1
|
Maiorov SA, Laryushkin DP, Kritskaya KA, Zinchenko VP, Gaidin SG, Kosenkov AM. The Role of Ion Channels and Intracellular Signaling Cascades in the Inhibitory Action of WIN 55,212-2 upon Hyperexcitation. Brain Sci 2024; 14:668. [PMID: 39061409 PMCID: PMC11274798 DOI: 10.3390/brainsci14070668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/19/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
Gi-coupled receptors, particularly cannabinoid receptors (CBRs), are considered perspective targets for treating brain pathologies, including epilepsy. However, the precise mechanism of the anticonvulsant effect of the CBR agonists remains unknown. We have found that WIN 55,212-2 (a CBR agonist) suppresses the synchronous oscillations of the intracellular concentration of Ca2+ ions (epileptiform activity) induced in the neurons of rat hippocampal neuron-glial cultures by bicuculline or NH4Cl. As we have demonstrated, the WIN 55,212-2 effect is mediated by CB1R receptors. The agonist suppresses Ca2+ inflow mediated by the voltage-gated calcium channels but does not alter the inflow mediated by NMDA, AMPA, and kainate receptors. We have also found that phospholipase C (PLC), protein kinase C (PKC), and G-protein-coupled inwardly rectifying K+ channels (GIRK channels) are involved in the molecular mechanism underlying the inhibitory action of CB1R activation against epileptiform activity. Thus, our results demonstrate that the antiepileptic action of CB1R agonists is mediated by different intracellular signaling cascades, including non-canonical PLC/PKC-associated pathways.
Collapse
Affiliation(s)
| | | | | | | | - Sergei G. Gaidin
- Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Institute of Cell Biophysics of the Russian Academy of Sciences, 142290 Pushchino, Russia (A.M.K.)
| | | |
Collapse
|
2
|
Averin AS, Konakov MV, Pimenov OY, Galimova MH, Berezhnov AV, Nenov MN, Dynnik VV. Regulation of Papillary Muscle Contractility by NAD and Ammonia Interplay: Contribution of Ion Channels and Exchangers. MEMBRANES 2022; 12:1239. [PMID: 36557146 PMCID: PMC9785361 DOI: 10.3390/membranes12121239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/04/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
Various models, including stem cells derived and isolated cardiomyocytes with overexpressed channels, are utilized to analyze the functional interplay of diverse ion currents involved in cardiac automaticity and excitation-contraction coupling control. Here, we used β-NAD and ammonia, known hyperpolarizing and depolarizing agents, respectively, and applied inhibitory analysis to reveal the interplay of several ion channels implicated in rat papillary muscle contractility control. We demonstrated that: 4 mM β-NAD, having no strong impact on resting membrane potential (RMP) and action potential duration (APD90) of ventricular cardiomyocytes, evoked significant suppression of isometric force (F) of paced papillary muscle. Reactive blue 2 restored F to control values, suggesting the involvement of P2Y-receptor-dependent signaling in β-NAD effects. Meantime, 5 mM NH4Cl did not show any effect on F of papillary muscle but resulted in significant RMP depolarization, APD90 shortening, and a rightward shift of I-V relationship for total steady state currents in cardiomyocytes. Paradoxically, NH4Cl, being added after β-NAD and having no effect on RMP, APD, and I-V curve, recovered F to the control values, indicating β-NAD/ammonia antagonism. Blocking of HCN, Kir2.x, and L-type calcium channels, Ca2+-activated K+ channels (SK, IK, and BK), or NCX exchanger reverse mode prevented this effect, indicating consistent cooperation of all currents mediated by these channels and NCX. We suggest that the activation of Kir2.x and HCN channels by extracellular K+, that creates positive and negative feedback, and known ammonia and K+ resemblance, may provide conditions required for the activation of all the chain of channels involved in the interplay. Here, we present a mechanistic model describing an interplay of channels and second messengers, which may explain discovered antagonism of β-NAD and ammonia on rat papillary muscle contractile activity.
Collapse
Affiliation(s)
- Alexey S. Averin
- Institute of Theoretical and Experimental Biophysics, the Russian Academy of Sciences, Pushchino 142290, Russia
| | - Maxim V. Konakov
- Institute of Theoretical and Experimental Biophysics, the Russian Academy of Sciences, Pushchino 142290, Russia
| | - Oleg Y. Pimenov
- Institute of Theoretical and Experimental Biophysics, the Russian Academy of Sciences, Pushchino 142290, Russia
| | - Miliausha H. Galimova
- Institute of Theoretical and Experimental Biophysics, the Russian Academy of Sciences, Pushchino 142290, Russia
| | - Alexey V. Berezhnov
- Institute of Cell Biophysics, the Russian Academy of Sciences, Pushchino 142290, Russia
| | - Miroslav N. Nenov
- Institute of Theoretical and Experimental Biophysics, the Russian Academy of Sciences, Pushchino 142290, Russia
| | - Vladimir V. Dynnik
- Institute of Theoretical and Experimental Biophysics, the Russian Academy of Sciences, Pushchino 142290, Russia
| |
Collapse
|
3
|
Involvement of NMDA and GABA(A) receptors in modulation of spontaneous activity in hippocampal culture: Interrelations between burst firing and intracellular calcium signal. Biochem Biophys Res Commun 2021; 553:99-106. [PMID: 33765560 DOI: 10.1016/j.bbrc.2021.02.149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 12/28/2022]
Abstract
Spontaneous burst firing is a hallmark attributed to the neuronal network activity. It is known to be accompanied by intracellular calcium [Са2+]i oscillations within the bursting neurons. Studying mechanisms underlying regulation of burst firing is highly relevant, since impairment in neuronal bursting accompanies different neurological disorders. In the present study, the contribution of NMDA and GABA(A) receptors to the shape formation of spontaneous burst -was studied in cultured hippocampal neurons. A combination of inhibitory analysis with simultaneous registration of neuronal bursting by whole-cell patch clamp and calcium imaging was used to assess spontaneous burst firing and [Са2+]i level. Using bicuculline and D-AP5 we showed that GABA(A) and NMDA receptors effectively modulate burst plateau phase and [Са2+]i transient spike which can further affect action potential (AP) amplitudes and firing frequency within a burst. Bicuculline significantly elevated the amplitude and reduced the duration of both burst plateau phase and [Са2+]i spike resulting in an increase of AP firing frequency and shortening of AP amplitudes within a burst. D-AP5 significantly decreases the amplitude of both plateau phase and [Са2+]i spike along with a burst duration that correlated with an increase in AP amplitudes and reduced firing frequency within a burst. The effect of bicuculline was occluded by co-addition of D-AP5 revealing modulatory role of GABA(A) receptors to the NMDA receptor-mediated formation of the burst. Our results provide new evidence on importance of NMDA and GABA(A) receptors in shaping burst firing and Ca2+transient spikes in cultured hippocampal neurons.
Collapse
|
4
|
Berezhnov AV, Fedotova EI, Sergeev AI, Teplov IY, Abramov AY. Dopamine controls neuronal spontaneous calcium oscillations via astrocytic signal. Cell Calcium 2021; 94:102359. [PMID: 33550209 DOI: 10.1016/j.ceca.2021.102359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/14/2021] [Accepted: 01/16/2021] [Indexed: 01/10/2023]
Abstract
Dopamine is a neuromodulator and neurotransmitter responsible for a number of physiological processes. Dysfunctions of the dopamine metabolism and signalling are associated with neurological and psychiatric diseases. Here we report that in primary co-culture of neurons and astrocytes dopamine-induces calcium signal in astrocytes and suppress spontaneous synchronous calcium oscillations (SSCO) in neurons. Effect of dopamine on SSCO in neurons was dependent on calcium signal in astrocytes and could be modified by inhibition of dopamine-induced calcium signal or by stimulation of astrocytic calcium rise with ATP. Ability of dopamine to suppress SSCO in neurons was independent on D1- or D2- like receptors but dependent on GABA and alpha-adrenoreceptors. Inhibitor of monoaminoxidase bifemelane blocked effect of dopamine on astrocytes but also inhibited the effect dopamine on SSCO in neurons. These findings suggest that dopamine-induced calcium signal may stimulate release of neuromodulators such as GABA and adrenaline and thus suppress spontaneous calcium oscillations in neurons.
Collapse
Affiliation(s)
- Alexey V Berezhnov
- Institute of Cell Biophysics of the Russian Academy of Sciences, 142290, Pushchino, Russia; Cell Physiology and Pathology Laboratory, Orel State University, 302026, Orel, Russia.
| | - Evgeniya I Fedotova
- Institute of Cell Biophysics of the Russian Academy of Sciences, 142290, Pushchino, Russia; Cell Physiology and Pathology Laboratory, Orel State University, 302026, Orel, Russia
| | - Alexander I Sergeev
- Institute of Cell Biophysics of the Russian Academy of Sciences, 142290, Pushchino, Russia
| | - Ilya Y Teplov
- Institute of Cell Biophysics of the Russian Academy of Sciences, 142290, Pushchino, Russia
| | - Andrey Y Abramov
- Cell Physiology and Pathology Laboratory, Orel State University, 302026, Orel, Russia; Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, WC1N 3BG, London, UK.
| |
Collapse
|
5
|
Gaidin SG, Zinchenko VP, Kosenkov AM. Mechanisms of ammonium-induced neurotoxicity. Neuroprotective effect of alpha-2 adrenergic agonists. Arch Biochem Biophys 2020; 693:108593. [PMID: 32971034 DOI: 10.1016/j.abb.2020.108593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 09/05/2020] [Accepted: 09/12/2020] [Indexed: 01/09/2023]
Abstract
Here we report the effects of ammonium on the main biophysical features of neurons and astrocytes during the first minutes of exposure. We found that ammonium causes the depolarization of neurons, which leads to the generation of high-frequency action potentials (APs). The initial alkalization and subsequent acidification of the intracellular medium in neurons occur along with the generation of calcium oscillations. Moreover, although the kinetics of calcium response of neurons and astrocytes is different, the dynamics of changes in the intracellular pH (pHi) is similar. The rate of superoxide production and mitochondrial membrane potential do not change in most neurons and astrocytes during ammonium exposure. At the same time, we observed an increased superoxide production and a decrease in the mitochondrial potential in some neurons in response to ammonium application. However, in both cases, the amplitude of the calcium response in these neurons is significantly higher compared to other neurons. Application of UK 14,304, an agonist of alpha-2 adrenergic receptors (A-2ARs), decreased the frequency of APs upon ammonium-induced high-frequency spike activity. Moreover, we also observed periods of hyperpolarization occurred in individual neurons. We suppose that this hyperpolarization contributes to the suppression of activity and can be mediated by astrocytic GABA release, which is stimulated upon activation of A-2ARs. Thus, our findings reveal a new possible mechanism of the protective action of alpha-2 adrenergic agonists against ammonium-induced hyperexcitation and demonstrate the correlation between intracellular calcium concentration, mitochondrial membrane potential, pHi, the intensity of superoxide production in hippocampal cells under acute hyperammonemia.
Collapse
Affiliation(s)
- Sergei G Gaidin
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", 142290, Pushchino, Russia.
| | - Valery P Zinchenko
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", 142290, Pushchino, Russia
| | - Artem M Kosenkov
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", 142290, Pushchino, Russia.
| |
Collapse
|
6
|
Gaidin SG, Zinchenko VP, Sergeev AI, Teplov IY, Mal'tseva VN, Kosenkov AM. Activation of alpha‐2 adrenergic receptors stimulates GABA release by astrocytes. Glia 2020; 68:1114-1130. [DOI: 10.1002/glia.23763] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 11/26/2019] [Accepted: 12/03/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Sergei G. Gaidin
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences” Pushchino Russia
| | - Valery P. Zinchenko
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences” Pushchino Russia
| | - Alexander I. Sergeev
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences” Pushchino Russia
| | - Ilia Y. Teplov
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences” Pushchino Russia
| | - Valentina N. Mal'tseva
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences” Pushchino Russia
| | - Artem M. Kosenkov
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences” Pushchino Russia
| |
Collapse
|
7
|
Bobylev AG, Kraevaya OA, Bobyleva LG, Khakina EA, Fadeev RS, Zhilenkov AV, Mishchenko DV, Penkov NV, Teplov IY, Yakupova EI, Vikhlyantsev IM, Troshin PA. Anti-amyloid activities of three different types of water-soluble fullerene derivatives. Colloids Surf B Biointerfaces 2019; 183:110426. [PMID: 31421408 DOI: 10.1016/j.colsurfb.2019.110426] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 07/16/2019] [Accepted: 08/04/2019] [Indexed: 01/21/2023]
Abstract
Anti-amyloid activity, aggregation behaviour, cytotoxicity and acute toxicity were investigated for three water-soluble fullerene derivatives with different types of solubilizing addends. All investigated compounds showed a strong anti-amyloid effect in vitrocaused by interaction of the water-soluble fullerene derivatives with the Ab(1-42)-peptide and followed by destruction of the amyloid fibrils. Notably, all of the studied fullerene derivatives showed very low cytotoxicity and low acute toxicity in mice (most promising compound 3 was more than four times less toxic than aspirin). Strong anti-amyloid effect of the fullerene derivatives together with low toxicity reveals high potential of these compounds as drug candidates for treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Alexander G Bobylev
- Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, Institutskaya St. 3, Pushchino, Moscow Region, 142290, Russia
| | - Olga A Kraevaya
- Skolkovo Institute of Science and Technology, Nobel St. 3, Moscow, 143026, Russia; Institute for Problems of Chemical Physics of the Russian Academy of Sciences, Semenov Prospect 1, Chernogolovka, 141432, Russia
| | - Liya G Bobyleva
- Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, Institutskaya St. 3, Pushchino, Moscow Region, 142290, Russia
| | - Ekaterina A Khakina
- Institute for Problems of Chemical Physics of the Russian Academy of Sciences, Semenov Prospect 1, Chernogolovka, 141432, Russia
| | - Roman S Fadeev
- Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, Institutskaya St. 3, Pushchino, Moscow Region, 142290, Russia
| | - Alexander V Zhilenkov
- Institute for Problems of Chemical Physics of the Russian Academy of Sciences, Semenov Prospect 1, Chernogolovka, 141432, Russia
| | - Denis V Mishchenko
- Institute for Problems of Chemical Physics of the Russian Academy of Sciences, Semenov Prospect 1, Chernogolovka, 141432, Russia
| | - Nikita V Penkov
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Institutskaya St., 3, Pushchino, Moscow Region, 142290, Russia
| | - Ilia Y Teplov
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Institutskaya St., 3, Pushchino, Moscow Region, 142290, Russia
| | - Elmira I Yakupova
- Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, Institutskaya St. 3, Pushchino, Moscow Region, 142290, Russia
| | - Ivan M Vikhlyantsev
- Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, Institutskaya St. 3, Pushchino, Moscow Region, 142290, Russia
| | - Pavel A Troshin
- Skolkovo Institute of Science and Technology, Nobel St. 3, Moscow, 143026, Russia; Institute for Problems of Chemical Physics of the Russian Academy of Sciences, Semenov Prospect 1, Chernogolovka, 141432, Russia.
| |
Collapse
|
8
|
Domoic acid suppresses hyperexcitation in the network due to activation of kainate receptors of GABAergic neurons. Arch Biochem Biophys 2019; 671:52-61. [DOI: 10.1016/j.abb.2019.06.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/12/2019] [Accepted: 06/15/2019] [Indexed: 01/01/2023]
|
9
|
Teplov IY, Tuleukhanov ST, Zinchenko VP. Regulation of Action Potential Frequency and Amplitude by T-type Ca2+ Channel During Spontaneous Synchronous Activity of Hippocampal Neurons. Biophysics (Nagoya-shi) 2018. [DOI: 10.1134/s0006350918040206] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
10
|
Kosenkov AM, Gaidin SG, Sergeev AI, Teplov IY, Zinchenko VP. Fast changes of NMDA and AMPA receptor activity under acute hyperammonemia in vitro. Neurosci Lett 2018; 686:80-86. [PMID: 30195972 DOI: 10.1016/j.neulet.2018.08.054] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 08/18/2018] [Indexed: 12/14/2022]
Abstract
It was established in experiments on cell cultures of neurons and astrocytes that ammonium ions at concentrations of 4-8 mM cause hyperexcitation of the neuronal network, as a result of which there is a disturbance of calcium homeostasis, which can lead to the death of neurons. In the present study, we investigated the effect of toxic doses of ammonium (8 mM NH4Cl) on the activity of NMDA and AMPA receptors and the role of these receptors in spontaneous synchronous activity (SSA). In a control experiment in the absence of NH4Cl, SSA is not suppressed by NMDA receptor inhibitors, but is suppressed by AMPA receptor antagonists. In the presence of toxic doses of NH4Cl, SSA is completely inhibited by NMDA receptor inhibitors in 63% of neurons and by AMPA receptor inhibitors in 33% of neurons. After short-term applications of toxic doses of ammonium, the amplitude of the Ca2+ response to 10 μM NMDA increases, and decreases in response to 500 nM FW (agonist of AMPA receptors). NMDA receptor blocker MK-801 (20 μM), competitive antagonist D-AP5 (10 μM) and competitive AMPA receptor antagonist NBQX (2 μM) abolished the activating ammonium mediated effect on the NMDA receptors while only MK-801, but not NBQX, abolished the inhibiting ammonium mediated effect on AMPA receptors. These data indicate that under acute hyperammonemia, the activity of NMDA receptors increases, while the activity of AMPA receptors decreases. This phenomenon could explain such a wide range of toxic effects of ammonium ions mediated by NMDA receptors.
Collapse
Affiliation(s)
- Artem M Kosenkov
- Institute of Cell Biophysics, RAS, Pushchino, Moscow Region, 142290, Russia.
| | - Sergei G Gaidin
- Institute of Cell Biophysics, RAS, Pushchino, Moscow Region, 142290, Russia
| | | | - Ilia Y Teplov
- Institute of Cell Biophysics, RAS, Pushchino, Moscow Region, 142290, Russia
| | - Valery P Zinchenko
- Institute of Cell Biophysics, RAS, Pushchino, Moscow Region, 142290, Russia
| |
Collapse
|
11
|
Zinchenko VP, Gaidin SG, Teplov IY, Kosenkov AM. Inhibition of spontaneous synchronous activity of hippocampal neurons by excitation of GABAergic neurons. BIOCHEMISTRY MOSCOW SUPPLEMENT SERIES A-MEMBRANE AND CELL BIOLOGY 2017. [DOI: 10.1134/s1990747817040110] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
12
|
Abulseoud OA, Zuccoli ML, Zhang L, Barnes A, Huestis MA, Lin DT. The acute effect of cannabis on plasma, liver and brain ammonia dynamics, a translational study. Eur Neuropsychopharmacol 2017; 27:679-690. [PMID: 28456476 PMCID: PMC6091863 DOI: 10.1016/j.euroneuro.2017.03.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 02/22/2017] [Accepted: 03/18/2017] [Indexed: 01/08/2023]
Abstract
Recent reports of ammonia released during cannabis smoking raise concerns about putative neurotoxic effects. Cannabis (54mg) was administered in a double-blind, placebo-controlled design to healthy cannabis users (n=15) either orally, or through smoking (6.9%THC cigarette) or inhalation of vaporized cannabis (Volcano®). Serial assay of plasma ammonia concentrations at 0, 2, 4, 6, 8, 10, 15, 30, and 90min from onset of cannabis administration showed significant time (P=0.016), and treatment (P=0.0004) effects with robust differences between placebo and edible at 30 (P=0.002), and 90min (P=0.007) and between placebo and vaporized (P=0.02) and smoking routes (P=0.01) at 90min. Furthermore, plasma ammonia positively correlated with blood THC concentrations (P=0.03). To test the hypothesis that this delayed increase in plasma ammonia originates from the brain we administered THC (3 and 10mg/kg) to mice and measured plasma, liver, and brain ammonia concentrations at 1, 3, 5 and 30min post-injection. Administration of THC to mice did not cause significant change in plasma ammonia concentrations within the first 5min, but significantly reduced striatal glutamine-synthetase (GS) activity (P=0.046) and increased striatal ammonia concentration (P=0.016). Furthermore, plasma THC correlated positively with striatal ammonia concentration (P<0.001) and negatively with striatal GS activity (P=0.030). At 30min, we found marked increase in striatal ammonia (P<0.0001) associated with significant increase in plasma ammonia (P=0.042) concentration. In conclusion, the results of these studies demonstrate that cannabis intake caused time and route-dependent increases in plasma ammonia concentrations in human cannabis users and reduced brain GS activity and increased brain and plasma ammonia concentrations in mice.
Collapse
Affiliation(s)
- Osama A Abulseoud
- Chemistry and Drug Metabolism Section, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA.
| | - Maria Laura Zuccoli
- Chemistry and Drug Metabolism Section, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA; Department of Internal Medicine, Pharmacology and Toxicology Unit, University of Genoa, Italy
| | - Lifeng Zhang
- Neural Engineering Unit, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA
| | - Allan Barnes
- Chemistry and Drug Metabolism Section, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA
| | - Marilyn A Huestis
- Chemistry and Drug Metabolism Section, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA
| | - Da-Ting Lin
- Neural Engineering Unit, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA.
| |
Collapse
|
13
|
Glutamine triggers long-lasting increase in striatal network activity in vitro. Exp Neurol 2017; 290:41-52. [DOI: 10.1016/j.expneurol.2017.01.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 12/05/2016] [Accepted: 01/04/2017] [Indexed: 01/04/2023]
|
14
|
Cytokine IL-10, activators of PI3-kinase, agonists of α-2 adrenoreceptor and antioxidants prevent ischemia-induced cell death in rat hippocampal cultures. Arch Biochem Biophys 2017; 615:35-43. [PMID: 28063948 DOI: 10.1016/j.abb.2017.01.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/21/2016] [Accepted: 01/03/2017] [Indexed: 12/27/2022]
Abstract
In the present work we compared the protective effect of anti-inflammatory cytokine IL-10 with the action of a PI3-kinase selective activator 740 Y-P, selective agonists of alpha-2 adrenoreceptor, guanfacine and UK-14,304, and compounds having antioxidant effect: recombinant human peroxiredoxin 6 and B27, in hippocampal cell culture during OGD (ischemia-like conditions). It has been shown that the response of cells to OGD in the control includes two phases. The first phase was accompanied by an increase in the frequency of spontaneous synchronous Ca2+-oscillations (SSCO) in neurons and Ca2+-pulse in astrocytes. Spontaneous Ca2+ events in astrocytes during ischemia in control experiments disappeared. The second phase started after a few minutes of OGD and looked like a sharp/avalanche, global synchronic (within 20 s) increase in [Ca2+]i in many cells. Within 1 h after OGD, a mass death of cells, primarily astrocytes, was observed. To study the protective action of the compounds, cells were incubated in the presence of the neuroprotective agents for 10-40 min or 24 h before ischemia. All the neuroprotective agents delayed a global [Ca2+]i increase during OGD or completely inhibited this process and increased cell survival.
Collapse
|
15
|
Zinchenko VP, Turovsky EA, Turovskaya MV, Berezhnov AV, Sergeev AI, Dynnik VV. NAD causes dissociation of neural networks into subpopulations of neurons by inhibiting the network synchronous hyperactivity evoked by ammonium ions. BIOCHEMISTRY MOSCOW SUPPLEMENT SERIES A-MEMBRANE AND CELL BIOLOGY 2016. [DOI: 10.1134/s1990747816020124] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Zinchenko VP, Turovskaya MV, Teplov IY, Berezhnov AV, Turovsky EA. The role of parvalbumin-containing interneurons in the regulation of spontaneous synchronous activity of brain neurons in culture. Biophysics (Nagoya-shi) 2016. [DOI: 10.1134/s0006350916010280] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|