1
|
Picker SM, Parker G, Gissen P. Features of Congenital Arthrogryposis Due to Abnormalities in Collagen Homeostasis, a Scoping Review. Int J Mol Sci 2023; 24:13545. [PMID: 37686358 PMCID: PMC10487887 DOI: 10.3390/ijms241713545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/30/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
Congenital arthrogryposis (CA) refers to the presence of multiple contractures at birth. It is a feature of several inherited syndromes, notable amongst them are disorders of collagen formation. This review aims to characterize disorders that directly or indirectly impact collagen structure and function leading to CA in search for common phenotypic or pathophysiological features, possible genotype-phenotype correlation, and potential novel treatment approaches based on a better understanding of the underlying pathomechanism. Nine genes, corresponding to five clinical phenotypes, were identified after a literature search. The most notable trend was the extreme phenotype variability. Clinical features across all syndromes ranged from subtle with minimal congenital contractures, to severe with multiple congenital contractures and extra-articular features including skin, respiratory, or other manifestations. Five of the identified genes were involved in the function of the Lysyl Hydroxylase 2 or 3 enzymes, which enable the hydroxylation and/or glycosylation of lysyl residues to allow the formation of the collagen superstructure. Whilst current treatment approaches are post-natal surgical correction, there are also potential in-utero therapies being developed. Cyclosporin A showed promise in treating collagen VI disorders although there is an associated risk of immunosuppression. The treatments that could be in the clinical trials soon are the splice correction therapies in collagen VI-related disorders.
Collapse
Affiliation(s)
| | - George Parker
- Newcastle University Medical School, Newcastle NE2 4HH, UK;
| | - Paul Gissen
- National Institute for Health Research Great Ormond Street Hospital Biomedical Research Centre, University College London, London WC1N 1EH, UK
- Genetics and Genomic Medicine Department, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| |
Collapse
|
2
|
Tesoriero C, Greco F, Cannone E, Ghirotto F, Facchinello N, Schiavone M, Vettori A. Modeling Human Muscular Dystrophies in Zebrafish: Mutant Lines, Transgenic Fluorescent Biosensors, and Phenotyping Assays. Int J Mol Sci 2023; 24:8314. [PMID: 37176020 PMCID: PMC10179009 DOI: 10.3390/ijms24098314] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/28/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
Muscular dystrophies (MDs) are a heterogeneous group of myopathies characterized by progressive muscle weakness leading to death from heart or respiratory failure. MDs are caused by mutations in genes involved in both the development and organization of muscle fibers. Several animal models harboring mutations in MD-associated genes have been developed so far. Together with rodents, the zebrafish is one of the most popular animal models used to reproduce MDs because of the high level of sequence homology with the human genome and its genetic manipulability. This review describes the most important zebrafish mutant models of MD and the most advanced tools used to generate and characterize all these valuable transgenic lines. Zebrafish models of MDs have been generated by introducing mutations to muscle-specific genes with different genetic techniques, such as (i) N-ethyl-N-nitrosourea (ENU) treatment, (ii) the injection of specific morpholino, (iii) tol2-based transgenesis, (iv) TALEN, (v) and CRISPR/Cas9 technology. All these models are extensively used either to study muscle development and function or understand the pathogenetic mechanisms of MDs. Several tools have also been developed to characterize these zebrafish models by checking (i) motor behavior, (ii) muscle fiber structure, (iii) oxidative stress, and (iv) mitochondrial function and dynamics. Further, living biosensor models, based on the expression of fluorescent reporter proteins under the control of muscle-specific promoters or responsive elements, have been revealed to be powerful tools to follow molecular dynamics at the level of a single muscle fiber. Thus, zebrafish models of MDs can also be a powerful tool to search for new drugs or gene therapies able to block or slow down disease progression.
Collapse
Affiliation(s)
- Chiara Tesoriero
- Department of Biotechnology, University of Verona, 37134 Verona, Italy; (C.T.); (F.G.); (F.G.); (A.V.)
| | - Francesca Greco
- Department of Biotechnology, University of Verona, 37134 Verona, Italy; (C.T.); (F.G.); (F.G.); (A.V.)
| | - Elena Cannone
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy;
| | - Francesco Ghirotto
- Department of Biotechnology, University of Verona, 37134 Verona, Italy; (C.T.); (F.G.); (F.G.); (A.V.)
| | - Nicola Facchinello
- Neuroscience Institute, Italian National Research Council (CNR), 35131 Padua, Italy
| | - Marco Schiavone
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy;
| | - Andrea Vettori
- Department of Biotechnology, University of Verona, 37134 Verona, Italy; (C.T.); (F.G.); (F.G.); (A.V.)
| |
Collapse
|
3
|
Lescouzères L, Bordignon B, Bomont P. Development of a high-throughput tailored imaging method in zebrafish to understand and treat neuromuscular diseases. Front Mol Neurosci 2022; 15:956582. [PMID: 36204134 PMCID: PMC9530744 DOI: 10.3389/fnmol.2022.956582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/16/2022] [Indexed: 11/13/2022] Open
Abstract
The zebrafish (Danio rerio) is a vertebrate species offering multitude of advantages for the study of conserved biological systems in human and has considerably enriched our knowledge in developmental biology and physiology. Being equally important in medical research, the zebrafish has become a critical tool in the fields of diagnosis, gene discovery, disease modeling, and pharmacology-based therapy. Studies on the zebrafish neuromuscular system allowed for deciphering key molecular pathways in this tissue, and established it as a model of choice to study numerous motor neurons, neuromuscular junctions, and muscle diseases. Starting with the similarities of the zebrafish neuromuscular system with the human system, we review disease models associated with the neuromuscular system to focus on current methodologies employed to study them and outline their caveats. In particular, we put in perspective the necessity to develop standardized and high-resolution methodologies that are necessary to deepen our understanding of not only fundamental signaling pathways in a healthy tissue but also the changes leading to disease phenotype outbreaks, and offer templates for high-content screening strategies. While the development of high-throughput methodologies is underway for motility assays, there is no automated approach to quantify the key molecular cues of the neuromuscular junction. Here, we provide a novel high-throughput imaging methodology in the zebrafish that is standardized, highly resolutive, quantitative, and fit for drug screening. By providing a proof of concept for its robustness in identifying novel molecular players and therapeutic drugs in giant axonal neuropathy (GAN) disease, we foresee that this new tool could be useful for both fundamental and biomedical research.
Collapse
Affiliation(s)
- Léa Lescouzères
- ERC Team, Institut NeuroMyoGéne-PGNM, Inserm U1315, CNRS UMR 5261, Claude Bernard University Lyon 1, Lyon, France
| | - Benoît Bordignon
- Montpellier Ressources Imagerie, BioCampus, CNRS, INSERM, University of Montpellier, Montpellier, France
| | - Pascale Bomont
- ERC Team, Institut NeuroMyoGéne-PGNM, Inserm U1315, CNRS UMR 5261, Claude Bernard University Lyon 1, Lyon, France
| |
Collapse
|
4
|
Tonelotto V, Consorti C, Facchinello N, Trapani V, Sabatelli P, Giraudo C, Spizzotin M, Cescon M, Bertolucci C, Bonaldo P. Collagen VI ablation in zebrafish causes neuromuscular defects during developmental and adult stages. Matrix Biol 2022; 112:39-61. [PMID: 35961424 DOI: 10.1016/j.matbio.2022.08.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/21/2022] [Accepted: 08/08/2022] [Indexed: 10/15/2022]
Abstract
Collagen VI (COL6) is an extracellular matrix protein exerting multiple functions in different tissues. In humans, mutations of COL6 genes cause rare inherited congenital disorders, primarily affecting skeletal muscles and collectively known as COL6-related myopathies, for which no cure is available yet. In order to get insights into the pathogenic mechanisms underlying COL6-related diseases, diverse animal models were produced. However, the roles exerted by COL6 during embryogenesis remain largely unknown. Here, we generated the first zebrafish COL6 knockout line through CRISPR/Cas9 site-specific mutagenesis of the col6a1 gene. Phenotypic characterization during embryonic and larval development revealed that lack of COL6 leads to neuromuscular defects and motor dysfunctions, together with distinctive alterations in the three-dimensional architecture of craniofacial cartilages. These phenotypic features were maintained in adult col6a1 null fish, which displayed defective muscle organization and impaired swimming capabilities. Moreover, col6a1 null fish showed autophagy defects and organelle abnormalities at both embryonic and adult stages, thus recapitulating the main features of patients affected by COL6-related myopathies. Mechanistically, lack of COL6 led to increased BMP signaling, and direct inhibition of BMP activity ameliorated the locomotor col6a1 null embryos. Finally performance of, treatment with salbutamol, a β2-adrenergic receptor agonist, elicited a significant amelioration of the neuromuscular and motility defects of col6a1 null fish embryos. Altogether, these findings indicate that this newly generated zebrafish col6a1 null line is a valuable in vivo tool to model COL6-related myopathies and suitable for drug screenings aimed at addressing the quest for effective therapeutic strategies for these disorders.
Collapse
Affiliation(s)
| | - Chiara Consorti
- Department of Molecular Medicine, University of Padova, 35131 Padova, Italy
| | - Nicola Facchinello
- Department of Molecular Medicine, University of Padova, 35131 Padova, Italy
| | - Valeria Trapani
- Department of Molecular Medicine, University of Padova, 35131 Padova, Italy
| | - Patrizia Sabatelli
- CNR - Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza", Unit of Bologna, 40136, Bologna, Italy; IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Chiara Giraudo
- Department of Medicine, Unit of Advanced Clinical and Translational Imaging, University of Padova, 35128 Padova, Italy
| | - Marianna Spizzotin
- Department of Molecular Medicine, University of Padova, 35131 Padova, Italy
| | - Matilde Cescon
- Department of Molecular Medicine, University of Padova, 35131 Padova, Italy
| | - Cristiano Bertolucci
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
| | - Paolo Bonaldo
- Department of Molecular Medicine, University of Padova, 35131 Padova, Italy; CRIBI Biotechnology Center, University of Padova, 35131 Padova, Italy.
| |
Collapse
|
5
|
Altenhofen S, Bonan CD. Zebrafish as a tool in the study of sleep and memory-related disorders. Curr Neuropharmacol 2021; 20:540-549. [PMID: 34254919 DOI: 10.2174/1570159x19666210712141041] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/23/2021] [Accepted: 06/14/2021] [Indexed: 11/22/2022] Open
Abstract
Sleep is an evolutionarily conserved phenomenon, being an essential biological necessity for the learning process and memory consolidation. The brain displays two types of electrical activity during sleep: slow-wave activity or non-rapid eye movement (NREM) sleep and desynchronized brain wave activity or rapid eye movement (REM) sleep. There are many theories about "Why we need to sleep?" among them the synaptic homeostasis. This theory proposes that the role of sleep is the restoration of synaptic homeostasis, which is destabilized by synaptic strengthening triggered by learning during waking and by synaptogenesis during development. Sleep diminishes the plasticity load on neurons and other cells to normalize synaptic strength. In contrast, it re-establishes neuronal selectivity and the ability to learn, leading to the consolidation and integration of memories. The use of zebrafish as a tool to assess sleep and its disorders is growing, although sleep in this animal is not yet divided, for example, into REM and NREM states. However, zebrafish are known to have a regulated daytime circadian rhythm. Their sleep state is characterized by periods of inactivity accompanied by an increase in arousal threshold, preference for resting place, and the "rebound sleep effect" phenomenon, which causes an increased slow-wave activity after a forced waking period. In addition, drugs known to modulate sleep, such as melatonin, nootropics, and nicotine, have been tested in zebrafish. In this review, we discuss the use of zebrafish as a model to investigate sleep mechanisms and their regulation, demonstrating this species as a promising model for sleep research.
Collapse
Affiliation(s)
- Stefani Altenhofen
- Laboratório de Neuroquímica e Psicofarmacologia, Programa de Pós-Graduação em Biologia Celulare Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, porto Alegre, RS, Brazil
| | - Carla Denise Bonan
- Laboratório de Neuroquímica e Psicofarmacologia, Programa de Pós-Graduação em Biologia Celulare Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, porto Alegre, RS, Brazil
| |
Collapse
|
6
|
Abstract
Sarcopenia - the accelerated age-related loss of muscle mass and function - is an under-diagnosed condition, and is central to deteriorating mobility, disability and frailty in older age. There is a lack of treatment options for older adults at risk of sarcopenia. Although sarcopenia's pathogenesis is multifactorial, its major phenotypes - muscle mass and muscle strength - are highly heritable. Several genome-wide association studies of muscle-related traits were published recently, providing dozens of candidate genes, many with unknown function. Therefore, animal models are required not only to identify causal mechanisms, but also to clarify the underlying biology and translate this knowledge into new interventions. Over the past several decades, small teleost fishes had emerged as powerful systems for modeling the genetics of human diseases. Owing to their amenability to rapid genetic intervention and the large number of conserved genetic and physiological features, small teleosts - such as zebrafish, medaka and killifish - have become indispensable for skeletal muscle genomic studies. The goal of this Review is to summarize evidence supporting the utility of small fish models for accelerating our understanding of human skeletal muscle in health and disease. We do this by providing a basic foundation of the (zebra)fish skeletal muscle morphology and physiology, and evidence of muscle-related gene homology. We also outline challenges in interpreting zebrafish mutant phenotypes and in translating them to human disease. Finally, we conclude with recommendations on future directions to leverage the large body of tools developed in small fish for the needs of genomic exploration in sarcopenia.
Collapse
Affiliation(s)
- Alon Daya
- The Faculty of Marine Sciences, Ruppin Academic Center, Michmoret 40297, Israel
| | - Rajashekar Donaka
- The Musculoskeletal Genetics Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 130010, Israel
| | - David Karasik
- The Musculoskeletal Genetics Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 130010, Israel
- Hebrew SeniorLife, Hinda and Arthur Marcus Institute for Aging Research, Boston, MA 02131, USA
| |
Collapse
|
7
|
Spatio-temporal expression and distribution of collagen VI during zebrafish development. Sci Rep 2019; 9:19851. [PMID: 31882701 PMCID: PMC6934817 DOI: 10.1038/s41598-019-56445-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 12/10/2019] [Indexed: 01/27/2023] Open
Abstract
Collagen VI (ColVI) is an extracellular matrix (ECM) protein involved in a range of physiological and pathological conditions. Zebrafish (Danio rerio) is a powerful model organism for studying vertebrate development and for in vivo analysis of tissue patterning. Here, we performed a thorough characterization of ColVI gene and protein expression in zebrafish during development and adult life. Bioinformatics analyses confirmed that zebrafish genome contains single genes encoding for α1(VI), α2(VI) and α3(VI) ColVI chains and duplicated genes encoding for α4(VI) chains. At 1 day post-fertilization (dpf) ColVI transcripts are expressed in myotomes, pectoral fin buds and developing epidermis, while from 2 dpf abundant transcript levels are present in myosepta, pectoral fins, axial vasculature, gut and craniofacial cartilage elements. Using newly generated polyclonal antibodies against zebrafish α1(VI) protein, we found that ColVI deposition in adult fish delineates distinct domains in the ECM of several organs, including cartilage, eye, skin, spleen and skeletal muscle. Altogether, these data provide the first detailed characterization of ColVI expression and ECM deposition in zebrafish, thus paving the way for further functional studies in this species.
Collapse
|
8
|
Idoux R, Bretaud S, Berthier C, Jacquemond V, Ruggiero F, Allard B. [Unraveling the pathophysiology of Bethlem Myopathy using a unique zebrafish model for the disease]. Med Sci (Paris) 2019; 35 Hors série n° 2:39-42. [PMID: 31859630 DOI: 10.1051/medsci/2019182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Bethlem myopathy (BM) is a neuromuscular disease characterized by joint contractures and muscle weakness. BM is caused by mutations in one of the genes encoding one of the three α-chains of collagen VI (COLVI), a component of the skeletal muscle extracellular matrix. Nowadays, an unresolved question is to understand how alteration of COLVI located outside the muscle cells leads to functional modifications in muscle fibers. The zebrafish model col6a1Δex14 is currently the unique animal model of the disease since it is the only model to reproduce a mutation that is the most frequently found in BM patients. In patient and col6a1Δex14 zebrafish muscles, the structure of the sarcoplasmic reticulum has been found to be altered, thus suggesting dysfunction in intracellular Ca2+ handling and/or in ion channels that are known to control Ca2+ homeostasis and to play pivotal roles in muscle function and pathogenesis. Therefore, our project aims at exploring the properties of ion channels and intracellular Ca2+ regulation using electrophysiological approaches and intracellular Ca2+ measurement at rest and during activity in isolated muscle fibers from col6a1Δex14 zebrafish. On one hand, this project should contribute to decipher how alteration in an extracellular matrix component transduces pathogenic signals within muscle fiber and should possibly lead to identify therapeutic targets for this currently incurable disease. On the other hand, because functional studies on zebrafish muscle cells are scarce, this project will provide a sound database on the electrophysiological properties of this cell model.
Collapse
Affiliation(s)
- Romane Idoux
- Institut NeuroMyoGène, Université Lyon 1, Université de Lyon, UMR CNRS 5310, Inserm U1217, Lyon, France
| | - Sandrine Bretaud
- Institut de Génomique et Fonctionnelle de Lyon, ENS de Lyon, UMR CNRS 5242, INRA USC1370, Université Lyon 1, Lyon, France
| | - Christine Berthier
- Institut NeuroMyoGène, Université Lyon 1, Université de Lyon, UMR CNRS 5310, Inserm U1217, Lyon, France
| | - Vincent Jacquemond
- Institut NeuroMyoGène, Université Lyon 1, Université de Lyon, UMR CNRS 5310, Inserm U1217, Lyon, France
| | - Florence Ruggiero
- Institut de Génomique et Fonctionnelle de Lyon, ENS de Lyon, UMR CNRS 5242, INRA USC1370, Université Lyon 1, Lyon, France
| | - Bruno Allard
- Institut NeuroMyoGène, Université Lyon 1, Université de Lyon, UMR CNRS 5310, Inserm U1217, Lyon, France
| |
Collapse
|
9
|
Bretaud S, Nauroy P, Malbouyres M, Ruggiero F. Fishing for collagen function: About development, regeneration and disease. Semin Cell Dev Biol 2019; 89:100-108. [DOI: 10.1016/j.semcdb.2018.10.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 09/06/2018] [Accepted: 10/08/2018] [Indexed: 02/07/2023]
|
10
|
Dnd1 Knockout in Sturgeons By CRISPR/Cas9 Generates Germ Cell Free Host for Surrogate Production. Animals (Basel) 2019; 9:ani9040174. [PMID: 30999629 PMCID: PMC6523263 DOI: 10.3390/ani9040174] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/08/2019] [Accepted: 04/12/2019] [Indexed: 12/01/2022] Open
Abstract
Simple Summary Sturgeons, also called archaic giants, are critically endangered fish species due to overfishing for caviar and interference in their natural habitats. Some sturgeon species have life spans of over 100 years and sexual maturity is attained between 20 to 25 years. Sterlet (Acipenser ruthenus) has fastest reproductive cycle; thus, this species can be used for surrogate production in sturgeons. Primordial germ cells are the origin of all germ cells in developing embryos. Dnd1 is essential for formation and migration of primordial germ cells and its inactivation results in sterility in fish. In our study, we have used a cutting-edge genome editing technology known as CRISPR/Cas9 to knockout dnd1 and to prepare a sterile sterlet host. CRISPR/Cas9 knocked-out embryos lacked primordial germ cells and can be used as a sterile host for surrogate production in sturgeons. Abstract Sturgeons also known as living fossils are facing threats to their survival due to overfishing and interference in natural habitats. Sterlet (Acipenser ruthenus) due to its rapid reproductive cycle and small body size can be used as a sterile host for surrogate production for late maturing and large sturgeon species. Dead end protein (dnd1) is essential for migration of Primordial Germ Cells (PGCs), the origin of all germ cells in developing embryos. Knockout or knockdown of dnd1 can be done in order to mismigrate PGCs. Previously we have used MO and UV for the aforementioned purpose, and in our present study we have used CRISPR/Cas9 technology to knockout dnd1. No or a smaller number of PGCs were detected in crispants, and we also observed malformations in some CRISPR/Cas9 injected embryos. Furthermore, we compared three established methods to achieve sterility in sterlet, and we found higher embryo survival and hatching rates in CRISPR/Cas9, UV and MO, respectively.
Collapse
|
11
|
Slijkerman R, Goloborodko A, Broekman S, de Vrieze E, Hetterschijt L, Peters T, Gerits M, Kremer H, van Wijk E. Poor Splice-Site Recognition in a Humanized Zebrafish Knockin Model for the Recurrent Deep-Intronic c.7595-2144A>G Mutation in USH2A. Zebrafish 2018; 15:597-609. [PMID: 30281416 DOI: 10.1089/zeb.2018.1613] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The frequent deep-intronic c.7595-2144A>G mutation in intron 40 of USH2A generates a high-quality splice donor site, resulting in the incorporation of a pseudoexon (PE40) into the mature transcript that is predicted to prematurely terminate usherin translation. Aberrant USH2A pre-mRNA splicing could be corrected in patient-derived fibroblasts using antisense oligonucleotides. With the aim to study the effect of the c.7595-2144A>G mutation and USH2A splice redirection on retinal function, a humanized zebrafish knockin model was generated, in which 670 basepairs of ush2a intron 40 were exchanged for 557 basepairs of the corresponding human sequence using an optimized CRISPR/Cas9-based protocol. However, in the retina of adult homozygous humanized zebrafish, only 7.4% ± 3.9% of ush2a transcripts contained the human PE40 sequence and immunohistochemical analyses revealed no differences in the usherin expression and localization between the retina of humanized and wild-type zebrafish larvae. Nevertheless, we were able to partially correct aberrant ush2a splicing using a PE40-targeting antisense morpholino. Our results indicate a clear difference in splice-site recognition by the human and zebrafish splicing machinery. Therefore, we propose a protocol in which the effect of human splice-modulating mutations is studied in a zebrafish-specific cell-based splice assay before the generation of a humanized zebrafish knockin model.
Collapse
Affiliation(s)
- Ralph Slijkerman
- 1 Department of Otorhinolaryngology, Radboud University Medical Center , Nijmegen, the Netherlands .,2 Radboud Institute for Molecular Life Sciences, and Radboud University Medical Center , Nijmegen, the Netherlands
| | - Alexander Goloborodko
- 3 Department of Human Genetics, Radboud University Medical Center , Nijmegen, the Netherlands
| | - Sanne Broekman
- 1 Department of Otorhinolaryngology, Radboud University Medical Center , Nijmegen, the Netherlands .,4 Donders Institute for Brain , Cognition, and Behavior, Nijmegen, the Netherlands
| | - Erik de Vrieze
- 1 Department of Otorhinolaryngology, Radboud University Medical Center , Nijmegen, the Netherlands .,4 Donders Institute for Brain , Cognition, and Behavior, Nijmegen, the Netherlands
| | - Lisette Hetterschijt
- 1 Department of Otorhinolaryngology, Radboud University Medical Center , Nijmegen, the Netherlands .,4 Donders Institute for Brain , Cognition, and Behavior, Nijmegen, the Netherlands
| | - Theo Peters
- 1 Department of Otorhinolaryngology, Radboud University Medical Center , Nijmegen, the Netherlands .,4 Donders Institute for Brain , Cognition, and Behavior, Nijmegen, the Netherlands
| | - Milou Gerits
- 3 Department of Human Genetics, Radboud University Medical Center , Nijmegen, the Netherlands
| | - Hannie Kremer
- 1 Department of Otorhinolaryngology, Radboud University Medical Center , Nijmegen, the Netherlands .,3 Department of Human Genetics, Radboud University Medical Center , Nijmegen, the Netherlands .,4 Donders Institute for Brain , Cognition, and Behavior, Nijmegen, the Netherlands
| | - Erwin van Wijk
- 1 Department of Otorhinolaryngology, Radboud University Medical Center , Nijmegen, the Netherlands .,4 Donders Institute for Brain , Cognition, and Behavior, Nijmegen, the Netherlands
| |
Collapse
|
12
|
Gregorio I, Braghetta P, Bonaldo P, Cescon M. Collagen VI in healthy and diseased nervous system. Dis Model Mech 2018; 11:dmm032946. [PMID: 29728408 PMCID: PMC6031366 DOI: 10.1242/dmm.032946] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Collagen VI is a major extracellular matrix protein exerting a number of functions in different tissues, spanning from biomechanical to regulatory signals in the cell survival processes, and playing key roles in maintaining the stemness or determining the differentiation of several types of cells. In the last couple of years, emerging findings on collagen VI have led to increased interest in its role in the nervous system. The role of this protein in the peripheral nervous system was intensely studied and characterized in detail. Collagen VI acts as a regulator of Schwann cell differentiation and is required for preserving peripheral nerve myelination, function and structure, as well as for orchestrating nerve regeneration after injury. Although the role and distribution of collagen VI in the peripheral nervous system is now well established, the role of this distinctive extracellular matrix component in the central nervous system, along with its links to human neurological and neurodegenerative disorders, remains an open field of investigation. In this Review, we summarize and discuss a number of recent findings related to collagen VI in the central and peripheral nervous systems. We further link these findings to different aspects of the protein that are relevant to human diseases in these compartments in order to provide a comprehensive overview of the roles of this key matrix component in the nervous system.
Collapse
Affiliation(s)
- Ilaria Gregorio
- Department of Molecular Medicine, University of Padova, 35131 Padova, Italy
| | - Paola Braghetta
- Department of Molecular Medicine, University of Padova, 35131 Padova, Italy
| | - Paolo Bonaldo
- Department of Molecular Medicine, University of Padova, 35131 Padova, Italy
| | - Matilde Cescon
- Department of Molecular Medicine, University of Padova, 35131 Padova, Italy
| |
Collapse
|
13
|
Sakane Y, Iida M, Hasebe T, Fujii S, Buchholz DR, Ishizuya-Oka A, Yamamoto T, Suzuki KIT. Functional analysis of thyroid hormone receptor beta in Xenopus tropicalis founders using CRISPR-Cas. Biol Open 2018; 7:bio.030338. [PMID: 29358165 PMCID: PMC5829506 DOI: 10.1242/bio.030338] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Amphibians provide an ideal model to study the actions of thyroid hormone (TH) in animal development because TH signaling via two TH receptors, TRα and TRβ, is indispensable for amphibian metamorphosis. However, specific roles for the TRβ isoform in metamorphosis are poorly understood. To address this issue, we generated trβ-disrupted Xenopus tropicalis tadpoles using the CRISPR-Cas system. We first established a highly efficient and rapid workflow for gene disruption in the founder generation (F0) by injecting sgRNA and Cas9 ribonucleoprotein. Most embryos showed severe mutant phenotypes carrying high somatic mutation rates. Utilizing this founder analysis system, we examined the role of trβ in metamorphosis. trβ-disrupted pre-metamorphic tadpoles exhibited mixed responsiveness to exogenous TH. Specifically, gill resorption and activation of several TH-response genes, including trβ itself and two protease genes, were impaired. However, hind limb outgrowth and induction of the TH-response genes, klf9 and fra-2, were not affected by loss of trβ Surprisingly, trβ-disrupted tadpoles were able to undergo spontaneous metamorphosis normally, except for a slight delay in tail resorption. These results indicate TRβ is not required but contributes to the timing of resorptive events of metamorphosis.
Collapse
Affiliation(s)
- Yuto Sakane
- Department of Mathematical and Life Sciences, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Midori Iida
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, Iizuka, Fukuoka 820-8502, Japan
| | - Takashi Hasebe
- Department of Biology, Nippon Medical School, Musashino, Tokyo 180-0023, Japan
| | - Satoshi Fujii
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, Iizuka, Fukuoka 820-8502, Japan
| | - Daniel R Buchholz
- Department of Biological Sciences, University of Cincinnati, 312 Clifton Ct., Cincinnati, OH, 45221, USA
| | - Atsuko Ishizuya-Oka
- Department of Biology, Nippon Medical School, Musashino, Tokyo 180-0023, Japan
| | - Takashi Yamamoto
- Department of Mathematical and Life Sciences, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Ken-Ichi T Suzuki
- Department of Mathematical and Life Sciences, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| |
Collapse
|
14
|
Lamandé SR, Bateman JF. Collagen VI disorders: Insights on form and function in the extracellular matrix and beyond. Matrix Biol 2017; 71-72:348-367. [PMID: 29277723 DOI: 10.1016/j.matbio.2017.12.008] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/13/2017] [Accepted: 12/16/2017] [Indexed: 12/18/2022]
Abstract
Mutations in the three canonical collagen VI genes, COL6A1, COL6A2 and COL6A3, cause a spectrum of muscle disease from Bethlem myopathy at the mild end to the severe Ullrich congenital muscular dystrophy. Mutations can be either dominant or recessive and the resulting clinical severity is influenced by the way mutations impact the complex collagen VI assembly process. Most mutations are found towards the N-terminus of the triple helical collagenous domain and compromise extracellular microfibril assembly. Outside the triple helix collagen VI is highly polymorphic and discriminating mutations from rare benign changes remains a major diagnostic challenge. Collagen VI deficiency alters extracellular matrix structure and biomechanical properties and leads to increased apoptosis and oxidative stress, decreased autophagy, and impaired muscle regeneration. Therapies that target these downstream consequences have been tested in a collagen VI null mouse and also in small human trials where they show modest clinical efficacy. An important role for collagen VI in obesity, cancer and diabetes is emerging. A major barrier to developing effective therapies is the paucity of information about how collagen VI deficiency in the extracellular matrix signals the final downstream consequences - the receptors involved and the intracellular messengers await further characterization.
Collapse
Affiliation(s)
- Shireen R Lamandé
- Musculoskeletal Research, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Vic, Australia; Department of Paediatrics, University of Melbourne, Parkville, Vic, Australia.
| | - John F Bateman
- Musculoskeletal Research, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Vic, Australia; Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Vic, Australia
| |
Collapse
|
15
|
Nauroy P, Hughes S, Naba A, Ruggiero F. The in-silico zebrafish matrisome: A new tool to study extracellular matrix gene and protein functions. Matrix Biol 2017; 65:5-13. [PMID: 28739138 DOI: 10.1016/j.matbio.2017.07.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/10/2017] [Accepted: 07/11/2017] [Indexed: 01/19/2023]
Abstract
Extracellular matrix (ECM) proteins are major components of most tissues and organs. In addition to their crucial role in tissue cohesion and biomechanics, they chiefly regulate various important biological processes during embryonic development, tissue homeostasis and repair. In essence, ECM proteins were defined as secreted proteins that localized in the extracellular space. The characterization of the human and mouse matrisomes provided the first definition of ECM actors by comprehensively listing ECM proteins and classified them into categories. Because zebrafish is becoming a popular model to study ECM biology, we sought to characterize the zebrafish matrisome using an in-silico gene-orthology-based approach. We report the identification of 1002 genes encoding the in-silico zebrafish matrisome. Using independent validations, we provide evidence for the robustness of the orthology-based approach. Moreover, we evaluated the orthology relationships between human and zebrafish genes at the whole-genome and matrisome levels and showed that the different categories of ECM genes are differentially subjected to evolutionary pressure. Last, we illustrate how the zebrafish matrisome list can be employed to annotate big data using the example of a previously published proteomic study of the skeletal ECM. The establishment of the zebrafish matrisome will undoubtedly facilitate the analysis of ECM components in "-omic" data sets.
Collapse
Affiliation(s)
- Pauline Nauroy
- Univ Lyon, Institut de Génomique Fonctionnelle de Lyon, CNRS UMR 5242, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, 46 allée d'Italie, F-69364 Lyon, France
| | - Sandrine Hughes
- Univ Lyon, Institut de Génomique Fonctionnelle de Lyon, CNRS UMR 5242, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, 46 allée d'Italie, F-69364 Lyon, France
| | - Alexandra Naba
- Department of Physiology and Biophysics, University of Illinois at Chicago, College of Medicine, 835 S. Wolcott Avenue, Chicago, IL 60612, USA.
| | - Florence Ruggiero
- Univ Lyon, Institut de Génomique Fonctionnelle de Lyon, CNRS UMR 5242, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, 46 allée d'Italie, F-69364 Lyon, France.
| |
Collapse
|
16
|
Bradford YM, Toro S, Ramachandran S, Ruzicka L, Howe DG, Eagle A, Kalita P, Martin R, Taylor Moxon SA, Schaper K, Westerfield M. Zebrafish Models of Human Disease: Gaining Insight into Human Disease at ZFIN. ILAR J 2017; 58:4-16. [PMID: 28838067 PMCID: PMC5886338 DOI: 10.1093/ilar/ilw040] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 12/12/2016] [Accepted: 12/19/2016] [Indexed: 12/18/2022] Open
Abstract
The Zebrafish Model Organism Database (ZFIN; https://zfin.org) is the central resource for genetic, genomic, and phenotypic data for zebrafish (Danio rerio) research. ZFIN continuously assesses trends in zebrafish research, adding new data types and providing data repositories and tools that members of the research community can use to navigate data. The many research advantages and flexibility of manipulation of zebrafish have made them an increasingly attractive animal to model and study human disease.To facilitate disease-related research, ZFIN developed support to provide human disease information as well as annotation of zebrafish models of human disease. Human disease term pages at ZFIN provide information about disease names, synonyms, and references to other databases as well as a list of publications reporting studies of human diseases in which zebrafish were used. Zebrafish orthologs of human genes that are implicated in human disease etiology are routinely studied to provide an understanding of the molecular basis of disease. Therefore, a list of human genes involved in the disease with their corresponding zebrafish ortholog is displayed on the disease page, with links to additional information regarding the genes and existing mutations. Studying human disease often requires the use of models that recapitulate some or all of the pathologies observed in human diseases. Access to information regarding existing and published models can be critical, because they provide a tractable way to gain insight into the phenotypic outcomes of the disease. ZFIN annotates zebrafish models of human disease and supports retrieval of these published models by listing zebrafish models on the disease term page as well as by providing search interfaces and data download files to access the data. The improvements ZFIN has made to annotate, display, and search data related to human disease, especially zebrafish models for disease and disease-associated gene information, should be helpful to researchers and clinicians considering the use of zebrafish to study human disease.
Collapse
Affiliation(s)
- Yvonne M. Bradford
- Yvonne M. Bradford, PhD, is a scientific curator and senior research associate at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Sabrina Toro, PhD, is a scientific curator for the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Sridhar Ramachandran, MS, is a scientific curator at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Leyla Ruzicka, PhD, is a scientific curator and senior research associate at the Zebrafish Model Organism Database, at the University of Oregon in Eugene, Oregon. Douglas G. Howe, PhD, is the Data Curation Manager at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Anne Eagle, MSCS, is the Software Development and Project Manager at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Patrick Kalita, MS, is a software developer at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Ryan Martin, MS, is a systems administrator at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Sierra A. Taylor Moxon, BA, is the Database Administrator at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Kevin Schaper, BS, is a software engineer at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Monte Westerfield, PhD, is a Professor of Biology in the Institute of Neuroscience and directs the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon.
| | - Sabrina Toro
- Yvonne M. Bradford, PhD, is a scientific curator and senior research associate at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Sabrina Toro, PhD, is a scientific curator for the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Sridhar Ramachandran, MS, is a scientific curator at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Leyla Ruzicka, PhD, is a scientific curator and senior research associate at the Zebrafish Model Organism Database, at the University of Oregon in Eugene, Oregon. Douglas G. Howe, PhD, is the Data Curation Manager at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Anne Eagle, MSCS, is the Software Development and Project Manager at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Patrick Kalita, MS, is a software developer at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Ryan Martin, MS, is a systems administrator at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Sierra A. Taylor Moxon, BA, is the Database Administrator at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Kevin Schaper, BS, is a software engineer at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Monte Westerfield, PhD, is a Professor of Biology in the Institute of Neuroscience and directs the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon.
| | - Sridhar Ramachandran
- Yvonne M. Bradford, PhD, is a scientific curator and senior research associate at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Sabrina Toro, PhD, is a scientific curator for the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Sridhar Ramachandran, MS, is a scientific curator at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Leyla Ruzicka, PhD, is a scientific curator and senior research associate at the Zebrafish Model Organism Database, at the University of Oregon in Eugene, Oregon. Douglas G. Howe, PhD, is the Data Curation Manager at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Anne Eagle, MSCS, is the Software Development and Project Manager at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Patrick Kalita, MS, is a software developer at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Ryan Martin, MS, is a systems administrator at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Sierra A. Taylor Moxon, BA, is the Database Administrator at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Kevin Schaper, BS, is a software engineer at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Monte Westerfield, PhD, is a Professor of Biology in the Institute of Neuroscience and directs the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon.
| | - Leyla Ruzicka
- Yvonne M. Bradford, PhD, is a scientific curator and senior research associate at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Sabrina Toro, PhD, is a scientific curator for the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Sridhar Ramachandran, MS, is a scientific curator at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Leyla Ruzicka, PhD, is a scientific curator and senior research associate at the Zebrafish Model Organism Database, at the University of Oregon in Eugene, Oregon. Douglas G. Howe, PhD, is the Data Curation Manager at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Anne Eagle, MSCS, is the Software Development and Project Manager at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Patrick Kalita, MS, is a software developer at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Ryan Martin, MS, is a systems administrator at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Sierra A. Taylor Moxon, BA, is the Database Administrator at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Kevin Schaper, BS, is a software engineer at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Monte Westerfield, PhD, is a Professor of Biology in the Institute of Neuroscience and directs the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon.
| | - Douglas G. Howe
- Yvonne M. Bradford, PhD, is a scientific curator and senior research associate at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Sabrina Toro, PhD, is a scientific curator for the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Sridhar Ramachandran, MS, is a scientific curator at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Leyla Ruzicka, PhD, is a scientific curator and senior research associate at the Zebrafish Model Organism Database, at the University of Oregon in Eugene, Oregon. Douglas G. Howe, PhD, is the Data Curation Manager at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Anne Eagle, MSCS, is the Software Development and Project Manager at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Patrick Kalita, MS, is a software developer at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Ryan Martin, MS, is a systems administrator at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Sierra A. Taylor Moxon, BA, is the Database Administrator at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Kevin Schaper, BS, is a software engineer at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Monte Westerfield, PhD, is a Professor of Biology in the Institute of Neuroscience and directs the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon.
| | - Anne Eagle
- Yvonne M. Bradford, PhD, is a scientific curator and senior research associate at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Sabrina Toro, PhD, is a scientific curator for the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Sridhar Ramachandran, MS, is a scientific curator at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Leyla Ruzicka, PhD, is a scientific curator and senior research associate at the Zebrafish Model Organism Database, at the University of Oregon in Eugene, Oregon. Douglas G. Howe, PhD, is the Data Curation Manager at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Anne Eagle, MSCS, is the Software Development and Project Manager at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Patrick Kalita, MS, is a software developer at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Ryan Martin, MS, is a systems administrator at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Sierra A. Taylor Moxon, BA, is the Database Administrator at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Kevin Schaper, BS, is a software engineer at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Monte Westerfield, PhD, is a Professor of Biology in the Institute of Neuroscience and directs the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon.
| | - Patrick Kalita
- Yvonne M. Bradford, PhD, is a scientific curator and senior research associate at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Sabrina Toro, PhD, is a scientific curator for the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Sridhar Ramachandran, MS, is a scientific curator at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Leyla Ruzicka, PhD, is a scientific curator and senior research associate at the Zebrafish Model Organism Database, at the University of Oregon in Eugene, Oregon. Douglas G. Howe, PhD, is the Data Curation Manager at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Anne Eagle, MSCS, is the Software Development and Project Manager at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Patrick Kalita, MS, is a software developer at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Ryan Martin, MS, is a systems administrator at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Sierra A. Taylor Moxon, BA, is the Database Administrator at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Kevin Schaper, BS, is a software engineer at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Monte Westerfield, PhD, is a Professor of Biology in the Institute of Neuroscience and directs the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon.
| | - Ryan Martin
- Yvonne M. Bradford, PhD, is a scientific curator and senior research associate at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Sabrina Toro, PhD, is a scientific curator for the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Sridhar Ramachandran, MS, is a scientific curator at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Leyla Ruzicka, PhD, is a scientific curator and senior research associate at the Zebrafish Model Organism Database, at the University of Oregon in Eugene, Oregon. Douglas G. Howe, PhD, is the Data Curation Manager at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Anne Eagle, MSCS, is the Software Development and Project Manager at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Patrick Kalita, MS, is a software developer at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Ryan Martin, MS, is a systems administrator at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Sierra A. Taylor Moxon, BA, is the Database Administrator at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Kevin Schaper, BS, is a software engineer at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Monte Westerfield, PhD, is a Professor of Biology in the Institute of Neuroscience and directs the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon.
| | - Sierra A. Taylor Moxon
- Yvonne M. Bradford, PhD, is a scientific curator and senior research associate at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Sabrina Toro, PhD, is a scientific curator for the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Sridhar Ramachandran, MS, is a scientific curator at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Leyla Ruzicka, PhD, is a scientific curator and senior research associate at the Zebrafish Model Organism Database, at the University of Oregon in Eugene, Oregon. Douglas G. Howe, PhD, is the Data Curation Manager at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Anne Eagle, MSCS, is the Software Development and Project Manager at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Patrick Kalita, MS, is a software developer at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Ryan Martin, MS, is a systems administrator at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Sierra A. Taylor Moxon, BA, is the Database Administrator at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Kevin Schaper, BS, is a software engineer at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Monte Westerfield, PhD, is a Professor of Biology in the Institute of Neuroscience and directs the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon.
| | - Kevin Schaper
- Yvonne M. Bradford, PhD, is a scientific curator and senior research associate at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Sabrina Toro, PhD, is a scientific curator for the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Sridhar Ramachandran, MS, is a scientific curator at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Leyla Ruzicka, PhD, is a scientific curator and senior research associate at the Zebrafish Model Organism Database, at the University of Oregon in Eugene, Oregon. Douglas G. Howe, PhD, is the Data Curation Manager at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Anne Eagle, MSCS, is the Software Development and Project Manager at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Patrick Kalita, MS, is a software developer at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Ryan Martin, MS, is a systems administrator at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Sierra A. Taylor Moxon, BA, is the Database Administrator at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Kevin Schaper, BS, is a software engineer at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Monte Westerfield, PhD, is a Professor of Biology in the Institute of Neuroscience and directs the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon.
| | - Monte Westerfield
- Yvonne M. Bradford, PhD, is a scientific curator and senior research associate at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Sabrina Toro, PhD, is a scientific curator for the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Sridhar Ramachandran, MS, is a scientific curator at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Leyla Ruzicka, PhD, is a scientific curator and senior research associate at the Zebrafish Model Organism Database, at the University of Oregon in Eugene, Oregon. Douglas G. Howe, PhD, is the Data Curation Manager at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Anne Eagle, MSCS, is the Software Development and Project Manager at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Patrick Kalita, MS, is a software developer at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Ryan Martin, MS, is a systems administrator at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Sierra A. Taylor Moxon, BA, is the Database Administrator at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Kevin Schaper, BS, is a software engineer at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Monte Westerfield, PhD, is a Professor of Biology in the Institute of Neuroscience and directs the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon.
| |
Collapse
|
17
|
Jagla K, Kalman B, Boudou T, Hénon S, Batonnet-Pichon S. Beyond mice: Emerging and transdisciplinary models for the study of early-onset myopathies. Semin Cell Dev Biol 2017; 64:171-180. [DOI: 10.1016/j.semcdb.2016.09.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 09/06/2016] [Accepted: 09/22/2016] [Indexed: 01/23/2023]
|
18
|
|
19
|
Abstract
Skeletal muscle performs an essential function in human physiology with defects in genes encoding a variety of cellular components resulting in various types of inherited muscle disorders. Muscular dystrophies (MDs) are a severe and heterogeneous type of human muscle disease, manifested by progressive muscle wasting and degeneration. The disease pathogenesis and therapeutic options for MDs have been investigated for decades using rodent models, and considerable knowledge has been accumulated on the cause and pathogenetic mechanisms of this group of human disorders. However, due to some differences between disease severity and progression, what is learned in mammalian models does not always transfer to humans, prompting the desire for additional and alternative models. More recently, zebrafish have emerged as a novel and robust animal model for the study of human muscle disease. Zebrafish MD models possess a number of distinct advantages for modeling human muscle disorders, including the availability and ease of generating mutations in homologous disease-causing genes, the ability to image living muscle tissue in an intact animal, and the suitability of zebrafish larvae for large-scale chemical screens. In this chapter, we review the current understanding of molecular and cellular mechanisms involved in MDs, the process of myogenesis in zebrafish, and the structural and functional characteristics of zebrafish larval muscles. We further discuss the insights gained from the key zebrafish MD models that have been so far generated, and we summarize the attempts that have been made to screen for small molecules inhibitors of the dystrophic phenotypes using these models. Overall, these studies demonstrate that zebrafish is a useful in vivo system for modeling aspects of human skeletal muscle disorders. Studies using these models have contributed both to the understanding of the pathogenesis of muscle wasting disorders and demonstrated their utility as highly relevant models to implement therapeutic screening regimens.
Collapse
Affiliation(s)
- M Li
- Monash University, Clayton, VIC, Australia
| | - K J Hromowyk
- The Ohio State University, Columbus, OH, United States
| | - S L Amacher
- The Ohio State University, Columbus, OH, United States
| | - P D Currie
- Monash University, Clayton, VIC, Australia
| |
Collapse
|
20
|
Experimental approaches to studying the nature and impact of splicing variation in zebrafish. Methods Cell Biol 2016; 135:259-88. [PMID: 27443930 DOI: 10.1016/bs.mcb.2016.02.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
From a fixed number of genes carried in all cells, organisms create considerable diversity in cellular phenotype through differential regulation of gene expression. One prevalent source of transcriptome diversity is alternative pre-mRNA splicing, which is manifested in many different forms. Zebrafish models of splicing dysfunction due to mutated spliceosome components provide opportunity to link biochemical analyses of spliceosome structure and function with whole organism phenotypic outcomes. Drawing from experience with two zebrafish mutants: cephalophŏnus (a prpf8 mutant, isolated for defects in granulopoiesis) and caliban (a rnpc3 mutant, isolated for defects in digestive organ development), we describe the use of glycerol gradient sedimentation and native gel electrophoresis to resolve components of aberrant splicing complexes. We also describe how RNAseq can be employed to examine relatively rare alternative splicing events including intron retention. Such experimental approaches in zebrafish can promote understanding of how splicing variation and dysfunction contribute to phenotypic diversity and disease pathogenesis.
Collapse
|