1
|
Gunawan I, Vafaee F, Meijering E, Lock JG. An introduction to representation learning for single-cell data analysis. CELL REPORTS METHODS 2023; 3:100547. [PMID: 37671013 PMCID: PMC10475795 DOI: 10.1016/j.crmeth.2023.100547] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Single-cell-resolved systems biology methods, including omics- and imaging-based measurement modalities, generate a wealth of high-dimensional data characterizing the heterogeneity of cell populations. Representation learning methods are routinely used to analyze these complex, high-dimensional data by projecting them into lower-dimensional embeddings. This facilitates the interpretation and interrogation of the structures, dynamics, and regulation of cell heterogeneity. Reflecting their central role in analyzing diverse single-cell data types, a myriad of representation learning methods exist, with new approaches continually emerging. Here, we contrast general features of representation learning methods spanning statistical, manifold learning, and neural network approaches. We consider key steps involved in representation learning with single-cell data, including data pre-processing, hyperparameter optimization, downstream analysis, and biological validation. Interdependencies and contingencies linking these steps are also highlighted. This overview is intended to guide researchers in the selection, application, and optimization of representation learning strategies for current and future single-cell research applications.
Collapse
Affiliation(s)
- Ihuan Gunawan
- School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
- School of Computer Science and Engineering, Faculty of Engineering, University of New South Wales, Sydney, NSW, Australia
| | - Fatemeh Vafaee
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, NSW, Australia
- UNSW Data Science Hub, University of New South Wales, Sydney, NSW, Australia
| | - Erik Meijering
- School of Computer Science and Engineering, Faculty of Engineering, University of New South Wales, Sydney, NSW, Australia
| | - John George Lock
- School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
- UNSW Data Science Hub, University of New South Wales, Sydney, NSW, Australia
- Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia
| |
Collapse
|
2
|
Kołodziej T, Mielnicka A, Dziob D, Chojnacka AK, Rawski M, Mazurkiewicz J, Rajfur Z. Morphomigrational description as a new approach connecting cell's migration with its morphology. Sci Rep 2023; 13:11006. [PMID: 37419901 PMCID: PMC10328925 DOI: 10.1038/s41598-023-35827-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 05/24/2023] [Indexed: 07/09/2023] Open
Abstract
The examination of morphology and migration of cells plays substantial role in understanding the cellular behaviour, being described by plethora of quantitative parameters and models. These descriptions, however, treat cell migration and morphology as independent properties of temporal cell state, while not taking into account their strong interdependence in adherent cells. Here we present the new and simple mathematical parameter called signed morphomigrational angle (sMM angle) that links cell geometry with translocation of cell centroid, considering them as one morphomigrational behaviour. The sMM angle combined with pre-existing quantitative parameters enabled us to build a new tool called morphomigrational description, used to assign the numerical values to several cellular behaviours. Thus, the cellular activities that until now were characterized using verbal description or by complex mathematical models, are described here by a set of numbers. Our tool can be further used in automatic analysis of cell populations as well as in studies focused on cellular response to environmental directional signals.
Collapse
Affiliation(s)
- Tomasz Kołodziej
- Department of Pharmaceutical Biophysics, Faculty of Pharmacy, Jagiellonian University Medical College, ul. Medyczna 9, 30-688, Kraków, Poland.
- Department of Molecular and Interfacial Biophysics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, ul. Lojasiewicza 11, 30-348, Kraków, Poland.
| | - Aleksandra Mielnicka
- Department of Molecular and Interfacial Biophysics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, ul. Lojasiewicza 11, 30-348, Kraków, Poland
- BRAINCITY, Laboratory of Neurobiology, The Nencki Institute of Experimental Biology, PAS, ul. Ludwika Pasteura 3, 02-093, Warsaw, Poland
| | - Daniel Dziob
- Department of Pharmaceutical Biophysics, Faculty of Pharmacy, Jagiellonian University Medical College, ul. Medyczna 9, 30-688, Kraków, Poland
| | - Anna Katarzyna Chojnacka
- Department of Molecular and Interfacial Biophysics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, ul. Lojasiewicza 11, 30-348, Kraków, Poland
- Cellular Signalling and Cytoskeletal Function Laboratory, The Francis Crick Institute, 1 Midland Road, NW1 1AT, London, United Kingdom
| | - Mateusz Rawski
- Laboratory of Inland Fisheries and Aquaculture, Department of Zoology, Faculty of Veterinary Medicine and Animal Science, Poznań University of Life Sciences, ul. Wojska Polskiego 71C, 60-625, Poznań, Poland
| | - Jan Mazurkiewicz
- Laboratory of Inland Fisheries and Aquaculture, Department of Zoology, Faculty of Veterinary Medicine and Animal Science, Poznań University of Life Sciences, ul. Wojska Polskiego 71C, 60-625, Poznań, Poland
| | - Zenon Rajfur
- Department of Molecular and Interfacial Biophysics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, ul. Lojasiewicza 11, 30-348, Kraków, Poland.
- Jagiellonian Center of Biomedical Imaging, Jagiellonian University, 30-348, Kraków, Poland.
| |
Collapse
|
3
|
Hu J, Serra‐Picamal X, Bakker G, Van Troys M, Winograd‐Katz S, Ege N, Gong X, Didan Y, Grosheva I, Polansky O, Bakkali K, Van Hamme E, van Erp M, Vullings M, Weiss F, Clucas J, Dowbaj AM, Sahai E, Ampe C, Geiger B, Friedl P, Bottai M, Strömblad S. Multisite assessment of reproducibility in high-content cell migration imaging data. Mol Syst Biol 2023; 19:e11490. [PMID: 37063090 PMCID: PMC10258559 DOI: 10.15252/msb.202211490] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 04/18/2023] Open
Abstract
High-content image-based cell phenotyping provides fundamental insights into a broad variety of life science disciplines. Striving for accurate conclusions and meaningful impact demands high reproducibility standards, with particular relevance for high-quality open-access data sharing and meta-analysis. However, the sources and degree of biological and technical variability, and thus the reproducibility and usefulness of meta-analysis of results from live-cell microscopy, have not been systematically investigated. Here, using high-content data describing features of cell migration and morphology, we determine the sources of variability across different scales, including between laboratories, persons, experiments, technical repeats, cells, and time points. Significant technical variability occurred between laboratories and, to lesser extent, between persons, providing low value to direct meta-analysis on the data from different laboratories. However, batch effect removal markedly improved the possibility to combine image-based datasets of perturbation experiments. Thus, reproducible quantitative high-content cell image analysis of perturbation effects and meta-analysis depend on standardized procedures combined with batch correction.
Collapse
Affiliation(s)
- Jianjiang Hu
- Department of Biosciences and NutritionKarolinska InstitutetStockholmSweden
| | | | - Gert‐Jan Bakker
- Department of Medical BioSciencesRadboud University Medical CenterNijmegenThe Netherlands
| | | | - Sabina Winograd‐Katz
- Department of Immunology and Regenerative BiologyWeizmann Institute of ScienceRehovotIsrael
| | - Nil Ege
- The Francis Crick InstituteLondonUK
| | - Xiaowei Gong
- Department of Biosciences and NutritionKarolinska InstitutetStockholmSweden
| | - Yuliia Didan
- Department of Biosciences and NutritionKarolinska InstitutetStockholmSweden
| | - Inna Grosheva
- Department of Immunology and Regenerative BiologyWeizmann Institute of ScienceRehovotIsrael
| | - Omer Polansky
- Department of Immunology and Regenerative BiologyWeizmann Institute of ScienceRehovotIsrael
| | - Karima Bakkali
- Department of Biomolecular MedicineGhent UniversityGhentBelgium
| | | | - Merijn van Erp
- Department of Medical BioSciencesRadboud University Medical CenterNijmegenThe Netherlands
| | - Manon Vullings
- Department of Medical BioSciencesRadboud University Medical CenterNijmegenThe Netherlands
| | - Felix Weiss
- Department of Medical BioSciencesRadboud University Medical CenterNijmegenThe Netherlands
| | | | | | | | - Christophe Ampe
- Department of Biomolecular MedicineGhent UniversityGhentBelgium
| | - Benjamin Geiger
- Department of Immunology and Regenerative BiologyWeizmann Institute of ScienceRehovotIsrael
| | - Peter Friedl
- Department of Medical BioSciencesRadboud University Medical CenterNijmegenThe Netherlands
| | - Matteo Bottai
- Division of Biostatistics, Institute of Environmental MedicineKarolinska InstitutetStockholmSweden
| | - Staffan Strömblad
- Department of Biosciences and NutritionKarolinska InstitutetStockholmSweden
| |
Collapse
|
4
|
Burkhardt DB, San Juan BP, Lock JG, Krishnaswamy S, Chaffer CL. Mapping Phenotypic Plasticity upon the Cancer Cell State Landscape Using Manifold Learning. Cancer Discov 2022; 12:1847-1859. [PMID: 35736000 PMCID: PMC9353259 DOI: 10.1158/2159-8290.cd-21-0282] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/16/2022] [Accepted: 05/11/2022] [Indexed: 01/09/2023]
Abstract
ABSTRACT Phenotypic plasticity describes the ability of cancer cells to undergo dynamic, nongenetic cell state changes that amplify cancer heterogeneity to promote metastasis and therapy evasion. Thus, cancer cells occupy a continuous spectrum of phenotypic states connected by trajectories defining dynamic transitions upon a cancer cell state landscape. With technologies proliferating to systematically record molecular mechanisms at single-cell resolution, we illuminate manifold learning techniques as emerging computational tools to effectively model cell state dynamics in a way that mimics our understanding of the cell state landscape. We anticipate that "state-gating" therapies targeting phenotypic plasticity will limit cancer heterogeneity, metastasis, and therapy resistance. SIGNIFICANCE Nongenetic mechanisms underlying phenotypic plasticity have emerged as significant drivers of tumor heterogeneity, metastasis, and therapy resistance. Herein, we discuss new experimental and computational techniques to define phenotypic plasticity as a scaffold to guide accelerated progress in uncovering new vulnerabilities for therapeutic exploitation.
Collapse
Affiliation(s)
- Daniel B. Burkhardt
- Department of Genetics, Yale University, New Haven, Connecticut
- Cellarity, Somerville, Massachusetts
| | - Beatriz P. San Juan
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- St Vincent's Clinical School, UNSW Medicine, UNSW Sydney, Darlinghurst, New South Wales, Australia
| | - John G. Lock
- School of Medical Sciences, Faculty of Medicine and Health, UNSW Sydney, Kensington, New South Wales, Australia
| | - Smita Krishnaswamy
- Department of Genetics, Yale University, New Haven, Connecticut
- Department of Computer Science, Computational Biology Bioinformatics Program, Applied Math Program, Yale University, New Haven, Connecticut
| | - Christine L. Chaffer
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- St Vincent's Clinical School, UNSW Medicine, UNSW Sydney, Darlinghurst, New South Wales, Australia
| |
Collapse
|
5
|
Yu Y, Li M, Yu Y. Tracking Single Molecules in Biomembranes: Is Seeing Always Believing? ACS NANO 2019; 13:10860-10868. [PMID: 31589406 PMCID: PMC7179047 DOI: 10.1021/acsnano.9b07445] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The spatial organization of molecules in cell membranes and their dynamic interactions play a central role in regulating cell functions. Single-particle tracking (SPT), a technique in which single molecules are imaged and tracked in real time, has led to breakthrough discoveries regarding these spatiotemporal complexities of cell membranes. There are, however, emerging concerns about factors that might produce misleading interpretations of SPT results. Here, we briefly review the application of SPT to understanding the nanoscale heterogeneities of plasma membranes, with a focus on the unique challenges, pitfalls, and limitations that confront the use of nanoparticles as imaging probes for tracking the dynamics of single molecules in cell membranes.
Collapse
|
6
|
Liu YX, Zhou JN, Liu KH, Fu XP, Zhang ZW, Zhang QH, Yue W. CIRP regulates BEV-induced cell migration in gliomas. Cancer Manag Res 2019; 11:2015-2025. [PMID: 30881126 PMCID: PMC6417006 DOI: 10.2147/cmar.s191249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Purpose A better understanding of the underlying molecular mechanisms in treatment failure of bevacizumab (BEV) for malignant glioma would contribute to overcome therapeutic resistance. Methods Here, we used a quantitative proteomic method to identify molecular signatures of glioblastoma cell after BEV treatment by two-dimensional liquid chromatography-tandem mass spectrometry analysis and 6-plex iTRAQ quantification. Next, the function of cold-inducible RNA-binding protein (CIRP), one of the most significantly affected proteins by drug treatment, was evaluated in drug resistance of glioma cells by invasion assays and animal xenograft assays. Target molecules bound by CIRP were determined using RNA-binding protein immunoprecipitation and microarray analysis. Then, these mRNAs were identified by quantitative real-time PCR. Results Eighty-seven proteins were identified with significant fold changes. The biological functional analysis indicated that most of the proteins were involved in the process of cellular signal transduction, cell adhesion, and protein transport. The expression of CIRP greatly decreased after BEV treatment, and ectopic expression of CIRP abolished cell migration in BEV-treated glioma cells. In addition, CIRP could bind mRNA of CXCL12 and inhibit BEV-induced increase of CXCL12 in glioma cells. Conclusion These data suggested that CIRP may take part in BEV-induced migration of gliomas by binding of migration-relative RNAs.
Collapse
Affiliation(s)
- Yu-Xiao Liu
- Department of Neurosurgery, The Fourth Medical Centre of Chinese PLA General Hospital, Beijing 100048, China,
| | - Jun-Nian Zhou
- Stem Cell and Regenerative Medicine Lab, Institute of Health Service and Transfusion Medicine, Beijing 100850, China, .,Experimental Hematology and Biochemistry Lab, Beijing Institute of Radiation Medicine, Beijing 100850, China.,South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou 510005, China
| | - Ke-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiang-Pin Fu
- Department of Neurosurgery, The Fourth Medical Centre of Chinese PLA General Hospital, Beijing 100048, China,
| | - Zhi-Wen Zhang
- Department of Neurosurgery, The Fourth Medical Centre of Chinese PLA General Hospital, Beijing 100048, China,
| | - Qin-Hong Zhang
- Department of Neurosurgery, The Fourth Medical Centre of Chinese PLA General Hospital, Beijing 100048, China,
| | - Wen Yue
- Stem Cell and Regenerative Medicine Lab, Institute of Health Service and Transfusion Medicine, Beijing 100850, China,
| |
Collapse
|
7
|
Andasari V, Lü D, Swat M, Feng S, Spill F, Chen L, Luo X, Zaman M, Long M. Computational model of wound healing: EGF secreted by fibroblasts promotes delayed re-epithelialization of epithelial keratinocytes. Integr Biol (Camb) 2018; 10:605-634. [PMID: 30206629 PMCID: PMC6571173 DOI: 10.1039/c8ib00048d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
It is widely agreed that keratinocyte migration plays a crucial role in wound re-epithelialization. Defects in this function contribute to wound reoccurrence causing significant clinical problems. Several in vitro studies have shown that the speed of migrating keratinocytes can be regulated by epidermal growth factor (EGF) which affects keratinocyte's integrin expression. The relationship between integrin expression (through cell-matrix adhesion) stimulated by EGF and keratinocyte migration speed is not linear since increased adhesion, due to increased integrin expression, has been experimentally shown to slow down cell migration due to the biphasic dependence of cell speed on adhesion. In our previous work we showed that keratinocytes that were co-cultured with EGF-enhanced fibroblasts formed an asymmetric migration pattern, where, the cumulative distances of keratinocytes migrating toward fibroblasts were smaller than those migrating away from fibroblasts. This asymmetric pattern is thought to be provoked by high EGF concentration secreted by fibroblasts. The EGF stimulates the expression of integrin receptors on the surface of keratinocytes migrating toward fibroblasts via paracrine signaling. In this paper, we present a computational model of keratinocyte migration that is controlled by EGF secreted by fibroblasts using the Cellular Potts Model (CPM). Our computational simulation results confirm the asymmetric pattern observed in experiments. These results provide a deeper insight into our understanding of the complexity of keratinocyte migration in the presence of growth factor gradients and may explain re-epithelialization failure in impaired wound healing.
Collapse
Affiliation(s)
- Vivi Andasari
- Boston University, Department of Biomedical Engineering, 44 Cummington Mall, Boston, MA 02215, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Del Favero G, Zaharescu R, Marko D. Functional impairment triggered by altertoxin II (ATXII) in intestinal cells in vitro: cross-talk between cytotoxicity and mechanotransduction. Arch Toxicol 2018; 92:3535-3547. [PMID: 30276433 PMCID: PMC6290659 DOI: 10.1007/s00204-018-2317-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 09/19/2018] [Indexed: 12/22/2022]
Abstract
Intestinal cells are able to continuously integrate response to multiple stimuli/stressors; these include the concomitant activation of “chemically driven” pathways, of paramount importance in the response to toxicants, as well as physical stimulation derived from motility. Altertoxin II (ATXII, 0.1, 1 and 10 µM), a mycotoxin produced by the food contaminant fungus Alternaria alternata was studied in HT-29 intestinal adenocarcinoma cells and in non-transformed intestinal epithelial cells, HCEC. One-hour incubation with ATXII was sufficient to trigger irreversible cytotoxicity in both cell types, as well as to modify cellular responses to concomitant pro-oxidant challenge (H2O2, 100–500 µM, DCF-DA assay) suggesting that even relatively short-time exposure of the intestinal cells could be sufficient to alter their functionality. Combination of ATXII (1 µM) with physical stimulation typical of the intestinal compartment (shear stress) revealed differential response of tumor-derived epithelial cells HT-29 in comparison to HCEC, in particular in the localization of the transcription factor Nrf2 (NF-E2-related factor 2). Moreover, ATXII reduced the migratory potential of HCEC as well as their membrane fluidity, but had no respective impact on HT-29 cells. Taken together, ATXII appeared to alter predominantly membrane functionality in HCEC thus hampering crucial functions for cellular motility/turnover, as well as barrier function of healthy intestinal cells and had very limited activity on the tumor counterparts.
Collapse
Affiliation(s)
- Giorgia Del Favero
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währingerstr. 38-40, 1090, Vienna, Austria.
| | - Ronita Zaharescu
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währingerstr. 38-40, 1090, Vienna, Austria
| | - Doris Marko
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währingerstr. 38-40, 1090, Vienna, Austria
| |
Collapse
|
9
|
Shorthouse D, Riedel A, Kerr E, Pedro L, Bihary D, Samarajiwa S, Martins CP, Shields J, Hall BA. Exploring the role of stromal osmoregulation in cancer and disease using executable modelling. Nat Commun 2018; 9:3011. [PMID: 30069015 PMCID: PMC6070494 DOI: 10.1038/s41467-018-05414-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 06/29/2018] [Indexed: 02/07/2023] Open
Abstract
Osmotic regulation is a vital homoeostatic process in all cells and tissues. Cells initially respond to osmotic stresses by activating transmembrane transport proteins to move osmotically active ions. Disruption of ion and water transport is frequently observed in cellular transformations such as cancer. We report that genes involved in membrane transport are significantly deregulated in many cancers, and that their expression can distinguish cancer cells from normal cells with a high degree of accuracy. We present an executable model of osmotic regulation and membrane transport in mammalian cells, providing a mechanistic explanation for phenotype change in varied disease states, and accurately predicting behaviour from single cell expression data. We also predict key proteins involved in cellular transformation, SLC4A3 (AE3), and SLC9A1 (NHE1). Furthermore, we predict and verify a synergistic drug combination in vitro, of sodium and chloride channel inhibitors, which target the osmoregulatory network to reduce cancer-associated phenotypes in fibroblasts.
Collapse
Affiliation(s)
- David Shorthouse
- MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Box 197, Cambridge Biomedical Campus, Cambridge, CB2 0XZ, UK
| | - Angela Riedel
- MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Box 197, Cambridge Biomedical Campus, Cambridge, CB2 0XZ, UK
| | - Emma Kerr
- MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Box 197, Cambridge Biomedical Campus, Cambridge, CB2 0XZ, UK
| | - Luisa Pedro
- MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Box 197, Cambridge Biomedical Campus, Cambridge, CB2 0XZ, UK
| | - Dóra Bihary
- MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Box 197, Cambridge Biomedical Campus, Cambridge, CB2 0XZ, UK
| | - Shamith Samarajiwa
- MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Box 197, Cambridge Biomedical Campus, Cambridge, CB2 0XZ, UK
| | - Carla P Martins
- MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Box 197, Cambridge Biomedical Campus, Cambridge, CB2 0XZ, UK
| | - Jacqueline Shields
- MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Box 197, Cambridge Biomedical Campus, Cambridge, CB2 0XZ, UK.
| | - Benjamin A Hall
- MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Box 197, Cambridge Biomedical Campus, Cambridge, CB2 0XZ, UK.
| |
Collapse
|
10
|
Strömblad S, Lock JG. Using Systems Microscopy to Understand the Emergence of Cell Migration from Cell Organization. Methods Mol Biol 2018; 1749:119-134. [PMID: 29525994 DOI: 10.1007/978-1-4939-7701-7_10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Cell migration is a dynamic process that emerges from fine-tuned networks coordinated in three-dimensional space, spanning molecular, subcellular, and cellular scales, and over multiple temporal scales, from milliseconds to days. Understanding how cell migration arises from this complexity requires data collection and analyses that quantitatively integrate these spatial and temporal scales. To meet this need, we have combined quantitative live and fixed cell fluorescence microscopy, customized image analysis tools, multivariate statistical methods, and mathematical modeling. Collectively, this constitutes the systems microscopy strategy that we have applied to dissect how cells organize themselves to migrate. In this overview, we highlight key principles, concepts, and components of our systems microscopy methodology, and exemplify what we have learnt so far and where this approach may lead.
Collapse
Affiliation(s)
- Staffan Strömblad
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden.
| | - John G Lock
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, and ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney, Australia
| |
Collapse
|
11
|
Wu YC, Jhao YT, Cheng YC, Chen Y. 15-Deoxy-Δ 12,14-prostaglandin J 2 inhibits migration of human thyroid carcinoma cells by disrupting focal adhesion complex and adherens junction. Oncol Lett 2017; 13:2569-2576. [PMID: 28454435 PMCID: PMC5403263 DOI: 10.3892/ol.2017.5773] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 11/28/2016] [Indexed: 11/30/2022] Open
Abstract
Metastasis is frequently observed in human follicular thyroid carcinoma. The present study investigated the peroxisome proliferator-activated receptor γ agonist, 15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2), and its effect on the migration of CGTH W-2 human thyroid carcinoma cells. 15d-PGJ2 decreased the survival rate of CGTH W-2 cells in a dose-dependent manner. The Transwell migration assay demonstrated that 15d-PGJ2 reduced the migration rate of CGTH W-2 cells by 35% following treatment with 30 µM 15d-PGJ2 compared with control cells. The cell adhesion assay indicated that, following 15d-PGJ2 treatment for 24 h, cell adhesion decreased by 26% compared with the control group. The expression levels of focal adhesion proteins, including integrin β1, phospho-focal adhesion kinase and p-paxillin, were downregulated following treatment with 15d-PGJ2. Immunostaining revealed that the puncta of vinculin were reduced and the actin stress fiber was disassembled following 15d-PGJ2 treatment. By contrast, p120-catenin (p120-ctn) and β-catenin levels staining accumulated in the region of the lamellipodium following 15d-PGJ2 treatment. Membrane fractionation revealed that p120-ctn and N-cadherin were decreased in the cell membrane, but increased in the cytoplasm of 15d-PGJ2-treated cells. Therefore, 15d-PGJ2 inhibited human thyroid carcinoma cell migration and this may be due to the impairment of focal adhesion complexes and the accumulation of p120-ctn in the cytoplasm in the region of the lamellipodium.
Collapse
Affiliation(s)
- Ya-Chieh Wu
- Department of Nursing, Ching Kuo Institute of Management and Health, Keelung 203, Taiwan, R.O.C
| | - Yun-Ting Jhao
- Graduate Institute of Medical Sciences, National Defense Medical Center, Neihu, Taipei 114, Taiwan, R.O.C
| | - Yu-Chen Cheng
- Graduate Institute of Life Sciences, National Defense Medical Center, Neihu, Taipei 114, Taiwan, R.O.C
| | - Ying Chen
- Graduate Institute of Life Sciences, National Defense Medical Center, Neihu, Taipei 114, Taiwan, R.O.C.,Department of Biology and Anatomy, National Defense Medical Center, Neihu, Taipei 114, Taiwan, R.O.C
| |
Collapse
|
12
|
Wang J, Huang Y, Zhang J, Wei Y, Mahoud S, Bakheet AMH, Wang L, Zhou S, Tang J. Pathway-related molecules of VEGFC/D-VEGFR3/NRP2 axis in tumor lymphangiogenesis and lymphatic metastasis. Clin Chim Acta 2016; 461:165-71. [PMID: 27527412 DOI: 10.1016/j.cca.2016.08.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 08/07/2016] [Accepted: 08/11/2016] [Indexed: 12/12/2022]
Abstract
Precondition for tumor lymphatic metastasis is that tumor cells induce formation of original and newborn lymphatic vessels and invade surrounding lymphatic vessels in tumor stroma, while some pathway-related molecules play an important role in mechanisms associated with proliferation and migration of lymphatic endothelial cells (LECs) and tumor cells. In lymphangiogenesis and lymphatic metastasis, the pathway-related molecules of VEGFC/D-VEGFR3/NRP2 axis, such as Furin-like enzyme, CNTN1, Prox1, LYVE-1, Podoplanin, SOX18, SDF1 and CXCR4, are direct constitutors as a portion of VEGFC/D-VEGFR3/NRP2 axis, and their biological activities rely on this ligand-receptor system. These axis-related signal molecules could gradually produce waterfall-like cascading effects, mediate differentiation and maturation of LECs, remodel original and neonatal lymphatic vessels, as well as ultimately promote tumor cell chemotaxis, migration, invasion and metastasis to lymphoid tracts. This review summarizes the structure and function features of pathway-related molecules of VEGFC/D-VEGFR3/NRP2 axis, the expression changes of these molecules in different anatomic organs or histopathologic types or development stages of various tumors, the characteristics of transduction, implementation, integration of signal networks, the interactive effects on biological behaviors between tumor cells and lymphatic endothelial cells, and their molecular mechanisms and significances in tumor lymphangiogenesis and lymphatic metastasis.
Collapse
Affiliation(s)
- Jingwen Wang
- Department of Pathology, Dalian Medical University, Key Laboratory for Tumor Metastasis and Intervention of Liaoning Province, 9 West, Lvshun Southern Road, Dalian, Liaoning 116044, China
| | - Yuhong Huang
- Department of Pathology, Dalian Medical University, Key Laboratory for Tumor Metastasis and Intervention of Liaoning Province, 9 West, Lvshun Southern Road, Dalian, Liaoning 116044, China
| | - Jun Zhang
- Department of Pathology, Dalian Medical University, Key Laboratory for Tumor Metastasis and Intervention of Liaoning Province, 9 West, Lvshun Southern Road, Dalian, Liaoning 116044, China
| | - Yuanyi Wei
- Department of Pathology, Dalian Medical University, Key Laboratory for Tumor Metastasis and Intervention of Liaoning Province, 9 West, Lvshun Southern Road, Dalian, Liaoning 116044, China
| | - Salma Mahoud
- Department of Pathology, Dalian Medical University, Key Laboratory for Tumor Metastasis and Intervention of Liaoning Province, 9 West, Lvshun Southern Road, Dalian, Liaoning 116044, China
| | - Ahmed Musa Hago Bakheet
- Department of Pathology, Dalian Medical University, Key Laboratory for Tumor Metastasis and Intervention of Liaoning Province, 9 West, Lvshun Southern Road, Dalian, Liaoning 116044, China
| | - Li Wang
- Department of Pathology, Dalian Medical University, Key Laboratory for Tumor Metastasis and Intervention of Liaoning Province, 9 West, Lvshun Southern Road, Dalian, Liaoning 116044, China
| | - Shuting Zhou
- Department of Pathology, Dalian Medical University, Key Laboratory for Tumor Metastasis and Intervention of Liaoning Province, 9 West, Lvshun Southern Road, Dalian, Liaoning 116044, China
| | - Jianwu Tang
- Department of Pathology, Dalian Medical University, Key Laboratory for Tumor Metastasis and Intervention of Liaoning Province, 9 West, Lvshun Southern Road, Dalian, Liaoning 116044, China.
| |
Collapse
|
13
|
Huang C, Qian SL, Sun LY, Cheng B. Light-Emitting Diode Irradiation (640 nm) Regulates Keratinocyte Migration and Cytoskeletal Reorganization Via Hypoxia-Inducible Factor-1α. Photomed Laser Surg 2016; 34:313-20. [PMID: 27244052 DOI: 10.1089/pho.2015.4077] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE The objective of this study was to determine the effect of light-emitting diode (LED) irradiation on the migration and proliferation of keratinocytes. BACKGROUND DATA Keratinocytes play a key role in re-epithelialization during wound healing; it is speculated that low-level LED therapy might improve keratinocyte migration and proliferation. MATERIALS AND METHODS Human keratinocyte cells (HKCs) were isolated from child or adult foreskins and irradiated with LED light with a wavelength of 640 nm and a dosage of 12 or 24 J/cm(2). Cell motility, migration, and proliferation were examined using live cell imaging, scratch assay, and a colorimetric cell counting assay, respectively. Hypoxia-inducible factor-1α (HIF-1α) protein levels were analyzed by using Western blotting. Filamentous actin (F-actin) was stained by phalloidin. YC-1 [3-(5-hydroxymethyl-2-furyl)-1-benzylindazole] was used as an HIF-1 inhibitor, and CoCl2 (cobalt chloride) and DMOG (dimethyloxaloyl glycine) are HIF-1α activators. RESULTS LED irradiation significantly promoted cell motility and migration, but did not significantly influence cell proliferation in HKCs. Furthermore, LED irradiation resulted in a reorganization of cellular F-actin and a dramatic upregulation of HIF-1α expression. Suppression of HIF-1α using the compound YC-1 prevented reorganization of the actin cytoskeleton following LED irradiation, suggesting that the effect of LED irradiation on the cytoskeleton is mediated through HIF-1α. Conversely, chemical activation of HIF-1α via DMOG or CoCl2 resulted in a reorganization of F-actin. CONCLUSIONS LED irradiation may increase keratinocyte migration via HIF-1α-dependent cytoskeletal reorganization.
Collapse
Affiliation(s)
- Chong Huang
- 1 The Second Military Medical University of People's Liberation Army , Shang Hai, P.R. China .,2 Department of Plastic Surgery, General Hospital of Guangzhou Military Command , PLA, Guangzhou, P.R. China
| | - Sheng Lin Qian
- 2 Department of Plastic Surgery, General Hospital of Guangzhou Military Command , PLA, Guangzhou, P.R. China
| | - Li Yue Sun
- 3 Department of Oncology, General Hospital of Guangzhou Military Command , PLA, Guangzhou, P.R. China
| | - Biao Cheng
- 2 Department of Plastic Surgery, General Hospital of Guangzhou Military Command , PLA, Guangzhou, P.R. China
| |
Collapse
|
14
|
Shafqat-Abbasi H, Kowalewski JM, Kiss A, Gong X, Hernandez-Varas P, Berge U, Jafari-Mamaghani M, Lock JG, Strömblad S. An analysis toolbox to explore mesenchymal migration heterogeneity reveals adaptive switching between distinct modes. eLife 2016; 5:e11384. [PMID: 26821527 PMCID: PMC4749554 DOI: 10.7554/elife.11384] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 12/16/2015] [Indexed: 12/16/2022] Open
Abstract
Mesenchymal (lamellipodial) migration is heterogeneous, although whether this reflects progressive variability or discrete, 'switchable' migration modalities, remains unclear. We present an analytical toolbox, based on quantitative single-cell imaging data, to interrogate this heterogeneity. Integrating supervised behavioral classification with multivariate analyses of cell motion, membrane dynamics, cell-matrix adhesion status and F-actin organization, this toolbox here enables the detection and characterization of two quantitatively distinct mesenchymal migration modes, termed 'Continuous' and 'Discontinuous'. Quantitative mode comparisons reveal differences in cell motion, spatiotemporal coordination of membrane protrusion/retraction, and how cells within each mode reorganize with changed cell speed. These modes thus represent distinctive migratory strategies. Additional analyses illuminate the macromolecular- and cellular-scale effects of molecular targeting (fibronectin, talin, ROCK), including 'adaptive switching' between Continuous (favored at high adhesion/full contraction) and Discontinuous (low adhesion/inhibited contraction) modes. Overall, this analytical toolbox now facilitates the exploration of both spontaneous and adaptive heterogeneity in mesenchymal migration.
Collapse
Affiliation(s)
| | - Jacob M Kowalewski
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Alexa Kiss
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Xiaowei Gong
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | | | - Ulrich Berge
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | | | - John G Lock
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Staffan Strömblad
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| |
Collapse
|