1
|
Karadeniz N, Hajnal JV, Ipek Ö. Design of multi-row parallel-transmit coil arrays for enhanced SAR efficiency with deep brain electrodes at 3T: an electromagnetic simulation study. MAGMA (NEW YORK, N.Y.) 2025; 38:107-120. [PMID: 39541078 DOI: 10.1007/s10334-024-01212-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 10/20/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024]
Abstract
OBJECTIVE Tissue heating near the implanted deep brain stimulation (DBS) during magnetic resonance imaging (MRI) poses a significant safety constraint. This study aimed to evaluate the performance of parallel transmit (pTx) head transmit radiofrequency (RF) coils in DBS patients, with a focus on excitation fidelity under specific absorption rate (SAR) control for brain imaging at 3T MRI. MATERIALS AND METHODS We employed electromagnetic simulations to assess different coil configurations, including multi-row pTx coils of 16-24 channels arranged in 1, 2, and 3 rows, and compared these to a circularly polarised and pTx birdcage coil using a realistic human model without and with DBS leads and electrodes. RESULTS Two- and three-row pTx coils with overlapping loop elements exhibited similar performance, which was superior in excitation homogeneity and local SAR compared to the single-row coil and the birdcage coil both without and with DBS. DISCUSSION These findings suggest that multi-row coils can enhance the safety and efficacy of MRI in patients with DBS devices, so potentially improving imaging performance in this expanding patient population. There was a minimal difference in performance between the 2 and 3-row coils, favouring the simpler, lower channel count design for practical implementation.
Collapse
Affiliation(s)
- Nejat Karadeniz
- School of Biomedical Engineering and Imaging Science, King's College London, 3rd Floor Lambeth Wing, St Thomas' Hospital, Westminster Bridge Road, London, SE1 7EH, UK.
| | - Joseph V Hajnal
- School of Biomedical Engineering and Imaging Science, King's College London, 3rd Floor Lambeth Wing, St Thomas' Hospital, Westminster Bridge Road, London, SE1 7EH, UK
- Centre for the Developing Brain, King's College London, London, UK
| | - Özlem Ipek
- School of Biomedical Engineering and Imaging Science, King's College London, 3rd Floor Lambeth Wing, St Thomas' Hospital, Westminster Bridge Road, London, SE1 7EH, UK
| |
Collapse
|
2
|
Arianpouya M, Yang B, Tam F, McElcheran CE, Graham SJ. Optimized radiofrequency shimming using low-heating B1+-mapping in the presence of deep brain stimulation implants: Proof of concept. PLoS One 2024; 19:e0316002. [PMID: 39693369 DOI: 10.1371/journal.pone.0316002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 12/04/2024] [Indexed: 12/20/2024] Open
Abstract
MRI of patients with Deep Brain Stimulation (DBS) implants is constrained due to radiofrequency (RF) heating of the implant lead. However, "RF-shimming" parallel transmission (PTX) has the potential to reduce DBS heating during MRI. As part of using PTX in such a "safe mode", maps of the RF transmission field (B1+) are typically acquired for calibration purposes, with each transmit coil excited individually. These maps often have large zones of low signal intensity distant from the specific coil that is being excited, raising concerns that low signal-to-noise ratio (SNR) in these zones might negatively impact the ability of the optimized RF shim settings to suppress heating in safe mode. One way to improve SNR would be to increase RF transmission power during B1+ mapping, but this also raises heating concerns especially for coil elements proximal to the implant. Acting with an abundance of caution, it would be useful to investigate methods that permit B1+ mapping with low localized heating while producing high SNR measurements that lead to safe PTX RF shim settings. The present work addresses this issue in proof of concept using electromagnetic simulations and experimental PTX MRI. A two-step optimization algorithm is proposed and examined for a cylindrical phantom with an implanted wire to enable 1) robust B1+ mapping with low localized heating; and 2) robust RF shimming PTX with low localized heating and good B1+ homogeneity over a large imaging volume. Simulation and experimental outcomes were compared with those obtained using an existing simulation-driven workflow for obtaining safe mode RF shim settings, and for quadrature RF transmission using a circularly polarized (CP) birdcage head coil. Experimental results showed that although both existing and proposed safe-mode workflows effectively suppressed localized heating at the wire tip in comparison to the CP coil results, the proposed workflow produced much smaller temperature elevations and much improved signal uniformity. These promising results support continued investigation and refinement of the proposed workflow, involving more realistic scenarios toward ultimate implementations in DBS patients.
Collapse
Affiliation(s)
- Maryam Arianpouya
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Benson Yang
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Fred Tam
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Clare E McElcheran
- TECHNA Institute for the Advancement of Technology for Health, Toronto, ON, Canada
| | - Simon J Graham
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
3
|
Silemek B, Seifert F, Petzold J, Brühl R, Ittermann B, Winter L. Wirelessly interfacing sensor-equipped implants and MR scanners for improved safety and imaging. Magn Reson Med 2023; 90:2608-2626. [PMID: 37533167 DOI: 10.1002/mrm.29818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 08/04/2023]
Abstract
PURPOSE To investigate a novel reduced RF heating method for imaging in the presence of active implanted medical devices (AIMDs) which employs a sensor-equipped implant that provides wireless feedback. METHODS The implant, consisting of a generator case and a lead, measures RF-inducedE $$ E $$ -fields at the implant tip using a simple sensor in the generator case and transmits these values wirelessly to the MR scanner. Based on the sensor signal alone, parallel transmission (pTx) excitation vectors were calculated to suppress tip heating and maintain image quality. A sensor-based imaging metric was introduced to assess the image quality. The methodology was studied at 7T in testbed experiments, and at a 3T scanner in an ASTM phantom containing AIMDs instrumented with six realistic deep brain stimulation (DBS) lead configurations adapted from patients. RESULTS The implant successfully measured RF-inducedE $$ E $$ -fields (Pearson correlation coefficient squared [R2 ] = 0.93) and temperature rises (R2 = 0.95) at the implant tip. The implant acquired the relevant data needed to calculate the pTx excitation vectors and transmitted them wirelessly to the MR scanner within a single shot RF sequence (<60 ms). Temperature rises for six realistic DBS lead configurations were reduced to 0.03-0.14 K for heating suppression modes compared to 0.52-3.33 K for the worst-case heating, while imaging quality remained comparable (five of six lead imaging scores were ≥0.80/1.00) to conventional circular polarization (CP) images. CONCLUSION Implants with sensors that can communicate with an MR scanner can substantially improve safety for patients in a fast and automated manner, easing the current burden for MR personnel.
Collapse
Affiliation(s)
- Berk Silemek
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Frank Seifert
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Johannes Petzold
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Rüdiger Brühl
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Bernd Ittermann
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Lukas Winter
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| |
Collapse
|
4
|
Jiang F, Bhusal B, Nguyen B, Monge M, Webster G, Kim D, Bonmassar G, Popsecu AR, Golestanirad L. Modifying the trajectory of epicardial leads can substantially reduce MRI-induced RF heating in pediatric patients with a cardiac implantable electronic device at 1.5T. Magn Reson Med 2023; 90:2510-2523. [PMID: 37526134 PMCID: PMC10863853 DOI: 10.1002/mrm.29776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 05/12/2023] [Accepted: 06/06/2023] [Indexed: 08/02/2023]
Abstract
PURPOSE After epicardial cardiac implantable electronic devices are implanted in pediatric patients, they become ineligible to receive MRI exams due to an elevated risk of RF heating. We investigated whether simple modifications in the trajectories of epicardial leads could substantially and reliably reduce RF heating during MRI at 1.5 T, with benefits extending to abandoned leads. METHODS Electromagnetic simulations were performed to assess RF heating of two common 35-cm epicardial lead trajectories exhibiting different degrees of coupling with MRI incident electric fields. Experiments in anthropomorphic phantoms implanted with commercial cardiac implantable electronic devices confirmed the findings. Both electromagnetic simulations and experimental measurements were performed using head-first and feet-first positioning and various landmarks. Transfer function approach was used to assess the performance of suggested modifications in realistic body models. RESULTS Simulations (head-first, chest landmark) of a 35-cm epicardial lead with a trajectory where the excess length of the lead was looped and placed on the inferior surface of the heart showed an 87-fold reduction in the 0.1 g-averaged specific absorption rate compared with the lead where the excess length was looped on the anterior surface. Repeated experiments with a commercial epicardial device confirmed this. For fully implanted systems following low-specific absorption rate trajectories, there was a 16-fold reduction in the average temperature rise and a 28-fold reduction for abandoned leads. The transfer function method predicted a 7-fold reduction in the RF heating in 336 realistic scenarios. CONCLUSION Surgical modification of epicardial lead trajectory can substantially reduce RF heating at 1.5 T, with benefits extending to abandoned leads.
Collapse
Affiliation(s)
- Fuchang Jiang
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, Illinois, USA
| | - Bhumi Bhusal
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Bach Nguyen
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Michael Monge
- Division of Cardiovascular-Thoracic Surgery, Ann & Robert H. Lurie Children’s Hospital of Chicago, Box 22, 225 E. Chicago Ave, Chicago, Illinois, 60611, USA
| | - Gregory Webster
- Division of Cardiology, Ann and Robert H. Lurie Children’s Hospital of Chicago, Northwestern University Feinberg School of Medicine, 225 East Chicago Avenue, Box 21, Chicago, IL, 60611, USA
| | - Daniel Kim
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Giorgio Bonmassar
- A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA
| | - Andrada R. Popsecu
- Division of Medical Imaging, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, USA
| | - Laleh Golestanirad
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, Illinois, USA
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
5
|
Sadeghi-Tarakameh A, DelaBarre L, Zulkarnain NIH, Harel N, Eryaman Y. Implant-friendly MRI of deep brain stimulation electrodes at 7 T. Magn Reson Med 2023; 90:2627-2642. [PMID: 37533196 PMCID: PMC10543551 DOI: 10.1002/mrm.29825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 08/04/2023]
Abstract
PURPOSE The purpose of this study is to present a strategy to calculate the implant-friendly (IF) excitation modes-which mitigate the RF heating at the contacts of deep brain stimulation (DBS) electrodes-of multichannel RF coils at 7 T. METHODS An induced RF current on an implantable electrode generates a scattered magnetic field whose left-handed circularly polarizing component (B 1 + $$ B{1}^{+} $$ ) is approximated using aB 1 + $$ B{1}^{+} $$ -mapping technique and subsequently used as a gauge for the electrode's induced current. Using this approach, the relative induced currents resulting from each channel of a multichannel RF coil on the DBS electrode were calculated. The IF modes of the corresponding multichannel coil were determined by calculating the null space of the relative induced currents. The proposed strategy was tested and validated for unilateral and bilateral commercial DBS electrodes (directional lead; Infinity DBS system, Abbott Laboratories) placed inside a uniform phantom by performing heating and imaging studies on a 7T MRI scanner using a 16-channel transceive RF coil. RESULTS Neither individual IF modes nor shim solutions obtained from IF modes induced significant temperature increase when used for a high-power turbo spin-echo sequence. In contrast, shimming with the scanner's toolbox (i.e., based on per-channelB 1 + $$ B{1}^{+} $$ fields) resulted in a more than 2°C temperature increase for the same amount of input power. CONCLUSION A strategy for calculating the IF modes of a multichannel RF coil is presented. This strategy was validated using a 16-channel RF coil at 7 T for unilateral and bilateral commercial DBS electrodes inside a uniform phantom.
Collapse
Affiliation(s)
| | - Lance DelaBarre
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, Minnesota, USA
| | | | - Noam Harel
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, Minnesota, USA
| | - Yigitcan Eryaman
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
6
|
Yang B, Chen CH, Graham SJ. Technical note: System uncertainty on four- and eight-channel parallel RF transmission for safe MRI of deep brain stimulation devices. Med Phys 2023; 50:5913-5919. [PMID: 37469178 DOI: 10.1002/mp.16603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/21/2023] Open
Abstract
BACKGROUND Parallel radiofrequency transmission (pTx) remains a promising technology for addressing high-field magnetic resonance imaging (MRI) challenges, particularly regarding the safety of patients with implanted deep brain stimulation (DBS) devices. Radiofrequency (RF) shim optimization methods utilizing pTx technology have shown the potential to minimize induced RF heating effects at the electrode tips of DBS devices at 3 T. PURPOSE Research pTx system implementations often involve the combination of custom and commercial hardware that are integrated onto an existing MRI system. As a result, system characterization is important to ensure implant-friendly safe imaging conditions are satisfied for the operating range of the hardware. METHODS Utilizing electromagnetic and thermal simulations, the impact of system uncertainty is studied for the proposed 4- and 8-channel pTx system setup and its associated "safe mode" for DBS applications. RESULTS Electromagnetic simulations indicated that instrumentation errors can affect the overall electric field strength experienced at the DBS lead tip, and a worst-case system uncertainty analysis predicted temperature elevations of +1.5°C in the 4-channel setup and +0.9°C in the 8-channel setup. CONCLUSIONS In conclusion, system uncertainty can impact the precision of pTx RF inputs which in the worst-case, may lead to an unsafe imaging scenario and the proposed 8-channel setup may provide more robustness and thus, safer conditions for MRI of DBS patients.
Collapse
Affiliation(s)
- Benson Yang
- Sunnybrook Research Institute - Physical Sciences Platform, Toronto, ON, Canada
- Department of Electrical and Computer Engineering, McMaster University, Hamilton, ON, Canada
| | - Chih-Hung Chen
- Department of Electrical and Computer Engineering, McMaster University, Hamilton, ON, Canada
| | - Simon J Graham
- Sunnybrook Research Institute - Physical Sciences Platform, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
7
|
Jiang F, Henry KR, Bhusal B, Webster G, Bonmassar G, Kim D, Golestanirad L. RF-induced heating of capped and uncapped abandoned epicardial leads during MRI at 1.5 T and 3 T. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-5. [PMID: 38082570 PMCID: PMC10838566 DOI: 10.1109/embc40787.2023.10340533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
There is a paucity of data regarding the safety of magnetic resonance imaging (MRI) in patients with abandoned epicardial leads. Few studies have reported temperature rises up to 76 °C during MRI at 1.5 T in gel phantoms implanted with epicardial leads; however, lead trajectories used in these experiments were not clinically relevant. This work reports patient-specific RF heating of both capped and uncapped abandoned epicardial lead configurations during MRI at both 1.5 T and 3 T field strengths. We found that leads routed along realistic, patient-derived trajectories generated substantially lower RF heating than the previously reported worst-case phantom experiments. We also found that MRI at the head imaging landmark leads to substantially lower RF heating compared to MRI at the chest or abdomen landmarks at both 1.5 T and 3 T. Our results suggest that patients with abandoned epicardial leads may safely undergo MRI for head imaging, but caution is warranted during chest and abdominal imaging.Clinical Relevance- Patients with abandoned epicardial leads may safely undergo MRI for head imaging, but caution is warranted during chest and abdominal imaging.
Collapse
|
8
|
Petzold J, Schmitter S, Silemek B, Winter L, Speck O, Ittermann B, Seifert F. Towards an integrated radiofrequency safety concept for implant carriers in MRI based on sensor-equipped implants and parallel transmission. NMR IN BIOMEDICINE 2023; 36:e4900. [PMID: 36624556 DOI: 10.1002/nbm.4900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 10/11/2022] [Accepted: 01/04/2023] [Indexed: 06/15/2023]
Abstract
To protect implant carriers in MRI from excessive radiofrequency (RF) heating it has previously been suggested to assess that hazard via sensors on the implant. Other work recommended parallel transmission (pTx) to actively mitigate implant-related heating. Here, both ideas are integrated into one comprehensive safety concept where native pTx safety (without implant) is ensured by state-of-the-art field simulations and the implant-specific hazard is quantified in situ using physical sensors. The concept is demonstrated by electromagnetic simulations performed on a human voxel model with a simplified spinal-cord implant in an eight-channel pTx body coil at 3 T . To integrate implant and native safety, the sensor signal must be calibrated in terms of an established safety metric (e.g., specific absorption rate [SAR]). Virtual experiments show that E -field and implant-current sensors are well suited for this purpose, while temperature sensors require some caution, and B 1 probes are inadequate. Based on an implant sensor matrix Q s , constructed in situ from sensor readings, and precomputed native SAR limits, a vector space of safe RF excitations is determined where both global (native) and local (implant-related) safety requirements are satisfied. Within this safe-excitation subspace, the solution with the best image quality in terms of B 1 + magnitude and homogeneity is then found by a straightforward optimization algorithm. In the investigated example, the optimized pTx shim provides a 3-fold higher mean B 1 + magnitude compared with circularly polarized excitation for a maximum implant-related temperature increase ∆ T imp ≤ 1 K . To date, sensor-equipped implants interfaced to a pTx scanner exist as demonstrator items in research labs, but commercial devices are not yet within sight. This paper aims to demonstrate the significant benefits of such an approach and how this could impact implant-related RF safety in MRI. Today, the responsibility for safe implant scanning lies with the implant manufacturer and the MRI operator; within the sensor concept, the MRI manufacturer would assume much of the operator's current responsibility.
Collapse
Affiliation(s)
- Johannes Petzold
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
- Biomedical Magnetic Resonance, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Sebastian Schmitter
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Berk Silemek
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Lukas Winter
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Oliver Speck
- Biomedical Magnetic Resonance, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Bernd Ittermann
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Frank Seifert
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| |
Collapse
|
9
|
Vu J, Bhusal B, Rosenow J, Pilitsis J, Golestanirad L. Optimizing the trajectory of deep brain stimulation leads reduces RF heating during MRI at 3 T: Characteristics and clinical translation. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-5. [PMID: 38083480 PMCID: PMC10838567 DOI: 10.1109/embc40787.2023.10340979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Radiofrequency (RF) induced tissue heating around deep brain stimulation (DBS) leads is a well-known safety risk during magnetic resonance imaging (MRI), hindering routine protocols for patients. Known factors that contribute to variations in the magnitude of RF heating across patients include the implanted lead's trajectory and its orientation with respect to the MRI electric fields. Currently, there are no consistent requirements for surgically implanting the extracranial portion of the DBS lead. Recent studies have shown that incorporating concentric loops in the extracranial trajectory of the lead can reduce RF heating, but the optimal positioning of the loop is unknown. In this study, we evaluated RF heating of 77 unique lead trajectories to determine how different characteristics of the trajectory affect RF heating during MRI at 3 T. We performed phantom experiments with commercial DBS systems from two manufacturers to determine how consistently modifying the lead trajectory mitigates RF heating. We also presented the first surgical implementation of these modified trajectories in patients. Low-heating trajectories included small concentric loops near the surgical burr hole which were readily implemented during the surgical procedure; these trajectories generated nearly a 2-fold reduction in RF heating compared to unmodified trajectories.Clinical Relevance- Surgically modifying the DBS lead trajectory can be a cost-effective strategy for reducing RF-induced heating during MRI at 3 T.
Collapse
|
10
|
Chen X, Zheng C, Golestanirad L. Application of Machine learning to predict RF heating of cardiac leads during magnetic resonance imaging at 1.5 T and 3 T: A simulation study. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 349:107384. [PMID: 36842429 DOI: 10.1016/j.jmr.2023.107384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 01/04/2023] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
Predicting magnetic resonance imaging (MRI)-induced heating of elongated conductive implants, such as leads in cardiovascular implantable electronic devices, is essential to assessing patient safety. Phantom experiments have traditionally been used to estimate radio-frequency (RF) heating of implants, but they are time-consuming. Recently, machine learning has shown promise for fast prediction of RF heating of orthopaedic implants when the implant position within the MRI RF coil was predetermined. We explored whether deep learning could be applied to predict RF heating of conductive leads with variable positions and orientations during MRI at 1.5 T and 3 T. Models of 600 cardiac leads with clinically relevant trajectories were generated, and electromagnetic simulations were performed to calculate the maximum of the 1 g-averaged specific absorption rate (SAR) of RF energy at the tips of lead models during MRI at 1.5 T and 3 T. Neural networks were trained to predict the maximum SAR at the lead tip from the knowledge of the coordinates of points along the lead trajectory. Despite the large range of SAR values (∼230 W/kg to ∼ 3200 W/kg and ∼ 10 W/kg to ∼ 3300 W/kg), the root- mean-square error of the predicted vs ground truth SAR remained at 223 W/kg and 206 W/kg, with the R2 scores of 0.89 and 0.85 on the testing set for 1.5 T and 3 T models, respectively. The results suggest that machine learning is a promising approach for fast assessment of RF heating of lead-like implants when only the knowledge of the lead geometry and MRI RF coil features are in hand.
Collapse
Affiliation(s)
- Xinlu Chen
- Department of Electrical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Can Zheng
- Department of Electrical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - L Golestanirad
- Department of Electrical Engineering, Northwestern University, Evanston, IL, 60208, USA; Departmeng of Radiology, Northwestern University Chicago, IL 60611, USA; Departmeng of Biomedical Engineering, Northwestern University, Evanston, IL 60608, USA.
| |
Collapse
|
11
|
Arduino A, Baruffaldi F, Bottauscio O, Chiampi M, Martinez JA, Zanovello U, Zilberti L. Computational dosimetry in MRI in presence of hip, knee or shoulder implants: do we need accurate surgery models? Phys Med Biol 2022; 67. [PMID: 36541561 DOI: 10.1088/1361-6560/aca5e6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 11/24/2022] [Indexed: 11/27/2022]
Abstract
Objective.To quantify the effects of different levels of realism in the description of the anatomy around hip, knee or shoulder implants when simulating, numerically, radiofrequency and gradient-induced heating in magnetic resonance imaging. This quantification is needed to define how precise the digital human model modified with the implant should be to get realistic dosimetric assessments.Approach. The analysis is based on a large number of numerical simulations where four 'levels of realism' have been adopted in modelling human bodies carrying orthopaedic implants.Main results. Results show that the quantification of the heating due to switched gradient fields does not strictly require a detailed local anatomical description when preparing the digital human model carrying an implant. In this case, a simple overlapping of the implant CAD with the body anatomy is sufficient to provide a quite good and conservative estimation of the heating. On the contrary, the evaluation of the electromagnetic field distribution and heating caused by the radiofrequency field requires an accurate description of the tissues around the prosthesis.Significance. The results of this paper provide hints for selecting the 'level of realism' in the definition of the anatomical models with embedded passive implants when performing simulations that should reproduce, as closely as possible, thein vivoscenarios of patients carrying orthopaedic implants.
Collapse
Affiliation(s)
| | | | | | - Mario Chiampi
- Istituto Nazionale di Ricerca Metrologica (INRIM), Torino, Italy
| | | | | | - Luca Zilberti
- Istituto Nazionale di Ricerca Metrologica (INRIM), Torino, Italy
| |
Collapse
|
12
|
Vu J, Bhusal B, Nguyen BT, Sanpitak P, Nowac E, Pilitsis J, Rosenow J, Golestanirad L. A comparative study of RF heating of deep brain stimulation devices in vertical vs. horizontal MRI systems. PLoS One 2022; 17:e0278187. [PMID: 36490249 PMCID: PMC9733854 DOI: 10.1371/journal.pone.0278187] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/11/2022] [Indexed: 12/13/2022] Open
Abstract
The majority of studies that assess magnetic resonance imaging (MRI) induced radiofrequency (RF) heating of the tissue when active electronic implants are present have been performed in horizontal, closed-bore MRI systems. Vertical, open-bore MRI systems have a 90° rotated magnet and a fundamentally different RF coil geometry, thus generating a substantially different RF field distribution inside the body. Little is known about the RF heating of elongated implants such as deep brain stimulation (DBS) devices in this class of scanners. Here, we conducted the first large-scale experimental study investigating whether RF heating was significantly different in a 1.2 T vertical field MRI scanner (Oasis, Fujifilm Healthcare) compared to a 1.5 T horizontal field MRI scanner (Aera, Siemens Healthineers). A commercial DBS device mimicking 30 realistic patient-derived lead trajectories extracted from postoperative computed tomography images of patients who underwent DBS surgery at our institution was implanted in a multi-material, anthropomorphic phantom. RF heating around the DBS lead was measured during four minutes of high-SAR RF exposure. Additionally, we performed electromagnetic simulations with leads of various internal structures to examine this effect on RF heating. When controlling for RMS B1+, the temperature increase around the DBS lead-tip was significantly lower in the vertical scanner compared to the horizontal scanner (0.33 ± 0.24°C vs. 4.19 ± 2.29°C). Electromagnetic simulations demonstrated up to a 17-fold reduction in the maximum of 0.1g-averaged SAR in the tissue surrounding the lead-tip in the vertical scanner compared to the horizontal scanner. Results were consistent across leads with straight and helical internal wires. Radiofrequency heating and power deposition around the DBS lead-tip were substantially lower in the 1.2 T vertical scanner compared to the 1.5 T horizontal scanner. Simulations with different lead structures suggest that the results may extend to leads from other manufacturers.
Collapse
Affiliation(s)
- Jasmine Vu
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, Illinois, United States of America
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Bhumi Bhusal
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Bach T. Nguyen
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Pia Sanpitak
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, Illinois, United States of America
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Elizabeth Nowac
- Illinois Bone and Joint Institute (IBJI), Wilmette, Illinois, United States of America
| | - Julie Pilitsis
- Department of Neurosciences & Experimental Therapeutics, Albany Medical College, Albany, New York, United States of America
| | - Joshua Rosenow
- Department of Neurosurgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Laleh Golestanirad
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, Illinois, United States of America
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
13
|
Novel materials in magnetic resonance imaging: high permittivity ceramics, metamaterials, metasurfaces and artificial dielectrics. MAGNETIC RESONANCE MATERIALS IN PHYSICS, BIOLOGY AND MEDICINE 2022; 35:875-894. [PMID: 35471464 PMCID: PMC9596558 DOI: 10.1007/s10334-022-01007-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/18/2022] [Accepted: 03/07/2022] [Indexed: 11/01/2022]
Abstract
AbstractThis article reviews recent developments in designing and testing new types of materials which can be: (i) placed around the body for in vivo imaging, (ii) be integrated into a conventional RF coil, or (iii) form the resonator itself. These materials can improve the quality of MRI scans for both in vivo and magnetic resonance microscopy applications. The methodological section covers the basic operation and design of two different types of materials, namely high permittivity materials constructed from ceramics and artificial dielectrics/metasurfaces formed by coupled conductive subunits, either in air or surrounded by dielectric material. Applications of high permittivity materials and metasurfaces placed next to the body to neuroimaging and extremity imaging at 7 T, body and neuroimaging at 3 T, and extremity imaging at 1.5 T are shown. Results using ceramic resonators for both high field in vivo imaging and magnetic resonance microscopy are also shown. The development of new materials to improve MR image quality remains an active area of research, but has not yet found significant use in clinical applications. This is mainly due to practical issues such as specific absorption rate modelling, accurate and reproducible placement, and acceptable size/weight of such materials. The most successful area has been simple “dielectric pads” for neuroimaging at 7 T which were initially developed somewhat as a stop-gap while parallel transmit technology was being developed, but have continued to be used at many sites. Some of these issues can potentially be overcome using much lighter metasurfaces and artificial dielectrics, which are just beginning to be assessed.
Collapse
|
14
|
Stijnman PRS, Erturk MA, van den Berg CAT, Raaijmakers AJE. A single setup approach for the MRI-based measurement and validation of the transfer function of elongated medical implants. Magn Reson Med 2021; 86:2751-2765. [PMID: 34036617 PMCID: PMC8596675 DOI: 10.1002/mrm.28840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 04/23/2021] [Accepted: 04/23/2021] [Indexed: 12/15/2022]
Abstract
PURPOSE To propose a single setup using the MRI to both measure and validate the transfer function (TF) of linear implants. Conventionally, the TF of an implant is measured in one bench setup and validated using another. METHODS It has been shown that the TF can be measured using MRI. To validate this measurement, the implant is exposed to different incident electric fields, while the temperature increase at the tip is monitored. For a good validation, the incident electric fields that the implant is exposed to should be orthogonal. We perform a simulation study on six different methods that change the incident electric field. Afterward, a TF measurement and validation study using the best method from the simulations is performed. This is done with fiberoptic temperature probes at 1.5 T for four linear implant structures using the proposed single setup. RESULTS The simulation study showed that positioning local transmit coils at different locations along the lead trajectory has a similar validation quality compared with changing the implant trajectory (ie, the conventional validation method). For the validation study that was performed, an R2 ≥ 0.91 was found for the four investigated leads. CONCLUSION A single setup to both measure and validate the transfer function using local transmit coils has been shown to work. The benefits of using the proposed validation method are that there is only one setup required instead of two and the implant trajectory is not varied; therefore, the relative distance between the leap tip and the temperature probe is constant.
Collapse
Affiliation(s)
- Peter R. S. Stijnman
- Computational Imaging Group for MRI diagnostics and therapyCenter for Image Sciences UMC UtrechtUtrechtthe Netherlands
- Department of Biomedical EngineeringEindhoven University of TechnologyEindhoven, Brabantthe Netherlands
| | - M. Arcan Erturk
- Restorative Therapies Group, Implantables R&D, Medtronic PLCMinneapolisMinnesotaUSA
| | - Cornelis A. T. van den Berg
- Computational Imaging Group for MRI diagnostics and therapyCenter for Image Sciences UMC UtrechtUtrechtthe Netherlands
| | - Alexander J. E. Raaijmakers
- Computational Imaging Group for MRI diagnostics and therapyCenter for Image Sciences UMC UtrechtUtrechtthe Netherlands
- Department of Biomedical EngineeringEindhoven University of TechnologyEindhoven, Brabantthe Netherlands
| |
Collapse
|
15
|
Zheng C, Chen X, Nguyen BT, Sanpitak P, Vu J, Bagci U, Golestanirad L. Predicting RF Heating of Conductive Leads During Magnetic Resonance Imaging at 1.5 T: A Machine Learning Approach . ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:4204-4208. [PMID: 34892151 PMCID: PMC9940641 DOI: 10.1109/embc46164.2021.9630718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The number of patients with active implantable medical devices continues to rise in the United States and around the world. It is estimated that 50-75% of patients with conductive implants will need magnetic resonance imaging (MRI) in their lifetime. A major risk of performing MRI in patients with elongated conductive implants is the radiofrequency (RF) heating of the tissue surrounding the implant's tip due to the antenna effect. Currently, applying full-wave electromagnetic simulation is the standard way to predict the interaction of MRI RF fields with the human body in the presence of conductive implants; however, these simulations are notoriously extensive in terms of memory requirement and computational time. Here we present a proof-of-concept simulation study to demonstrate the feasibility of applying machine learning to predict MRI-induced power deposition in the tissue surrounding conductive wires. We generated 600 clinically relevant trajectories of leads as observed in patients with cardiac conductive implants and trained a feedforward neural network to predict the 1g-averaged SAR at the lead tips knowing only the background field of MRI RF coil and coordinates of points along the lead trajectory. Training of the network was completed in 11.54 seconds and predictions were made within a second with R2 = 0.87 and Root Mean Squared Error (RMSE) = 14.5 W/kg. Our results suggest that machine learning could provide a promising approach for safety assessment of MRI in patients with conductive leads.Clinical Relevance- Machine learning can potentially allow real-time assessment of MRI RF safety in patients with conductive leads when only the knowledge of lead's trajectory (image-based) and MRI RF coil features (vendor-specific) are in hand.
Collapse
Affiliation(s)
- Can Zheng
- Department of Electrical Engineering, Northwestern University, Evanston, IL 60208 USA
| | - Xinlu Chen
- Department of Electrical Engineering, Northwestern University, Evanston, IL 60208 USA
| | - Bach T. Nguyen
- Department of Radiology, Northwestern University Chicago, IL 60611 USA
| | - Pia Sanpitak
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60608 USA
| | - Jasmine Vu
- Department of Radiology, Northwestern University Chicago, IL 60611 USA
| | - Ulas Bagci
- Department of Radiology, Northwestern University Chicago, IL 60611 USA
| | - Laleh Golestanirad
- Department of Radiology and Department of Biomedical Engineering, Northwestern University, Chicago, IL, 60611 USA
| |
Collapse
|
16
|
Godinez F, Tomi-Tricot R, Quesson B, Barthel M, Lykowsky G, Scott G, Razavi R, Hajnal J, Malik S. An 8 channel parallel transmit system with current sensor feedback for MRI-guided interventional applications. Phys Med Biol 2021; 66. [PMID: 34649230 DOI: 10.1088/1361-6560/ac2fbe] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 10/14/2021] [Indexed: 11/12/2022]
Abstract
Background.Parallel transmit (pTx) has introduced many benefits to magnetic resonance imaging (MRI) with regard to decreased specific absorption rates and improved transmit field homogeneity, of particular importance in applications at higher magnetic field strengths. PTx has also been proposed as a solution to mitigating dangerous RF induced heating of elongated conductive devices such as those used in cardiac interventions. In this work we present a system that can augment a conventional scanner with pTx, in particular for use in interventional MRI for guidewire safety, by adjusting the amplitude and phase of each channel right before the start of the imaging pulses.Methods.The pTx system was designed to work in-line with a 1.5 T MRI while the RF synthesis and imaging control was maintained on the host MR scanner. The add-on pTx system relies on the RF transmit signal, unblanking pulse, and a protocol driven trigger from the scanner. The RF transmit was split into multiple fully modulated transmit signals to drive an array of custom transceiver coils. The performance of the 8-channel implementation was tested with regards to active and real-time control of RF induced currents on a standard guidewire, heating mitigation tests, and anatomical imaging in sheep.Results. The pTx system was intended to update RF shims in real-time and it was demonstrated that the safe RF shim could be determined while the guidewire is moved. The anatomical imaging demonstrated that cardiac anatomy and neighbouring superficial structures could be fully characterized with the pTx system inline.Conclusion.We have presented the design and performance of a real-time feedback control pTx system capable of adding such capabilities to a conventional MRI with the focus of guidewire imaging in cardiac interventional MRI applications.
Collapse
Affiliation(s)
- Felipe Godinez
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United kingdom.,Centre for the Developing Brain, King's College London, London, United kingdom.,Department of Radiology, University of California Davis, Sacramento, California, United States of America
| | - Raphael Tomi-Tricot
- MR Research Collaborations, Siemens Healthcare Limited, Frimley, United Kingdom
| | - Bruno Quesson
- Centre de recherche Cardio-Thoracique de Bordeaux/IHU Liryc, INSERM U1045-University of Bordeaux, Pessac, France
| | | | | | - Greig Scott
- Magnetic Resonance Systems Research Laboratory, Department of Electrical Engineering, Stanford University, Stanford, California, United States of America
| | - Reza Razavi
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United kingdom.,Department of Congenital Cardiology, Evelina London Children's Healthcare, Guys and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Joseph Hajnal
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United kingdom.,Centre for the Developing Brain, King's College London, London, United kingdom
| | - Shaihan Malik
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United kingdom.,Centre for the Developing Brain, King's College London, London, United kingdom
| |
Collapse
|
17
|
Bhusal B, Stockmann J, Guerin B, Mareyam A, Kirsch J, Wald LL, Nolt MJ, Rosenow J, Lopez-Rosado R, Elahi B, Golestanirad L. Safety and image quality at 7T MRI for deep brain stimulation systems: Ex vivo study with lead-only and full-systems. PLoS One 2021; 16:e0257077. [PMID: 34492090 PMCID: PMC8423254 DOI: 10.1371/journal.pone.0257077] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 08/23/2021] [Indexed: 11/19/2022] Open
Abstract
Ultra-high field MRI at 7 T can produce much better visualization of sub-cortical structures compared to lower field, which can greatly help target verification as well as overall treatment monitoring for patients with deep brain stimulation (DBS) implants. However, use of 7 T MRI for such patients is currently contra-indicated by guidelines from the device manufacturers due to the safety issues. The aim of this study was to provide an assessment of safety and image quality of ultra-high field magnetic resonance imaging at 7 T in patients with deep brain stimulation implants. We performed experiments with both lead-only and complete DBS systems implanted in anthropomorphic phantoms. RF heating was measured for 43 unique patient-derived device configurations. Magnetic force measurements were performed according to ASTM F2052 test method, and device integrity was assessed before and after experiments. Finally, we assessed electrode artifact in a cadaveric brain implanted with an isolated DBS lead. RF heating remained below 2°C, similar to a fever, with the 95% confidence interval between 0.38°C-0.52°C. Magnetic forces were well below forces imposed by gravity, and thus not a source of concern. No device malfunctioning was observed due to interference from MRI fields. Electrode artifact was most noticeable on MPRAGE and T2*GRE sequences, while it was minimized on T2-TSE images. Our work provides the safety assessment of ultra-high field MRI at 7 T in patients with DBS implants. Our results suggest that 7 T MRI may be performed safely in patients with DBS implants for specific implant models and MRI hardware.
Collapse
Affiliation(s)
- Bhumi Bhusal
- Department of Radiology, Northwestern University, Chicago, IL, United States of America
| | - Jason Stockmann
- Department of Radiology, Harvard Medical School, Boston, MA, United States of America
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States of America
| | - Bastien Guerin
- Department of Radiology, Harvard Medical School, Boston, MA, United States of America
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States of America
| | - Azma Mareyam
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States of America
| | - John Kirsch
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States of America
| | - Lawrence L. Wald
- Department of Radiology, Harvard Medical School, Boston, MA, United States of America
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States of America
| | - Mark J. Nolt
- Department of Neurosurgery, Northwestern University, Chicago, IL, United States of America
| | - Joshua Rosenow
- Department of Neurosurgery, Northwestern University, Chicago, IL, United States of America
| | - Roberto Lopez-Rosado
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, United States of America
| | - Behzad Elahi
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, United States of America
| | - Laleh Golestanirad
- Department of Radiology, Northwestern University, Chicago, IL, United States of America
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, United States of America
| |
Collapse
|
18
|
Silemek B, Seifert F, Petzold J, Hoffmann W, Pfeiffer H, Speck O, Rose G, Ittermann B, Winter L. Rapid safety assessment and mitigation of radiofrequency induced implant heating using small root mean square sensors and the sensor matrix Q s. Magn Reson Med 2021; 87:509-527. [PMID: 34397114 DOI: 10.1002/mrm.28968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/20/2021] [Accepted: 07/26/2021] [Indexed: 11/07/2022]
Abstract
PURPOSE Rapid detection and mitigation of radiofrequency (RF)-induced implant heating during MRI based on small and low-cost embedded sensors. THEORY AND METHODS A diode and a thermistor are embedded at the tip of an elongated mock implant. RF-induced voltages or temperature change measured by these root mean square (RMS) sensors are used to construct the sensor Q-Matrix (QS ). Hazard prediction, monitoring and parallel transmit (pTx)-based mitigation using these sensors is demonstrated in benchtop measurements at 300 MHz and within a 3T MRI. RESULTS QS acquisition and mitigation can be performed in <20 ms demonstrating real-time capability. The acquisitions can be performed using safe low powers (<3 W) due to the high reading precision of the diode (126 µV) and thermistor (26 µK). The orthogonal projection method used for pTx mitigation was able to reduce the induced signals and temperatures in all 155 investigated locations. Using the QS approach in a pTx capable 3T MRI with either a two-channel body coil or an eight-channel head coil, RF-induced heating was successfully assessed, monitored and mitigated while the image quality outside the implant region was preserved. CONCLUSION Small (<1.5 mm3 ) and low-cost (<1 €) RMS sensors embedded in an implant can provide all relevant information to predict, monitor and mitigate RF-induced heating in implants, while preserving image quality. The proposed pTx-based QS approach is independent of simulations or in vitro testing and therefore complements these existing safety assessments.
Collapse
Affiliation(s)
- Berk Silemek
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Frank Seifert
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Johannes Petzold
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Werner Hoffmann
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Harald Pfeiffer
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Oliver Speck
- Biomedical Magnetic Resonance, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany.,German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany.,Leibniz Institute for Neurobiology (LIN), Magdeburg, Germany.,Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| | - Georg Rose
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany.,Institute for Medical Engineering and Research Campus STIMULATE, University of Magdeburg, Magdeburg, Germany
| | - Bernd Ittermann
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Lukas Winter
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| |
Collapse
|
19
|
Wang Y, Zheng J, Guo R, Wang Q, Kainz W, Long S, Chen J. A technique for the reduction of RF-induced heating of active implantable medical devices during MRI. Magn Reson Med 2021; 87:349-364. [PMID: 34374457 DOI: 10.1002/mrm.28953] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/15/2021] [Accepted: 07/17/2021] [Indexed: 12/21/2022]
Abstract
PURPOSE The paper presents a novel method to reduce the RF-induced heating of active implantable medical devices during MRI. METHODS With the addition of an energy decoying and dissipating structure, RF energy can be redirected toward the dissipating rings through the decoying conductor. Three lead groups (45 cm-50 cm) and 4 (50 cm-100 cm) were studied in 1.5 Tesla MR systems by simulation and measurement, respectively. In vivo modeling was performed using human models to estimate the RF-induced heating of an active implantable medical device for spinal cord treatment. RESULT In the simulation study, it was shown that the peak 1g-averaged specific absorption rate near the lead-tips can be reduced by 70% to 80% compared to those from the control leads. In the experimental measurements during a 2-min exposure test in a 1.5 Telsa MR system, the temperature rises dropped from the original 18.3℃, 25.8℃, 8.1℃, and 16.1℃ (control leads 1-4) to 5.4℃, 6.9℃, 1.6℃, and 3.3℃ (leads 1-4 with the energy decoying and dissipation structure). The in vivo calculation results show that the maximum induced temperature rise among all cases can be substantially reduced (up to 80%) when the energy decoying and dissipating structures were used. CONCLUSION Our studies confirm the effectiveness of the novel technique for a variety of scanning scenarios. The results also indicate that the decoying conductor length, number of rings, and ring area must be carefully chosen and validated.
Collapse
Affiliation(s)
- Yu Wang
- Department of Electrical and Computer Engineering, University of Houston, Houston, Texas, USA
| | - Jianfeng Zheng
- Department of Electrical and Computer Engineering, University of Houston, Houston, Texas, USA
| | - Ran Guo
- Department of Electrical and Computer Engineering, University of Houston, Houston, Texas, USA
| | - Qingyan Wang
- Department of Electrical and Computer Engineering, University of Houston, Houston, Texas, USA
| | - Wolfgang Kainz
- Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Stuart Long
- Department of Electrical and Computer Engineering, University of Houston, Houston, Texas, USA
| | - Ji Chen
- Department of Electrical and Computer Engineering, University of Houston, Houston, Texas, USA
| |
Collapse
|
20
|
Kazemivalipour E, Bhusal B, Vu J, Lin S, Nguyen BT, Kirsch J, Nowac E, Pilitsis J, Rosenow J, Atalar E, Golestanirad L. Vertical open-bore MRI scanners generate significantly less radiofrequency heating around implanted leads: A study of deep brain stimulation implants in 1.2T OASIS scanners versus 1.5T horizontal systems. Magn Reson Med 2021; 86:1560-1572. [PMID: 33961301 DOI: 10.1002/mrm.28818] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 04/05/2021] [Accepted: 04/07/2021] [Indexed: 12/17/2022]
Abstract
PURPOSE Patients with active implants such as deep brain stimulation (DBS) devices are often denied access to MRI due to safety concerns associated with the radiofrequency (RF) heating of their electrodes. The majority of studies on RF heating of conductive implants have been performed in horizontal close-bore MRI scanners. Vertical MRI scanners which have a 90° rotated transmit coil generate fundamentally different electric and magnetic field distributions, yet very little is known about RF heating of implants in this class of scanners. We performed numerical simulations as well as phantom experiments to compare RF heating of DBS implants in a 1.2T vertical scanner (OASIS, Hitachi) compared to a 1.5T horizontal scanner (Aera, Siemens). METHODS Simulations were performed on 90 lead models created from post-operative CT images of patients with DBS implants. Experiments were performed with wires and commercial DBS devices implanted in an anthropomorphic phantom. RESULTS We found significant reduction of 0.1 g-averaged specific absorption rate (30-fold, P < 1 × 10-5 ) and RF heating (9-fold, P < .026) in the 1.2T vertical scanner compared to the 1.5T conventional scanner. CONCLUSION Vertical MRI scanners appear to generate lower RF heating around DBS leads, providing potentially heightened safety or the flexibility to use sequences with higher power levels than on conventional systems.
Collapse
Affiliation(s)
- Ehsan Kazemivalipour
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.,Department of Electrical and Electronics Engineering, Bilkent University, Ankara, Turkey.,National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara, Turkey
| | - Bhumi Bhusal
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Jasmine Vu
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.,Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, Illinois, USA
| | - Stella Lin
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Bach Thanh Nguyen
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - John Kirsch
- A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Elizabeth Nowac
- Department of Neurosurgery, Albany Medical Center, Albany, New York, USA
| | - Julie Pilitsis
- Illinois Bone and Joint Institute (IBJI), Wilmette, Illinois, USA
| | - Joshua Rosenow
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Ergin Atalar
- Department of Electrical and Electronics Engineering, Bilkent University, Ankara, Turkey.,National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara, Turkey
| | - Laleh Golestanirad
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.,Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, Illinois, USA
| |
Collapse
|
21
|
Winter L, Silemek B, Petzold J, Pfeiffer H, Hoffmann W, Seifert F, Ittermann B. Parallel transmission medical implant safety testbed: Real‐time mitigation of RF induced tip heating using time‐domain E‐field sensors. Magn Reson Med 2020; 84:3468-3484. [DOI: 10.1002/mrm.28379] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 05/19/2020] [Accepted: 05/22/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Lukas Winter
- Physikalisch‐Technische Bundesanstalt (PTB) Braunschweig and Berlin Germany
| | - Berk Silemek
- Physikalisch‐Technische Bundesanstalt (PTB) Braunschweig and Berlin Germany
| | - Johannes Petzold
- Physikalisch‐Technische Bundesanstalt (PTB) Braunschweig and Berlin Germany
| | - Harald Pfeiffer
- Physikalisch‐Technische Bundesanstalt (PTB) Braunschweig and Berlin Germany
| | - Werner Hoffmann
- Physikalisch‐Technische Bundesanstalt (PTB) Braunschweig and Berlin Germany
| | - Frank Seifert
- Physikalisch‐Technische Bundesanstalt (PTB) Braunschweig and Berlin Germany
| | - Bernd Ittermann
- Physikalisch‐Technische Bundesanstalt (PTB) Braunschweig and Berlin Germany
| |
Collapse
|
22
|
Kazemivalipour E, Vu J, Lin S, Bhusal B, Thanh Nguyen B, Kirsch J, Elahi B, Rosenow J, Atalar E, Golestanirad L. RF heating of deep brain stimulation implants during MRI in 1.2 T vertical scanners versus 1.5 T horizontal systems: A simulation study with realistic lead configurations. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2020:6143-6146. [PMID: 33019373 PMCID: PMC10882580 DOI: 10.1109/embc44109.2020.9175737] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Patients with deep brain stimulation (DBS) implants are often denied access to magnetic resonance imaging (MRI) due to safety concerns associated with RF heating of implants. Although MR-conditional DBS devices are available, complying with manufacturer guidelines has proved to be difficult as pulse sequences that optimally visualize DBS target structures tend to have much higher specific absorption rate (SAR) of radiofrequency energy than current guidelines allow. The MR-labeling of DBS devices, as well as the majority of studies on RF heating of conductive implants have been limited to horizontal close-bore MRI scanners. Vertical MRI scanners, originally introduced as open low-field MRI systems, are now available at 1.2 T field strength, capable of high-resolution structural and functional imaging. No literature exists on DBS SAR in this class of scanners which have a 90° rotated transmit coil and thus, generate a fundamentally different electric and magnetic field distributions. Here we present a simulation study of RF heating in a cohort of forty patient-derived DBS lead models during MRI in a commercially available vertical openbore MRI system (1.2 T OASIS, Hitachi) and a standard horizontal 1.5 T birdcage coil. Simulations were performed at two major imaging landmarks representing head and chest imaging. We calculated the maximum of 0.1g-averaged SAR (0.1g-SARMax) around DBS lead tips when a B1+ = 4 µT was generated on an axial plane passing through patients body. For head landmark, 0.1g-SARMax reached 220±188 W/kg in the 1.5 T birdcage coil, but only 14±11 W/kg in the OASIS coil. For chest landmark, 0.1g-SARMax was 24±17 W/kg in the 1.5 T birdcage coil and 3±2 W/kg in the OASIS coil. A paired two-tail t-test revealed a significant reduction in SAR with a large effect-size during head MRI (p < 1.5×10-8, Cohen's d = 1.5) as well as chest MRI (p < 6.5×10-10, Cohen's d = 1.7) in 1.2 T Hitachi OASIS coil compared to a standard 1.5 T birdcage transmitter. Our findings suggest that open-bore vertical scanners may offer an untapped opportunity for MRI of patients with DBS implants.
Collapse
|
23
|
Wang Y, Zheng J, Wang Q, Chen J. A counterpoise design for RF-induced heating reduction. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2020:4200-4203. [PMID: 33018923 DOI: 10.1109/embc44109.2020.9175891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This paper presents a novel lead body design for active implantable medical devices (AIMD) to reduce Radio-frequency (RF) induced heating during magnetic resonance imaging (MRI) scanning. By introducing a counterpoise electrode to the original lead construct, part of the RF-induced energy can be decoyed into the surrounding tissues while the therapy signal is intact. The numerical simulation studies of three leads with different configurations are presented to demonstrate the effectiveness of this technique. From simulation results at 1.5 T, the peak 1g average SAR value can be reduced by a factor of 3 when the length of the counterpoise electrode is properly designed.
Collapse
|
24
|
Vu J, Bhusal B, Nguyen BT, Golestanirad L. Evaluating Accuracy of Numerical Simulations in Predicting Heating of Wire Implants During MRI at 1.5 T. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2020:6107-6110. [PMID: 33019364 PMCID: PMC10900227 DOI: 10.1109/embc44109.2020.9175724] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Patients with long conductive implants such as deep brain stimulation (DBS) leads are often denied access to magnetic resonance imaging (MRI) exams due to safety concerns associated with radiofrequency (RF) heating of implants. Experimental temperature measurements in tissue-mimicking gel phantoms under MRI RF exposure conditions are common practices to predict in-vivo heating in the tissue surrounding wire implants. Such experiments are both expensive-as they require access to MRI units-and time-consuming due to complex implant setups. Recently, full-wave numerical simulations, which include realistic MRI RF coil models and human phantoms, are suggested as an alternative to experiments. There is however, little literature available on the accuracy of such numerical models against direct thermal measurements. This study aimed to evaluate the agreement between simulations and measurements of temperature rise at the tips of wire implants exposed to RF exposure at 64 MHz (1.5 T) for different implant trajectories typically encountered in patients with DBS leads. Heating was assessed in seven patient-derived lead configurations using both simulations and RF heating measurements during imaging of an anthropomorphic head phantom with implanted wires. We found substantial variation in RF heating as a function of lead trajectory; there was a 9.5-fold and 9-fold increase in temperature rise from ID1 to ID7 during simulations and experimental measurements, respectively. There was a strong correlation (r2 = 0.74) between simulated and measured temperatures for different lead trajectories. The maximum difference between simulated and measured temperature was 0.26 °C with simulations overestimating the temperature rise.
Collapse
|
25
|
Boutet A, Chow CT, Narang K, Elias GJB, Neudorfer C, Germann J, Ranjan M, Loh A, Martin AJ, Kucharczyk W, Steele CJ, Hancu I, Rezai AR, Lozano AM. Improving Safety of MRI in Patients with Deep Brain Stimulation Devices. Radiology 2020; 296:250-262. [PMID: 32573388 DOI: 10.1148/radiol.2020192291] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
MRI is a valuable clinical and research tool for patients undergoing deep brain stimulation (DBS). However, risks associated with imaging DBS devices have led to stringent regulations, limiting the clinical and research utility of MRI in these patients. The main risks in patients with DBS devices undergoing MRI are heating at the electrode tips, induced currents, implantable pulse generator dysfunction, and mechanical forces. Phantom model studies indicate that electrode tip heating remains the most serious risk for modern DBS devices. The absence of adverse events in patients imaged under DBS vendor guidelines for MRI demonstrates the general safety of MRI for patients with DBS devices. Moreover, recent work indicates that-given adequate safety data-patients may be imaged outside these guidelines. At present, investigators are primarily focused on improving DBS device and MRI safety through the development of tools, including safety simulation models. Existing guidelines provide a standardized framework for performing safe MRI in patients with DBS devices. It also highlights the possibility of expanding MRI as a tool for research and clinical care in these patients going forward.
Collapse
Affiliation(s)
- Alexandre Boutet
- From the University Health Network, Toronto, Canada (A.B., C.T.C., K.N., G.J.B.E., C.N., J.G., A.L., W.K., A.M.L.); Joint Department of Medical Imaging, University of Toronto, Toronto, Canada (A.B., W.K.); Department of Neurosurgery, West Virginia University, Morgantown, WVa (M.R., A.R.R.); Department of Neurosurgery, Rockefeller Neuroscience Institute, Morgantown, WVa (M.R., A.R.R.); Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, Calif (A.J.M.); Department of Psychology, Concordia University, Montreal, Canada (C.J.S.); Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (C.J.S.); Center for Scientific Review, National Institutes of Health, Bethesda, Md (I.H.); and Division of Neurosurgery, Department of Surgery, Toronto Western Hospital and University of Toronto, 399 Bathurst St, WW 4-437, Toronto, ON, Canada M5T 2S8 (A.M.L.)
| | - Clement T Chow
- From the University Health Network, Toronto, Canada (A.B., C.T.C., K.N., G.J.B.E., C.N., J.G., A.L., W.K., A.M.L.); Joint Department of Medical Imaging, University of Toronto, Toronto, Canada (A.B., W.K.); Department of Neurosurgery, West Virginia University, Morgantown, WVa (M.R., A.R.R.); Department of Neurosurgery, Rockefeller Neuroscience Institute, Morgantown, WVa (M.R., A.R.R.); Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, Calif (A.J.M.); Department of Psychology, Concordia University, Montreal, Canada (C.J.S.); Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (C.J.S.); Center for Scientific Review, National Institutes of Health, Bethesda, Md (I.H.); and Division of Neurosurgery, Department of Surgery, Toronto Western Hospital and University of Toronto, 399 Bathurst St, WW 4-437, Toronto, ON, Canada M5T 2S8 (A.M.L.)
| | - Keshav Narang
- From the University Health Network, Toronto, Canada (A.B., C.T.C., K.N., G.J.B.E., C.N., J.G., A.L., W.K., A.M.L.); Joint Department of Medical Imaging, University of Toronto, Toronto, Canada (A.B., W.K.); Department of Neurosurgery, West Virginia University, Morgantown, WVa (M.R., A.R.R.); Department of Neurosurgery, Rockefeller Neuroscience Institute, Morgantown, WVa (M.R., A.R.R.); Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, Calif (A.J.M.); Department of Psychology, Concordia University, Montreal, Canada (C.J.S.); Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (C.J.S.); Center for Scientific Review, National Institutes of Health, Bethesda, Md (I.H.); and Division of Neurosurgery, Department of Surgery, Toronto Western Hospital and University of Toronto, 399 Bathurst St, WW 4-437, Toronto, ON, Canada M5T 2S8 (A.M.L.)
| | - Gavin J B Elias
- From the University Health Network, Toronto, Canada (A.B., C.T.C., K.N., G.J.B.E., C.N., J.G., A.L., W.K., A.M.L.); Joint Department of Medical Imaging, University of Toronto, Toronto, Canada (A.B., W.K.); Department of Neurosurgery, West Virginia University, Morgantown, WVa (M.R., A.R.R.); Department of Neurosurgery, Rockefeller Neuroscience Institute, Morgantown, WVa (M.R., A.R.R.); Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, Calif (A.J.M.); Department of Psychology, Concordia University, Montreal, Canada (C.J.S.); Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (C.J.S.); Center for Scientific Review, National Institutes of Health, Bethesda, Md (I.H.); and Division of Neurosurgery, Department of Surgery, Toronto Western Hospital and University of Toronto, 399 Bathurst St, WW 4-437, Toronto, ON, Canada M5T 2S8 (A.M.L.)
| | - Clemens Neudorfer
- From the University Health Network, Toronto, Canada (A.B., C.T.C., K.N., G.J.B.E., C.N., J.G., A.L., W.K., A.M.L.); Joint Department of Medical Imaging, University of Toronto, Toronto, Canada (A.B., W.K.); Department of Neurosurgery, West Virginia University, Morgantown, WVa (M.R., A.R.R.); Department of Neurosurgery, Rockefeller Neuroscience Institute, Morgantown, WVa (M.R., A.R.R.); Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, Calif (A.J.M.); Department of Psychology, Concordia University, Montreal, Canada (C.J.S.); Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (C.J.S.); Center for Scientific Review, National Institutes of Health, Bethesda, Md (I.H.); and Division of Neurosurgery, Department of Surgery, Toronto Western Hospital and University of Toronto, 399 Bathurst St, WW 4-437, Toronto, ON, Canada M5T 2S8 (A.M.L.)
| | - Jürgen Germann
- From the University Health Network, Toronto, Canada (A.B., C.T.C., K.N., G.J.B.E., C.N., J.G., A.L., W.K., A.M.L.); Joint Department of Medical Imaging, University of Toronto, Toronto, Canada (A.B., W.K.); Department of Neurosurgery, West Virginia University, Morgantown, WVa (M.R., A.R.R.); Department of Neurosurgery, Rockefeller Neuroscience Institute, Morgantown, WVa (M.R., A.R.R.); Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, Calif (A.J.M.); Department of Psychology, Concordia University, Montreal, Canada (C.J.S.); Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (C.J.S.); Center for Scientific Review, National Institutes of Health, Bethesda, Md (I.H.); and Division of Neurosurgery, Department of Surgery, Toronto Western Hospital and University of Toronto, 399 Bathurst St, WW 4-437, Toronto, ON, Canada M5T 2S8 (A.M.L.)
| | - Manish Ranjan
- From the University Health Network, Toronto, Canada (A.B., C.T.C., K.N., G.J.B.E., C.N., J.G., A.L., W.K., A.M.L.); Joint Department of Medical Imaging, University of Toronto, Toronto, Canada (A.B., W.K.); Department of Neurosurgery, West Virginia University, Morgantown, WVa (M.R., A.R.R.); Department of Neurosurgery, Rockefeller Neuroscience Institute, Morgantown, WVa (M.R., A.R.R.); Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, Calif (A.J.M.); Department of Psychology, Concordia University, Montreal, Canada (C.J.S.); Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (C.J.S.); Center for Scientific Review, National Institutes of Health, Bethesda, Md (I.H.); and Division of Neurosurgery, Department of Surgery, Toronto Western Hospital and University of Toronto, 399 Bathurst St, WW 4-437, Toronto, ON, Canada M5T 2S8 (A.M.L.)
| | - Aaron Loh
- From the University Health Network, Toronto, Canada (A.B., C.T.C., K.N., G.J.B.E., C.N., J.G., A.L., W.K., A.M.L.); Joint Department of Medical Imaging, University of Toronto, Toronto, Canada (A.B., W.K.); Department of Neurosurgery, West Virginia University, Morgantown, WVa (M.R., A.R.R.); Department of Neurosurgery, Rockefeller Neuroscience Institute, Morgantown, WVa (M.R., A.R.R.); Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, Calif (A.J.M.); Department of Psychology, Concordia University, Montreal, Canada (C.J.S.); Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (C.J.S.); Center for Scientific Review, National Institutes of Health, Bethesda, Md (I.H.); and Division of Neurosurgery, Department of Surgery, Toronto Western Hospital and University of Toronto, 399 Bathurst St, WW 4-437, Toronto, ON, Canada M5T 2S8 (A.M.L.)
| | - Alastair J Martin
- From the University Health Network, Toronto, Canada (A.B., C.T.C., K.N., G.J.B.E., C.N., J.G., A.L., W.K., A.M.L.); Joint Department of Medical Imaging, University of Toronto, Toronto, Canada (A.B., W.K.); Department of Neurosurgery, West Virginia University, Morgantown, WVa (M.R., A.R.R.); Department of Neurosurgery, Rockefeller Neuroscience Institute, Morgantown, WVa (M.R., A.R.R.); Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, Calif (A.J.M.); Department of Psychology, Concordia University, Montreal, Canada (C.J.S.); Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (C.J.S.); Center for Scientific Review, National Institutes of Health, Bethesda, Md (I.H.); and Division of Neurosurgery, Department of Surgery, Toronto Western Hospital and University of Toronto, 399 Bathurst St, WW 4-437, Toronto, ON, Canada M5T 2S8 (A.M.L.)
| | - Walter Kucharczyk
- From the University Health Network, Toronto, Canada (A.B., C.T.C., K.N., G.J.B.E., C.N., J.G., A.L., W.K., A.M.L.); Joint Department of Medical Imaging, University of Toronto, Toronto, Canada (A.B., W.K.); Department of Neurosurgery, West Virginia University, Morgantown, WVa (M.R., A.R.R.); Department of Neurosurgery, Rockefeller Neuroscience Institute, Morgantown, WVa (M.R., A.R.R.); Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, Calif (A.J.M.); Department of Psychology, Concordia University, Montreal, Canada (C.J.S.); Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (C.J.S.); Center for Scientific Review, National Institutes of Health, Bethesda, Md (I.H.); and Division of Neurosurgery, Department of Surgery, Toronto Western Hospital and University of Toronto, 399 Bathurst St, WW 4-437, Toronto, ON, Canada M5T 2S8 (A.M.L.)
| | - Christopher J Steele
- From the University Health Network, Toronto, Canada (A.B., C.T.C., K.N., G.J.B.E., C.N., J.G., A.L., W.K., A.M.L.); Joint Department of Medical Imaging, University of Toronto, Toronto, Canada (A.B., W.K.); Department of Neurosurgery, West Virginia University, Morgantown, WVa (M.R., A.R.R.); Department of Neurosurgery, Rockefeller Neuroscience Institute, Morgantown, WVa (M.R., A.R.R.); Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, Calif (A.J.M.); Department of Psychology, Concordia University, Montreal, Canada (C.J.S.); Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (C.J.S.); Center for Scientific Review, National Institutes of Health, Bethesda, Md (I.H.); and Division of Neurosurgery, Department of Surgery, Toronto Western Hospital and University of Toronto, 399 Bathurst St, WW 4-437, Toronto, ON, Canada M5T 2S8 (A.M.L.)
| | - Ileana Hancu
- From the University Health Network, Toronto, Canada (A.B., C.T.C., K.N., G.J.B.E., C.N., J.G., A.L., W.K., A.M.L.); Joint Department of Medical Imaging, University of Toronto, Toronto, Canada (A.B., W.K.); Department of Neurosurgery, West Virginia University, Morgantown, WVa (M.R., A.R.R.); Department of Neurosurgery, Rockefeller Neuroscience Institute, Morgantown, WVa (M.R., A.R.R.); Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, Calif (A.J.M.); Department of Psychology, Concordia University, Montreal, Canada (C.J.S.); Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (C.J.S.); Center for Scientific Review, National Institutes of Health, Bethesda, Md (I.H.); and Division of Neurosurgery, Department of Surgery, Toronto Western Hospital and University of Toronto, 399 Bathurst St, WW 4-437, Toronto, ON, Canada M5T 2S8 (A.M.L.)
| | - Ali R Rezai
- From the University Health Network, Toronto, Canada (A.B., C.T.C., K.N., G.J.B.E., C.N., J.G., A.L., W.K., A.M.L.); Joint Department of Medical Imaging, University of Toronto, Toronto, Canada (A.B., W.K.); Department of Neurosurgery, West Virginia University, Morgantown, WVa (M.R., A.R.R.); Department of Neurosurgery, Rockefeller Neuroscience Institute, Morgantown, WVa (M.R., A.R.R.); Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, Calif (A.J.M.); Department of Psychology, Concordia University, Montreal, Canada (C.J.S.); Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (C.J.S.); Center for Scientific Review, National Institutes of Health, Bethesda, Md (I.H.); and Division of Neurosurgery, Department of Surgery, Toronto Western Hospital and University of Toronto, 399 Bathurst St, WW 4-437, Toronto, ON, Canada M5T 2S8 (A.M.L.)
| | - Andres M Lozano
- From the University Health Network, Toronto, Canada (A.B., C.T.C., K.N., G.J.B.E., C.N., J.G., A.L., W.K., A.M.L.); Joint Department of Medical Imaging, University of Toronto, Toronto, Canada (A.B., W.K.); Department of Neurosurgery, West Virginia University, Morgantown, WVa (M.R., A.R.R.); Department of Neurosurgery, Rockefeller Neuroscience Institute, Morgantown, WVa (M.R., A.R.R.); Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, Calif (A.J.M.); Department of Psychology, Concordia University, Montreal, Canada (C.J.S.); Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (C.J.S.); Center for Scientific Review, National Institutes of Health, Bethesda, Md (I.H.); and Division of Neurosurgery, Department of Surgery, Toronto Western Hospital and University of Toronto, 399 Bathurst St, WW 4-437, Toronto, ON, Canada M5T 2S8 (A.M.L.)
| |
Collapse
|
26
|
Yang B, Tam F, Davidson B, Wei PS, Hamani C, Lipsman N, Chen CH, Graham SJ. Technical Note: An anthropomorphic phantom with implanted neurostimulator for investigation of MRI safety. Med Phys 2020; 47:3745-3751. [PMID: 32350868 DOI: 10.1002/mp.14214] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/03/2020] [Accepted: 04/20/2020] [Indexed: 12/18/2022] Open
Abstract
PURPOSE The objective of this work was to design and construct an improved anthropomorphic phantom for use in studying magnetic resonance imaging (MRI) radiofrequency (RF) safety at 3 T related to deep brain stimulation (DBS), and especially the role of DBS lead trajectories. METHOD Based on a computer-aided design including reasonable representation of human features, the phantom was fabricated by three-dimensional (3D) printing and then fully assembled with a human skull, a commercial DBS device implanted using the surgical standard at our institution, and fiber-optic temperature sensors embedded in two tissue mimicking solutions (e.g., the heterogeneous setup). Preliminary MRI safety experiments were conducted using turbo spin-echo (TSE) imaging with the device powered on and powered off. These results were then compared to analogous results for a homogeneous phantom setup that filled the structure with a standard body average solution. RESULT Both phantom setups produced temperature increases of ~1.0°C, with a maximum increase of 1.1 ± 0.2°C recorded during imaging of the heterogeneous phantom setup. The preliminary experimental results suggest that improved phantom structures capable of replicating actual DBS lead trajectories may be advisable when conducting DBS-related MRI safety studies. CONCLUSION An anthropomorphic phantom was constructed with promising initial results indicating different DBS lead trajectories and phantom setups may impact temperature elevations along an implanted DBS lead. Although additional work will be necessary to validate its efficacy over conventional phantoms, the anthropomorphic phantom can likely be used in the future to assess different procedures for DBS lead placement, the RF power deposition of MRI protocols applicable to DBS patients, and to validate novel methods to reduce localized heating effects associated with DBS devices, such as parallel RF transmission.
Collapse
Affiliation(s)
- Benson Yang
- Physical Sciences Platform, Sunnybrook Research Institute, 2075 Bayview Ave, Toronto, ON, M4N 3M5, Canada.,Department of Electrical and Computer Engineering, McMaster University, 1280 Main St W, Hamilton, ON, L8S 4L8, Canada
| | - Fred Tam
- Physical Sciences Platform, Sunnybrook Research Institute, 2075 Bayview Ave, Toronto, ON, M4N 3M5, Canada
| | - Benjamin Davidson
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, 2075 Bayview Ave, Toronto, ON, M4N 3M5, Canada
| | - Pei-Shan Wei
- Physical Sciences Platform, Sunnybrook Research Institute, 2075 Bayview Ave, Toronto, ON, M4N 3M5, Canada
| | - Clement Hamani
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, 2075 Bayview Ave, Toronto, ON, M4N 3M5, Canada.,Harquail Centre for Neuromodulation, Sunnybrook Research Institute, Hurvitz Brain Sciences Program, 2075 Bayview Ave, Toronto, ON, M4N 3M5, Canada
| | - Nir Lipsman
- Physical Sciences Platform, Sunnybrook Research Institute, 2075 Bayview Ave, Toronto, ON, M4N 3M5, Canada.,Division of Neurosurgery, Sunnybrook Health Sciences Centre, 2075 Bayview Ave, Toronto, ON, M4N 3M5, Canada.,Harquail Centre for Neuromodulation, Sunnybrook Research Institute, Hurvitz Brain Sciences Program, 2075 Bayview Ave, Toronto, ON, M4N 3M5, Canada
| | - Chih-Hung Chen
- Department of Electrical and Computer Engineering, McMaster University, 1280 Main St W, Hamilton, ON, L8S 4L8, Canada
| | - Simon J Graham
- Physical Sciences Platform, Sunnybrook Research Institute, 2075 Bayview Ave, Toronto, ON, M4N 3M5, Canada.,Department of Medical Biophysics, University of Toronto, 101 College St Suite 15-701, Toronto, ON, M5G 1L7, Canada
| |
Collapse
|
27
|
Acikel V, Silemek B, Atalar E. Wireless control of induced radiofrequency currents in active implantable medical devices during MRI. Magn Reson Med 2019; 83:2370-2381. [DOI: 10.1002/mrm.28089] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/16/2019] [Accepted: 10/29/2019] [Indexed: 11/09/2022]
Affiliation(s)
| | - Berk Silemek
- National Magnetic Resonance Research Center (UMRAM) Bilkent University Ankara Turkey
| | - Ergin Atalar
- National Magnetic Resonance Research Center (UMRAM) Bilkent University Ankara Turkey
- Department of Electrical and Electronics Engineering Bilkent University Ankara Turkey
| |
Collapse
|
28
|
Golestanirad L, Kazemivalipour E, Lampman D, Habara H, Atalar E, Rosenow J, Pilitsis J, Kirsch J. RF heating of deep brain stimulation implants in open-bore vertical MRI systems: A simulation study with realistic device configurations. Magn Reson Med 2019; 83:2284-2292. [PMID: 31677308 DOI: 10.1002/mrm.28049] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 10/02/2019] [Accepted: 10/03/2019] [Indexed: 12/18/2022]
Abstract
PURPOSE Patients with deep brain stimulation (DBS) implants benefit highly from MRI, however, access to MRI is restricted for these patients because of safety hazards associated with RF heating of the implant. To date, all MRI studies on RF heating of medical implants have been performed in horizontal closed-bore systems. Vertical MRI scanners have a fundamentally different distribution of electric and magnetic fields and are now available at 1.2T, capable of high-resolution structural and functional MRI. This work presents the first simulation study of RF heating of DBS implants in high-field vertical scanners. METHODS We performed finite element electromagnetic simulations to calculate specific absorption rate (SAR) at tips of DBS leads during MRI in a commercially available 1.2T vertical coil compared to a 1.5T horizontal scanner. Both isolated leads and fully implanted systems were included. RESULTS We found 10- to 30-fold reduction in SAR implication at tips of isolated DBS leads, and up to 19-fold SAR reduction at tips of leads in fully implanted systems in vertical coils compared to horizontal birdcage coils. CONCLUSIONS If confirmed in larger patient cohorts and verified experimentally, this result can open the door to plethora of structural and functional MRI applications to guide, interpret, and advance DBS therapy.
Collapse
Affiliation(s)
- Laleh Golestanirad
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.,Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, Illinois
| | - Ehsan Kazemivalipour
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.,Department of Electrical and Electronics Engineering, Bilkent University, Ankara, Turkey.,National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara, Turkey
| | | | - Hideta Habara
- Hitachi, Ltd. Healthcare Business Unit, Tokyo, Japan
| | - Ergin Atalar
- Department of Electrical and Electronics Engineering, Bilkent University, Ankara, Turkey.,National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara, Turkey
| | - Joshua Rosenow
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Julie Pilitsis
- Department of Neurosurgery, Albany Medical Center, Albany, New York
| | - John Kirsch
- A.A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, Massachusetts
| |
Collapse
|
29
|
Golestanirad L, Kazemivalipour E, Keil B, Downs S, Kirsch J, Elahi B, Pilitsis J, Wald LL. Reconfigurable MRI coil technology can substantially reduce RF heating of deep brain stimulation implants: First in-vitro study of RF heating reduction in bilateral DBS leads at 1.5 T. PLoS One 2019; 14:e0220043. [PMID: 31390346 PMCID: PMC6685612 DOI: 10.1371/journal.pone.0220043] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Accepted: 07/08/2019] [Indexed: 12/12/2022] Open
Abstract
Patients with deep brain stimulation (DBS) implants can significantly benefit from magnetic resonance imaging (MRI), however access to MRI is restricted in these patients because of safety concerns due to RF heating of the leads. Recently we introduced a patient-adjustable reconfigurable transmit coil for low-SAR imaging of DBS at 1.5T. A previous simulation study demonstrated a substantial reduction in the local SAR around single DBS leads in 9 unilateral lead models. This work reports the first experimental results of temperature measurement at the tips of bilateral DBS leads with realistic trajectories extracted from postoperative CT images of 10 patients (20 leads in total). A total of 200 measurements were performed to record temperature rise at the tips of the leads during 2 minutes of scanning with the coil rotated to cover all accessible rotation angles. In all patients, we were able to find an optimum coil rotation angle and reduced the heating of both left and right leads to a level below the heating produced by the body coil. An average heat reduction of 65% was achieved for bilateral leads. When considering each lead alone, an average heat reduction of 80% was achieved. Our results suggest that reconfigurable coil technology introduces a promising approach for imaging of patients with DBS implants.
Collapse
Affiliation(s)
- Laleh Golestanirad
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, United States of America
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States of America
| | - Ehsan Kazemivalipour
- Department of Electrical and Electronics Engineering, Bilkent University, Ankara, Turkey
| | - Boris Keil
- Department of Life Science Engineering, Institute of Medical Physics and Radiation Protection, Giessen, Germany
| | - Sean Downs
- A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States of America
| | - John Kirsch
- A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States of America
| | - Behzad Elahi
- Department of Neurology, Bryan Health, Lincoln, NE, United States of America
| | - Julie Pilitsis
- Department of Neurosurgery, Albany Medical Center, Albany, NY, United States of America
| | - Lawrence L. Wald
- A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States of America
| |
Collapse
|
30
|
A Platform for 4-Channel Parallel Transmission MRI at 3 T: Demonstration of Reduced Radiofrequency Heating in a Test Object Containing an Implanted Wire. J Med Biol Eng 2019. [DOI: 10.1007/s40846-019-00478-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
31
|
Reconfigurable MRI technology for low-SAR imaging of deep brain stimulation at 3T: Application in bilateral leads, fully-implanted systems, and surgically modified lead trajectories. Neuroimage 2019; 199:18-29. [PMID: 31096058 DOI: 10.1016/j.neuroimage.2019.05.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 04/24/2019] [Accepted: 05/06/2019] [Indexed: 11/22/2022] Open
Abstract
Patients with deep brain stimulation devices highly benefit from postoperative MRI exams, however MRI is not readily accessible to these patients due to safety risks associated with RF heating of the implants. Recently we introduced a patient-adjustable reconfigurable coil technology that substantially reduced local SAR at tips of single isolated DBS leads during MRI at 1.5 T in 9 realistic patient models. This contribution extends our work to higher fields by demonstrating the feasibility of scaling the technology to 3T and assessing its performance in patients with bilateral leads as well as fully implanted systems. We developed patient-derived models of bilateral DBS leads and fully implanted DBS systems from postoperative CT images of 13 patients and performed finite element simulations to calculate SAR amplification at electrode contacts during MRI with a reconfigurable rotating coil at 3T. Compared to a conventional quadrature body coil, the reconfigurable coil system reduced the SAR on average by 83% for unilateral leads and by 59% for bilateral leads. A simple surgical modification in trajectory of implanted leads was demonstrated to increase the SAR reduction efficiency of the rotating coil to >90% in a patient with a fully implanted bilateral DBS system. Thermal analysis of temperature-rise around electrode contacts during typical brain exams showed a 15-fold heating reduction using the rotating coil, generating <1°C temperature rise during ∼4-min imaging with high-SAR sequences where a conventional CP coil generated >10°C temperature rise in the tissue for the same flip angle.
Collapse
|
32
|
Golestanirad L, Angelone LM, Kirsch J, Downs S, Keil B, Bonmassar G, Wald LL. Reducing RF-induced Heating near Implanted Leads through High-Dielectric Capacitive Bleeding of Current (CBLOC). IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES 2019; 67:1265-1273. [PMID: 31607756 PMCID: PMC6788634 DOI: 10.1109/tmtt.2018.2885517] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Patients with implanted medical devices such as deep brain stimulation or spinal cord stimulation are often unable to receive magnetic resonance imaging (MRI). This is because once the device is within the radiofrequency (RF) field of the MRI scanner, electrically conductive leads act as antenna, amplifying the RF energy deposition in the tissue and causing possible excessive tissue heating. Here we propose a novel concept in lead design in which 40cm lead wires are coated with a ~1.2mm layer of high dielectric constant material (155 < ε r < 250) embedded in a weakly conductive insulation (σ = 20S/m). The technique called High-Dielectric Capacitive Bleeding of Current, or CBLOC, works by forming a distributed capacitance along the lengths of the lead, efficiently dissipating RF energy before it reaches the exposed tip. Measurements during RF exposure at 64 MHz and 123 MHz demonstrated that CBLOC leads generated 20-fold less heating at 1.5 T, and 40-fold less heating at 3 T compared to control leads. Numerical simulations of RF exposure at 297 MHz (7T) predicted a 15-fold reduction in specific absorption rate (SAR) of RF energy around the tip of CBLOC leads compared to control leads.
Collapse
Affiliation(s)
- Laleh Golestanirad
- A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Department of Radiology, Harvard Medical School, Charlestown, MA 02129 USA, and the Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago IL 60611 USA
| | - Leonardo M Angelone
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Device and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD
| | - John Kirsch
- A. A. Martinos Center for Biomedical Imaging, Charlestown MA 02129 USA (, , , )
| | - Sean Downs
- A. A. Martinos Center for Biomedical Imaging, Charlestown MA 02129 USA (, , , )
| | - Boris Keil
- Department of Life Science Engineering, Institute of Medical Physics and Radiation Protection, Giessen, Germany
| | - Giorgio Bonmassar
- A. A. Martinos Center for Biomedical Imaging, Charlestown MA 02129 USA (, , , )
| | - Lawrence L Wald
- A. A. Martinos Center for Biomedical Imaging, Charlestown MA 02129 USA (, , , )
| |
Collapse
|
33
|
McElcheran CE, Golestanirad L, Iacono MI, Wei PS, Yang B, Anderson KJT, Bonmassar G, Graham SJ. Numerical Simulations of Realistic Lead Trajectories and an Experimental Verification Support the Efficacy of Parallel Radiofrequency Transmission to Reduce Heating of Deep Brain Stimulation Implants during MRI. Sci Rep 2019; 9:2124. [PMID: 30765724 PMCID: PMC6375985 DOI: 10.1038/s41598-018-38099-w] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 12/11/2018] [Indexed: 12/12/2022] Open
Abstract
Patients with deep brain stimulation (DBS) implants may be subject to heating during MRI due to interaction with excitatory radiofrequency (RF) fields. Parallel RF transmit (pTx) has been proposed to minimize such RF-induced heating in preliminary proof-of-concept studies. The present work evaluates the efficacy of pTx technique on realistic lead trajectories obtained from nine DBS patients. Electromagnetic simulations were performed using 4- and 8-element pTx coils compared with a standard birdcage coil excitation using patient models and lead trajectories obtained by segmentation of computed tomography data. Numerical optimization was performed to minimize local specific absorption rate (SAR) surrounding the implant tip while maintaining spatial homogeneity of the transmitted RF magnetic field (B1+), by varying the input amplitude and phase for each coil element. Local SAR was significantly reduced at the lead tip with both 4-element and 8-element pTx (median decrease of 94% and 97%, respectively), whereas the median coefficient of spatial variation of B1+ inhomogeneity was moderately increased (30% for 4-element pTx and 20% for 8-element pTx) compared to that of the birdcage coil (17%). Furthermore, the efficacy of optimized 4-element pTx was verified experimentally by imaging a head phantom that included a wire implanted to approximate the worst-case lead trajectory for localized heating, based on the simulations. Negligible temperature elevation was observed at the lead tip, with reasonable image uniformity in the surrounding region. From this experiment and the simulations based on nine DBS patient models, optimized pTx provides a robust approach to minimizing local SAR with respect to lead trajectory.
Collapse
Affiliation(s)
- C E McElcheran
- Physical Sciences Platform, Sunnybrook Health Sciences Institute, Toronto, Ontario, M4N 3M5, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - L Golestanirad
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - M I Iacono
- Division of Biomedical Physic, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - P-S Wei
- Physical Sciences Platform, Sunnybrook Health Sciences Institute, Toronto, Ontario, M4N 3M5, Canada
| | - B Yang
- Physical Sciences Platform, Sunnybrook Health Sciences Institute, Toronto, Ontario, M4N 3M5, Canada
| | - K J T Anderson
- Physical Sciences Platform, Sunnybrook Health Sciences Institute, Toronto, Ontario, M4N 3M5, Canada
| | - G Bonmassar
- Athinoula A. Martinos Center For Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, 02129, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - S J Graham
- Physical Sciences Platform, Sunnybrook Health Sciences Institute, Toronto, Ontario, M4N 3M5, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, M5S 1A8, Canada.
| |
Collapse
|
34
|
McElcheran CE, Golestanirad L, Iacono MI, Wei PS, Yang B, Anderson KJT, Bonmassar G, Graham SJ. Numerical Simulations of Realistic Lead Trajectories and an Experimental Verification Support the Efficacy of Parallel Radiofrequency Transmission to Reduce Heating of Deep Brain Stimulation Implants during MRI. Sci Rep 2019. [PMID: 30765724 DOI: 10.1038/s41598-01838099-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023] Open
Abstract
Patients with deep brain stimulation (DBS) implants may be subject to heating during MRI due to interaction with excitatory radiofrequency (RF) fields. Parallel RF transmit (pTx) has been proposed to minimize such RF-induced heating in preliminary proof-of-concept studies. The present work evaluates the efficacy of pTx technique on realistic lead trajectories obtained from nine DBS patients. Electromagnetic simulations were performed using 4- and 8-element pTx coils compared with a standard birdcage coil excitation using patient models and lead trajectories obtained by segmentation of computed tomography data. Numerical optimization was performed to minimize local specific absorption rate (SAR) surrounding the implant tip while maintaining spatial homogeneity of the transmitted RF magnetic field (B1+), by varying the input amplitude and phase for each coil element. Local SAR was significantly reduced at the lead tip with both 4-element and 8-element pTx (median decrease of 94% and 97%, respectively), whereas the median coefficient of spatial variation of B1+ inhomogeneity was moderately increased (30% for 4-element pTx and 20% for 8-element pTx) compared to that of the birdcage coil (17%). Furthermore, the efficacy of optimized 4-element pTx was verified experimentally by imaging a head phantom that included a wire implanted to approximate the worst-case lead trajectory for localized heating, based on the simulations. Negligible temperature elevation was observed at the lead tip, with reasonable image uniformity in the surrounding region. From this experiment and the simulations based on nine DBS patient models, optimized pTx provides a robust approach to minimizing local SAR with respect to lead trajectory.
Collapse
Affiliation(s)
- C E McElcheran
- Physical Sciences Platform, Sunnybrook Health Sciences Institute, Toronto, Ontario, M4N 3M5, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - L Golestanirad
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - M I Iacono
- Division of Biomedical Physic, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - P-S Wei
- Physical Sciences Platform, Sunnybrook Health Sciences Institute, Toronto, Ontario, M4N 3M5, Canada
| | - B Yang
- Physical Sciences Platform, Sunnybrook Health Sciences Institute, Toronto, Ontario, M4N 3M5, Canada
| | - K J T Anderson
- Physical Sciences Platform, Sunnybrook Health Sciences Institute, Toronto, Ontario, M4N 3M5, Canada
| | - G Bonmassar
- Athinoula A. Martinos Center For Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, 02129, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - S J Graham
- Physical Sciences Platform, Sunnybrook Health Sciences Institute, Toronto, Ontario, M4N 3M5, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, M5S 1A8, Canada.
| |
Collapse
|
35
|
Zivkovic I, Teeuwisse W, Slobozhanyuk A, Nenasheva E, Webb A. High permittivity ceramics improve the transmit field and receive efficiency of a commercial extremity coil at 1.5 Tesla. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 299:59-65. [PMID: 30580045 DOI: 10.1016/j.jmr.2018.12.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 12/07/2018] [Accepted: 12/14/2018] [Indexed: 06/09/2023]
Abstract
OBJECTIVE The purpose of this work is to investigate the use of ceramic materials (based on BaTiO3 with ZrO2 and CeO2-additives) with very high relative permittivity (εr ∼ 4500) to increase the local transmit field and signal-to-noise ratio (SNR) for commercial extremity coils on a clinical 1.5 T MRI system. METHODS Electromagnetic simulations of transmit efficiency and specific absorption rate (SAR) were performed using four ferroelectric ceramic blocks placed around a cylindrical phantom, as well as placing these ceramics around the wrist of a human body model. Results were compared with experimental scans using the transmit body coil of the 1.5 T MRI system and an eight-element extremity receive array designed for the wrist. SNR measurements were also performed for both phantom and in vivo scans. RESULTS Electromagnetic simulations and phantom/in vivo experiments showed an increased in the local transmit efficiency from the body coil of ∼20-30%, resulting in an ∼50% lower transmit power level and a significant reduction in local and global SAR throughout the body. For in vivo wrist experiments, the SNR of a commercial eight-channel receive array, integrated over the entire volume, was improved by ∼45% with the ceramic. CONCLUSION The local transmit efficiency as well as the SNR can be increased for 1.5 T extremity MRI with commercial array coils by using materials with very high permittivity.
Collapse
Affiliation(s)
- Irena Zivkovic
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Wouter Teeuwisse
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Alexey Slobozhanyuk
- Department of Nanophotonics and Metamaterials, ITMO University, Saint Petersburg, Russia
| | | | - Andrew Webb
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
36
|
A simple geometric analysis method for measuring and mitigating RF induced currents on Deep Brain Stimulation leads by multichannel transmission/reception. Neuroimage 2018; 184:658-668. [PMID: 30273715 DOI: 10.1016/j.neuroimage.2018.09.072] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 09/24/2018] [Accepted: 09/25/2018] [Indexed: 11/20/2022] Open
Abstract
The purpose of this work is to present a new method that can be used to estimate and mitigate RF induced currents on Deep Brain Stimulation (DBS) leads. Here, we demonstrate the effect of RF induced current mitigation on both RF heating and image quality for a variety of brain MRI sequences at 3 T. We acquired pre-scan images around a DBS lead (in-situ and ex-vivo) using conventional Gradient Echo Sequence (GRE) accelerated by parallel imaging (i.e GRAPPA) and quantified the magnitude and phase of RF induced current using the relative location of the B1+ null with respect to the lead position. We estimated the RF induced current on a DBS lead implanted in a gel phantom as well as in a cadaver head study for a variety of RF excitation patterns. We also measured the increase in tip temperature using fiber-optic probes for both phantom and cadaver studies. Using the magnitude and phase information of the current induced separately by two transmit channels of the body coil, we calculated an implant friendly (IF) excitation. Using the IF excitation, we acquired T1, T2 weighted Turbo Spin Echo (TSE), T2 weighted SPACE-Dark Fluid, and Ultra Short Echo Time (UTE) sequences around the lead. Our induced current estimation demonstrated linear relationship between the magnitude of the induced current and the square root SAR at the tip of the lead as measured in phantom studies. The "IF excitation pattern" calculated after the pre-scan mitigated RF artifacts and increased the image quality around the lead. In addition, it reduced the tip temperature significantly in both phantom and cadaver studies compared to a conventional quadrature excitation while keeping equivalent overall image quality. We present a relatively fast method that can be used to calculate implant friendly excitation, reducing image artifacts as well as the temperature around the DBS electrodes. When combined with a variety of MR sequences, the proposed method can improve the image quality and patient safety in clinical imaging scenarios.
Collapse
|
37
|
RF-induced heating in tissue near bilateral DBS implants during MRI at 1.5 T and 3T: The role of surgical lead management. Neuroimage 2018; 184:566-576. [PMID: 30243973 DOI: 10.1016/j.neuroimage.2018.09.034] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 09/10/2018] [Accepted: 09/14/2018] [Indexed: 11/21/2022] Open
Abstract
Access to MRI is limited for patients with deep brain stimulation (DBS) implants due to safety hazards, including radiofrequency (RF) heating of tissue surrounding the leads. Computational models provide an exquisite tool to explore the multi-variate problem of RF heating and help better understand the interaction of electromagnetic fields and biological tissues. This paper presents a computational approach to assess RF-induced heating, in terms of specific absorption rate (SAR) in the tissue, around the tip of bilateral DBS leads during MRI at 64MHz/1.5 T and 127 MHz/3T. Patient-specific realistic lead models were constructed from post-operative CT images of nine patients operated for sub-thalamic nucleus DBS. Finite element method was applied to calculate the SAR at the tip of left and right DBS contact electrodes. Both transmit head coils and transmit body coils were analyzed. We found a substantial difference between the SAR and temperature rise at the tip of right and left DBS leads, with the lead contralateral to the implanted pulse generator (IPG) exhibiting up to 7 times higher SAR in simulations, and up to 10 times higher temperature rise during measurements. The orientation of incident electric field with respect to lead trajectories was explored and a metric to predict local SAR amplification was introduced. Modification of the lead trajectory was shown to substantially reduce the heating in phantom experiments using both conductive wires and commercially available DBS leads. Finally, the surgical feasibility of implementing the modified trajectories was demonstrated in a patient operated for bilateral DBS.
Collapse
|
38
|
Golestanirad L, Rahsepar AA, Kirsch JE, Suwa K, Collins JC, Angelone LM, Keil B, Passman RS, Bonmassar G, Serano P, Krenz P, DeLap J, Carr JC, Wald LL. Changes in the specific absorption rate (SAR) of radiofrequency energy in patients with retained cardiac leads during MRI at 1.5T and 3T. Magn Reson Med 2018; 81:653-669. [PMID: 29893997 PMCID: PMC6258273 DOI: 10.1002/mrm.27350] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 04/08/2018] [Accepted: 04/16/2018] [Indexed: 12/20/2022]
Abstract
PURPOSE To evaluate the local specific absorption rate (SAR) and heating around retained cardiac leads during MRI at 64 MHz (1.5T) and 127 MHz (3T) as a function of RF coil type and imaging landmark. METHODS Numerical models of retained cardiac leads were built from CT and X-ray images of 6 patients with retained cardiac leads. Electromagnetic simulations and bio-heat modeling were performed with MRI RF body and head coils tuned to 64 MHz and 127 MHz and positioned at 9 different imaging landmarks covering an area from the head to the lower limbs. RESULTS For all patients and at both 1.5T and 3T, local transmit head coils produced negligible temperature rise ( <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mo>Δ</mml:mo> <mml:mi>T</mml:mi> <mml:mo><</mml:mo> <mml:mn>0.1</mml:mn> <mml:mo>°</mml:mo> <mml:mi>C</mml:mi></mml:mrow> </mml:math> ) for <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow><mml:mrow><mml:mo>‖</mml:mo> <mml:mo>‖</mml:mo> <mml:mrow><mml:msubsup><mml:mi>B</mml:mi> <mml:mn>1</mml:mn> <mml:mo>+</mml:mo></mml:msubsup> </mml:mrow> <mml:mo>‖</mml:mo> <mml:mo>‖</mml:mo></mml:mrow> <mml:mo>≤</mml:mo> <mml:mn>3</mml:mn> <mml:mo> </mml:mo> <mml:mo>μ</mml:mo> <mml:mi>T</mml:mi></mml:mrow> </mml:math> . For body imaging with quadrature-driven coils at 1.5T, <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mo>Δ</mml:mo> <mml:mi>T</mml:mi></mml:mrow> </mml:math> during a 10-min scan remained < 3°C at all imaging landmarks for <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow><mml:mrow><mml:mo>‖</mml:mo> <mml:mo>‖</mml:mo> <mml:mrow><mml:msubsup><mml:mi>B</mml:mi> <mml:mn>1</mml:mn> <mml:mo>+</mml:mo></mml:msubsup> </mml:mrow> <mml:mo>‖</mml:mo> <mml:mo>‖</mml:mo></mml:mrow> <mml:mo>≤</mml:mo> <mml:mn>3</mml:mn> <mml:mo> </mml:mo> <mml:mo>μ</mml:mo> <mml:mi>T</mml:mi></mml:mrow> </mml:math> and <6°C for <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow><mml:mrow><mml:mo>‖</mml:mo> <mml:mo>‖</mml:mo> <mml:mrow><mml:msubsup><mml:mi>B</mml:mi> <mml:mn>1</mml:mn> <mml:mo>+</mml:mo></mml:msubsup> </mml:mrow> <mml:mo>‖</mml:mo> <mml:mo>‖</mml:mo></mml:mrow> <mml:mo>≤</mml:mo> <mml:mn>4</mml:mn> <mml:mo> </mml:mo> <mml:mo>μ</mml:mo> <mml:mi>T</mml:mi></mml:mrow> </mml:math> . For body imaging at 3T, <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mo>Δ</mml:mo> <mml:mi>T</mml:mi></mml:mrow> </mml:math> during a 10-min scan remained < 6°C at all imaging landmarks for <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow><mml:mrow><mml:mo>‖</mml:mo> <mml:mo>‖</mml:mo> <mml:mrow><mml:msubsup><mml:mi>B</mml:mi> <mml:mn>1</mml:mn> <mml:mo>+</mml:mo></mml:msubsup> </mml:mrow> <mml:mo>‖</mml:mo> <mml:mo>‖</mml:mo></mml:mrow> <mml:mo>≤</mml:mo> <mml:mn>2</mml:mn> <mml:mo> </mml:mo> <mml:mo>μ</mml:mo> <mml:mi>T</mml:mi></mml:mrow> </mml:math> . For shorter pulse sequences up to 2 min, <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mo>Δ</mml:mo> <mml:mi>T</mml:mi></mml:mrow> </mml:math> remained < 6°C for <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow><mml:mrow><mml:mo>‖</mml:mo> <mml:mo>‖</mml:mo> <mml:mrow><mml:msubsup><mml:mi>B</mml:mi> <mml:mn>1</mml:mn> <mml:mo>+</mml:mo></mml:msubsup> </mml:mrow> <mml:mo>‖</mml:mo> <mml:mo>‖</mml:mo></mml:mrow> <mml:mo>≤</mml:mo> <mml:mn>3</mml:mn> <mml:mo> </mml:mo> <mml:mo>μ</mml:mo> <mml:mi>T</mml:mi></mml:mrow> </mml:math> . CONCLUSION For the models based on 6 patients studied, simulations suggest that MRI could be performed safely using a local head coil at both 1.5T and 3T, and with a body coil at 1.5T with pulses that produced <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow><mml:mrow><mml:mo>‖</mml:mo> <mml:mo>‖</mml:mo> <mml:mrow><mml:msubsup><mml:mi>B</mml:mi> <mml:mn>1</mml:mn> <mml:mo>+</mml:mo></mml:msubsup> </mml:mrow> <mml:mo>‖</mml:mo> <mml:mo>‖</mml:mo></mml:mrow> <mml:mo>≤</mml:mo> <mml:mn>4</mml:mn> <mml:mo> </mml:mo> <mml:mo>μ</mml:mo> <mml:mi>T</mml:mi></mml:mrow> </mml:math> . MRI at 3T could be performed safely in these patients using pulses with <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow><mml:mrow><mml:mo>‖</mml:mo> <mml:mo>‖</mml:mo> <mml:mrow><mml:msubsup><mml:mi>B</mml:mi> <mml:mn>1</mml:mn> <mml:mo>+</mml:mo></mml:msubsup> </mml:mrow> <mml:mo>‖</mml:mo> <mml:mo>‖</mml:mo></mml:mrow> <mml:mo>≤</mml:mo> <mml:mn>2</mml:mn> <mml:mo> </mml:mo> <mml:mo>μ</mml:mo> <mml:mi>T</mml:mi></mml:mrow> </mml:math> .
Collapse
Affiliation(s)
- Laleh Golestanirad
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts.,Department of Radiology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois
| | - Amir Ali Rahsepar
- Department of Radiology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois
| | - John E Kirsch
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts
| | - Kenichiro Suwa
- Department of Radiology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois
| | - Jeremy C Collins
- Department of Radiology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois
| | - Leonardo M Angelone
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland
| | - Boris Keil
- Department of Life Science Engineering, Institute of Medical Physics and Radiation Protection, Giessen, Germany
| | - Rod S Passman
- Division of Cardiology, Department of Medicine, Northwestern University, Feinberg School of Medicine, Chicago, Illinois
| | - Giorgio Bonmassar
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts
| | - Peter Serano
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland
| | | | - Jim DeLap
- ANSYS Inc., Canonsburg, Pennsylvania
| | - James C Carr
- Department of Radiology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois
| | - Lawrence L Wald
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts
| |
Collapse
|
39
|
Tokaya JP, Raaijmakers AJE, Luijten PR, van den Berg CAT. MRI-based, wireless determination of the transfer function of a linear implant: Introduction of the transfer matrix. Magn Reson Med 2018; 80:2771-2784. [PMID: 29687916 PMCID: PMC6220769 DOI: 10.1002/mrm.27218] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 03/23/2018] [Accepted: 03/24/2018] [Indexed: 12/17/2022]
Abstract
PURPOSE We introduce the transfer matrix (TM) that makes MR-based wireless determination of transfer functions (TFs) possible. TFs are implant specific measures for RF-safety assessment of linear implants. The TF relates an incident tangential electric field on an implant to a scattered electric field at its tip that generally governs local heating. The TM extends this concept and relates an incident tangential electric field to a current distribution in the implant therewith characterizing the RF response along the entire implant. The TM is exploited to measure TFs with MRI without hardware alterations. THEORY AND METHODS A model of rightward and leftward propagating attenuated waves undergoing multiple reflections is used to derive an analytical expression for the TM. This allows parameterization of the TM of generic implants, e.g., (partially) insulated single wires, in a homogeneous medium in a few unknowns that simultaneously describe the TF. These unknowns can be determined with MRI making it possible to measure the TM and, therefore, also the TF. RESULTS The TM is able to predict an induced current due to an incident electric field and can be accurately parameterized with a limited number of unknowns. Using this description the TF is determined accurately (with a Pearson correlation coefficient R ≥ 0.9 between measurements and simulations) from MRI acquisitions. CONCLUSION The TM enables measuring of TFs with MRI of the tested generic implant models. The MR-based method does not need hardware alterations and is wireless hence making TF determination in more realistic scenarios conceivable.
Collapse
Affiliation(s)
- Janot P Tokaya
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Peter R Luijten
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | |
Collapse
|
40
|
Chen X, Steckner M. Electromagnetic computation and modeling in MRI. Med Phys 2017; 44:1186-1203. [PMID: 28079264 DOI: 10.1002/mp.12103] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 09/26/2016] [Accepted: 01/07/2017] [Indexed: 12/13/2022] Open
Abstract
Electromagnetic (EM) computational modeling is used extensively during the development of a Magnetic Resonance Imaging (MRI) scanner, its installation, and use. MRI, which relies on interactions between nuclear magnetic moments and the applied magnetic fields, uses a range of EM tools to optimize all of the magnetic fields required to produce the image. The main field magnet is designed to exacting specifications but challenges in manufacturing, installation, and use require additional tools to maintain target operational performance. The gradient magnetic fields, which provide the primary signal localization mechanism, are designed under another set of complex design trade-offs which include conflicting imaging performance specifications and patient physiology. Gradients are largely impervious to external influences, but are also used to enhance main field operational performance. The radiofrequency (RF) magnetic fields, which are used to elicit the signals fundamental to the MR image, are a challenge to optimize for a host of reasons that include patient safety, image quality, cost optimization, and secondary signal localization capabilities. This review outlines these issues and the EM modeling used to optimize MRI system performance.
Collapse
Affiliation(s)
- Xin Chen
- Toshiba Medical Research Institute USA, Inc. 777 Beta Drive, Mayfield Village, OH, 44143, USA
| | - Michael Steckner
- Toshiba Medical Research Institute USA, Inc. 777 Beta Drive, Mayfield Village, OH, 44143, USA
| |
Collapse
|
41
|
Fiedler TM, Ladd ME, Bitz AK. SAR Simulations & Safety. Neuroimage 2017; 168:33-58. [PMID: 28336426 DOI: 10.1016/j.neuroimage.2017.03.035] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 02/28/2017] [Accepted: 03/16/2017] [Indexed: 01/19/2023] Open
Abstract
At ultra-high fields, the assessment of radiofrequency (RF) safety presents several new challenges compared to low-field systems. Multi-channel RF transmit coils in combination with parallel transmit techniques produce time-dependent and spatially varying power loss densities in the tissue. Further, in ultra-high-field systems, localized field effects can be more pronounced due to a transition from the quasi stationary to the electromagnetic field regime. Consequently, local information on the RF field is required for reliable RF safety assessment as well as for monitoring of RF exposure during MR examinations. Numerical RF and thermal simulations for realistic exposure scenarios with anatomical body models are currently the only practical way to obtain the requisite local information on magnetic and electric field distributions as well as tissue temperature. In this article, safety regulations and the fundamental characteristics of RF field distributions in ultra-high-field systems are reviewed. Numerical methods for computation of RF fields as well as typical requirements for the analysis of realistic multi-channel RF exposure scenarios including anatomical body models are highlighted. In recent years, computation of the local tissue temperature has become of increasing interest, since a more accurate safety assessment is expected because temperature is directly related to tissue damage. Regarding thermal simulation, bio-heat transfer models and approaches for taking into account the physiological response of the human body to RF exposure are discussed. In addition, suitable methods are presented to validate calculated RF and thermal results with measurements. Finally, the concept of generalized simulation-based specific absorption rate (SAR) matrix models is discussed. These models can be incorporated into local SAR monitoring in multi-channel MR systems and allow the design of RF pulses under constraints for local SAR.
Collapse
Affiliation(s)
- Thomas M Fiedler
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Mark E Ladd
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Erwin L. Hahn Institute for MRI, University Duisburg-Essen, Essen, Germany
| | - Andreas K Bitz
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Electromagnetic Theory and Applied Mathematics, Faculty of Electrical Engineering and Information Technology, FH Aachen - University of Applied Sciences, 52066 Aachen, Germany
| |
Collapse
|
42
|
McElcheran CE, Yang B, Anderson KJ, Golestanirad L, Graham SJ. Parallel radiofrequency transmission at 3 tesla to improve safety in bilateral implanted wires in a heterogeneous model. Magn Reson Med 2017; 78:2406-2415. [DOI: 10.1002/mrm.26622] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Revised: 01/05/2017] [Accepted: 01/06/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Clare E. McElcheran
- Physical Sciences Platform, Sunnybrook Health Sciences Institute; Toronto Canada
- Department of Medical Biophysics; University of Toronto; Toronto Canada
| | - Benson Yang
- Physical Sciences Platform, Sunnybrook Health Sciences Institute; Toronto Canada
| | - Kevan J.T. Anderson
- Physical Sciences Platform, Sunnybrook Health Sciences Institute; Toronto Canada
| | - Laleh Golestanirad
- Massachusetts General Hospital, Harvard Medical School; Charlestown Massachusetts USA
| | - Simon J. Graham
- Physical Sciences Platform, Sunnybrook Health Sciences Institute; Toronto Canada
- Department of Medical Biophysics; University of Toronto; Toronto Canada
| |
Collapse
|
43
|
Golestanirad L, Iacono MI, Keil B, Angelone LM, Bonmassar G, Fox MD, Herrington T, Adalsteinsson E, LaPierre C, Mareyam A, Wald LL. Construction and modeling of a reconfigurable MRI coil for lowering SAR in patients with deep brain stimulation implants. Neuroimage 2016; 147:577-588. [PMID: 28011252 DOI: 10.1016/j.neuroimage.2016.12.056] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Revised: 11/13/2016] [Accepted: 12/19/2016] [Indexed: 10/20/2022] Open
Abstract
Post-operative MRI of patients with deep brain simulation (DBS) implants is useful to assess complications and diagnose comorbidities, however more than one third of medical centers do not perform MRIs on this patient population due to stringent safety restrictions and liability risks. A new system of reconfigurable magnetic resonance imaging head coil composed of a rotatable linearly-polarized birdcage transmitter and a close-fitting 32-channel receive array is presented for low-SAR imaging of patients with DBS implants. The novel system works by generating a region with low electric field magnitude and steering it to coincide with the DBS lead trajectory. We demonstrate that the new coil system substantially reduces the SAR amplification around DBS electrodes compared to commercially available circularly polarized coils in a cohort of 9 patient-derived realistic DBS lead trajectories. We also show that the optimal coil configuration can be reliably identified from the image artifact on B1+ field maps. Our preliminary results suggest that such a system may provide a viable solution for high-resolution imaging of DBS patients in the future. More data is needed to quantify safety limits and recommend imaging protocols before the novel coil system can be used on patients with DBS implants.
Collapse
Affiliation(s)
- Laleh Golestanirad
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA.
| | - Maria Ida Iacono
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, MD, USA
| | - Boris Keil
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA; Institute of Medical Physics and Radiation Protection, THM, Life Science Engineering, Giessen, Germany
| | - Leonardo M Angelone
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, MD, USA
| | - Giorgio Bonmassar
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Michael D Fox
- Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Todd Herrington
- Partners Neurology, Massachusetts General Hospital, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Elfar Adalsteinsson
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA; Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, USA
| | - Cristen LaPierre
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Azma Mareyam
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Lawrence L Wald
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| |
Collapse
|
44
|
Twieg M, Griswold MA. High efficiency radiofrequency power amplifier module for parallel transmit arrays at 3 Tesla. Magn Reson Med 2016; 78:1589-1598. [PMID: 27797109 DOI: 10.1002/mrm.26510] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 08/31/2016] [Accepted: 09/24/2016] [Indexed: 01/03/2023]
Abstract
PURPOSE The purpose of this study is to develop an in-bore radiofrequency (RF) power amplifier (RFPA) module with high power efficiency and density for use in parallel transmit (pTX) arrays at 3 Tesla. METHODS The modules use a combination of current mode class D, class S, and class E amplifiers based on enhancement-mode gallium nitride-on-silicon field-effect transistors. Together the amplifiers implement envelope elimination and restoration to achieve amplitude modulation with high efficiency over a wide operating range. The static nonlinearity and power efficiency of the module were measured using pulsed RF measurements over a 37 dB dynamic range. Thermal performance was also measured with and without forced convection cooling. RESULTS The modules produces peak RF power up to 130 W with an overall efficiency of 85%. When producing 100 W RF pulses at a duty cycle of 10%, maximum junction temperatures did not exceed 80 °C, even without the use of heatsinks or forced convection. CONCLUSION The small size and low cost of the modules promise lower cost implementation of pTX systems compared with linear RFPAs located remotely. Further work must be done on control of the RF output in the presence of nonlinearities and coupling. Magn Reson Med 78:1589-1598, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Michael Twieg
- Department of Electrical Engineering and Computer Science, Case Western Reserve University, Cleveland, Ohio, USA
| | - Mark A Griswold
- Department of Electrical Engineering and Computer Science, Case Western Reserve University, Cleveland, Ohio, USA.,Department of Radiology, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
45
|
Golestanirad L, Keil B, Angelone LM, Bonmassar G, Mareyam A, Wald LL. Feasibility of using linearly polarized rotating birdcage transmitters and close-fitting receive arrays in MRI to reduce SAR in the vicinity of deep brain simulation implants. Magn Reson Med 2016; 77:1701-1712. [PMID: 27059266 DOI: 10.1002/mrm.26220] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 02/02/2016] [Accepted: 02/24/2016] [Indexed: 11/07/2022]
Abstract
PURPOSE MRI of patients with deep brain stimulation (DBS) implants is strictly limited due to safety concerns, including high levels of local specific absorption rate (SAR) of radiofrequency (RF) fields near the implant and related RF-induced heating. This study demonstrates the feasibility of using a rotating linearly polarized birdcage transmitter and a 32-channel close-fit receive array to significantly reduce local SAR in MRI of DBS patients. METHODS Electromagnetic simulations and phantom experiments were performed with generic DBS lead geometries and implantation paths. The technique was based on mechanically rotating a linear birdcage transmitter to align its zero electric-field region with the implant while using a close-fit receive array to significantly increase signal to noise ratio of the images. RESULTS It was found that the zero electric-field region of the transmitter is thick enough at 1.5 Tesla to encompass DBS lead trajectories with wire segments that were up to 30 degrees out of plane, as well as leads with looped segments. Moreover, SAR reduction was not sensitive to tissue properties, and insertion of a close-fit 32-channel receive array did not degrade the SAR reduction performance. CONCLUSION The ensemble of rotating linear birdcage and 32-channel close-fit receive array introduces a promising technology for future improvement of imaging in patients with DBS implants. Magn Reson Med 77:1701-1712, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Laleh Golestanirad
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Boris Keil
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA.,Institute of Medical Physics and Radiation Protection, THM, Life Science Engineering, Giessen, Germany
| | - Leonardo M Angelone
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Giorgio Bonmassar
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Azma Mareyam
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Lawrence L Wald
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|