1
|
Kotzer HN, Capera J, Jainarayanan A, Mayya V, Zanin-Zhorov A, Valvo S, Macdonald J, Taylor PC, Dustin ML. STAT3 phosphorylation in the rheumatoid arthritis immunological synapse. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.20.633875. [PMID: 39896614 PMCID: PMC11785017 DOI: 10.1101/2025.01.20.633875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Academic Contribution Register] [Indexed: 02/04/2025]
Abstract
Targeting the JAK/STAT pathway has emerged as a key therapeutic strategy for managing Rheumatoid Arthritis (RA). JAK inhibitors suppress cytokine-mediated signaling, including the critical IL-6/STAT3 axis, thereby effectively targeting different aspects of the pathological process. However, despite their clinical efficacy, a subset of RA patients remains refractory to JAK inhibition, underscoring the need for alternative approaches. Here, we identify a novel JAK-independent mechanism of STAT3 activation, which is triggered by the formation of the immunological synapse (IS) in naïve CD4+ T cells. Our data demonstrates that Lck mediates the TCR-dependent phosphorylation of STAT3 at the IS, highlighting this pathway as a previously unrecognized hallmark of early T cell activation. Furthermore, we show that the synaptic Lck/TCR-STAT3 pathway is compromised in RA. This discovery highlights a new therapeutic target for RA beyond JAK inhibitors, offering potential avenues for treating patients resistant to current therapies.
Collapse
Affiliation(s)
- Hila Novak Kotzer
- Skirball Institute of Biomolecular Medicine, NYU Langone Medical Center, New York, NY 10016 USA
- Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, OX3 7FY UK
| | - Jesusa Capera
- Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, OX3 7FY UK
| | - Ashwin Jainarayanan
- Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, OX3 7FY UK
| | - Viveka Mayya
- Skirball Institute of Biomolecular Medicine, NYU Langone Medical Center, New York, NY 10016 USA
- Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, OX3 7FY UK
| | - Alexandra Zanin-Zhorov
- Skirball Institute of Biomolecular Medicine, NYU Langone Medical Center, New York, NY 10016 USA
| | - Salvatore Valvo
- Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, OX3 7FY UK
| | - Joanne Macdonald
- Botnar Institute for Musculoskeletal Sciences, NDORMS, University of Oxford, Oxford, OX3 7LD UK
| | - Peter C. Taylor
- Botnar Institute for Musculoskeletal Sciences, NDORMS, University of Oxford, Oxford, OX3 7LD UK
| | - Michael L Dustin
- Skirball Institute of Biomolecular Medicine, NYU Langone Medical Center, New York, NY 10016 USA
- Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, OX3 7FY UK
| |
Collapse
|
2
|
Kuley R, Duvvuri B, Hasnain S, Dow ER, Koch AE, Higgs RE, Krishnan V, Lood C. Neutrophil Activation Markers and Rheumatoid Arthritis Treatment Response to the JAK1/2 Inhibitor Baricitinib. Arthritis Rheumatol 2024. [PMID: 39431356 DOI: 10.1002/art.43042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/03/2024] [Revised: 08/27/2024] [Accepted: 10/15/2024] [Indexed: 10/22/2024]
Abstract
OBJECTIVE Neutrophils play an important role in regulating immune and inflammatory responses in patients with rheumatoid arthritis (RA). We assessed whether baricitinib, a JAK1/JAK2 inhibitor, could reduce neutrophil activation and whether a neutrophil activation score could predict treatment response. METHODS Markers of neutrophil activation, calprotectin, and neutrophil extracellular traps (NETs) were analyzed using enzyme-linked immunosorbent assay in plasma from patients with RA (n = 271) and healthy controls (n = 39). For patients with RA, neutrophil activation markers were measured at baseline, 12 weeks, and 24 weeks after receiving placebo and 2 and 4 mg baricitinib. Whole-blood RNA analyses from multiple randomized baricitinib RA trials were performed to study neutrophil-related transcripts (n = 1,651). RESULTS Baseline levels of plasma neutrophil markers were elevated in patients with RA compared to healthy controls (P < 0.001). Receiving baricitinib reduced levels of soluble calprotectin at 12 and 24 weeks, especially in patients with RA responding to treatment, as determined by American College of Rheumatology 20% improvement criteria. Whole-blood RNA analysis revealed similar changes in the predominant neutrophil markers calprotectin and Fcα receptor I upon reception of baricitinib in three randomized clinical trials involving patients with at various stages of disease-modifying therapy. Clustering analysis of plasma activation markers showed elevated levels of calprotectin and NETs (eg, a neutrophil activation score, at baseline, could predict treatment response to baricitinib). In contrast, C-reactive protein levels could not distinguish between responders and nonresponders. CONCLUSION Neutrophil activation markers may add clinical value in predicting treatment response to baricitinib and other drugs targeting RA. This study supports personalized medicine in treating patients with RA, not only based on symptoms but also based on immunophenotyping.
Collapse
Affiliation(s)
- Runa Kuley
- University of Washington, Seattle, and Centre for Life Sciences, Mahindra University, Hyderabad, India
| | | | - Sabeeha Hasnain
- Centre for Life Sciences, Mahindra University, Hyderabad, India
| | - Ernst R Dow
- Eli Lilly and Company, Indianapolis, Indiana
| | | | | | | | | |
Collapse
|
3
|
Kiełbowski K, Plewa P, Bratborska AW, Bakinowska E, Pawlik A. JAK Inhibitors in Rheumatoid Arthritis: Immunomodulatory Properties and Clinical Efficacy. Int J Mol Sci 2024; 25:8327. [PMID: 39125897 PMCID: PMC11311960 DOI: 10.3390/ijms25158327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/19/2024] [Revised: 07/20/2024] [Accepted: 07/28/2024] [Indexed: 08/12/2024] Open
Abstract
Rheumatoid arthritis (RA) is a highly prevalent autoimmune disorder. The pathogenesis of the disease is complex and involves various cellular populations, including fibroblast-like synoviocytes, macrophages, and T cells, among others. Identification of signalling pathways and molecules that actively contribute to the development of the disease is crucial to understanding the mechanisms involved in the chronic inflammatory environment present in affected joints. Recent studies have demonstrated that the Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway regulates the behaviour of immune cells and contributes to the progression of RA. Several JAK inhibitors, such as tofacitinib, baricitinib, upadacitinib, and filgocitinib, have been developed, and their efficacy and safety in patients with RA have been comprehensively investigated in a number of clinical trials. Consequently, JAK inhibitors have been approved and registered as a treatment for patients with RA. In this review, we discuss the involvement of JAK/STAT signalling in the pathogenesis of RA and summarise the potential beneficial effects of JAK inhibitors in cells implicated in the pathogenesis of the disease. Moreover, we present the most important phase 3 clinical trials that evaluated the use of these agents in patients.
Collapse
Affiliation(s)
- Kajetan Kiełbowski
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.K.); (E.B.)
| | - Paulina Plewa
- Institute of Biology, University of Szczecin, 71-412 Szczecin, Poland;
| | | | - Estera Bakinowska
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.K.); (E.B.)
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.K.); (E.B.)
| |
Collapse
|
4
|
Wang J, Liu Y, Guo Y, Liu C, Yang Y, Fan X, Yang H, Liu Y, Ma T. Function and inhibition of P38 MAP kinase signaling: Targeting multiple inflammation diseases. Biochem Pharmacol 2024; 220:115973. [PMID: 38103797 DOI: 10.1016/j.bcp.2023.115973] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/19/2023] [Revised: 12/02/2023] [Accepted: 12/05/2023] [Indexed: 12/19/2023]
Abstract
Inflammation is a natural host defense mechanism that protects the body from pathogenic microorganisms. A growing body of research suggests that inflammation is a key factor in triggering other diseases (lung injury, rheumatoid arthritis, etc.). However, there is no consensus on the complex mechanism of inflammatory response, which may include enzyme activation, mediator release, and tissue repair. In recent years, p38 MAPK, a member of the MAPKs family, has attracted much attention as a central target for the treatment of inflammatory diseases. However, many p38 MAPK inhibitors attempting to obtain marketing approval have failed at the clinical trial stage due to selectivity and/or toxicity issues. In this paper, we discuss the mechanism of p38 MAPK in regulating inflammatory response and its key role in major inflammatory diseases and summarize the synthetic or natural products targeting p38 MAPK to improve the inflammatory response in the last five years, which will provide ideas for the development of novel clinical anti-inflammatory drugs based on p38 MAPK inhibitors.
Collapse
Affiliation(s)
- Jiahui Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yongjian Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yushi Guo
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Cen Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yuping Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xiaoxiao Fan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Hongliu Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yonggang Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Tao Ma
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| |
Collapse
|
5
|
Chen R, Li M, Qin S, Lu H, Shen M, Lin X. STAT3 regulation of Mtb-specific T cell function in active pulmonary tuberculosis patients. Int Immunopharmacol 2023; 116:109748. [PMID: 36753982 DOI: 10.1016/j.intimp.2023.109748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/20/2022] [Revised: 12/30/2022] [Accepted: 01/14/2023] [Indexed: 02/09/2023]
Abstract
BACKGROUND Tuberculosis (TB) remains one of the most serious infectious diseases in the world. Our aim was to investigate the regulatory role of STAT3 and pSTAT3 in the regulation of T cell immunophenotype and cell function. METHODS Twenty-five active pulmonary tuberculosis (APTB) patients, 18 latent tuberculosis infection (LTBI) patients, and 20 healthy controls (HCs) enrolled in this study. T cell phenotype and expression of STAT3 and pSTAT3 were detected by flow cytometry. RESULTS Compared with HCs, the expression of pSTAT3 in CD4+ T and CD8+ T cells in peripheral blood of APTB patients was increased, and the expression was higher in pleural effusion. Multifunctional T cells that simultaneously secrete IFN-γ, TNF-α and IL-17A have higher pSTAT3 expression levels. Mtb-specific T cells from APTB patients had a higher cell frequency of the STAT3+ pSTAT3+ phenotype and a reduced cell frequency of the STAT3+ pSTAT3- phenotype compared with LTBI patients. Mtb-specific T cells with STAT3+ pSTAT3+ phenotype had higher expression of PD-1 and PD-L1, while cells with STAT3+ pSTAT3- phenotype had higher expression of Bcl-2. CONCLUSIONS STAT3 and pSTAT3 in T cells of APTB patients feature in the process of anti-apoptosis and cytokine secretion. At the same time, the higher pSTAT3 may be related to the degree of cell functional exhaustion. The pSTAT3 level of T cells is related to the infection status and may indicate the clinical activity of the disease, which provides a new idea for the clinical identification and treatment of active pulmonary tuberculosis.
Collapse
Affiliation(s)
- Ruiqi Chen
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Meihui Li
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Shuang Qin
- Department of Clinical Laboratory, Jinan City People's Hospital, Jinan, Shandong 271100, China
| | - Hong Lu
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Mo Shen
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
| | - Xiangyang Lin
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
| |
Collapse
|
6
|
Valli A, Kuuliala K, Virtanen A, Kuuliala A, Palmroth M, Peltomaa R, Vidqvist KL, Leirisalo-Repo M, Silvennoinen O, Isomäki P. Tofacitinib treatment modulates the levels of several inflammation-related plasma proteins in rheumatoid arthritis and baseline levels of soluble biomarkers associate with the treatment response. Clin Exp Immunol 2022; 210:141-150. [PMID: 36124688 PMCID: PMC9750823 DOI: 10.1093/cei/uxac085] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/19/2022] [Revised: 08/18/2022] [Accepted: 09/15/2022] [Indexed: 01/12/2023] Open
Abstract
The data on the effects of tofacitinib on soluble proteins in patients with rheumatoid arthritis (RA) is currently very limited. We analyzed how tofacitinib treatment and thus inhibition of the Janus kinase-signal transducer and activation of transcription pathway affects the in vivo levels of inflammation-related plasma proteins in RA patients. In this study, 16 patients with active RA [28-joint disease activity score (DAS28) >3.2] despite treatment with conventional synthetic disease-modifying antirheumatic drugs (csDMARDs) started tofacitinib treatment 5 mg twice daily. Levels of 92 inflammation-related plasma proteins were determined by proximity extension assay at baseline and at 3 months. Tofacitinib treatment for 3 months, in csDMARD background, decreased the mean DAS28 from 4.4 to 2.6 (P < 0.001). Marked (>20%) and statistically significant (P < 0.05) changes were found in the levels of 21 proteins, 18 of which decreased and 3 increased. Of these proteins, 17 are directly involved in inflammatory responses or in the cellular response to cytokines. The highest (>50%) decrease was observed for interleukin-6 (IL-6), C-X-C motif chemokine ligand 1, matrix metalloproteinase-1, and AXIN1. Higher baseline levels of IL-6 and lower levels of C-C motif chemokine 11 and Delta and Notch-like epidermal growth factor-related receptors were associated with DAS28 improvement. Our results indicate that tofacitinib downregulates several proinflammatory plasma proteins that may contribute to the clinical efficacy of tofacitinib. In addition, soluble biomarkers may predict the treatment response to tofacitinib.
Collapse
Affiliation(s)
- Atte Valli
- Molecular Immunology Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Krista Kuuliala
- Department of Bacteriology and Immunology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Anniina Virtanen
- Molecular Immunology Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Antti Kuuliala
- Department of Bacteriology and Immunology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Maaria Palmroth
- Molecular Immunology Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Ritva Peltomaa
- Inflammation Center, Department of Rheumatology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | | | - Marjatta Leirisalo-Repo
- Department of Bacteriology and Immunology, Faculty of Medicine, University of Helsinki, Helsinki, Finland,Inflammation Center, Department of Rheumatology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Olli Silvennoinen
- Molecular Immunology Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland,Fimlab Laboratories, Pirkanmaa Hospital District, Tampere, Tampere, Finland,Institute of Biotechnology, HiLIFE Helsinki Institute of Life Sciences, University of Helsinki, Helsinki, Finland
| | - Pia Isomäki
- Correspondence: Pia Isomäki, Department of Internal Medicine, Centre for Rheumatic Diseases, Tampere University Hospital, P.O. Box, 2000, FI-33521 Tampere, Finland.
| |
Collapse
|
7
|
Macaubas C, Rahman SS, Lavi I, Haddad A, Elias M, Sengupta D, Zisman D, Mellins ED. High Dimensional Analyses of Circulating Immune Cells in Psoriatic Arthritis Detects Elevated Phosphorylated STAT3. Front Immunol 2022; 12:758418. [PMID: 35087513 PMCID: PMC8787828 DOI: 10.3389/fimmu.2021.758418] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/13/2021] [Accepted: 12/20/2021] [Indexed: 01/31/2023] Open
Abstract
Psoriatic arthritis (PsA) is a chronic inflammatory arthritis, affecting up to 40% of patients with psoriasis. Constitutive expression by CD4+ T cells of an active form of STAT3, a signal transducer and transcription factor, has been shown to induce many of the major features of PsA in an animal model. We used high dimensional mass cytometry (CyTOF) to probe ex-vivo levels of phosphorylated STAT3 (pSTAT3) in circulating immune cell subpopulations from PsA patients during active and inactive states. We evaluated the frequency of 16 immune cell populations and the levels of the activated forms of STAT3 (pSTAT3) and, for comparison, STAT1 (pSTAT1) and Src (pSrc) in whole blood fixed shortly after collection. In addition to PsA patients, we studied active rheumatoid arthritis (RA) patients. Increased levels of pSTAT3 were found in all the CD4+ T cell subsets analyzed, specifically, Th1, Th2, Th17, T follicular helper (Tfh) and T regulatory (Treg) as well as in CD14+CD16- (classical) monocytes from active PsA patients compared to inactive patients. After correcting for body mass index (BMI), smoking and conventional disease modifying antirheumatic drugs (c-DMARDs), levels of pSTAT3 levels remained increased in Th1 and Tfh CD4+ T cells, and in CD14+CD16- monocytes from active patients compared to inactive patients. No differences between the patient groups were observed for pSTAT1 or pSrc. No differences were found between the active PsA and active RA groups after correction for multiple testing. During active PsA, circulating Th1 and Tfh CD4+ T cells, and CD14+CD16- monocytes expressing high levels of pSTAT3 may play a role in PsA pathophysiology, perhaps by migration to inflamed sites.
Collapse
Affiliation(s)
- Claudia Macaubas
- Pediatrics, Program in Immunology, Stanford University, Stanford, CA, United States
| | - Shamma S Rahman
- Pediatrics, Program in Immunology, Stanford University, Stanford, CA, United States
| | - Idit Lavi
- Community Medicine and Epidemiology, Carmel Medical Center, Haifa, Israel
| | - Amir Haddad
- Rheumatology Unit, Carmel Medical Center, Haifa, Israel
| | - Muna Elias
- Rheumatology Unit, Carmel Medical Center, Haifa, Israel
| | | | - Devy Zisman
- Rheumatology Unit, Carmel Medical Center, Haifa, Israel.,The Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Elizabeth D Mellins
- Pediatrics, Program in Immunology, Stanford University, Stanford, CA, United States
| |
Collapse
|
8
|
Palmroth M, Kuuliala K, Peltomaa R, Virtanen A, Kuuliala A, Kurttila A, Kinnunen A, Leirisalo-Repo M, Silvennoinen O, Isomäki P. Tofacitinib Suppresses Several JAK-STAT Pathways in Rheumatoid Arthritis In Vivo and Baseline Signaling Profile Associates With Treatment Response. Front Immunol 2021; 12:738481. [PMID: 34630419 PMCID: PMC8498592 DOI: 10.3389/fimmu.2021.738481] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/08/2021] [Accepted: 09/01/2021] [Indexed: 12/03/2022] Open
Abstract
Objective Current knowledge on the actions of tofacitinib on cytokine signaling pathways in rheumatoid arthritis (RA) is based on in vitro studies. Our study is the first to examine the effects of tofacitinib treatment on Janus kinase (JAK) - signal transducer and activator of transcription (STAT) pathways in vivo in patients with RA. Methods Sixteen patients with active RA, despite treatment with conventional synthetic disease-modifying antirheumatic drugs (csDMARDs), received tofacitinib 5 mg twice daily for three months. Levels of constitutive and cytokine-induced phosphorylated STATs in peripheral blood monocytes, T cells and B cells were measured by flow cytometry at baseline and three-month visits. mRNA expression of JAKs, STATs and suppressors of cytokine signaling (SOCS) were measured from peripheral blood mononuclear cells (PBMCs) by quantitative PCR. Association of baseline signaling profile with treatment response was also investigated. Results Tofacitinib, in csDMARDs background, decreased median disease activity score (DAS28) from 4.4 to 2.6 (p < 0.001). Tofacitinib treatment significantly decreased cytokine-induced phosphorylation of all JAK-STAT pathways studied. However, the magnitude of the inhibitory effect depended on the cytokine and cell type studied, varying from 10% to 73% inhibition following 3-month treatment with tofacitinib. In general, strongest inhibition by tofacitinib was observed with STAT phosphorylations induced by cytokines signaling through the common-γ-chain cytokine receptor in T cells, while lowest inhibition was demonstrated for IL-10 -induced STAT3 phosphorylation in monocytes. Constitutive STAT1, STAT3, STAT4 and STAT5 phosphorylation in monocytes and/or T cells was also downregulated by tofacitinib. Tofacitinib treatment downregulated the expression of several JAK-STAT pathway components in PBMCs, SOCSs showing the strongest downregulation. Baseline STAT phosphorylation levels in T cells and monocytes and SOCS3 expression in PBMCs correlated with treatment response. Conclusions Tofacitinib suppresses multiple JAK-STAT pathways in cytokine and cell population specific manner in RA patients in vivo. Besides directly inhibiting JAK activation, tofacitinib downregulates the expression of JAK-STAT pathway components. This may modulate the effects of tofacitinib on JAK-STAT pathway activation in vivo and explain some of the differential findings between the current study and previous in vitro studies. Finally, baseline immunological markers associate with the treatment response to tofacitinib.
Collapse
Affiliation(s)
- Maaria Palmroth
- Molecular Immunology Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Krista Kuuliala
- Department of Bacteriology and Immunology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Ritva Peltomaa
- Department of Rheumatology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Anniina Virtanen
- Molecular Immunology Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Antti Kuuliala
- Department of Bacteriology and Immunology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Antti Kurttila
- Molecular Immunology Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Anna Kinnunen
- Centre for Rheumatic Diseases, Tampere University Hospital, Tampere, Finland
| | - Marjatta Leirisalo-Repo
- Department of Rheumatology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Olli Silvennoinen
- Molecular Immunology Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Fimlab Laboratories, Pirkanmaa Hospital District, Tampere, Tampere, Finland
- Institute of Biotechnology, HiLIFE Helsinki Institute of Life Sciences, University of Helsinki, Helsinki, Finland
| | - Pia Isomäki
- Molecular Immunology Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Centre for Rheumatic Diseases, Tampere University Hospital, Tampere, Finland
| |
Collapse
|
9
|
Juusola M, Kuuliala K, Kuuliala A, Mustonen H, Vähä-Koskela M, Puolakkainen P, Seppänen H. Pancreatic cancer is associated with aberrant monocyte function and successive differentiation into macrophages with inferior anti-tumour characteristics. Pancreatology 2021; 21:397-405. [PMID: 33461933 DOI: 10.1016/j.pan.2020.12.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 06/26/2020] [Revised: 12/16/2020] [Accepted: 12/31/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND/OBJECTIVES Inflammation is related to the development and progression of pancreatic cancer (PC). Locally, anti-inflammatory macrophages (M2), and systemically, high levels of certain inflammation-modulating cytokines associate with poor prognosis in PC. The detailed effects of systemic inflammation on circulating monocytes and macrophage polarisation remain unknown. We aimed to find out how intracellular signalling of peripheral blood monocytes is affected by the systemic inflammatory state in PC patients and how it affects their differentiation into macrophages. METHODS Monocytes were isolated from 50 consenting PC patients and 20 healthy controls (HC). The phosphorylation status of the signalling molecules was assessed by flow cytometry both from unstimulated and appropriately stimulated monocytes. Monocytes derived from HC and PC patients were co-cultured with cancer cells (MIA PaCa-2 and HPAF-II) in media supplemented with autologous serum, and the CD marker expression of the obtained macrophages was assessed by flow cytometry. RESULTS Phosphorylation levels of unstimulated STAT2, STAT3 and STAT6 were higher (p < 0.05) and those of stimulated NF-kB (p = 0.004) and STAT5 (p = 0.006) were lower in patients than in controls. The expression of CD86, a proinflammatory (M1) marker, was higher in control- than patient-derived co-cultured macrophages (p = 0.029). CONCLUSIONS Circulating monocytes from PC patients showed constitutive phosphorylation and weaker response to stimuli, indicating aberrant activation and immune suppression. When co-culturing the patient-derived monocytes with cancer cells, they differentiated into macrophages with reduced levels of M1 macrophage marker CD86, suggesting compromised anti-tumour features. The results highlight the need for global management of tumour-associated immune aberrations in PC treatment.
Collapse
Affiliation(s)
- Matilda Juusola
- Department of Surgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland; Translational Cancer Medicine Research Program, University of Helsinki, Helsinki, Finland.
| | - Krista Kuuliala
- Department of Bacteriology and Immunology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Antti Kuuliala
- Department of Bacteriology and Immunology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Harri Mustonen
- Department of Surgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | | | - Pauli Puolakkainen
- Department of Surgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland; Translational Cancer Medicine Research Program, University of Helsinki, Helsinki, Finland
| | - Hanna Seppänen
- Department of Surgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland; Translational Cancer Medicine Research Program, University of Helsinki, Helsinki, Finland
| |
Collapse
|
10
|
Blood Leukocyte Signaling Pathways as Predictors of Severity of Acute Pancreatitis. Pancreas 2021; 50:710-718. [PMID: 34016897 PMCID: PMC8195735 DOI: 10.1097/mpa.0000000000001832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 12/10/2022]
Abstract
OBJECTIVES Clinical practice lacks biomarkers to predict the severity of acute pancreatitis (AP). We studied if intracellular signaling of circulating leukocytes could predict persistent organ dysfunction (OD) and secondary infections in AP. METHODS A venous blood sample was taken from 174 patients with AP 72 hours or less from onset of symptoms and 31 healthy controls. Phosphorylation levels (p) of appropriately stimulated signal transducer and activator of transcription 1 (STAT1), STAT6, nuclear factor-κB (NF-κB), Akt, and nonstimulated STAT3 in monocytes, neutrophils, and lymphocytes was measured using phosphospecific flow cytometry. RESULTS The patients showed higher pSTAT3 and lower pSTAT1, pSTAT6, pNF-κB, and pAkt than healthy controls. pSTAT3 in all leukocyte subtypes studied increased, and pSTAT1 in monocytes and T cells decreased in an AP severity-wise manner. In patients without OD at sampling, high pSTAT3 in monocytes and T lymphocytes were associated with development of persistent OD. In patients with OD, low interleukin-4-stimulated pSTAT6 in monocytes and neutrophils and Escherichia coli-stimulated pNF-κB in neutrophils predicted OD persistence. High pSTAT3 in monocytes, CD8+ T cells, and neutrophils; low pSTAT1 in monocytes and T cells; and low pNF-κB in lymphocytes predicted secondary infections. CONCLUSIONS Leukocyte STAT3, STAT1, STAT6, and NF-κΒ phosphorylations are potential predictors of AP severity.
Collapse
|
11
|
Hodl I, Bosch P, Dreo B, Stradner MH. Case Report: Extensive Phosphorylation of Interleukin-1 Receptor-Associated Kinase 4 in a Patient With Schnitzler Syndrome. Front Immunol 2020; 11:576200. [PMID: 33123160 PMCID: PMC7569524 DOI: 10.3389/fimmu.2020.576200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/06/2020] [Accepted: 09/07/2020] [Indexed: 11/13/2022] Open
Abstract
Schnitzler syndrome (SchS) is a rare autoinflammatory disease, characterized by urticarial rash, recurrent fever, osteo-articular pain/arthritis with bone condensation, and monoclonal gammopathy. Diagnosis may be difficult due to overlapping signs with other diseases. Here, we describe the case of a 62-year-old man with SchS, who was initially misdiagnosed with multicentric Castleman disease (MCD). As excessive release of IL-6 is characteristic of MCD, in contrast to IL-1 in SchS, we measured the phosphorylation of intracellular signaling proteins of the respective pathways by flow cytometry. We found a distinct increase of phosphorylated IRAK-4 in our patient's B cells and monocytes while phosphorylation of STAT-3 was low, suggesting predominant IL-1 signaling. In accordance with these results and the classification criteria, we established the diagnosis of SchS instead of MCD and commenced therapy with the IL-1 receptor antagonist anakinra. We observed a rapid remission of signs accompanied by a reduction of phosphorylated IRAK-4 to normal levels. In conclusion, we propose phosphorylated IRAK-4 in B cells and monocytes as a potential marker for diagnosis of SchS and for treatment response to IL-1 blockade.
Collapse
Affiliation(s)
| | | | | | - Martin H. Stradner
- Division of Rheumatology and Immunology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| |
Collapse
|
12
|
Monserrat Sanz J, Bohórquez C, Gómez AM, Movasat A, Pérez A, Ruíz L, Diaz D, Sánchez AI, Albarrán F, Sanz I, Álvarez-Mon M. Methrotexate Treatment Inmunomodulates Abnormal Cytokine Expression by T CD4 Lymphocytes Present in DMARD-Naïve Rheumatoid Arthritis Patients. Int J Mol Sci 2020; 21:E6847. [PMID: 32961930 PMCID: PMC7555887 DOI: 10.3390/ijms21186847] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/27/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 01/18/2023] Open
Abstract
CD4+T-lymphocytes are relevant in the pathogenesis of rheumatoid arthritis (RA), however, their potential involvement in early RA remains elusive. Methotrexate (MTX) is a commonly used disease-modifying antirheumatic drug (DMARD), but its mechanism has not been fully established. In 47 new-onset DMARD-naïve RA patients, we investigated the pattern of IFNγ, IL-4 and IL-17A expression by naïve (TN), central (TCM), effector memory (TEM) and effector (TE) CD4+ subsets; their STAT-1, STAT-6 and STAT-3 transcription factors phosphorylation, and the circulating levels of IFNγ, IL-4 and IL-17. We also studied the RA patients after 3 and 6 months of MTX treatment and according their clinical response. CD4+T-lymphocyte subsets and cytokine expression were measured using flow cytometry. New-onset DMARD-naïve RA patients showed a significant expansion of IL-17A+, IFNγ+ and IL-17A+IFNγ+ CD4+T-lymphocyte subsets and increased intracellular STAT-1 and STAT-3 phosphorylation. Under basal conditions, nonresponder patients showed increased numbers of circulating IL-17A producing TN and TMC CD4+T-lymphocytes and IFNγ producing TN, TCM, TEM CD4+T-lymphocytes with respect to responders. After 6 months, the numbers of CD4+IL-17A+TN remained significantly increased in nonresponders. In conclusion, CD4+T-lymphocytes in new-onset DMARD-naïve RA patients show IL-17A and IFNγ abnormalities in TN, indicating their relevant role in early disease pathogenesis. Different patterns of CD4+ modulation are identified in MTX responders and nonresponders.
Collapse
Affiliation(s)
- Jorge Monserrat Sanz
- Laboratory of Immune System Diseases, Department of Medicine, University Hospital “Príncipe de Asturias”, University of Alcalá, Alcalá de Henares, 28871 Madrid, Spain; (A.M.G.); (D.D.)
- IRYCIS Unit, Instituto Ramón y Cajal de Investigación Sanitaria, 28034 Madrid, Spain;
| | - Cristina Bohórquez
- Immune System Diseases-Rheumatology Service, Department of Medicine, University Hospital “Príncipe de Asturias”, University of Alcalá, Alcalá de Henares, 28805 Madrid, Spain; (C.B.); (A.M.); (L.R.); (A.I.S.); (F.A.)
| | - Ana Maria Gómez
- Laboratory of Immune System Diseases, Department of Medicine, University Hospital “Príncipe de Asturias”, University of Alcalá, Alcalá de Henares, 28871 Madrid, Spain; (A.M.G.); (D.D.)
| | - Atusa Movasat
- Immune System Diseases-Rheumatology Service, Department of Medicine, University Hospital “Príncipe de Asturias”, University of Alcalá, Alcalá de Henares, 28805 Madrid, Spain; (C.B.); (A.M.); (L.R.); (A.I.S.); (F.A.)
| | - Ana Pérez
- IRYCIS Unit, Instituto Ramón y Cajal de Investigación Sanitaria, 28034 Madrid, Spain;
- Immune System Diseases-Rheumatology Service, Department of Medicine, University Hospital “Príncipe de Asturias”, University of Alcalá, Alcalá de Henares, 28805 Madrid, Spain; (C.B.); (A.M.); (L.R.); (A.I.S.); (F.A.)
| | - Lucía Ruíz
- Immune System Diseases-Rheumatology Service, Department of Medicine, University Hospital “Príncipe de Asturias”, University of Alcalá, Alcalá de Henares, 28805 Madrid, Spain; (C.B.); (A.M.); (L.R.); (A.I.S.); (F.A.)
| | - David Diaz
- Laboratory of Immune System Diseases, Department of Medicine, University Hospital “Príncipe de Asturias”, University of Alcalá, Alcalá de Henares, 28871 Madrid, Spain; (A.M.G.); (D.D.)
- IRYCIS Unit, Instituto Ramón y Cajal de Investigación Sanitaria, 28034 Madrid, Spain;
| | - Ana Isabel Sánchez
- Immune System Diseases-Rheumatology Service, Department of Medicine, University Hospital “Príncipe de Asturias”, University of Alcalá, Alcalá de Henares, 28805 Madrid, Spain; (C.B.); (A.M.); (L.R.); (A.I.S.); (F.A.)
| | - Fernando Albarrán
- Immune System Diseases-Rheumatology Service, Department of Medicine, University Hospital “Príncipe de Asturias”, University of Alcalá, Alcalá de Henares, 28805 Madrid, Spain; (C.B.); (A.M.); (L.R.); (A.I.S.); (F.A.)
| | - Ignacio Sanz
- Division of Immunology and Rheumatology, Department of Medicine, Emory University, Atlanta, GA 30322, USA;
| | - Melchor Álvarez-Mon
- Laboratory of Immune System Diseases, Department of Medicine, University Hospital “Príncipe de Asturias”, University of Alcalá, Alcalá de Henares, 28871 Madrid, Spain; (A.M.G.); (D.D.)
- IRYCIS Unit, Instituto Ramón y Cajal de Investigación Sanitaria, 28034 Madrid, Spain;
- Immune System Diseases-Rheumatology Service, Department of Medicine, University Hospital “Príncipe de Asturias”, University of Alcalá, Alcalá de Henares, 28805 Madrid, Spain; (C.B.); (A.M.); (L.R.); (A.I.S.); (F.A.)
| |
Collapse
|
13
|
Basu A, Das AS, Borah PK, Duary RK, Mukhopadhyay R. Biochanin A impedes STAT3 activation by upregulating p38δ MAPK phosphorylation in IL-6-stimulated macrophages. Inflamm Res 2020; 69:1143-1156. [PMID: 32852592 DOI: 10.1007/s00011-020-01387-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/09/2019] [Revised: 07/26/2020] [Accepted: 07/29/2020] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE IL-6-induced STAT3 activation is associated with various chronic inflammatory diseases. In this study, we investigated the anti-STAT3 mechanism of the dietary polyphenol, biochanin A (BCA), in IL-6-treated macrophages. METHODS The effect of BCA on STAT3 and p38 MAPK was analyzed by immunoblot. The localization of both these transcription factors was determined by immunofluorescence and fractionation studies. The impact on DNA-binding activity of STAT3 was studied by luciferase assay. To understand which of the isoforms of p38 MAPK was responsible for BCA-mediated regulation of STAT3, overexpression of the proteins, site-directed mutagenesis, pull-down assays and computational analysis were performed. Finally, adhesion-migration assays and semi-quantitative PCR were employed to understand the biological effects of BCA-mediated regulation of STAT3. RESULTS BCA prevented STAT3 phosphorylation (Tyr705) and increased p38 MAPK phosphorylation (Thr180/Tyr182) in IL-6-stimulated differentiated macrophages. This opposing modulatory effect of BCA was not observed in cells treated with other stress-inducing stimuli that activate p38 MAPK. BCA abrogated IL-6-induced nuclear translocation of phospho-STAT3 and its transcriptional activity, while increasing the cellular abundance of phospho-p38 MAPK. BCA-induced phosphorylation of p38δ, but not α, β, or γ was responsible for impeding IL-6-induced STAT3 phosphorylation. Interestingly, interaction with phospho-p38δ masked the Tyr705 residue of STAT3, preventing its phosphorylation. BCA significantly reduced STAT3-dependent expression of icam-1 and mcp-1 diminishing IL-6-mediated monocyte adhesion and migration. CONCLUSION This differential regulation of STAT3 and p38 MAPK in macrophages establishes a novel anti-inflammatory mechanism of BCA which could be important for the prevention of IL-6-associated chronic inflammatory diseases.
Collapse
Affiliation(s)
- Anandita Basu
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Assam, 784028, India
| | - Anindhya Sundar Das
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Assam, 784028, India
| | - Pallab Kumar Borah
- Department of Food Engineering and Technology, Tezpur University, Tezpur, Assam, 784028, India
| | - Raj Kumar Duary
- Department of Food Engineering and Technology, Tezpur University, Tezpur, Assam, 784028, India
| | - Rupak Mukhopadhyay
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Assam, 784028, India.
| |
Collapse
|
14
|
T follicular helper cells and T follicular regulatory cells in rheumatic diseases. Nat Rev Rheumatol 2019; 15:475-490. [DOI: 10.1038/s41584-019-0254-2] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Accepted: 06/07/2019] [Indexed: 12/15/2022]
|
15
|
Ridgley LA, Anderson AE, Maney NJ, Naamane N, Skelton AJ, Lawson CA, Emery P, Isaacs JD, Carmody RJ, Pratt AG. IL-6 Mediated Transcriptional Programming of Naïve CD4+ T Cells in Early Rheumatoid Arthritis Drives Dysregulated Effector Function. Front Immunol 2019; 10:1535. [PMID: 31333666 PMCID: PMC6618050 DOI: 10.3389/fimmu.2019.01535] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/01/2019] [Accepted: 06/19/2019] [Indexed: 12/27/2022] Open
Abstract
Objective: We have previously shown that increased circulating interleukin-6 (IL-6) results in enhanced CD4+ T cell signaling via signal transduction and activator of transcription-3 (STAT3) in early rheumatoid arthritis (RA). We tested the hypothesis that transcriptional “imprinting” of T-cells by this mechanism skews downstream effector responses, reinforcing immune dysregulation at a critical, but targetable, disease phase. Methods: We modeled naïve CD4+ T cell exposure to pathophysiological concentrations of IL-6 in vitro, assessing the dynamic transcriptional and functional consequences for downstream effector cells utilizing microarray and flow cytometry. Fresh blood from treatment-naïve early arthritis patients was phenotyped in parallel for comparison. Results: T cell sensitivity to IL-6 was most marked in the naïve subset, and related to gp130 rather than IL-6R expression. Exposure of healthy naïve CD4+ T cells to IL-6 induced the same STAT3 target genes as previously seen to discriminate RA patients from disease controls. After TCR stimulation IL-6 pre-exposed cells exhibited enhanced proliferative capacity, activation, and a propensity toward Th1 differentiation, compared to non-exposed cells. An entirely analogous phenotype was observed in early RA compared to control CD4+ T cells. Conclusions: Sustained IL-6 exposure at a critical point in the natural history of RA “primes” the adaptive immune system to respond aberrantly to TCR stimulation, potentiating disease induction with implications for the optimal timing of targeted therapy.
Collapse
Affiliation(s)
- Laura A Ridgley
- Institute of Cellular Medicine (Musculoskeletal Research Group), Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Amy E Anderson
- Institute of Cellular Medicine (Musculoskeletal Research Group), Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Nicola J Maney
- Institute of Cellular Medicine (Musculoskeletal Research Group), Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Najib Naamane
- Institute of Cellular Medicine (Musculoskeletal Research Group), Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Andrew J Skelton
- Institute of Cellular Medicine (Musculoskeletal Research Group), Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Catherine A Lawson
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, Chapel Allerton Hospital, University of Leeds, Leeds, United Kingdom.,Leeds NIHR Biomedical Research Centre, The Leeds Teaching Hospitals Trust, Leeds, United Kingdom
| | - Paul Emery
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, Chapel Allerton Hospital, University of Leeds, Leeds, United Kingdom.,Leeds NIHR Biomedical Research Centre, The Leeds Teaching Hospitals Trust, Leeds, United Kingdom
| | - John D Isaacs
- Institute of Cellular Medicine (Musculoskeletal Research Group), Newcastle University, Newcastle upon Tyne, United Kingdom.,Directorate of Musculoskeletal Services, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Ruaidhrí J Carmody
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Arthur G Pratt
- Institute of Cellular Medicine (Musculoskeletal Research Group), Newcastle University, Newcastle upon Tyne, United Kingdom.,Directorate of Musculoskeletal Services, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
16
|
Solouki S, August A, Huang W. Non-receptor tyrosine kinase signaling in autoimmunity and therapeutic implications. Pharmacol Ther 2019; 201:39-50. [PMID: 31082431 DOI: 10.1016/j.pharmthera.2019.05.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/30/2019] [Accepted: 04/18/2019] [Indexed: 12/17/2022]
Abstract
Autoimmune diseases are characterized by impaired immune tolerance towards self-antigens, leading to enhanced immunity to self by dysfunctional B cells and/or T cells. The activation of these cells is controlled by non-receptor tyrosine kinases (NRTKs), which are critical mediators of antigen receptor and cytokine receptor signaling pathways. NRTKs transduce, amplify and sustain activating signals that contribute to autoimmunity, and are counter-regulated by protein tyrosine phosphatases (PTPs). The function of and interaction between NRTKs and PTPs during the development of autoimmunity could be key points of therapeutic interference against autoimmune diseases. In this review, we summarize the current state of knowledge of the functions of NRTKs and PTPs involved in B cell receptor (BCR), T cell receptor (TCR), and cytokine receptor signaling pathways that contribute to autoimmunity, and discuss their targeting for therapeutic approaches against autoimmune diseases.
Collapse
Affiliation(s)
- Sabrina Solouki
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Avery August
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA.
| | - Weishan Huang
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA; Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA.
| |
Collapse
|
17
|
Harling K, Adankwah E, Güler A, Afum-Adjei Awuah A, Adu-Amoah L, Mayatepek E, Owusu-Dabo E, Nausch N, Jacobsen M. Constitutive STAT3 phosphorylation and IL-6/IL-10 co-expression are associated with impaired T-cell function in tuberculosis patients. Cell Mol Immunol 2019; 16:275-287. [PMID: 30886421 PMCID: PMC6460487 DOI: 10.1038/cmi.2018.5] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/03/2017] [Revised: 12/27/2017] [Accepted: 12/27/2017] [Indexed: 02/07/2023] Open
Abstract
T-cells critically contribute to protection against Mycobacterium tuberculosis infection, and impaired T-cell responses can lead to disease progression. Pro-inflammatory and immunosuppressive cytokines affect T-cells, and fine-tuned regulation of cytokine signaling via the Jak/STAT signaling pathways is crucial for appropriate T-cell function. Constitutive STAT3 phosphorylation as a consequence of aberrant cytokine signaling has been described to occur in pathognomonic T-cell responses in inflammatory and autoimmune diseases. We characterized blood samples from tuberculosis patients (n=28) and healthy contacts (n=28) from Ghana for M. tuberculosis-specific T-cell responses, constitutive cytokine production, and SOCS3 and pSTAT3 expression. Lentiviral modulation of primary CD4+ T-cells was performed to determine the effects of SOCS3 on T-cell functions. T-cells from tuberculosis patients expressed higher levels of IL-10 and IL-6 and lower levels of T helper type (TH)17 cytokines after M. tuberculosis-specific stimulation compared to healthy contacts. In addition, tuberculosis patients had higher IL-10 and IL-6 levels in the supernatants of non-stimulated immune cells and plasma samples compared to healthy contacts. Notably, aberrant cytokine expression was accompanied by high constitutive pSTAT3 levels and SOCS3 expression in T-cells. Multivariate analysis identified an IL-6/IL-10 co-expression-based principal component in tuberculosis patients that correlated with high pSTAT3 levels. SOCS3 contributed to a regulatory component, and tuberculosis patients with high SOCS3 expression showed decreased TH1 cytokine expression and impaired IL-2-induced STAT5 phosphorylation. SOCS3 over-expression in primary CD4+ T-cells confirmed the SOCS3 inhibitory function on IL-2-induced STAT5 phosphorylation. We conclude that constitutive pSTAT3 and high SOCS3 expression are influential factors that indicate impaired T-cell functions in tuberculosis patients.
Collapse
Affiliation(s)
- Kirstin Harling
- Department of General Pediatrics, Neonatology, and Pediatric Cardiology, University Children's Hospital, 40225, Duesseldorf, Germany
| | - Ernest Adankwah
- Department of General Pediatrics, Neonatology, and Pediatric Cardiology, University Children's Hospital, 40225, Duesseldorf, Germany
| | - Alptekin Güler
- Department of General Pediatrics, Neonatology, and Pediatric Cardiology, University Children's Hospital, 40225, Duesseldorf, Germany
| | - Anthony Afum-Adjei Awuah
- Kumasi Centre for collaborative Research in Tropical Medicine (KCCR), Kumasi, Ghana
- School of Public Health, College of Health Sciences, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
| | - Louis Adu-Amoah
- Kumasi Centre for collaborative Research in Tropical Medicine (KCCR), Kumasi, Ghana
| | - Ertan Mayatepek
- Department of General Pediatrics, Neonatology, and Pediatric Cardiology, University Children's Hospital, 40225, Duesseldorf, Germany
| | - Ellis Owusu-Dabo
- Kumasi Centre for collaborative Research in Tropical Medicine (KCCR), Kumasi, Ghana
- School of Public Health, College of Health Sciences, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
| | - Norman Nausch
- Department of General Pediatrics, Neonatology, and Pediatric Cardiology, University Children's Hospital, 40225, Duesseldorf, Germany
| | - Marc Jacobsen
- Department of General Pediatrics, Neonatology, and Pediatric Cardiology, University Children's Hospital, 40225, Duesseldorf, Germany.
| |
Collapse
|
18
|
Schreiber K, Nocturne G, Cornec D, Daïen CI. Lymphocytes as Biomarkers of Therapeutic Response in Rheumatic Autoimmune Diseases, Is It a Realistic Goal? Clin Rev Allergy Immunol 2018; 53:277-290. [PMID: 28560621 DOI: 10.1007/s12016-017-8614-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/06/2023]
Abstract
Many therapies are available for patients with rheumatoid arthritis (RA) while biological therapies have limited effects in patients with systemic lupus erythematosus (SLE) and primary Sjögren's syndrome (pSS). In both cases, biomarkers predicting drug response would be very useful to guide clinicians in their choice. We performed a systematic review to evaluate the value of lymphocyte phenotyping as a marker of therapeutic response. Of the 1063 articles retrieved, 39 fulfilled inclusion criteria and were included in the present review (25 for RA, 10 for SLE, and 4 for pSS). Lymphocyte phenotyping was described as a biomarker of therapeutic response in many studies, but most results could not be confirmed by independent teams using multivariate analysis. The most consistent result might be the association between rituximab response and the levels of memory B cells before therapy, although some studies were controversial. Thus, lymphocyte phenotyping cannot yet be proposed as a biomarker of response in rheumatic autoimmune diseases. The lack of reproducibility between studies may be explained by technical issues influencing lymphocyte phenotyping so standardization procedures should be developed for future studies. The patients' characteristics vary between studies, and large population studies, including a wide range of patients' characteristics and biomarkers, are required to provide predictive models for clinical outcomes. The use of new flow cytometry techniques such as single-cell mass cytometry technology might also help finder reliable biomarkers in the future.
Collapse
Affiliation(s)
- Kristina Schreiber
- Rheumatology Department, Lapeyronie Hospital and Montpellier I University, Montpellier, France
| | | | | | - Claire I Daïen
- Rheumatology Department, Lapeyronie Hospital and Montpellier I University, Montpellier, France.
- Institute of Molecular Genetic, UMR 5535, CNRS, Montpellier, France.
| |
Collapse
|
19
|
Deng J, Fan C, Gao X, Zeng Q, Guo R, Wei Y, Chen Z, Chen Y, Gong D, Feng J, Xia Y, Xiang S, Gong S, Yuan L, Shen W, Shen W, Lin L, Jiang T, He D, Lu L, Chen X, Yu D. Signal Transducer and Activator of Transcription 3 Hyperactivation Associates With Follicular Helper T Cell Differentiation and Disease Activity in Rheumatoid Arthritis. Front Immunol 2018; 9:1226. [PMID: 29915585 PMCID: PMC5994589 DOI: 10.3389/fimmu.2018.01226] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/25/2018] [Accepted: 05/16/2018] [Indexed: 11/29/2022] Open
Abstract
Follicular helper T (Tfh) cells are the specialized CD4+ T cell subset that supports B cells to produce high-affinity antibodies and generate humoral memory. Not only is the function of Tfh cells instrumental to mount protect antibodies but also to support autoantibody production and promote systemic inflammation in autoimmune diseases. However, it remains unclear how the activation of Tfh cells is driven in autoimmune diseases. Here, we report that in patients with rheumatoid arthritis (RA), excessive generation of CXCR5+PD-1+ memory Tfh cells was observed and the frequency of memory Tfh cells correlated with disease activity score calculator for RA (DAS28). The differentiation of Tfh cells is dependent on signal transducer and activator of transcription 3 (STAT3), the key transcription factor downstream of cytokine signal pathways. A drastic increase of phosphorylated STAT3 (pSTAT3) in CD4+ T cells were detected in RA patients who also produced larger amounts of STAT3-stimulating cytokines, including IL-6, IL-21, IL-10, and leptin than those of healthy controls. Importantly, the phosphorylation status of STAT3 in CD4+ T cells positively correlated with the plasma concentration of IL-6 and the frequency of memory Tfh cells. This study reveals an IL-6-pSTAT3-Tfh immunoregulatory axis in the pathogenesis of RA and reinforces its candidature as biomarkers and targets for diagnosis and therapy.
Collapse
Affiliation(s)
- Jun Deng
- China-Australia Centre for Personalised Immunology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Rheumatology, Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Hubei Provincial Key Laboratory of Occurrence and Intervention of Rheumatic Diseases, Affiliated Hospital of Hubei University for Nationalities, Enshi, China
| | - Chaofan Fan
- Department of Rheumatology, Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xin Gao
- China-Australia Centre for Personalised Immunology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Rheumatology, Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Immunology and Infectious Disease, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Qunxiong Zeng
- China-Australia Centre for Personalised Immunology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Rheumatology, Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ruru Guo
- Department of Rheumatology, Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yunbo Wei
- Laboratory of Immunology for Environment and Health, Shandong Analysis and Test Center, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Zhian Chen
- China-Australia Centre for Personalised Immunology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Immunology and Infectious Disease, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Yanan Chen
- Department of Rheumatology, Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dongcheng Gong
- China-Australia Centre for Personalised Immunology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Rheumatology, Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jia Feng
- Department of Rheumatology, Affiliated Hospital of Hubei University for Nationalities, Enshi, China
| | - Yan Xia
- Department of Rheumatology, Affiliated Hospital of Hubei University for Nationalities, Enshi, China
| | - Shifei Xiang
- Department of Rheumatology, Affiliated Hospital of Hubei University for Nationalities, Enshi, China
| | - Shushi Gong
- Department of Rheumatology, Affiliated Hospital of Hubei University for Nationalities, Enshi, China
| | - Lin Yuan
- Hubei Provincial Key Laboratory of Occurrence and Intervention of Rheumatic Diseases, Affiliated Hospital of Hubei University for Nationalities, Enshi, China
| | - Wei Shen
- Department of Laboratory Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenyan Shen
- Department of Laboratory Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lin Lin
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ting Jiang
- Guanghua Hospital of Integrative Chinese and Western Medicine, Shanghai, China
| | - Dongyi He
- Guanghua Hospital of Integrative Chinese and Western Medicine, Shanghai, China
| | - Liangjing Lu
- Department of Rheumatology, Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoxiang Chen
- Department of Rheumatology, Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Di Yu
- China-Australia Centre for Personalised Immunology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Rheumatology, Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Hubei Provincial Key Laboratory of Occurrence and Intervention of Rheumatic Diseases, Affiliated Hospital of Hubei University for Nationalities, Enshi, China.,Department of Immunology and Infectious Disease, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia.,Laboratory of Immunology for Environment and Health, Shandong Analysis and Test Center, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| |
Collapse
|
20
|
Kuuliala K, Penttilä AK, Kaukonen KM, Mustonen H, Kuuliala A, Oiva J, Hämäläinen M, Moilanen E, Pettilä V, Puolakkainen P, Kylänpää L, Repo H. Signalling Profiles of Blood Leucocytes in Sepsis and in Acute Pancreatitis in Relation to Disease Severity. Scand J Immunol 2017; 87:88-98. [DOI: 10.1111/sji.12630] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/24/2017] [Accepted: 11/03/2017] [Indexed: 12/14/2022]
Affiliation(s)
- K. Kuuliala
- Department of Bacteriology and Immunology; University of Helsinki and Helsinki University Hospital; Helsinki Finland
| | - A. K. Penttilä
- Department of GI surgery; Abdominal Centre; University of Helsinki and Helsinki University Hospital; Helsinki Finland
| | - K.-M. Kaukonen
- Department of Anesthesiology, Intensive Care and Pain Medicine; University of Helsinki and Helsinki University Hospital; Helsinki Finland
| | - H. Mustonen
- Department of GI surgery; Abdominal Centre; University of Helsinki and Helsinki University Hospital; Helsinki Finland
| | - A. Kuuliala
- Department of Bacteriology and Immunology; University of Helsinki and Helsinki University Hospital; Helsinki Finland
| | - J. Oiva
- Department of Surgery; Kuopio University Hospital; Kuopio Finland
| | - M. Hämäläinen
- The Immunopharmacology Research Group; Faculty of Medicine and Life Sciences; University of Tampere and Tampere University Hospital; Tampere Finland
| | - E. Moilanen
- The Immunopharmacology Research Group; Faculty of Medicine and Life Sciences; University of Tampere and Tampere University Hospital; Tampere Finland
| | - V. Pettilä
- Department of Anesthesiology, Intensive Care and Pain Medicine; University of Helsinki and Helsinki University Hospital; Helsinki Finland
| | - P. Puolakkainen
- Department of GI surgery; Abdominal Centre; University of Helsinki and Helsinki University Hospital; Helsinki Finland
| | - L. Kylänpää
- Department of GI surgery; Abdominal Centre; University of Helsinki and Helsinki University Hospital; Helsinki Finland
| | - H. Repo
- Department of Bacteriology and Immunology; University of Helsinki and Helsinki University Hospital; Helsinki Finland
| |
Collapse
|
21
|
Du G, Chen J, Wang Y, Cao T, Zhou L, Wang Y, Han X, Tang G. Differential expression of STAT-3 in subtypes of oral lichen planus: a preliminary study. Oral Surg Oral Med Oral Pathol Oral Radiol 2017; 125:236-243.e1. [PMID: 29269258 DOI: 10.1016/j.oooo.2017.10.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/15/2017] [Revised: 10/23/2017] [Accepted: 10/27/2017] [Indexed: 12/30/2022]
Abstract
OBJECTIVE This study aimed to examine the expression of signaling transduction proteins and their possible correlation with different clinical subtypes of oral lichen planus (OLP). STUDY DESIGN We examined the immunoexpression and phosphorylation status of 21 signaling transduction proteins of OLP (n = 10) and normal groups (n = 8) using PathScan analysis. Using immunohistochemistry, we detected expression of STAT-3 and p38 MAPK in tissues of OLP (n = 40) and normal controls (n = 10). RESULTS PathScan analysis showed that STAT-3 (Ser727) expression in normal control (N), reticular OLP (R-OLP) and erosive OLP (E-OLP) group was gradually elevated (R-OLP vs N, P = .001; E-OLP vs N, P < .001; E-OLP vs R-OLP, P = .002). Immunohistochemistry showed that STAT-3 expression in the epithelium of normal control, reticular OLP and erosive OLP was consistent with PathScan analysis (R-OLP vs N, P < .001; E-OLP vs N, P < .001; E-OLP vs R-OLP, P = .036). Both PathScan (P = .012) and immunohistochemistry (P < .001) showed that, p38 MAPK expression was significantly higher in OLP compared with normal controls. However, a significant difference was not seen between the reticular OLP and erosive OLP groups. CONCLUSIONS Our results indicate that STAT-3 may be involved in OLP development and progression and account for different clinical manifestations.
Collapse
Affiliation(s)
- Guanhuan Du
- Department of Oral Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, China
| | - Junjun Chen
- Department of Oral Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, China
| | - Yanni Wang
- Department of Oral Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, China
| | - Tianyi Cao
- Department of Oral Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, China
| | - Leilei Zhou
- Department of Oral Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, China
| | - Yufeng Wang
- Department of Oral Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, China
| | - Xiaozhe Han
- The Forsyth Institute, Department of Immunology and Infectious Diseases, Cambridge, MA, USA; Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | - Guoyao Tang
- Department of Oral Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, China.
| |
Collapse
|
22
|
Kuuliala K, Kuuliala A, Koivuniemi R, Kautiainen H, Repo H, Leirisalo-Repo M. Baseline JAK phosphorylation profile of peripheral blood leukocytes, studied by whole blood phosphospecific flow cytometry, is associated with 1-year treatment response in early rheumatoid arthritis. Arthritis Res Ther 2017; 19:75. [PMID: 28399940 PMCID: PMC5387378 DOI: 10.1186/s13075-017-1278-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/23/2016] [Accepted: 03/10/2017] [Indexed: 12/29/2022] Open
Abstract
Background We found recently that baseline signal transducer and activator of transcription 3 phosphorylation in peripheral blood CD4+ T cells of patients with early rheumatoid arthritis (RA) is associated with treatment response to synthetic disease-modifying antirheumatic drugs (DMARDs). This prompted us to study the baseline phosphorylation profiles of Janus kinases (JAKs) in blood leukocytes with respect to treatment response in early RA. Methods Thirty-five DMARD-naïve patients with early RA provided blood samples for whole blood flow cytometric determination of phosphorylation of JAKs in CD4+ and CD8+ T cells, CD19+ B cells, and CD14+ monocytes. Treatment response was determined after 1 year of treatment with synthetic DMARDs, with remission defined as absence of tender and swollen joints and normal erythrocyte sedimentation rate. Exact logistic regression was used to investigate the association of baseline variables with treatment response. Ninety-five percent CIs of means were estimated by bias-corrected bootstrapping. Results High JAK3 phosphorylation in CD4+ and CD8+ T cells, CD19+ B cells, and CD14+ monocytes and low JAK2 phosphorylation in CD14+ monocytes were significantly associated with remission following treatment with synthetic DMARDs. Conclusions Baseline JAK phosphorylation profile in peripheral blood leukocytes may provide a means to predict treatment response achieved by synthetic DMARDs among patients with early RA.
Collapse
Affiliation(s)
- Krista Kuuliala
- Bacteriology and Immunology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland.
| | - Antti Kuuliala
- Bacteriology and Immunology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Riitta Koivuniemi
- Rheumatology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Hannu Kautiainen
- Primary Health Care, Helsinki University Hospital and University of Helsinki, Helsinki, Finland.,General Practice, Helsinki University Hospital and University of Helsinki, Helsinki, Finland.,Unit of Primary Health Care, Kuopio University Hospital, Kuopio, Finland
| | - Heikki Repo
- Bacteriology and Immunology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | | |
Collapse
|
23
|
Kuuliala K, Kuuliala A, Koivuniemi R, Kautiainen H, Repo H, Leirisalo-Repo M. STAT6 and STAT1 Pathway Activation in Circulating Lymphocytes and Monocytes as Predictor of Treatment Response in Rheumatoid Arthritis. PLoS One 2016; 11:e0167975. [PMID: 27942004 PMCID: PMC5152841 DOI: 10.1371/journal.pone.0167975] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/21/2016] [Accepted: 10/27/2016] [Indexed: 12/29/2022] Open
Abstract
Objective To find novel predictors of treatment response to disease-modifying antirheumatic drugs (DMARDs), we studied activation of STAT (signal transducers and activators of transcription) 6 and 1 in circulating leukocytes of patients with rheumatoid arthritis (RA). Methods 19 patients with untreated recent-onset RA, 16 patients with chronic RA irresponsive to synthetic DMARDs and 37 healthy volunteers provided blood samples for whole blood flow cytometric determination of intracellular STAT6 and STAT1 phosphorylation, expressed as relative fluorescence units, in response to IL-4 and IFN-γ, respectively. Phosphorylation was restudied and treatment response (according to European League Against Rheumatism) determined after 1-year treatment with synthetic DMARDs in recent-onset RA and with biological DMARD in synthetic DMARD-irresponsive RA. Estimation-based exact logistic regression was used to investigate relation of baseline variables to treatment response. 95% confidence intervals of means were estimated by bias-corrected bootstrapping and the significance between baseline and follow-up values was calculated by permutation test. Results At baseline, levels of phosphorylated STAT6 (pSTAT6) induced by IL-4 in monocytes were higher in those who achieved good treatment response to synthetic DMARDs than in those who did not among patients with untreated RA (OR 2.74, 95% CI 1.05 to 9.47), and IFN-γ -stimulated lymphocyte pSTAT1 levels were higher in those who achieved good treatment response to a biological drug than in those who did not among patients with chronic RA (OR 3.91, 95% CI 1.12 to 20.68). During follow-up, in recent-onset RA patients with good treatment response to synthetic DMARDS, the lymphocyte pSTAT6 levels decreased (p = 0.011), and, consequently, the ratio of pSTAT1/pSTAT6 in lymphocytes increased (p = 0.042). Conclusion Cytokine-stimulated STAT6 and STAT1 phosphorylation in circulating leukocytes was associated with treatment response to DMARDs in this pilot study. The result, if confirmed in larger studies, may aid in developing personalized medicine in RA.
Collapse
Affiliation(s)
- Krista Kuuliala
- Bacteriology and immunology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
- * E-mail:
| | - Antti Kuuliala
- Bacteriology and immunology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Riitta Koivuniemi
- Rheumatology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Hannu Kautiainen
- Primary Health Care, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
- General Practice, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
- Unit of Primary Health Care, Kuopio University Hospital, Kuopio, Finland
| | - Heikki Repo
- Bacteriology and immunology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | | |
Collapse
|
24
|
Glossop JR, Nixon NB, Emes RD, Sim J, Packham JC, Mattey DL, Farrell WE, Fryer AA. DNA methylation at diagnosis is associated with response to disease-modifying drugs in early rheumatoid arthritis. Epigenomics 2016; 9:419-428. [PMID: 27885849 DOI: 10.2217/epi-2016-0042] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/13/2022] Open
Abstract
AIM A proof-of-concept study to explore whether DNA methylation at first diagnosis is associated with response to disease-modifying antirheumatic drugs (DMARDs) in patients with early rheumatoid arthritis (RA). PATIENTS & METHODS DNA methylation was quantified in T-lymphocytes from 46 treatment-naive patients using HumanMethylation450 BeadChips. Treatment response was determined in 6 months using the European League Against Rheumatism (EULAR) response criteria. RESULTS Initial filtering identified 21 cytosine-phosphate-guanines (CpGs) that were differentially methylated between responders and nonresponders. After conservative adjustment for multiple testing, six sites remained statistically significant, of which four showed high sensitivity and/or specificity (≥75%) for response to treatment. Moreover, methylation at two sites in combination was the strongest factor associated with response (80.0% sensitivity, 90.9% specificity, AUC 0.85). CONCLUSION DNA methylation at diagnosis is associated with disease-modifying antirheumatic drug treatment response in early RA.
Collapse
Affiliation(s)
- John R Glossop
- Guy Hilton Research Centre, Institute for Applied Clinical Sciences, Keele University, Thornburrow Drive, Hartshill, Stoke-on-Trent, Staffordshire, ST4 7QB, UK.,Haywood Rheumatology Centre, Haywood Hospital, High Lane, Burslem, Stoke-on-Trent, Staffordshire, ST6 7AG, UK
| | - Nicola B Nixon
- Haywood Rheumatology Centre, Haywood Hospital, High Lane, Burslem, Stoke-on-Trent, Staffordshire, ST6 7AG, UK
| | - Richard D Emes
- School of Veterinary Medicine & Science, University of Nottingham, Sutton Bonington Campus, Sutton Bonington, Leicestershire, LE12 5RD, UK.,Advanced Data Analysis Centre, University of Nottingham, Sutton Bonington Campus, Sutton Bonington, Leicestershire, LE12 5RD, UK
| | - Julius Sim
- School of Health & Rehabilitation, Keele University, Staffordshire, ST5 5BG, UK
| | - Jon C Packham
- Guy Hilton Research Centre, Institute for Applied Clinical Sciences, Keele University, Thornburrow Drive, Hartshill, Stoke-on-Trent, Staffordshire, ST4 7QB, UK.,Haywood Rheumatology Centre, Haywood Hospital, High Lane, Burslem, Stoke-on-Trent, Staffordshire, ST6 7AG, UK
| | - Derek L Mattey
- Guy Hilton Research Centre, Institute for Applied Clinical Sciences, Keele University, Thornburrow Drive, Hartshill, Stoke-on-Trent, Staffordshire, ST4 7QB, UK.,Haywood Rheumatology Centre, Haywood Hospital, High Lane, Burslem, Stoke-on-Trent, Staffordshire, ST6 7AG, UK
| | - William E Farrell
- Guy Hilton Research Centre, Institute for Applied Clinical Sciences, Keele University, Thornburrow Drive, Hartshill, Stoke-on-Trent, Staffordshire, ST4 7QB, UK
| | - Anthony A Fryer
- Guy Hilton Research Centre, Institute for Applied Clinical Sciences, Keele University, Thornburrow Drive, Hartshill, Stoke-on-Trent, Staffordshire, ST4 7QB, UK
| |
Collapse
|