1
|
Vaičiulienė G, Jovaišienė J, Falkauskas R, Paškevičius A, Sutkevičienė N, Rekešiūtė A, Sorkytė Š, Baliukonienė V. Exploring the Efficacy of Using Geotrichum fermentans, Rhodotorula rubra, Kluyveromyce marxiamus, Clay Minerals, and Walnut Nutshells for Mycotoxin Remediation. Toxins (Basel) 2024; 16:281. [PMID: 38922175 PMCID: PMC11209154 DOI: 10.3390/toxins16060281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/06/2024] [Accepted: 06/17/2024] [Indexed: 06/27/2024] Open
Abstract
The aim of this study was to evaluate the effectiveness of nine different biological compounds to reduce mycotoxins concentrations. The hypothesis of this study was that a static in vitro gastrointestinal tract model, as an initial screening tool, can be used to simulate the efficacy of Geotrichum fermentans, Rhodotorula rubra, Kluyveromyce marxiamus yeast cell walls and their polysaccharides, red and white clay minerals, and walnuts nutshells claiming to detoxify AFB1, ZEA, DON, and T-2 toxin mycotoxins. Mycotoxin concentrations were analyzed using high-performance liquid chromatography (HPLC) with fluorescent (FLD) and ultraviolet detectors (UV). The greatest effects on reducing mycotoxin concentrations were determined as follows: for AFB1, inserted G. fermentans cell wall polysaccharides and walnut nutshells; for ZEA, inserted R. rubra and G. fermentans cell walls and red clay minerals; for DON, R. rubra cell wall polysaccharides and red clay minerals; and for T-2 toxin, R. rubra cell walls, K. marxianus, and G. fermentans cell wall polysaccharides and walnut nutshells. The present study indicated that selected mycotoxin-detoxifying biological compounds can be used to decrease mycotoxin concentrations.
Collapse
Affiliation(s)
- Gintarė Vaičiulienė
- Animal Reproduction Laboratory, Large Animal Clinic, Veterinary Academy, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania; (N.S.); (A.R.); (Š.S.)
| | - Jurgita Jovaišienė
- Department of Food Safety and Quality, Veterinary Academy, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania; (J.J.); (V.B.)
| | - Rimvydas Falkauskas
- National Food and Veterinary Risk Assessment Institute, J. Kairiukscio Str. 10, LT-08411 Vilnius, Lithuania;
| | - Algimantas Paškevičius
- Laboratory of Biodeterioration Research, Institute of Botany, Nature Research Centre, Akademijos Str. 2, LT-08412 Vilnius, Lithuania;
| | - Neringa Sutkevičienė
- Animal Reproduction Laboratory, Large Animal Clinic, Veterinary Academy, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania; (N.S.); (A.R.); (Š.S.)
| | - Audronė Rekešiūtė
- Animal Reproduction Laboratory, Large Animal Clinic, Veterinary Academy, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania; (N.S.); (A.R.); (Š.S.)
| | - Šarūnė Sorkytė
- Animal Reproduction Laboratory, Large Animal Clinic, Veterinary Academy, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania; (N.S.); (A.R.); (Š.S.)
| | - Violeta Baliukonienė
- Department of Food Safety and Quality, Veterinary Academy, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania; (J.J.); (V.B.)
| |
Collapse
|
2
|
Moreira LDPD, Porcellato D, Marangon M, Nadai C, Duarte VDS, Devold TG, Giacomini A, Corich V. Interactions between Starmerella bacillaris and Saccharomyces cerevisiae during sequential fermentations influence the release of yeast mannoproteins and impact the protein stability of an unstable wine. Food Chem 2024; 440:138311. [PMID: 38160596 DOI: 10.1016/j.foodchem.2023.138311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 11/01/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
Wine protein haze formation is a problem due to grape proteins aggregation during wine storage. The cell wall components of wine yeasts, particularly high molecular weight mannoproteins, have a protective effect against haze formation, although their involvement remains poorly understood. This study aimed at characterizing glycosylated proteins released by Starmerella bacillaris and Saccharomyces cerevisiae during single and sequential fermentations in a synthetic must, and testing their impact on wine protein stability. Mannoproteins-rich extracts from sequential fermentations showed an increase in the low MW polysaccharide fraction and, when added to an unstable wine, had a greater effect on protein stability than S. cerevisiae extracts. Shotgun proteomics approaches revealed that the identified cell wall proteins exclusively found in sequential fermentations were produced by both S. bacillaris (MKC7, ENG1) and S. cerevisiae (Bgl2p). Moreover, sequential fermentations significantly increased the expression of Scw4p and 1,3-beta-glucanosyltransferase (GAS5), produced by S. cerevisiae. Finally, some of the key proteins identified might play a positive role in increasing wine protein stability.
Collapse
Affiliation(s)
- Luiza de Paula Dias Moreira
- Department of Agronomy Food Natural Resources Animals and Environment (DAFNAE), University of Padova, Legnaro, PD, Italy; Faculty of Chemistry, Biotechnology, and Food Science, The Norwegian University of Live Sciences, P.O. Box 5003, N-1432 Ås, Norway
| | - Davide Porcellato
- Faculty of Chemistry, Biotechnology, and Food Science, The Norwegian University of Live Sciences, P.O. Box 5003, N-1432 Ås, Norway
| | - Matteo Marangon
- Department of Agronomy Food Natural Resources Animals and Environment (DAFNAE), University of Padova, Legnaro, PD, Italy; Interdepartmental Centre for Research in Viticulture and Enology (CIRVE), University of Padova, Conegliano, TV, Italy
| | - Chiara Nadai
- Interdepartmental Centre for Research in Viticulture and Enology (CIRVE), University of Padova, Conegliano, TV, Italy; Department of Land, Environment, Agriculture and Forestry (TESAF), University of Padova, Legnaro, PD, Italy.
| | - Vinícius da Silva Duarte
- Faculty of Chemistry, Biotechnology, and Food Science, The Norwegian University of Live Sciences, P.O. Box 5003, N-1432 Ås, Norway
| | - Tove Gulbrandsen Devold
- Faculty of Chemistry, Biotechnology, and Food Science, The Norwegian University of Live Sciences, P.O. Box 5003, N-1432 Ås, Norway
| | - Alessio Giacomini
- Department of Agronomy Food Natural Resources Animals and Environment (DAFNAE), University of Padova, Legnaro, PD, Italy; Interdepartmental Centre for Research in Viticulture and Enology (CIRVE), University of Padova, Conegliano, TV, Italy
| | - Viviana Corich
- Department of Agronomy Food Natural Resources Animals and Environment (DAFNAE), University of Padova, Legnaro, PD, Italy; Interdepartmental Centre for Research in Viticulture and Enology (CIRVE), University of Padova, Conegliano, TV, Italy
| |
Collapse
|
3
|
Martinić Cezar T, Lozančić M, Novačić A, Matičević A, Matijević D, Vallée B, Mrša V, Teparić R, Žunar B. Streamlining N-terminally anchored yeast surface display via structural insights into S. cerevisiae Pir proteins. Microb Cell Fact 2023; 22:174. [PMID: 37679759 PMCID: PMC10483737 DOI: 10.1186/s12934-023-02183-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 08/18/2023] [Indexed: 09/09/2023] Open
Abstract
Surface display co-opts yeast's innate ability to embellish its cell wall with mannoproteins, thus converting the yeast's outer surface into a growing and self-sustaining catalyst. However, the efficient toolbox for converting the enzyme of interest into its surface-displayed isoform is currently lacking, especially if the isoform needs to be anchored to the cell wall near the isoform's N-terminus, e.g., through a short GPI-independent protein anchor. Aiming to advance such N-terminally anchored surface display, we employed in silico and machine-learning strategies to study the 3D structure, function, genomic organisation, and evolution of the Pir protein family, whose members evolved to covalently attach themselves near their N-terminus to the β-1,3-glucan of the cell wall. Through the newly-gained insights, we rationally engineered 14 S. cerevisiae Hsp150 (Pir2)-based fusion proteins. We quantified their performance, uncovering guidelines for efficient yeast surface display while developing a construct that promoted a 2.5-fold more efficient display of a reporter protein than the full-length Hsp150. Moreover, we developed a Pir-tag, i.e., a peptide spanning only 4.5 kDa but promoting as efficient surface display of a reporter protein as the full-length Hsp150. These constructs fortify the existing surface display toolbox, allowing for a prompt and routine refitting of intracellular proteins into their N-terminally anchored isoforms.
Collapse
Affiliation(s)
- Tea Martinić Cezar
- Laboratory for Biochemistry, Department of Chemistry and Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, Zagreb, 10000, Croatia
| | - Mateja Lozančić
- Laboratory for Biochemistry, Department of Chemistry and Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, Zagreb, 10000, Croatia
| | - Ana Novačić
- Laboratory for Biochemistry, Department of Chemistry and Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, Zagreb, 10000, Croatia
| | - Ana Matičević
- Laboratory for Biochemistry, Department of Chemistry and Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, Zagreb, 10000, Croatia
| | - Dominik Matijević
- Laboratory for Biochemistry, Department of Chemistry and Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, Zagreb, 10000, Croatia
| | - Béatrice Vallée
- Centre de Biophysique Moléculaire (CBM), CNRS, University of Orléans and INSERM, Orléans Cedex 2, UPR, 4301, 45071, France
| | - Vladimir Mrša
- Laboratory for Biochemistry, Department of Chemistry and Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, Zagreb, 10000, Croatia
| | - Renata Teparić
- Laboratory for Biochemistry, Department of Chemistry and Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, Zagreb, 10000, Croatia
| | - Bojan Žunar
- Laboratory for Biochemistry, Department of Chemistry and Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, Zagreb, 10000, Croatia.
| |
Collapse
|
4
|
Hasan A, Roome T, Wahid M, Ansari SA, Khan JA, Jilani SNA, Jawed A, Kiyani A. Expression of Toll-like receptor 2, Dectin-1, and Osteopontin in murine model of pulpitis. Clin Oral Investig 2023; 27:1177-1192. [PMID: 36205788 DOI: 10.1007/s00784-022-04732-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 10/01/2022] [Indexed: 11/03/2022]
Abstract
OBJECTIVES This in vivo animal study aimed to develop a murine model of pulpitis induced by pulp exposure with or without application of zymosan in Naval Medical Research Institute (NMRI) mice and observe expressions of Toll-like receptor (TLR)-2, TLR-4, Dectin-1, Osteopontin (OPN), tumor necrosis factor alpha (TNF-α), interleukin (IL)-6, and IL-1ß. MATERIAL AND METHODS A total of 168 NMRI mice were divided into two groups, i.e., group A (n = 84) (pulpitis induced by pulp exposure only) and group B (n = 84) (pulpitis induced by pulp exposure and zymosan application). Right maxillary molar pulps were exposed with ¼ round bur, and animals were sacrificed at 0, 6, 9, 12, 24, 48, and 72 h. The exposed teeth were obtained for real-time polymerase chain reaction (qRT-PCR) analysis and histological and immunohistochemistry (IHC) analysis. RESULTS Histological evaluation revealed a time-dependent steady increase in inflammation. Similar time-dependent increase in the expression of inflammatory cytokines was noted. Group A exhibited an increase in TLR-4, Dectin-1, and OPN at 6 h, while TLR-2 was expressed at 24 h. Group B expressed TLR-2, Dectin-1, and OPN at 9, 48, and 72 h, respectively (p ≤ 0.05). Expression of OPN and TNF-α exhibited a similar pattern in both groups. IHC also detected expression of TLR-2, Dectin-1, TLR4, and CD68 in some cells at 6 and 9 h. CONCLUSIONS NMRI mice provided for a stable pulp inflammation model. Zymosan may be used to develop pulp inflammation model and study inflammatory response towards fungal antigens. Dental pulp expressed Dectin-1 receptor. OPN and TNF-α exhibited a similar expression pattern. CLINICAL RELEVANCE Innate immunity of dental pulp is capable of detecting fungal pathogens.
Collapse
Affiliation(s)
- Arshad Hasan
- Department of Operative Dentistry, Dow Dental College, Dow University of Health Sciences, Baba-e-Urdu Road, Karachi, 74200, Pakistan.
| | - Talat Roome
- Department of Pathology, Section Molecular Pathology, Dow International Medical College, Ojha Campus, Gulzar-e-Hijri Karachi, Pakistan.,Dow Institute for Advanced Biological and Animal Research, Dow University of Health Sciences, Ojha Campus, Gulzar-e-Hijri Karachi, Pakistan
| | - Mohsin Wahid
- Department of Pathology, Dow International Medical College, Dow University of Health Sciences, Ojha Campus, Gulzar-e-Hijri Karachi, Pakistan.,Dow Research Institute of Biotechnology and Biomedical Sciences, Dow University of Health Sciences, Ojha Campus, Gulzar-e-Hijri Karachi, Pakistan
| | - Shazia Akbar Ansari
- Department of Oral Pathology, Dow Dental College, Dow University of Health Sciences, Baba-e-Urdu Road, Karachi, 74200, Pakistan
| | - Javeria Ali Khan
- Department of Operative Dentistry, Dow Dental College, Dow University of Health Sciences, Baba-e-Urdu Road, Karachi, 74200, Pakistan
| | - Syeda Neha Ahmed Jilani
- Dow Institute for Advanced Biological and Animal Research, Dow University of Health Sciences, Ojha Campus, Gulzar-e-Hijri Karachi, Pakistan
| | - Abira Jawed
- Department of Oral Pathology, Dow Dental College, Dow University of Health Sciences, Baba-e-Urdu Road, Karachi, 74200, Pakistan
| | - Amber Kiyani
- Department of Oral Diagnosis and Medicine, Islamic International Dental College, Riphah International University, 7th Avenue G-7/4, Islamabad, Pakistan
| |
Collapse
|
5
|
Fang Y, Xiao H. The Aspartic Protease Yps3p and Cell Wall Glucanase Scw10p Are Novel Determinants That Enhance the Secretion of the Antitumor Triterpenoid GA-HLDOA in Saccharomyces cerevisiae. ACS Synth Biol 2022; 11:2917-2926. [PMID: 35969118 DOI: 10.1021/acssynbio.2c00005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Efficient bioproduction of triterpenoids is gaining increasing interest because of their significant biological applications; however, the secretion and bioproduction of triterpenoids are hindered by untapped genetic determinants. In our previous study, we observed that different engineered Saccharomyces cerevisiae strains exhibit different abilities for secreting the antitumor triterpenoid ganoderic acid 3-hydroxy-lanosta-8,24-dien-26-oic acid (GA-HLDOA). In the present study, we performed comparative proteomics analyses of the engineered strains and identified two genes, encoding an aspartic protease, YPS3, and a cell wall glucanase, SCW10, as the most effective determinants that enhance the secretion of GA-HLDOA. Compared with this control strain, strain BJ5464-r demonstrated an overexpression of YPS3 and SCW10 resulting in 3.9-fold and 4.7-fold higher secretion of GA-HLDOA, respectively, and these increases were accompanied by an increase in cell permeability. Moreover, compared with the YPS3-overexpressing strain, the SCW10-overexpressing strain had a thinner outer mannan layer. Our findings offer valuable insights into designing microbial cell factories for the efficient secretion of triterpenoids.
Collapse
Affiliation(s)
- Yubo Fang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and Laboratory of Molecular Biochemical Engineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dong-chuan Road, Shanghai, 200240, China
| | - Han Xiao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and Laboratory of Molecular Biochemical Engineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dong-chuan Road, Shanghai, 200240, China
| |
Collapse
|
6
|
Sherry Wines: Worldwide Production, Chemical Composition and Screening Conception for Flor Yeasts. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8080381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The manufacturing of sherry wines is a unique, carefully regulated process, from harvesting to quality control of the finished product, involving dynamic biological aging in a “criadera-solera” system or some other techniques. Specialized “flor” strains of the yeast Saccharomyces cerevisiae play the central role in the sherry manufacturing process. As a result, sherry wines have a characteristic and unique chemical composition that determines their organoleptic properties (such as color, odor, and taste) and distinguishes them from all other types of wine. The use of modern methods of genetics and biotechnology contributes to a deep understanding of the microbiology of sherry production and allows us to define a new methodology for breeding valuable flor strains. This review discusses the main sherry-producing regions and the chemical composition of sherry wines, as well as genetic, oenological, and other selective markers for flor strains that can be used for screening novel candidates that are promising for sherry production among environmental isolates.
Collapse
|
7
|
Kenzaki A, Okunishi S, Tomoda T, Shioura Y, Uchida M, Tezuka N, Maeda H. Observation of the feeding behaviour of reared Japanese eel Anguilla japonica leptocephali fed picocyanobacteria Synechococcus spp. JOURNAL OF FISH BIOLOGY 2022; 100:727-737. [PMID: 34958491 DOI: 10.1111/jfb.14986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
The authors observed the feeding behaviour of artificially reared Japanese eel Anguilla japonica leptocephali, 7.5-19 mm total length (10-61 days post-hatch), fed Synechococcus sp., which is considered a potential food source of anguilliform larvae. Three strains of Synechococcus sp. (NIES-972, 976 and 979) were tested as the food material. Larvae across the entire length range could effectively ingest a suspension of pico-sized cyanobacteria (1-3 μm in diameter). Video observations of the mid-hindgut of larvae under an epifluorescence microscope confirmed that the movement of microvilli of the intestinal epithelium allowed the cell particles to circulate in the mid-hindgut, before becoming solidified in the anal region. Significant differences in food intake were observed between larvae fed two strains of Synechococcus (NIES-972 and 976), and among different cell densities, which suggests feeding selectivity and density dependence. Comparisons of feeding behaviour under the light group (9L:15D) and the dark group (24D) showed significantly higher food intake (measured as an index of intestinal fullness) in the light group, although substantial and continuous ingestion was observed in the dark group, indicating continuous feeding by swallowing sea water. The authors hypothesise that the feeding ecology of anguilliform leptocephali is based on a survival strategy whereby the larvae do not compete with various higher-trophic-level fishes for food in an oligotrophic environment.
Collapse
Affiliation(s)
- Akira Kenzaki
- Graduate School of Agriculture, Forestry and Fisheries, Kagoshima University, Kagoshima, Japan
| | - Suguru Okunishi
- Faculty of Fisheries, Kagoshima University, Kagoshima, Japan
| | - Tsutomu Tomoda
- Glass Eel Production Division, Fisheries Technology Institute, National Research and Development Agency, Japan Fisheries Research and Education Agency, Kagoshima, Japan
| | - Yuuya Shioura
- Glass Eel Production Division, Fisheries Technology Institute, National Research and Development Agency, Japan Fisheries Research and Education Agency, Kagoshima, Japan
| | - Motoharu Uchida
- Momoshima Field Station, Fisheries Technology Institute, National Research and Development Agency, Japan Fisheries Research and Education Agency, Hiroshima, Japan
| | - Naoaki Tezuka
- Coastal and Inland Fisheries Ecosystems Division, Fisheries Technology Institute, National Research and Development Agency, Fisheries Research and Education Agency, Hiroshima, Japan
| | - Hiroto Maeda
- Faculty of Fisheries, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
8
|
Proteomic perspectives on thermotolerant microbes: an updated review. Mol Biol Rep 2021; 49:629-646. [PMID: 34671903 DOI: 10.1007/s11033-021-06805-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 10/04/2021] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Thermotolerant microbes are a group of microorganisms that survive in elevated temperatures. The thermotolerant microbes, which are found in geothermal heat zones, grow at temperatures of or above 45°C. The proteins present in such microbes are optimally active at these elevated temperatures. Hence, therefore, serves as an advantage in various biotechnological applications. In the last few years, scientists have tried to understand the molecular mechanisms behind the maintenance of the structural integrity of the cell and to study the stability of various thermotolerant proteins at extreme temperatures. Proteomic analysis is the solution for this search. Applying novel proteomic tools determines the proteins involved in the thermostability of microbes at elevated temperatures. METHODS Advanced proteomic techniques like Mass spectrometry, nano-LC-MS, protein microarray, ICAT, iTRAQ, and SILAC could enable the screening and identification of novel thermostable proteins. RESULTS This review provides up-to-date details on the protein signature of various thermotolerant microbes analyzed through advanced proteomic tools concerning relevant research articles. The protein complex composition from various thermotolerant microbes cultured at different temperatures, their structural arrangement, and functional efficiency of the protein was reviewed and reported. CONCLUSION This review provides an overview of thermotolerant microbes, their enzymes, and the proteomic tools implemented to characterize them. This article also reviewed a comprehensive view of the current proteomic approaches for protein profiling in thermotolerant microbes.
Collapse
|
9
|
Stress Resistance and Adhesive Properties of Commercial Flor and Wine Strains, and Environmental Isolates of Saccharomyces cerevisiae. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation7030188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Flor strains of Saccharomyces cerevisiae represent a special group of yeasts used for producing biologically aged wines. We analyzed the collection of commercial wine and flor yeast strains, as well as environmental strains isolated from the surface of grapes growing in vineyards, for resistance to abiotic stresses, adhesive properties, and the ability to form a floating flor. The degree of resistance of commercial strains to ethanol, acetaldehyde, and hydrogen peroxide was generally not higher than that of environmental isolates, some of which had high resistance to the tested stress agents. The relatively low degree of stress resistance of flor strains can be explained both by the peculiarities of their adaptive mechanisms and by differences in the nature of their exposure to various types of stress in the course of biological wine aging and under the experimental conditions we used. The hydrophobicity and adhesive properties of cells were determined by the efficiency of adsorption to polystyrene and the distribution of cells between the aqueous and organic phases. Flor strains were distinguished by a higher degree of hydrophobicity of the cell surface and an increased ability to adhere to polystyrene. A clear correlation between biofilm formation and adhesive properties was also observed for environmental yeast isolates. The overall results of this study indicate that relatively simple tests for cell hydrophobicity can be used for the rapid screening of new candidate flor strains in yeast culture collections and among environmental isolates.
Collapse
|
10
|
Wang P, Lin Y, Zou C, Zhao F, Liang S, Zheng S, Han S. Construction and screening of a glycosylphosphatidylinositol protein deletion library in Pichia pastoris. BMC Microbiol 2020; 20:262. [PMID: 32838766 PMCID: PMC7446130 DOI: 10.1186/s12866-020-01928-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 07/29/2020] [Indexed: 12/23/2022] Open
Abstract
Background Glycosylphosphatidylinositol (GPI)-anchored glycoproteins have diverse intrinsic functions in yeasts, and they also have different uses in vitro. In this study, the functions of potential GPI proteins in Pichia pastoris were explored by gene knockout approaches. Results Through an extensive knockout of GPI proteins in P. pastoris, a single-gene deletion library was constructed for 45 predicted GPI proteins. The knockout of proteins may lead to the activation of a cellular response named the ‘compensatory mechanism’, which is characterized by changes in the content and relationship between cell wall polysaccharides and surface proteins. Among the 45 deletion strains, five showed obvious methanol tolerance, four owned high content of cell wall polysaccharides, and four had a high surface hydrophobicity. Some advantages of these strains as production hosts were revealed. Furthermore, the deletion strains with high surface hydrophobicity were used as hosts to display Candida antarctica lipase B (CALB). The strain gcw22Δ/CALB-GCW61 showed excellent fermentation characteristics, including a faster growth rate and higher hydrolytic activity. Conclusions This GPI deletion library has some potential applications for production strains and offers a valuable resource for studying the precise functions of GPI proteins, especially their putative functions.
Collapse
Affiliation(s)
- Pan Wang
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Ying Lin
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Chengjuan Zou
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Fengguang Zhao
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Shuli Liang
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Suiping Zheng
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Shuangyan Han
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, Guangdong, China.
| |
Collapse
|
11
|
Tofalo R, Fusco V, Böhnlein C, Kabisch J, Logrieco AF, Habermann D, Cho GS, Benomar N, Abriouel H, Schmidt-Heydt M, Neve H, Bockelmann W, Franz CMAP. The life and times of yeasts in traditional food fermentations. Crit Rev Food Sci Nutr 2019; 60:3103-3132. [PMID: 31656083 DOI: 10.1080/10408398.2019.1677553] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Yeasts are eukaryotic microorganisms which have a long history in the biotechnology of food production, as they have been used since centuries in bread-making or in the production of alcoholic beverages such as wines or beers. Relative to this importance, a lot of research has been devoted to the study of yeasts involved in making these important products. The role of yeasts in other fermentations in association with other microorganisms - mainly lactic acid bacteria - has been relatively less studied, and often it is not clear if yeasts occurring in such fermentations are contaminants with no role in the fermentation, spoilage microorganisms or whether they actually serve a technological or functional purpose. Some knowledge is available for yeasts used as starter cultures in fermented raw sausages or in the production of acid curd cheeses. This review aimed to summarize the current knowledge on the taxonomy, the presence and potential functional or technological roles of yeasts in traditional fermented plant, dairy, fish and meat fermentations.
Collapse
Affiliation(s)
- Rosanna Tofalo
- Faculty of BioScience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Vincenzina Fusco
- Institute of Sciences of Food Production, National Research Council of Italy, Bari, Italy
| | - Christina Böhnlein
- Department of Microbiology and Biotechnology, Max Rubner-Institut, Kiel, Germany
| | - Jan Kabisch
- Department of Microbiology and Biotechnology, Max Rubner-Institut, Kiel, Germany
| | - Antonio F Logrieco
- Institute of Sciences of Food Production, National Research Council of Italy, Bari, Italy
| | - Diana Habermann
- Department of Microbiology and Biotechnology, Max Rubner-Institut, Kiel, Germany
| | - Gyu-Sung Cho
- Department of Microbiology and Biotechnology, Max Rubner-Institut, Kiel, Germany
| | - Nabil Benomar
- Área de Microbiología, Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales, Universidad de Jaén, Jaén, Spain
| | - Hikmate Abriouel
- Área de Microbiología, Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales, Universidad de Jaén, Jaén, Spain
| | - Markus Schmidt-Heydt
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Karlsruhe, Germany
| | - Horst Neve
- Department of Microbiology and Biotechnology, Max Rubner-Institut, Kiel, Germany
| | - Wilhelm Bockelmann
- Department of Microbiology and Biotechnology, Max Rubner-Institut, Kiel, Germany
| | - Charles M A P Franz
- Department of Microbiology and Biotechnology, Max Rubner-Institut, Kiel, Germany
| |
Collapse
|
12
|
Beal DM, Bastow EL, Staniforth GL, von der Haar T, Freedman RB, Tuite MF. Quantitative Analyses of the Yeast Oxidative Protein Folding Pathway In Vitro and In Vivo. Antioxid Redox Signal 2019; 31:261-274. [PMID: 30880408 PMCID: PMC6602113 DOI: 10.1089/ars.2018.7615] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 03/14/2019] [Accepted: 03/14/2019] [Indexed: 12/11/2022]
Abstract
Aims: Efficient oxidative protein folding (OPF) in the endoplasmic reticulum (ER) is a key requirement of the eukaryotic secretory pathway. In particular, protein folding linked to the formation of disulfide bonds, an activity dependent on the enzyme protein disulfide isomerase (PDI), is crucial. For the de novo formation of disulfide bonds, reduced PDI must be reoxidized by an ER-located oxidase (ERO1). Despite some knowledge of this pathway, the kinetic parameters with which these components act and the importance of specific parameters, such as PDI reoxidation by Ero1, for the overall performance of OPF in vivo remain poorly understood. Results: We established an in vitro system using purified yeast (Saccharomyces cerevisiae) PDI (Pdi1p) and ERO1 (Ero1p) to investigate OPF. This necessitated the development of a novel reduction/oxidation processing strategy to generate homogenously oxidized recombinant yeast Ero1p. This new methodology enabled the quantitative assessment of the interaction of Pdi1p and Ero1p in vitro by measuring oxygen consumption and reoxidation of reduced RNase A. The resulting quantitative data were then used to generate a simple model that can describe the oxidizing capacity of Pdi1p and Ero1p in vitro and predict the in vivo effect of modulation of the levels of these proteins. Innovation: We describe a model that can be used to explore the OPF pathway and its control in a quantitative way. Conclusion: Our study informs and provides new insights into how OPF works at a molecular level and provides a platform for the design of more efficient heterologous protein expression systems in yeast.
Collapse
Affiliation(s)
- Dave M. Beal
- Kent Fungal Group, School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Emma L. Bastow
- Kent Fungal Group, School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Gemma L. Staniforth
- Kent Fungal Group, School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Tobias von der Haar
- Kent Fungal Group, School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Robert B. Freedman
- Kent Fungal Group, School of Biosciences, University of Kent, Canterbury, United Kingdom
- School of Life Sciences, Gibbet Hill Campus, University of Warwick, Coventry, United Kingdom
| | - Mick F. Tuite
- Kent Fungal Group, School of Biosciences, University of Kent, Canterbury, United Kingdom
| |
Collapse
|
13
|
Cohen-Zontag O, Baez C, Lim LQJ, Olender T, Schirman D, Dahary D, Pilpel Y, Gerst JE. A secretion-enhancing cis regulatory targeting element (SECReTE) involved in mRNA localization and protein synthesis. PLoS Genet 2019; 15:e1008248. [PMID: 31260446 PMCID: PMC6625729 DOI: 10.1371/journal.pgen.1008248] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 07/12/2019] [Accepted: 06/13/2019] [Indexed: 12/19/2022] Open
Abstract
The localization of mRNAs encoding secreted/membrane proteins (mSMPs) to the endoplasmic reticulum (ER) likely facilitates the co-translational translocation of secreted proteins. However, studies have shown that mSMP recruitment to the ER in eukaryotes can occur in a manner that is independent of the ribosome, translational control, and the signal recognition particle, although the mechanism remains largely unknown. Here, we identify a cis-acting RNA sequence motif that enhances mSMP localization to the ER and appears to increase mRNA stability, and both the synthesis and secretion of secretome proteins. Termed SECReTE, for secretion-enhancing cis regulatory targeting element, this motif is enriched in mRNAs encoding secretome proteins translated on the ER in eukaryotes and on the inner membrane of prokaryotes. SECReTE consists of ≥10 nucleotide triplet repeats enriched with pyrimidine (C/U) every third base (i.e. NNY, where N = any nucleotide, Y = pyrimidine) and can be present in the untranslated as well as the coding regions of the mRNA. Synonymous mutations that elevate the SECReTE count in a given mRNA (e.g. SUC2, HSP150, and CCW12) lead to an increase in protein secretion in yeast, while a reduction in count led to less secretion and physiological defects. Moreover, the addition of SECReTE to the 3'UTR of an mRNA for an exogenously expressed protein (e.g. GFP) led to its increased secretion from yeast cells. Thus, SECReTE constitutes a novel RNA motif that facilitates ER-localized mRNA translation and protein secretion.
Collapse
Affiliation(s)
- Osnat Cohen-Zontag
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Camila Baez
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Lisha Qiu Jin Lim
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Tsviya Olender
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Dvir Schirman
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Dvir Dahary
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Yitzhak Pilpel
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Jeffrey E. Gerst
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
14
|
Koolivand A, Azizi M, O’Brien A, Khaledi MG. Coacervation of Lipid Bilayer in Natural Cell Membranes for Extraction, Fractionation, and Enrichment of Proteins in Proteomics Studies. J Proteome Res 2019; 18:1595-1606. [DOI: 10.1021/acs.jproteome.8b00857] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Amir Koolivand
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Mohammadmehdi Azizi
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Ariel O’Brien
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Morteza G. Khaledi
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, United States
| |
Collapse
|
15
|
HSFA2 Functions in the Physiological Adaptation of Undifferentiated Plant Cells to Spaceflight. Int J Mol Sci 2019; 20:ijms20020390. [PMID: 30658467 PMCID: PMC6359015 DOI: 10.3390/ijms20020390] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 12/29/2018] [Accepted: 01/11/2019] [Indexed: 11/16/2022] Open
Abstract
Heat Shock Factor A2 (HsfA2) is part of the Heat Shock Factor (HSF) network, and plays an essential role beyond heat shock in environmental stress responses and cellular homeostatic control. Arabidopsis thaliana cell cultures derived from wild type (WT) ecotype Col-0 and a knockout line deficient in the gene encoding HSFA2 (HSFA2 KO) were grown aboard the International Space Station (ISS) to ascertain whether the HSF network functions in the adaptation to the novel environment of spaceflight. Microarray gene expression data were analyzed using a two-part comparative approach. First, genes differentially expressed between the two environments (spaceflight to ground) were identified within the same genotype, which represented physiological adaptation to spaceflight. Second, gene expression profiles were compared between the two genotypes (HSFA2 KO to WT) within the same environment, which defined genes uniquely required by each genotype on the ground and in spaceflight-adapted states. Results showed that the endoplasmic reticulum (ER) stress and unfolded protein response (UPR) define the HSFA2 KO cells' physiological state irrespective of the environment, and likely resulted from a deficiency in the chaperone-mediated protein folding machinery in the mutant. Results further suggested that additional to its universal stress response role, HsfA2 also has specific roles in the physiological adaptation to spaceflight through cell wall remodeling, signal perception and transduction, and starch biosynthesis. Disabling HsfA2 altered the physiological state of the cells, and impacted the mechanisms induced to adapt to spaceflight, and identified HsfA2-dependent genes that are important to the adaption of wild type cells to spaceflight. Collectively these data indicate a non-thermal role for the HSF network in spaceflight adaptation.
Collapse
|
16
|
Genome-Wide Screen for Saccharomyces cerevisiae Genes Contributing to Opportunistic Pathogenicity in an Invertebrate Model Host. G3-GENES GENOMES GENETICS 2018; 8:63-78. [PMID: 29122853 PMCID: PMC5765367 DOI: 10.1534/g3.117.300245] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Environmental opportunistic pathogens can exploit vulnerable hosts through expression of traits selected for in their natural environments. Pathogenicity is itself a complicated trait underpinned by multiple complex traits, such as thermotolerance, morphology, and stress response. The baker's yeast, Saccharomyces cerevisiae, is a species with broad environmental tolerance that has been increasingly reported as an opportunistic pathogen of humans. Here we leveraged the genetic resources available in yeast and a model insect species, the greater waxmoth Galleria mellonella, to provide a genome-wide analysis of pathogenicity factors. Using serial passaging experiments of genetically marked wild-type strains, a hybrid strain was identified as the most fit genotype across all replicates. To dissect the genetic basis for pathogenicity in the hybrid isolate, bulk segregant analysis was performed which revealed eight quantitative trait loci significantly differing between the two bulks with alleles from both parents contributing to pathogenicity. A second passaging experiment with a library of deletion mutants for most yeast genes identified a large number of mutations whose relative fitness differed in vivovs.in vitro, including mutations in genes controlling cell wall integrity, mitochondrial function, and tyrosine metabolism. Yeast is presumably subjected to a massive assault by the innate insect immune system that leads to melanization of the host and to a large bottleneck in yeast population size. Our data support that resistance to the innate immune response of the insect is key to survival in the host and identifies shared genetic mechanisms between S. cerevisiae and other opportunistic fungal pathogens.
Collapse
|
17
|
Moore EM, Ying G, West JL. Macrophages Influence Vessel Formation in 3D Bioactive Hydrogels. ACTA ACUST UNITED AC 2017. [DOI: 10.1002/adbi.201600021] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Erika M. Moore
- Department of Biomedical Engineering Duke University 101 Science Drive Campus Box 90281 Durham NC 27708‐0281 USA
| | - Grace Ying
- Department of Biomedical Engineering Duke University 101 Science Drive Campus Box 90281 Durham NC 27708‐0281 USA
| | - Jennifer L. West
- Department of Biomedical Engineering Duke University 101 Science Drive Campus Box 90281 Durham NC 27708‐0281 USA
| |
Collapse
|
18
|
Santos RM, Nogueira FC, Brasil AA, Carvalho PC, Leprevost FV, Domont GB, Eleutherio EC. Quantitative proteomic analysis of the Saccharomyces cerevisiae industrial strains CAT-1 and PE-2. J Proteomics 2017; 151:114-121. [DOI: 10.1016/j.jprot.2016.08.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 05/25/2016] [Accepted: 08/25/2016] [Indexed: 10/21/2022]
|