. We modeled thalamocortical tracts using deterministic fiber tractography, extracted Q-Space Diffeomorphic Reconstruction (QSDR) and diffusion tensor imaging (DTI) measures, and then used generalized additive models to determine group and age-associated thalamocortical connectivity differences. Compared to other groups, PS exhibited thalamocortical reductions in QSDR global fractional anisotropy (GFA, p-values range = 3.0 × 10-6-0.05) and DTI fractional anisotropy (FA, p-values range = 4.2 × 10-4-0.03). Compared to TD, PS exhibited shallower thalamus-prefrontal age-associated increases in GFA and FA during mid-childhood, but steeper age-associated increases during adolescence. TD and OP exhibited decreases in thalamus-frontal mean and radial diffusivities during adolescence; PS did not. Altered developmental trajectories of thalamocortical connectivity may contribute to the disruptions observed in adults with psychosis.
Collapse
Affiliation(s)
- Lydia Lewis
- Institute of Child Development, University of Minnesota, Minneapolis, MN, USA
| | - Mary Corcoran
- Department of Psychiatry and Behavioral Sciences, Boston Children's Hospital, Boston, MA, USA
| | - Kang Ik K Cho
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - YooBin Kwak
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| | - Rebecca A Hayes
- Department of Psychiatry and Behavioral Sciences, Boston Children's Hospital, Boston, MA, USA
| | - Bart Larsen
- Department of Pediatrics, Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
| | - Maria Jalbrzikowski
- Department of Psychiatry and Behavioral Sciences, Boston Children's Hospital, Boston, MA, USA.
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
4
|
Huang SH, Li MJ, Yeh FC, Huang CX, Zhang HT, Liu J. Differential and correlational tractography as tract-based biomarkers in mild traumatic brain injury: A longitudinal MRI study. NMR IN BIOMEDICINE 2023; 36:e4991. [PMID: 37392139 DOI: 10.1002/nbm.4991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 05/29/2023] [Accepted: 06/01/2023] [Indexed: 07/03/2023]
Abstract
We evaluated the fiber bundles in mild traumatic brain injury (mTBI) patients using differential and correlational tractography in a longitudinal analysis. Diffusion MRI data were acquired in 34 mTBI patients at 7 days (acute stage) and 3 months or longer (chronic stage) after mTBI. Trail Making Test A (TMT-A) and Digital Symbol Substitution Test changes were used to evaluate the cognitive performance. Longitudinal correlational tractography showed decreased anisotropy in the corpus callosum during the chronic mTBI stage. The changes in anisotropy in the corpus callosum were significantly correlated with the changes in TMT-A (false discovery rate [FDR] = 0.000094). Individual longitudinal differential tractography found that anisotropy decreased in the corpus callosum in 30 mTBI patients. Group cross-sectional differential tractography found that anisotropy increased (FDR = 0.02) in white matter in the acute mTBI patients, while no changes occurred in the chronic mTBI patients. Our study confirms the feasibility of using correlational and differential tractography as tract-based monitoring biomarkers to evaluate the disease progress of mTBI, and indicates that normalized quantitative anisotropy could be used as a biomarker to monitor the injury and/or repairs of white matter in individual mTBI patients.
Collapse
Affiliation(s)
- Si-Hong Huang
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Meng-Jun Li
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Fang-Cheng Yeh
- Department of Neurological Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Bioengineering, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Chu-Xin Huang
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Hui-Ting Zhang
- MR Scientific Marketing, Siemens Healthineers Ltd., Wuhan, China
| | - Jun Liu
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, China
- Department of Radiology Quality Control Center, Changsha, China
- Clinical Research Center for Medical Imaging in Hunan Province, Changsha, China
| |
Collapse
|
5
|
Bukkieva T, Pospelova M, Efimtsev A, Fionik O, Alekseeva T, Samochernykh K, Gorbunova E, Krasnikova V, Makhanova A, Nikolaeva A, Tonyan S, Lepekhina A, Levchuk A, Trufanov G, Akshulakov S, Shevtsov M. Microstructural Properties of Brain White Matter Tracts in Breast Cancer Survivors: A Diffusion Tensor Imaging Study. PATHOPHYSIOLOGY 2022; 29:595-609. [PMID: 36278563 PMCID: PMC9624319 DOI: 10.3390/pathophysiology29040046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/29/2022] Open
Abstract
Complex breast cancer (BC) treatment can cause various neurological and psychiatric complications, such as postmastectomy pain syndrome, vestibulocerebellar ataxia, and depression, which can lead to microstructural damage of the white matter tracts of the brain. The purpose of the study is to assess microstructural changes in the white matter tracts of the brain in BC survivors using diffusion tensor imaging (DTI). Single DTI scans were performed on patients (n = 84) after complex BC treatment (i.e., surgery, chemotherapy and/or radiation therapy) and on the control group (n = 40). According to the results, a decrease in the quantitative anisotropy (FDR ≤ 0.05) was revealed in the bilateral corticospinal tracts, cerebellar tracts, corpus callosum, fornix, left superior corticostriatal and left corticopontine parietal in patients after BC treatment in comparison to the control group. A decrease in the quantitative anisotropy (FDR ≤ 0.05) was also revealed in the corpus callosum and right cerebellar tracts in patients after BC treatment with the presence of postmastectomy pain syndrome and vestibulocerebellar ataxia. The use of DTI in patients after BC treatment reveals microstructural properties of the white matter tracts in the brain. The results will allow for the improvement of treatment and rehabilitation approaches in patients receiving treatment for breast cancer.
Collapse
Affiliation(s)
- Tatyana Bukkieva
- Personalized Medicine Centre, Almazov National Medical Research Centre, 2 Akkuratova Str., 197341 St. Petersburg, Russia
| | - Maria Pospelova
- Personalized Medicine Centre, Almazov National Medical Research Centre, 2 Akkuratova Str., 197341 St. Petersburg, Russia
| | - Aleksandr Efimtsev
- Personalized Medicine Centre, Almazov National Medical Research Centre, 2 Akkuratova Str., 197341 St. Petersburg, Russia
| | - Olga Fionik
- Personalized Medicine Centre, Almazov National Medical Research Centre, 2 Akkuratova Str., 197341 St. Petersburg, Russia
| | - Tatyana Alekseeva
- Personalized Medicine Centre, Almazov National Medical Research Centre, 2 Akkuratova Str., 197341 St. Petersburg, Russia
| | - Konstantin Samochernykh
- Personalized Medicine Centre, Almazov National Medical Research Centre, 2 Akkuratova Str., 197341 St. Petersburg, Russia
| | - Elena Gorbunova
- Personalized Medicine Centre, Almazov National Medical Research Centre, 2 Akkuratova Str., 197341 St. Petersburg, Russia
| | - Varvara Krasnikova
- Personalized Medicine Centre, Almazov National Medical Research Centre, 2 Akkuratova Str., 197341 St. Petersburg, Russia
| | - Albina Makhanova
- Personalized Medicine Centre, Almazov National Medical Research Centre, 2 Akkuratova Str., 197341 St. Petersburg, Russia
| | - Aleksandra Nikolaeva
- Personalized Medicine Centre, Almazov National Medical Research Centre, 2 Akkuratova Str., 197341 St. Petersburg, Russia
| | - Samvel Tonyan
- Personalized Medicine Centre, Almazov National Medical Research Centre, 2 Akkuratova Str., 197341 St. Petersburg, Russia
| | - Anna Lepekhina
- Personalized Medicine Centre, Almazov National Medical Research Centre, 2 Akkuratova Str., 197341 St. Petersburg, Russia
| | - Anatoliy Levchuk
- Personalized Medicine Centre, Almazov National Medical Research Centre, 2 Akkuratova Str., 197341 St. Petersburg, Russia
| | - Gennadiy Trufanov
- Personalized Medicine Centre, Almazov National Medical Research Centre, 2 Akkuratova Str., 197341 St. Petersburg, Russia
| | - Serik Akshulakov
- National Center for Neurosurgery, Turan Ave., 34/1, Nur-Sultan 010000, Kazakhstan
| | - Maxim Shevtsov
- Personalized Medicine Centre, Almazov National Medical Research Centre, 2 Akkuratova Str., 197341 St. Petersburg, Russia
- Department of Radiation Oncology, Technishe Universität München (TUM), Klinikum rechts der Isar, Ismaningerstr. 22, 81675 Munich, Germany
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences (RAS), Tikhoretsky Ave., 4, 194064 St. Petersburg, Russia
| |
Collapse
|
6
|
Raikes AC, Hernandez GD, Matthews DC, Lukic AS, Law M, Shi Y, Schneider LS, Brinton RD. Exploratory imaging outcomes of a phase 1b/2a clinical trial of allopregnanolone as a regenerative therapeutic for Alzheimer's disease: Structural effects and functional connectivity outcomes. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2022; 8:e12258. [PMID: 35310526 PMCID: PMC8919249 DOI: 10.1002/trc2.12258] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/18/2021] [Accepted: 12/21/2021] [Indexed: 01/14/2023]
Abstract
Introduction Allopregnanolone (ALLO), an endogenous neurosteroid, promoted neurogenesis and oligogenesis and restored cognitive function in animal models of Alzheimer's disease (AD). Based on these discovery research findings, we conducted a randomized-controlled phase 1b/2a multiple ascending dose trial of ALLO in persons with early AD (NCT02221622) to assess safety, tolerability, and pharmacokinetics. Exploratory imaging outcomes to determine whether ALLO impacted hippocampal structure, white matter integrity, and functional connectivity are reported. Methods Twenty-four individuals participated in the trial (n = 6 placebo; n = 18 ALLO) and underwent brain magnetic resonance imaging (MRI) before and after 12 weeks of treatment. Hippocampal atrophy rate was determined from volumetric MRI, computed as rate of change, and qualitatively assessed between ALLO and placebo sex, apolipoprotein E (APOE) ε4 allele, and ALLO dose subgroups. White matter microstructural integrity was compared between placebo and ALLO using fractional and quantitative anisotropy (QA). Changes in local, inter-regional, and network-level functional connectivity were also compared between groups using resting-state functional MRI. Results Rate of decline in hippocampal volume was slowed, and in some cases reversed, in the ALLO group compared to placebo. Gain of hippocampal volume was evident in APOE ε4 carriers (range: 0.6% to 7.8% increased hippocampal volume). Multiple measures of white matter integrity indicated evidence of preserved or improved integrity. ALLO significantly increased fractional anisotropy (FA) in 690 of 690 and QA in 1416 of 1888 fiber tracts, located primarily in the corpus callosum, bilateral thalamic radiations, and bilateral corticospinal tracts. Consistent with structural changes, ALLO strengthened local, inter-regional, and network level functional connectivity in AD-vulnerable regions, including the precuneus and posterior cingulate, and network connections between the default mode network and limbic system. Discussion Indicators of regeneration from previous preclinical studies and these exploratory MRI-based outcomes from this phase 1b/2a clinical cohort support advancement to a phase 2 proof-of-concept efficacy clinical trial of ALLO as a regenerative therapeutic for mild AD (REGEN-BRAIN study; NCT04838301).
Collapse
Affiliation(s)
- Adam C. Raikes
- Center for Innovation in Brain ScienceUniversity of ArizonaTucsonArizonaUSA
| | | | - Dawn C. Matthews
- Departments of Pharmacology and Neurology, College of MedicineADM DiagnosticsNorthbrookIllinoisUSA
| | - Ana S. Lukic
- Departments of Pharmacology and Neurology, College of MedicineADM DiagnosticsNorthbrookIllinoisUSA
| | - Meng Law
- Department of RadiologyAlfred HealthDepartment of Neuroscience and Computer Systems EngineeringMonash UniversityMelbourneAustralia
| | - Yonggang Shi
- Stevens Neuroimaging and Informatics InstituteKeck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Lon S. Schneider
- Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Roberta D. Brinton
- Center for Innovation in Brain ScienceUniversity of ArizonaTucsonArizonaUSA
| |
Collapse
|
7
|
White Matter Microstructural Alterations in Newly Diagnosed Parkinson’s Disease: A Whole-Brain Analysis Using dMRI. Brain Sci 2022; 12:brainsci12020227. [PMID: 35203990 PMCID: PMC8870150 DOI: 10.3390/brainsci12020227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/31/2022] [Accepted: 02/03/2022] [Indexed: 11/17/2022] Open
Abstract
Parkinson’s disease (PD) is a neurodegenerative disorder characterized by cardinal motor symptoms and other non-motor symptoms. Studies have investigated various brain areas in PD by detecting white matter alterations using diffusion magnetic resonance imaging processing techniques, which can produce diffusion metrics such as fractional anisotropy and quantitative anisotropy. In this study, we compared the quantitative anisotropy of whole brain regions throughout the subcortical and cortical areas between newly diagnosed PD patients and healthy controls. Additionally, we evaluated the correlations between the quantitative anisotropy of each region and respective neuropsychological test scores to identify the areas most affected by each neuropsychological dysfunction in PD. We found significant quantitative anisotropy differences in several subcortical structures such as the basal ganglia, limbic system, and brain stem as well as in cortical structures such as the temporal lobe, occipital lobe, and insular lobe. Additionally, we found that quantitative anisotropy of some subcortical structures such as the basal ganglia, cerebellum, and brain stem showed the highest correlations with motor dysfunction, whereas cortical structures such as the temporal lobe and occipital lobe showed the highest correlations with olfactory dysfunction in PD. Our study also showed evidence regarding potential neural compensation by revealing higher diffusion metric values in early-stage PD than in healthy controls. We anticipate that our results will improve our understanding of PD’s pathophysiology.
Collapse
|
8
|
Guo Y, Yang X, Yuan Z, Qiu J, Lu W. A comparison between diffusion tensor imaging and generalized q-sampling imaging in the age prediction of healthy adults via machine learning approaches. J Neural Eng 2022; 19. [PMID: 35038689 DOI: 10.1088/1741-2552/ac4bfe] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 01/17/2022] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Brain age, which is predicted using neuroimaging data, has become an important biomarker in aging research. This study applied diffusion tensor imaging (DTI) and generalized q-sampling imaging (GQI) model to predict age respectively, with the purpose of evaluating which diffusion model is more accurate in estimating age and revealing age-related changes in the brain. APPROACH Diffusion MRI data of 125 subjects from two sites were collected. Fractional anisotropy (FA) and quantitative anisotropy (QA) from the two diffusion models were calculated and were used as features of machine learning models. Sequential backward elimination algorithm was used for feature selection. Six machine learning approaches including linear regression, ridge regression, support vector regression (SVR) with linear kernel, quadratic kernel and radial basis function (RBF) kernel and feedforward neural network were used to predict age using FA and QA features respectively. MAIN RESULTS Age predictions using FA features were more accurate than predictions using QA features for all the 6 machine learning algorithms. Post-hoc analysis revealed that FA was more sensitive to age-related white matter alterations in the brain. In addition, SVR with RBF kernel based on FA features achieved better performances than the competing algorithms with MAE ranging from 7.74 to 10.54, MSE ranging from 87.79 to 150.86, and nMSE ranging from 0.05 to 0.14 Significance: FA from DTI model was more suitable than QA from GQI model in age prediction. FA metric was more sensitive to age-related white matter changes in the brain and FA of several brain regions could be used as white matter biomarkers in aging.
Collapse
Affiliation(s)
- Yingying Guo
- Department of Radiology, Shandong First Medical University, No.619 Changcheng Road, Jinan, Shandong, 250000, CHINA
| | - Xi Yang
- Pennsylvania State University, Department of Mathematics, The Pennsylvania State University, University Park, PA, 16801, USA, State College, Pennsylvania, 16801, UNITED STATES
| | - Zilong Yuan
- Hubei Cancer Hospital, No. 116 South Zhuodaoquan Road, Wuhan, Hubei, 430079, CHINA
| | - Jianfeng Qiu
- Shandong Medical University, No. 6699 Qingdao Road, Jinan, 250100, CHINA
| | - Weizhao Lu
- Department of Radiology, Taishan Medical University, No.619 Changcheng Road, Taian, Shandong, 271016, CHINA
| |
Collapse
|
9
|
Shen CY, Weng JC, Tsai JD, Su PH, Chou MC, Wang SL. Prenatal Exposure to Endocrine-Disrupting Chemicals and Subsequent Brain Structure Changes Revealed by Voxel-Based Morphometry and Generalized Q-Sampling MRI. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18094798. [PMID: 33946254 PMCID: PMC8125311 DOI: 10.3390/ijerph18094798] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/23/2021] [Accepted: 04/28/2021] [Indexed: 01/17/2023]
Abstract
Previous studies have indicated that prenatal exposure to endocrine-disrupting chemicals (EDCs) can cause adverse neuropsychiatric disorders in children and adolescents. This study aimed to determine the association between the concentrations of prenatal EDCs and brain structure changes in teenagers by using MRI. We recruited 49 mother–child pairs during the third trimester of pregnancy, and collected and examined the concentration of EDCs—including phthalate esters, perfluorochemicals (PFCs), and heavy metals (lead, arsenic, cadmium, and mercury)—in maternal urine and/or serum. MRI voxel-based morphometry (VBM) and generalized q-sampling imaging (GQI) mapping—including generalized fractional anisotropy (GFA), normalized quantitative anisotropy (NQA), and the isotropic value of the orientation distribution function (ISO)—were obtained in teenagers 13–16 years of age in order to find the association between maternal EDC concentrations and possible brain structure alterations in the teenagers’ brains. We found that there are several specific vulnerable brain areas/structures associated with prenatal exposure to EDCs, including decreased focal brain volume, primarily in the frontal lobe; high frontoparietal lobe, temporooccipital lobe and cerebellum; and white matter structural alterations, which showed a negative association with GFA/NQA and a positive association with ISO, primarily in the corpus callosum, external and internal capsules, corona radiata, superior fronto-occipital fasciculus, and superior longitudinal fasciculus. Prenatal exposure to EDCs may be associated with specific brain structure alterations in teenagers.
Collapse
Affiliation(s)
- Chao-Yu Shen
- Institute of Medicine and School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; (C.-Y.S.); (J.-D.T.); (P.-H.S.); (M.-C.C.)
- Department of Medical Imaging, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Jun-Cheng Weng
- Bachelor Program in Artificial Intelligence, Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan 33302, Taiwan
- Medical Imaging Research Center, Institute for Radiological Research, Chang Gung University and Chang Gung Memorial Hospital at Linkou, Taoyuan 33302, Taiwan
- Department of Psychiatry, Chang Gung Memorial Hospital, Chiayi 613, Taiwan
- Correspondence: (J.-C.W.); (S.-L.W.); Tel.: +886-(3)-2118800 (ext. 5394) (J.-C.W.); +886-(3)-7246166 (ext. 36509) (S.-L.W.)
| | - Jeng-Dau Tsai
- Institute of Medicine and School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; (C.-Y.S.); (J.-D.T.); (P.-H.S.); (M.-C.C.)
- Department of Pediatrics, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Pen-Hua Su
- Institute of Medicine and School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; (C.-Y.S.); (J.-D.T.); (P.-H.S.); (M.-C.C.)
- Department of Pediatrics, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Ming-Chih Chou
- Institute of Medicine and School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; (C.-Y.S.); (J.-D.T.); (P.-H.S.); (M.-C.C.)
- Division of Thoracic Surgery, Department of Surgery, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Shu-Li Wang
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli 350, Taiwan
- Correspondence: (J.-C.W.); (S.-L.W.); Tel.: +886-(3)-2118800 (ext. 5394) (J.-C.W.); +886-(3)-7246166 (ext. 36509) (S.-L.W.)
| |
Collapse
|
10
|
Larsen B, Verstynen TD, Yeh FC, Luna B. Developmental Changes in the Integration of Affective and Cognitive Corticostriatal Pathways are Associated with Reward-Driven Behavior. Cereb Cortex 2019; 28:2834-2845. [PMID: 29106535 DOI: 10.1093/cercor/bhx162] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Indexed: 01/30/2023] Open
Abstract
The relative influence of affective and cognitive processes on behavior is increasingly understood to transform through development, from adolescence into adulthood, but the neuroanatomical mechanisms underlying this change are not well understood. We analyzed diffusion magnetic resonance imaging in 115 10- to 28-year-old participants to identify convergent corticostriatal projections from cortical systems involved in affect and cognitive control and determined the age-related differences in their relative structural integrity. Results indicate that the relative integrity of affective projections, in relation to projections from cognitive control systems, decreases with age and is positively associated with reward-driven task performance. Together, these findings provide new evidence that developmental differences in the integration of corticostriatal networks involved in affect and cognitive control underlie known developmental decreases in the propensity for reward-driven behavior into adulthood.
Collapse
Affiliation(s)
- Bart Larsen
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA.,Center for the Neural Basis of Cognition, Pittsburgh, PA, USA
| | - Timothy D Verstynen
- Center for the Neural Basis of Cognition, Pittsburgh, PA, USA.,Department of Psychology, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Fang-Cheng Yeh
- Center for the Neural Basis of Cognition, Pittsburgh, PA, USA.,Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Beatriz Luna
- Center for the Neural Basis of Cognition, Pittsburgh, PA, USA.,Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
11
|
Pasternak O, Kelly S, Sydnor VJ, Shenton ME. Advances in microstructural diffusion neuroimaging for psychiatric disorders. Neuroimage 2018; 182:259-282. [PMID: 29729390 PMCID: PMC6420686 DOI: 10.1016/j.neuroimage.2018.04.051] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 04/18/2018] [Accepted: 04/23/2018] [Indexed: 12/18/2022] Open
Abstract
Understanding the neuropathological underpinnings of mental disorders such as schizophrenia, major depression, and bipolar disorder is an essential step towards the development of targeted treatments. Diffusion MRI studies utilizing the diffusion tensor imaging (DTI) model have been extremely successful to date in identifying microstructural brain abnormalities in individuals suffering from mental illness, especially in regions of white matter, although identified abnormalities have been biologically non-specific. Building on DTI's success, in recent years more advanced diffusion MRI methods have been developed and applied to the study of psychiatric populations, with the aim of offering increased sensitivity to subtle neurological abnormalities, as well as improved specificity to candidate pathologies such as demyelination and neuroinflammation. These advanced methods, however, usually come at the cost of prolonged imaging sequences or reduced signal to noise, and they are more difficult to evaluate compared with the more simplified approach taken by the now common DTI model. To date, a limited number of advanced diffusion MRI methods have been employed to study schizophrenia, major depression and bipolar disorder populations. In this review we survey these studies, compare findings across diverse methods, discuss the main benefits and limitations of the different methods, and assess the extent to which the application of more advanced diffusion imaging approaches has led to novel and transformative information with regards to our ability to better understand the etiology and pathology of mental disorders.
Collapse
Affiliation(s)
- Ofer Pasternak
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Sinead Kelly
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Massachusetts Mental Health Center Public Psychiatry Division of the Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Valerie J Sydnor
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Martha E Shenton
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Veteran Affairs Boston Healthcare System, Brockton Division, Brockton, MA, USA
| |
Collapse
|
12
|
Chen H, Cheng YS, Zhou ZR. Long-term Brain Tissue Monitoring after Semi-brain Irradiation in Rats Using Proton Magnetic Resonance Spectroscopy: A Preliminary Study In vivo. Chin Med J (Engl) 2017; 130:957-963. [PMID: 28397726 PMCID: PMC5407043 DOI: 10.4103/0366-6999.204097] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND In head and neck neoplasm survivors treated with brain irradiation, metabolic alterations would occur in the radiation-induced injury area. The mechanism of these metabolic alterations has not been fully understood, while the alternations could be sensitively detected by proton (1H) nuclear magnetic resonance spectroscopy (MRS). In this study, we investigated the metabolic characteristics of radiation-induced brain injury through a long-term follow-up after radiation treatment using MRS in vivo. METHODS A total of 12 adult Sprague-Dawley rats received a single dose of 30 Gy radiation treatment to semi-brain (field size: 1.0 cm × 2.0 cm; anterior limit: binocular posterior inner canthus connection; posterior limit: external acoustic meatus connection; internal limit: sagittal suture). Conventional magnetic resonance imaging and single-voxel 1H-MRS were performed at different time points (in month 0 before irradiation as well as in the 1st, 3rd, 5th, 7th, and 9th months after irradiation) to investigate the alternations in irradiation field. N-acetylaspartate/choline (NAA/Cho), NAA/creatinine (Cr), and Cho/Cr ratios were measured in the bilateral hippocampus and quantitatively analyzed with a repeated-measures mixed-effects model and multiple comparison test. RESULTS Significant changes in the ratios of NAA/Cho (F = 57.37, P<sub>g < 0.001), NAA/Cr (F = 54.49, P<sub>g < 0.001), and Cho/Cr (F = 9.78, P<sub>g = 0.005) between the hippocampus region of the irradiated semi-brain and the contralateral semi-brain were observed. There were significant differences in NAA/Cho (F = 9.17, P<sub>t < 0.001) and NAA/Cr (F = 13.04, P<sub>t < 0.001) ratios over time. The tendency of NAA/Cr to change with time showed no significant difference between the irradiated and contralateral sides. Nevertheless, there were significant differences in the Cho/Cr ratio between these two sides. CONCLUSIONS MRS can sensitively detect metabolic alternations. Significant changes of metabolites ratio in the first few months after radiation treatment reflect the metabolic disturbance in the acute and early-delayed stages of radiation-induced brain injuries.
Collapse
Affiliation(s)
- Hong Chen
- Department of Radiology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yu-Shu Cheng
- Department of Radiology, Eye and ENT Hospital of Fudan University, Shanghai 200031, China
| | - Zheng-Rong Zhou
- Department of Radiology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
13
|
Tyan YS, Liao JR, Shen CY, Lin YC, Weng JC. Gender differences in the structural connectome of the teenage brain revealed by generalized q-sampling MRI. NEUROIMAGE-CLINICAL 2017; 15:376-382. [PMID: 28580294 PMCID: PMC5447512 DOI: 10.1016/j.nicl.2017.05.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 04/27/2017] [Accepted: 05/21/2017] [Indexed: 01/01/2023]
Abstract
The question of whether there are biological differences between male and female brains is a fraught one, and political positions and prior expectations seem to have a strong influence on the interpretation of scientific data in this field. This question is relevant to issues of gender differences in the prevalence of psychiatric conditions, including autism, attention deficit hyperactivity disorder (ADHD), Tourette's syndrome, schizophrenia, dyslexia, depression, and eating disorders. Understanding how gender influences vulnerability to these conditions is significant. Diffusion magnetic resonance imaging (dMRI) provides a non-invasive method to investigate brain microstructure and the integrity of anatomical connectivity. Generalized q-sampling imaging (GQI) has been proposed to characterize complicated fiber patterns and distinguish fiber orientations, providing an opportunity for more accurate, higher-order descriptions through the water diffusion process. Therefore, we aimed to investigate differences in the brain's structural network between teenage males and females using GQI. This study included 59 (i.e., 33 males and 26 females) age- and education-matched subjects (age range: 13 to 14 years). The structural connectome was obtained by graph theoretical and network-based statistical (NBS) analyses. Our findings show that teenage male brains exhibit better intrahemispheric communication, and teenage female brains exhibit better interhemispheric communication. Our results also suggest that the network organization of teenage male brains is more local, more segregated, and more similar to small-world networks than teenage female brains. We conclude that the use of an MRI study with a GQI-based structural connectomic approach like ours presents novel insights into network-based systems of the brain and provides a new piece of the puzzle regarding gender differences. The GQI-based structural connectomic study provides a new piece of the puzzle regarding gender differences. Male brains exhibit better intrahemispheric communication, and female exhibit better interhemispheric communication. The network organization of teenage male brains is more local and more segregated than teenage female brains.
Collapse
Affiliation(s)
- Yeu-Sheng Tyan
- Department of Medical Imaging and Radiological Sciences, Chung Shan Medical University, Taichung, Taiwan; Department of Medical Imaging, Chung Shan Medical University Hospital, Taichung, Taiwan; School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Jan-Ray Liao
- Graduate Institute of Communication Engineering, National Chung Hsing University, Taichung, Taiwan; Department of Electrical Engineering, National Chung Hsing University, Taichung, Taiwan
| | - Chao-Yu Shen
- Department of Medical Imaging and Radiological Sciences, Chung Shan Medical University, Taichung, Taiwan; Department of Medical Imaging, Chung Shan Medical University Hospital, Taichung, Taiwan; Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Yu-Chieh Lin
- Department of Medical Imaging and Radiological Sciences, Chung Shan Medical University, Taichung, Taiwan
| | - Jun-Cheng Weng
- Department of Medical Imaging and Radiological Sciences, Chung Shan Medical University, Taichung, Taiwan; Department of Medical Imaging, Chung Shan Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
14
|
Chen VCH, Shen CY, Liang SHY, Li ZH, Tyan YS, Liao YT, Huang YC, Lee Y, McIntyre RS, Weng JC. Assessment of abnormal brain structures and networks in major depressive disorder using morphometric and connectome analyses. J Affect Disord 2016; 205:103-111. [PMID: 27423425 DOI: 10.1016/j.jad.2016.06.066] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 06/14/2016] [Accepted: 06/15/2016] [Indexed: 01/11/2023]
Abstract
BACKGROUND It is hypothesized that the phenomenology of major depressive disorder (MDD) is subserved by disturbances in the structure and function of brain circuits; however, findings of structural abnormalities using MRI have been inconsistent. Generalized q-sampling imaging (GQI) methodology provides an opportunity to assess the functional integrity of white matter tracts in implicated circuits. METHODS The study population was comprised of 16 outpatients with MDD (mean age 44.81±2.2 years) and 30 age- and gender-matched healthy controls (mean age 45.03±1.88 years). We excluded participants with any other primary mental disorder, substance use disorder, or any neurological illnesses. We used T1-weighted 3D MRI with voxel-based morphometry (VBM) and vertex-wise shape analysis, and GQI with voxel-based statistical analysis (VBA), graph theoretical analysis (GTA) and network-based statistical (NBS) analysis to evaluate brain structure and connectivity abnormalities in MDD compared to healthy controls correlates with clinical measures of depressive symptom severity, Hamilton Depression Rating Scale 17-item (HAMD) and Hospital Anxiety and Depression Scale (HADS). RESULTS Using VBM and vertex-wise shape analyses, we found significant volumetric decreases in the hippocampus and amygdala among subjects with MDD (p<0.001). Using GQI, we found decreases in diffusion anisotropy in the superior longitudinal fasciculus and increases in diffusion probability distribution in the frontal lobe among subjects with MDD (p<0.01). In GTA and NBS analyses, we found several disruptions in connectivity among subjects with MDD, particularly in the frontal lobes (p<0.05). In addition, structural alterations were correlated with depressive symptom severity (p<0.01). LIMITATIONS Small sample size; the cross-sectional design did not allow us to observe treatment effects in the MDD participants. CONCLUSIONS Our results provide further evidence indicating that MDD may be conceptualized as a brain disorder with abnormal circuit structure and connectivity.
Collapse
Affiliation(s)
- Vincent Chin-Hung Chen
- School of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Psychiatry, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Chao-Yu Shen
- Department of Medical Imaging and Radiological Sciences, Chung Shan Medical University, Taichung, Taiwan; Department of Medical Imaging, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Sophie Hsin-Yi Liang
- School of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Psychiatry, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Zhen-Hui Li
- Department of Medical Imaging and Radiological Sciences, Chung Shan Medical University, Taichung, Taiwan
| | - Yeu-Sheng Tyan
- Department of Medical Imaging and Radiological Sciences, Chung Shan Medical University, Taichung, Taiwan; Department of Medical Imaging, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Yin-To Liao
- Department of Psychiatry, Chung Shan Medical University, Taichung, Taiwan
| | - Yin-Chen Huang
- Department of Neurosurgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Yena Lee
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, Canada
| | - Roger S McIntyre
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, Canada; Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Jun-Cheng Weng
- Department of Medical Imaging and Radiological Sciences, Chung Shan Medical University, Taichung, Taiwan; Department of Medical Imaging, Chung Shan Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
15
|
Characterizing longitudinal changes in rabbit brains infected with Angiostrongylus Cantonensis based on diffusion anisotropy. Acta Trop 2016; 157:1-11. [PMID: 26808581 DOI: 10.1016/j.actatropica.2016.01.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 01/18/2016] [Accepted: 01/20/2016] [Indexed: 11/21/2022]
Abstract
Angiostrongylus cantonensis has become a global source of infection in recent years, and the differential diagnosis and timely follow-up are crucial in the management of the infection. Magnetic resonance imaging (MRI) has been suggested as a non-invasive technique in characterizing and localizing lesions during the parasitic infections in the brain. Non-invasive diffusion tensor imaging (DTI) can be used to distinguish microscopic cerebral structures but cannot resolve the more complicated neural structure. Several methods have been proposed to overcome this limitation. One such method, generalized q-sampling imaging (GQI), can be applied to a variety of datasets, including the single shell, multi-shell or grid sampling schemes, which are believed to resolve complicated crossing fibers. This study aimed to characterize angiostrongyliasis in the rabbit brain over a 6-week period using anatomical and diffusion MRI, including DTI and GQI. Our anatomical T2WI and R2 mapping results showed that the ventricle size of the rabbit brain increased after A. cantonensis larvae infection, and the DTI and GQI indices both showed pathological changes in the corpus callosum, hippocampus and cortex over a 6-week infection period. These results were consistent with our histopathological findings. Our results demonstrated that the diagnosis of larvae infection using anatomical and diffusion MRI is possible and that follow-up characterization is informative in revealing the effects of angiostrongyliasis in various brain areas. These support the use of anatomical and diffusion MRI was helpful for diagnosis of eosinophilic meningitis caused by A. cantonensis infection. This non-invasive MRI platform could be used to improve the management of eosinophilic meningitis or eosinophilic meningoencephalitis in humans.
Collapse
|