1
|
Li X, Qiu W, Deng L, Lin J, Huang W, Xu Y, Zhang M, Jones NC, Lin R, Xu H, Lin L, Li P, Wang X. 11β-HSD1 participates in epileptogenesis and the associated cognitive impairment by inhibiting apoptosis in mice. J Transl Med 2022; 20:406. [PMID: 36064418 PMCID: PMC9446697 DOI: 10.1186/s12967-022-03618-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/30/2022] [Indexed: 12/03/2022] Open
Abstract
Background Glucocorticoid signalling is closely related to both epilepsy and associated cognitive impairment, possibly through mechanisms involving neuronal apoptosis. As a critical enzyme for glucocorticoid action, the role of 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1) in epileptogenesis and associated cognitive impairment has not previously been studied. Methods We first investigated the expression of 11β-HSD1 in the pentylenetetrazole (PTZ) kindling mouse model of epilepsy. We then observed the effect of overexpressing 11β-HSD1 on the excitability of primary cultured neurons in vitro using whole-cell patch clamp recordings. Further, we assessed the effects of adeno-associated virus (AAV)-induced hippocampal 11β-HSD1 knockdown in the PTZ model, conducting behavioural observations of seizures, assessment of spatial learning and memory using the Morris water maze, and biochemical and histopathological analyses. Results We found that 11β-HSD1 was primarily expressed in neurons but not astrocytes, and its expression was significantly (p < 0.05) increased in the hippocampus of PTZ epilepsy mice compared to sham controls. Whole-cell patch clamp recordings showed that overexpression of 11β-HSD1 significantly decreased the threshold voltage while increasing the frequency of action potential firing in cultured hippocampal neurons. Hippocampal knockdown of 11β-HSD1 significantly reduced the severity score of PTZ seizures and increased the latent period required to reach the fully kindled state compared to control knockdown. Knockdown of 11β-HSD1 also significantly mitigated the impairment of spatial learning and memory, attenuated hippocampal neuronal damage and increased the ratio of Bcl-2/Bax, while decreasing the expression of cleaved caspase-3. Conclusions 11β-HSD1 participates in the pathogenesis of both epilepsy and the associated cognitive impairment by elevating neuronal excitability and contributing to apoptosis and subsequent hippocampal neuronal damage. Inhibition of 11β-HSD1, therefore, represents a promising strategy to treat epilepsy and cognitive comorbidity.
Collapse
Affiliation(s)
- Xueying Li
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Shangcai Village, Ouhai District, Wenzhou, Zhejiang Province, People's Republic of China
| | - Wanhua Qiu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang Province, People's Republic of China
| | - Lu Deng
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, People's Republic of China
| | - Jingjing Lin
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, People's Republic of China
| | - Wenting Huang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Shangcai Village, Ouhai District, Wenzhou, Zhejiang Province, People's Republic of China
| | - Yuchen Xu
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Shangcai Village, Ouhai District, Wenzhou, Zhejiang Province, People's Republic of China
| | - Mulan Zhang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Shangcai Village, Ouhai District, Wenzhou, Zhejiang Province, People's Republic of China
| | - Nigel C Jones
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, 2004, Australia.,Department of Neurology, The Alfred Hospital, Commercial Road, Melbourne, VIC, 3004, Australia.,Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC, 3052, Australia
| | - Runxuan Lin
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, 2004, Australia
| | - Huiqin Xu
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Shangcai Village, Ouhai District, Wenzhou, Zhejiang Province, People's Republic of China
| | - Li Lin
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang Province, People's Republic of China. .,Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| | - Peijun Li
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, People's Republic of China.
| | - Xinshi Wang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Shangcai Village, Ouhai District, Wenzhou, Zhejiang Province, People's Republic of China. .,Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China.
| |
Collapse
|
2
|
Fine NHF, Doig CL, Elhassan YS, Vierra NC, Marchetti P, Bugliani M, Nano R, Piemonti L, Rutter GA, Jacobson DA, Lavery GG, Hodson DJ. Glucocorticoids Reprogram β-Cell Signaling to Preserve Insulin Secretion. Diabetes 2018; 67:278-290. [PMID: 29203512 PMCID: PMC5780059 DOI: 10.2337/db16-1356] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 11/16/2017] [Indexed: 12/19/2022]
Abstract
Excessive glucocorticoid exposure has been shown to be deleterious for pancreatic β-cell function and insulin release. However, glucocorticoids at physiological levels are essential for many homeostatic processes, including glycemic control. We show that corticosterone and cortisol and their less active precursors 11-dehydrocorticosterone (11-DHC) and cortisone suppress voltage-dependent Ca2+ channel function and Ca2+ fluxes in rodent as well as in human β-cells. However, insulin secretion, maximal ATP/ADP responses to glucose, and β-cell identity were all unaffected. Further examination revealed the upregulation of parallel amplifying cAMP signals and an increase in the number of membrane-docked insulin secretory granules. Effects of 11-DHC could be prevented by lipotoxicity and were associated with paracrine regulation of glucocorticoid activity because global deletion of 11β-hydroxysteroid dehydrogenase type 1 normalized Ca2+ and cAMP responses. Thus, we have identified an enzymatically amplified feedback loop whereby glucocorticoids boost cAMP to maintain insulin secretion in the face of perturbed ionic signals. Failure of this protective mechanism may contribute to diabetes in states of glucocorticoid excess, such as Cushing syndrome, which are associated with frank dyslipidemia.
Collapse
Affiliation(s)
- Nicholas H F Fine
- Institute of Metabolism and Systems Research, University of Birmingham, Edgbaston, U.K
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, U.K
| | - Craig L Doig
- Institute of Metabolism and Systems Research, University of Birmingham, Edgbaston, U.K
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, U.K
| | - Yasir S Elhassan
- Institute of Metabolism and Systems Research, University of Birmingham, Edgbaston, U.K
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, U.K
| | - Nicholas C Vierra
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | - Piero Marchetti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Marco Bugliani
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Rita Nano
- Diabetes Research Institute, San Raffaele Scientific Institute, Milan, Italy
| | - Lorenzo Piemonti
- Diabetes Research Institute, San Raffaele Scientific Institute, Milan, Italy
| | - Guy A Rutter
- Section of Cell Biology and Functional Genomics, Department of Medicine, Imperial College London, London, U.K
| | - David A Jacobson
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | - Gareth G Lavery
- Institute of Metabolism and Systems Research, University of Birmingham, Edgbaston, U.K
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, U.K
| | - David J Hodson
- Institute of Metabolism and Systems Research, University of Birmingham, Edgbaston, U.K.
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, U.K
- Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, Midlands, U.K
| |
Collapse
|
3
|
Pullen TJ, Huising MO, Rutter GA. Analysis of Purified Pancreatic Islet Beta and Alpha Cell Transcriptomes Reveals 11β-Hydroxysteroid Dehydrogenase (Hsd11b1) as a Novel Disallowed Gene. Front Genet 2017; 8:41. [PMID: 28443133 PMCID: PMC5385341 DOI: 10.3389/fgene.2017.00041] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 03/23/2017] [Indexed: 11/30/2022] Open
Abstract
We and others have previously identified a group of genes, dubbed "disallowed," whose expression is markedly lower in pancreatic islets than in other mammalian cell types. Forced mis-expression of several members of this family leads to defective insulin secretion, demonstrating the likely importance of disallowance for normal beta cell function. Up to now, transcriptomic comparisons have been based solely on data from whole islets. This raises the possibilities that (a) there may be important differences in the degree of disallowance of family members between beta and other either neuroendocrine cells; (b) beta (or alpha) cell disallowed genes may have gone undetected. To address this issue, we survey here recent massive parallel sequencing (RNA-Seq) datasets from purified mouse and human islet cells. Our analysis reveals that the most strongly disallowed genes are similar in beta and alpha cells, with 11β-hydroxysteroid dehydrogenase (Hsd11b1) mRNA being essentially undetectable in both cell types. The analysis also reveals that several genes involved in cellular proliferation, including Yap1 and Igfbp4, and previously assumed to be disallowed in both beta and alpha cells, are selectively repressed only in the beta cell. The latter finding supports the view that beta cell growth is selectively restricted in adults, providing a mechanism to avoid excessive insulin production and the risk of hypoglycaemia. Approaches which increase the expression or activity of selected disallowed genes in the beta cell may provide the basis for novel regenerative therapies in type 2 diabetes.
Collapse
Affiliation(s)
- Timothy J. Pullen
- Section of Cell Biology and Functional Genomics, Department of Medicine, Imperial College LondonLondon, UK
| | - Mark O. Huising
- Department of Neurobiology, Physiology, and Behavior, College of Biological Sciences, University of California, Davis, DavisCA, USA
| | - Guy A. Rutter
- Section of Cell Biology and Functional Genomics, Department of Medicine, Imperial College LondonLondon, UK
| |
Collapse
|