1
|
Bauer L, Benavides FFW, Veldhuis Kroeze EJB, de Wit E, van Riel D. The neuropathogenesis of highly pathogenic avian influenza H5Nx viruses in mammalian species including humans. Trends Neurosci 2023; 46:953-970. [PMID: 37684136 PMCID: PMC10591965 DOI: 10.1016/j.tins.2023.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/04/2023] [Indexed: 09/10/2023]
Abstract
Circulation of highly pathogenic avian influenza (HPAI) H5Nx viruses of the A/Goose/Guangdong/1/96 lineage in birds regularly causes infections of mammals, including humans. In many mammalian species, infections are associated with severe neurological disease, a unique feature of HPAI H5Nx viruses compared with other influenza A viruses. Here, we provide an overview of the neuropathogenesis of HPAI H5Nx virus infection in mammals, centered on three aspects: neuroinvasion, neurotropism, and neurovirulence. We focus on in vitro studies, as well as studies on naturally or experimentally infected mammals. Additionally, we discuss the contribution of viral factors to the neuropathogenesis of HPAI H5Nx virus infections and the efficacy of intervention strategies to prevent neuroinvasion or the development of neurological disease.
Collapse
Affiliation(s)
- Lisa Bauer
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | | | | | - Emmie de Wit
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Debby van Riel
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands.
| |
Collapse
|
2
|
Replication Kinetics, Cell Tropism, and Associated Immune Responses in SARS-CoV-2- and H5N1 Virus-Infected Human Induced Pluripotent Stem Cell-Derived Neural Models. mSphere 2021; 6:e0027021. [PMID: 34160239 PMCID: PMC8265642 DOI: 10.1128/msphere.00270-21] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is associated with a wide variety of neurological complications. Even though SARS-CoV-2 is rarely detected in the central nervous system (CNS) or cerebrospinal fluid, evidence is accumulating that SARS-CoV-2 might enter the CNS via the olfactory nerve. However, what happens after SARS-CoV-2 enters the CNS is poorly understood. Therefore, we investigated the replication kinetics, cell tropism, and associated immune responses of SARS-CoV-2 infection in different types of neural cultures derived from human induced pluripotent stem cells (hiPSCs). SARS-CoV-2 was compared to the neurotropic and highly pathogenic H5N1 influenza A virus. SARS-CoV-2 infected a minority of individual mature neurons, without subsequent virus replication and spread, despite angiotensin-converting enzyme 2 (ACE2), transmembrane protease serine 2 (TMPRSS2), and neuropilin-1 (NPR1) expression in all cultures. However, this sparse infection did result in the production of type III interferons and interleukin-8 (IL-8). In contrast, H5N1 virus replicated and spread very efficiently in all cell types in all cultures. Taken together, our findings support the hypothesis that neurological complications might result from local immune responses triggered by virus invasion, rather than abundant SARS-CoV-2 replication in the CNS. IMPORTANCE Infections with the recently emerged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are often associated with neurological complications. Evidence suggests that SARS-CoV-2 enters the brain via the olfactory nerve; however, SARS-CoV-2 is only rarely detected in the central nervous system of COVID-19 patients. Here, we show that SARS-CoV-2 is able to infect neurons of human iPSC neural cultures but that this infection is abortive and does not result in virus spread to other cells. However, infection of neural cultures did result in the production of type III interferon and IL-8. This study suggests that SARS-CoV-2 might enter the CNS and infect individual neurons, triggering local immune responses that could contribute to the pathogenesis of SARS-CoV-2-associated CNS disease.
Collapse
|
3
|
Photichai K, Guntawang T, Sittisak T, Kochagul V, Chuammitri P, Thitaram C, Thananchai H, Chewonarin T, Sringarm K, Pringproa K. Attempt to Isolate Elephant Endotheliotropic Herpesvirus (EEHV) Using a Continuous Cell Culture System. Animals (Basel) 2020; 10:E2328. [PMID: 33297581 PMCID: PMC7762348 DOI: 10.3390/ani10122328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/28/2020] [Accepted: 12/04/2020] [Indexed: 11/17/2022] Open
Abstract
Elephant endotheliotropic herpesvirus (EEHV) infection is known to cause acute fatal hemorrhagic disease, which has killed many young Asian elephants (Elephas maximus). Until recently, in vitro isolation and propagation of the virus have not been successful. This study aimed to isolate and propagate EEHV using continuous cell lines derived from human and/or animal origins. Human cell lines, including EA. hy926, A549, U937, RKO, SW620, HCT-116 and HT-29, and animal cell lines, including CT26.CL25 and sp2/0-Ag14, were investigated in this study. Mixed frozen tissue samples of the heart, lung, liver, spleen and kidney obtained from fatal EEHV1A- or EEHV4-infected cases were homogenized and used for cell inoculation. At 6, 24, 48 and 72 h post infection (hpi), EEHV-inoculated cells were observed for cytopathic effects (CPEs) or were assessed for EEHV infection by immunoperoxidase monolayer assay (IPMA) or quantitative PCR. The results were then compared to those of the mock-infected controls. Replication of EEHV in the tested cells was further determined by immunohistochemistry of cell pellets using anti-EEHV DNA polymerase antibodies or re-inoculated cells with supernatants obtained from passages 2 or 3 of the culture medium. The results reveal that no CPEs were observed in the tested cells, while immunolabeling for EEHV gB was observed in only U937 human myeloid leukemia cells. However, quantitation values of the EEHV terminase gene, as well as those of the EEHV gB or EEHV DNA polymerase proteins in U937 cells, gradually declined from passage 1 to passage 3. The findings of this study indicate that despite poor adaptation in U937 cells, this cell line displays promise and potential to be used for the isolation of EEHV1 and EEHV4 in vitro.
Collapse
Affiliation(s)
- Kornravee Photichai
- Department of Veterinary Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand; (K.P.); (T.G.); (T.S.); (P.C.)
| | - Thunyamas Guntawang
- Department of Veterinary Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand; (K.P.); (T.G.); (T.S.); (P.C.)
| | - Tidaratt Sittisak
- Department of Veterinary Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand; (K.P.); (T.G.); (T.S.); (P.C.)
| | - Varankpicha Kochagul
- Veterinary Diagnostic Laboratory, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand;
| | - Phongsakorn Chuammitri
- Department of Veterinary Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand; (K.P.); (T.G.); (T.S.); (P.C.)
| | - Chatchote Thitaram
- Department of Companion Animals and Wildlife Clinics, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand;
| | - Hathairat Thananchai
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Teera Chewonarin
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Korawan Sringarm
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Kidsadagon Pringproa
- Department of Veterinary Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand; (K.P.); (T.G.); (T.S.); (P.C.)
- Excellence Center in Veterinary Bioscience, Chiang Mai University, Chiang Mai 50100, Thailand
| |
Collapse
|
4
|
Srivorakul S, Guntawang T, Kochagul V, Photichai K, Sittisak T, Janyamethakul T, Boonprasert K, Khammesri S, Langkaphin W, Punyapornwithaya V, Chuammitri P, Thitaram C, Pringproa K. Possible roles of monocytes/macrophages in response to elephant endotheliotropic herpesvirus (EEHV) infections in Asian elephants (Elephas maximus). PLoS One 2019; 14:e0222158. [PMID: 31491031 PMCID: PMC6730851 DOI: 10.1371/journal.pone.0222158] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 08/22/2019] [Indexed: 12/14/2022] Open
Abstract
Elephant endotheliotropic herpesvirus-hemorrhagic disease (EEHV-HD) is the primary cause of acute, highly fatal, hemorrhagic diseases in young Asian elephants. Although monocytopenia is frequently observed in EEHV-HD cases, the role monocytes play in EEHV-disease pathogenesis is unknown. This study seeks to explain the responses of monocytes/macrophages in the pathogenesis of EEHV-HD. Samples of blood, frozen tissues, and formalin-fixed, paraffin-embedded (FFPE) tissues from EEHV1A-HD, EEHV4-HD, co-infected EEHV1A and 4-HD, and EEHV-negative calves were analyzed. Peripheral blood mononuclear cells (PBMCs) from the persistent EEHV4-infected and EEHV-negative calves were also studied. The results showed increased infiltration of Iba-1-positive macrophages in the inflamed tissues of the internal organs of elephant calves with EEHV-HD. In addition, cellular apoptosis also increased in the tissues of elephants with EEHV-HD, especially in the PBMCs, compared to the EEHV-negative control. In the PBMCs of persistent EEHV4-infected elephants, cytokine mRNA expression was high, particularly up-regulation of TNF-α and IFN-γ. Moreover, viral particles were observed in the cytoplasm of the persistent EEHV4-infected elephant monocytes. Our study demonstrated for the first time that apoptosis of the PBMCs increased in cases of EEHV-HD. Furthermore, this study showed that monocytes may serve as a vehicle for viral dissemination during EEHV infection in Asian elephants.
Collapse
Affiliation(s)
- Saralee Srivorakul
- Veterinary Diagnostic Laboratory, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Thunyamas Guntawang
- Department of Veterinary Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Varankpicha Kochagul
- Veterinary Diagnostic Laboratory, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Kornravee Photichai
- Veterinary Diagnostic Laboratory, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Tidaratt Sittisak
- Department of Veterinary Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | | | - Khajohnpat Boonprasert
- Center of Excellence in Elephant and Wildlife Research, Chiang Mai University, Chiang Mai, Thailand
| | | | | | - Veerasak Punyapornwithaya
- Department of Food Animal Clinic, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Phongsakorn Chuammitri
- Department of Veterinary Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Chatchote Thitaram
- Center of Excellence in Elephant and Wildlife Research, Chiang Mai University, Chiang Mai, Thailand.,Department of Companion Animals and Wildlife Clinics, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Kidsadagon Pringproa
- Department of Veterinary Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Elephant and Wildlife Research, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
5
|
Viral Factors Important for Efficient Replication of Influenza A Viruses in Cells of the Central Nervous System. J Virol 2019; 93:JVI.02273-18. [PMID: 30867311 PMCID: PMC6532103 DOI: 10.1128/jvi.02273-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 03/05/2019] [Indexed: 11/20/2022] Open
Abstract
Central nervous system (CNS) disease is one of the most common extrarespiratory tract complications of influenza A virus infections, and the frequency and severity differ between seasonal, pandemic, and zoonotic influenza viruses. However, little is known about the interaction of these viruses with cells of the CNS. Differences among seasonal, pandemic, and zoonotic influenza viruses in replication efficacy in CNS cells, in vitro, suggest that the presence of an alternative HA cleavage mechanism and ability to attach are important viral factors. Identifying these viral factors and detailed knowledge of the interaction between influenza virus and CNS cells are important to prevent and treat this potentially lethal CNS disease. Central nervous system (CNS) disease is one of the most common extrarespiratory tract complications of influenza A virus infections. Remarkably, zoonotic H5N1 virus infections are more frequently associated with CNS disease than seasonal or pandemic influenza viruses. Little is known about the interaction between influenza A viruses and cells of the CNS; therefore, it is currently unknown which viral factors are important for efficient replication. Here, we determined the replication kinetics of a seasonal, pandemic, zoonotic, and lab-adapted influenza A virus in human neuron-like (SK-N-SH) and astrocyte-like (U87-MG) cells and primary mouse cortex neurons. In general, highly pathogenic avian influenza (HPAI) H5N1 virus replicated most efficiently in all cells, which was associated with efficient attachment and infection. Seasonal H3N2 and to a lesser extent pandemic H1N1 virus replicated in a trypsin-dependent manner in SK-N-SH but not in U87-MG cells. In the absence of trypsin, only HPAI H5N1 and WSN viruses replicated. Removal of the multibasic cleavage site (MBCS) from HPAI H5N1 virus attenuated, but did not abrogate, replication. Taken together, our results showed that the MBCS and, to a lesser extent, the ability to attach are important determinants for efficient replication of HPAI H5N1 virus in cells of the CNS. This suggests that both an alternative hemagglutinin (HA) cleavage mechanism and preference for α-2,3-linked sialic acids allowing efficient attachment contribute to the ability of influenza A viruses to replicate efficiently in cells of the CNS. This study further improves our knowledge on potential viral factors important for the neurotropic potential of influenza A viruses. IMPORTANCE Central nervous system (CNS) disease is one of the most common extrarespiratory tract complications of influenza A virus infections, and the frequency and severity differ between seasonal, pandemic, and zoonotic influenza viruses. However, little is known about the interaction of these viruses with cells of the CNS. Differences among seasonal, pandemic, and zoonotic influenza viruses in replication efficacy in CNS cells, in vitro, suggest that the presence of an alternative HA cleavage mechanism and ability to attach are important viral factors. Identifying these viral factors and detailed knowledge of the interaction between influenza virus and CNS cells are important to prevent and treat this potentially lethal CNS disease.
Collapse
|
6
|
Influenza a virus-triggered autophagy decreases the pluripotency of human-induced pluripotent stem cells. Cell Death Dis 2019; 10:337. [PMID: 31000695 PMCID: PMC6472374 DOI: 10.1038/s41419-019-1567-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 03/26/2019] [Accepted: 04/04/2019] [Indexed: 01/07/2023]
Abstract
Maternal influenza infection during pregnancy was reported multiple times as the possible cause of many defects and congenital anomalies. Apart from several cases of influenza-related miscarriage during various trimesters of pregnancy, some epidemiological data suggest a link between maternal influenza infection and genetic abnormalities in offspring. However, there are no reports yet describing how maternal influenza alters cellular pathways at early stages of development to result in congenital defects in the fetus. In the present study, using proteomic approaches, we utilized human-induced pluripotent stem cells (hiPSCs) for modeling intrablastocyst infection with influenza virus to not only investigate the vulnerability and responses of pluripotent stem cells to this virus but also to determine the possible impacts of influenza on pluripotency and signaling pathways controlling differentiation and embryogenesis. Our data indicated viral protein production in influenza A virus (IAV)-infected hiPSCs. However, viral replication was restricted in these cells, but cell viability and pluripotency were negatively affected. These events occurred simultaneously with an excessive level of IAV-induced autophagy as well as cytopathic effects. Quantitative SOMAscan screening also indicated that changes in the proteome of hiPSCs corresponded to abnormal differentiation in these cells. Taken together, our results showed that IAV-modulated reduction in hiPSC pluripotency is associated with significant activation of autophagy. Further investigations are required to explore the role of IAV-induced autophagy in leading pluripotent stem cells toward abnormal differentiation and impaired development in early stages of embryogenesis.
Collapse
|
7
|
A role for viral infections in Parkinson's etiology? Neuronal Signal 2018; 2:NS20170166. [PMID: 32714585 PMCID: PMC7373231 DOI: 10.1042/ns20170166] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 03/06/2018] [Accepted: 03/19/2018] [Indexed: 02/06/2023] Open
Abstract
Despite over 200 years since its first description by James Parkinson, the cause(s) of most cases of Parkinson's disease (PD) are yet to be elucidated. The disparity between the current understanding of PD symptomology and pathology has led to numerous symptomatic therapies, but no strategy for prevention or disease cure. An association between certain viral infections and neurodegenerative diseases has been recognized, but largely ignored or dismissed as controversial, for decades. Recent epidemiological studies have renewed scientific interest in investigating microbial interactions with the central nervous system (CNS). This review examines past and current clinical findings and overviews the potential molecular implications of viruses in PD pathology.
Collapse
|
8
|
Pringproa K, Srivorakul S, Tantilertcharoen R, Thanawongnuwech R. Restricted Infection and Cytokine Expression in Primary Murine Astrocytes Induced by the H5N1 Influenza Virus. NEUROCHEM J+ 2018. [DOI: 10.1134/s1819712418010129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Sornpet B, Potha T, Tragoolpua Y, Pringproa K. Antiviral activity of five Asian medicinal pant crude extracts against highly pathogenic H5N1 avian influenza virus. ASIAN PAC J TROP MED 2017; 10:871-876. [PMID: 29080615 DOI: 10.1016/j.apjtm.2017.08.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 07/16/2017] [Accepted: 08/17/2017] [Indexed: 10/18/2022] Open
Abstract
OBJECTIVE To study the antiviral properties of the five Asian medicinal plants against in vitro infection by the highly pathogenic avian influenza virus (H5N1). METHODS Crude extracts of Andrographis paniculata, Curcuma longa (C. longa), Gynostemma pentaphyllum, Kaempferia parviflora (K. parviflora), and Psidium guajava obtained by both water and ethanol extractions were investigated for their cytotoxicity in the Madin-Darby canine kidney cells. Thereafter, they were investigated in vitro for antiviral activity and cytokine response upon H5N1 virus infection. RESULTS The results revealed that both water and ethanol extracts of all the five studied plants showed significant antiviral activity against H5N1 virus. Among these plants, C. longa and K. parviflora showed strong anti-H5N1 activity. Thus, they were selected for further studies on their cytokine response upon virus infection. It was found that ethanol and water crude extracts of C. longa and K. parviflora induced significant upregulation of TNF-α and IFN-β mRNA expressions, suggesting their roles in the inhibition of H5N1 virus replication. CONCLUSIONS To the best of the authors' knowledge, this study is among the earliest reports to illustrate the antiviral property of these Asian medicinal plants against the highly pathogenic avian H5N1 influenza virus. The results of this study shed light on alternative therapeutic sources for treatment of H5N1 influenza virus infection in the future.
Collapse
Affiliation(s)
- Benjaporn Sornpet
- Central Veterinary Diagnostic Laboratory, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Teerapong Potha
- Central Veterinary Diagnostic Laboratory, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Yingmanee Tragoolpua
- Department of Biology, Faculty of Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Kidsadagon Pringproa
- Department of Veterinary Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand.
| |
Collapse
|
10
|
Mungaomklang A, Chomcheoy J, Wacharapluesadee S, Joyjinda Y, Jittmittraphap A, Rodpan A, Ghai S, Saraya A, Hemachudha T. Influenza Virus-Associated Fatal Acute Necrotizing Encephalopathy: Role of Nonpermissive Viral Infection? CLINICAL MEDICINE INSIGHTS-CASE REPORTS 2016; 9:99-102. [PMID: 27812294 PMCID: PMC5091092 DOI: 10.4137/ccrep.s40610] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 09/19/2016] [Accepted: 09/26/2016] [Indexed: 12/02/2022]
Abstract
In 2014, two unusual peaks of H1N1 influenza outbreak occurred in Nakhon Ratchasima Province, in Thailand. Among 2,406 cases, one of the 22 deaths in the province included a 6-year-old boy, who initially presented with acute necrotizing encephalopathy. On the other hand, his sibling was mildly affected by the same influenza virus strain, confirmed by whole-genome sequencing, with one silent mutation. Absence of acute necrotizing encephalopathy and other neurological illnesses in the family and the whole province, with near identical whole viral genomic sequences from the two siblings, and an absence of concomitant severe lung infection (cytokine storm) at onset suggest nonpermissive infection as an alternative pathogenetic mechanism of influenza virus.
Collapse
Affiliation(s)
- Anek Mungaomklang
- Maharat Nakhon Ratchasima Hospital, Ministry of Public Health, Nakhon Ratchasima, Thailand
| | - Jiraruj Chomcheoy
- Maharat Nakhon Ratchasima Hospital, Ministry of Public Health, Nakhon Ratchasima, Thailand
| | - Supaporn Wacharapluesadee
- Neuroscience Centre for Research and Development, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Yutthana Joyjinda
- Neuroscience Centre for Research and Development, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Akanitt Jittmittraphap
- Neuroscience Centre for Research and Development, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Apaporn Rodpan
- Neuroscience Centre for Research and Development, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Siriporn Ghai
- Neuroscience Centre for Research and Development, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Abhinbhen Saraya
- Neuroscience Centre for Research and Development, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Thiravat Hemachudha
- Neuroscience Centre for Research and Development, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| |
Collapse
|
11
|
Wang G, Li R, Jiang Z, Gu L, Chen Y, Dai J, Li K. Influenza Virus Induces Inflammatory Response in Mouse Primary Cortical Neurons with Limited Viral Replication. BIOMED RESEARCH INTERNATIONAL 2016; 2016:8076989. [PMID: 27525278 PMCID: PMC4972929 DOI: 10.1155/2016/8076989] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 06/02/2016] [Indexed: 02/05/2023]
Abstract
Unlike stereotypical neurotropic viruses, influenza A viruses have been detected in the brain tissues of human and animal models. To investigate the interaction between neurons and influenza A viruses, mouse cortical neurons were isolated, infected with human H1N1 influenza virus, and then examined for the production of various inflammatory molecules involved in immune response. We found that replication of the influenza virus in neurons was limited, although early viral transcription was not affected. Virus-induced neuron viability decreased at 6 h postinfection (p.i.) but increased at 24 h p.i. depending upon the viral strain. Virus-induced apoptosis and cytopathy in primary cortical neurons were not apparent at 24 h p.i. The mRNA levels of inflammatory cytokines, chemokines, and type I interferons were upregulated at 6 h and 24 h p.i. These results indicate that the influenza virus induces inflammatory response in mouse primary cortical neurons with limited viral replication. The cytokines released in viral infection-induced neuroinflammation might play critical roles in influenza encephalopathy, rather than in viral replication-induced cytopathy.
Collapse
Affiliation(s)
- Gefei Wang
- Department of Microbiology and Immunology, Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, China
| | - Rui Li
- Department of Microbiology and Immunology, Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, China
- *Rui Li: and
| | - Zhiwu Jiang
- Department of Microbiology and Immunology, Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, China
| | - Liming Gu
- Department of Microbiology and Immunology, Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, China
| | - Yanxia Chen
- Department of Microbiology and Immunology, Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, China
| | - Jianping Dai
- Department of Microbiology and Immunology, Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, China
| | - Kangsheng Li
- Department of Microbiology and Immunology, Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, China
- *Kangsheng Li:
| |
Collapse
|