1
|
Yu B, Song C, Feng CL, Zhang J, Wang Y, Zhu YM, Zhang L, Ji XM, Tian XF, Cheng GF, Chen WL, Zablotskii V, Wang H, Zhang X. Effects of gradient high-field static magnetic fields on diabetic mice. Zool Res 2023; 44:249-258. [PMID: 36650064 PMCID: PMC10083230 DOI: 10.24272/j.issn.2095-8137.2022.460] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
Although 9.4 T magnetic resonance imaging (MRI) has been tested in healthy volunteers, its safety in diabetic patients is unclear. Furthermore, the effects of high static magnetic fields (SMFs), especially gradient vs. uniform fields, have not been investigated in diabetics. Here, we investigated the consequences of exposure to 1.0-9.4 T high SMFs of different gradients (>10 T/m vs. 0-10 T/m) on type 1 diabetic (T1D) and type 2 diabetic (T2D) mice. We found that 14 h of prolonged treatment of gradient (as high as 55.5 T/m) high SMFs (1.0-8.6 T) had negative effects on T1D and T2D mice, including spleen, hepatic, and renal tissue impairment and elevated glycosylated serum protein, blood glucose, inflammation, and anxiety, while 9.4 T quasi-uniform SMFs at 0-10 T/m did not induce the same effects. In regular T1D mice (blood glucose ≥16.7 mmol/L), the >10 T/m gradient high SMFs increased malondialdehyde ( P<0.01) and decreased superoxide dismutase ( P<0.05). However, in the severe T1D mice (blood glucose ≥30.0 mmol/L), the >10 T/m gradient high SMFs significantly increased tissue damage and reduced survival rate. In vitro cellular studies showed that gradient high SMFs increased cellular reactive oxygen species and apoptosis and reduced MS-1 cell number and proliferation. Therefore, this study showed that prolonged exposure to high-field (1.0-8.6 T) >10 T/m gradient SMFs (35-1 380 times higher than that of current clinical MRI) can have negative effects on diabetic mice, especially mice with severe T1D, whereas 9.4 T high SMFs at 0-10 T/m did not produce the same effects, providing important information for the future development and clinical application of SMFs, especially high-field MRI.
Collapse
Affiliation(s)
- Biao Yu
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Chao Song
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Chuan-Lin Feng
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jing Zhang
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Ying Wang
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yi-Ming Zhu
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, China
| | - Lei Zhang
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Xin-Miao Ji
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Xiao-Fei Tian
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, China
| | - Guo-Feng Cheng
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Wei-Li Chen
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, China
| | - Vitalii Zablotskii
- Institute of Physics of the Czech Academy of Sciences, Prague, 18221, Czech Republic
- International Magnetobiology Frontier Research Center, Science Island, Hefei, Anhui 230031, China
| | - Hua Wang
- Department of Oncology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Xin Zhang
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, Anhui 230026, China
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, China
- International Magnetobiology Frontier Research Center, Science Island, Hefei, Anhui 230031, China. E-mail:
| |
Collapse
|
2
|
Emerging Roles of Metallothioneins in Beta Cell Pathophysiology: Beyond and Above Metal Homeostasis and Antioxidant Response. BIOLOGY 2021; 10:biology10030176. [PMID: 33652748 PMCID: PMC7996892 DOI: 10.3390/biology10030176] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/17/2021] [Accepted: 02/22/2021] [Indexed: 12/15/2022]
Abstract
Simple Summary Defective insulin secretion by pancreatic beta cells is key for the development of type 2 diabetes but the precise mechanisms involved are poorly understood. Metallothioneins are metal binding proteins whose precise biological roles have not been fully characterized. Available evidence indicated that Metallothioneins are protective cellular effectors involved in heavy metal detoxification, metal ion homeostasis and antioxidant defense. This concept has however been challenged by emerging evidence in different medical research fields revealing novel negative roles of Metallothioneins, including in the context of diabetes. In this review, we gather and analyze the available knowledge regarding the complex roles of Metallothioneins in pancreatic beta cell biology and insulin secretion. We comprehensively analyze the evidence showing positive effects of Metallothioneins on beta cell function and survival as well as the emerging evidence revealing negative effects and discuss the possible underlying mechanisms. We expose in parallel findings from other medical research fields and underscore unsettled questions. Then, we propose some future research directions to improve knowledge in the field. Abstract Metallothioneins (MTs) are low molecular weight, cysteine-rich, metal-binding proteins whose precise biological roles have not been fully characterized. Existing evidence implicated MTs in heavy metal detoxification, metal ion homeostasis and antioxidant defense. MTs were thus categorized as protective effectors that contribute to cellular homeostasis and survival. This view has, however, been challenged by emerging evidence in different medical fields revealing novel pathophysiological roles of MTs, including inflammatory bowel disease, neurodegenerative disorders, carcinogenesis and diabetes. In the present focused review, we discuss the evidence for the role of MTs in pancreatic beta-cell biology and insulin secretion. We highlight the pattern of specific isoforms of MT gene expression in rodents and human beta-cells. We then discuss the mechanisms involved in the regulation of MTs in islets under physiological and pathological conditions, particularly type 2 diabetes, and analyze the evidence revealing adaptive and negative roles of MTs in beta-cells and the potential mechanisms involved. Finally, we underscore the unsettled questions in the field and propose some future research directions.
Collapse
|
3
|
Pancreatic Islets Accumulate Cadmium in a Rodent Model of Cadmium-Induced Hyperglycemia. Int J Mol Sci 2020; 22:ijms22010360. [PMID: 33396420 PMCID: PMC7796358 DOI: 10.3390/ijms22010360] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/23/2020] [Accepted: 12/29/2020] [Indexed: 12/15/2022] Open
Abstract
Cadmium (Cd) is an anthropogenic as well as a naturally occurring toxicant associated with prediabetes and T2DM in humans and experimental models of Cd exposure. However, relatively few studies have examined the mechanism(s) of Cd-induced hyperglycemia. The purpose of this study was to examine the role of pancreatic islets in Cd-induced hyperglycemia. Male Sprague–Dawley rats were given daily subcutaneous doses of Cd at 0.6 mg/kg over 12 weeks. There was a resulting time-dependent increase in fasting blood glucose and altered insulin release in vitro. Islets isolated from control (saline-treated) and Cd-treated animals were incubated in low (0.5 mg/mL) or high (3 mg/mL) glucose conditions. Islets from 12 week Cd-treated animals had significantly less glucose-stimulated insulin release compared to islets from saline-treated control animals. The actual Cd content of isolated islets was 5 fold higher than the whole pancreas (endocrine + exocrine) and roughly 70% of that present in the renal cortex. Interestingly, islets isolated from Cd-treated animals and incubated in high glucose conditions contained significantly less Cd and zinc than those incubated in low glucose. These results show that within whole pancreatic tissue, Cd selectively accumulates in pancreatic islets and causes altered islet function that likely contributes to dysglycemia.
Collapse
|
4
|
Bensellam M, Shi YC, Chan JY, Laybutt DR, Chae H, Abou-Samra M, Pappas EG, Thomas HE, Gilon P, Jonas JC. Metallothionein 1 negatively regulates glucose-stimulated insulin secretion and is differentially expressed in conditions of beta cell compensation and failure in mice and humans. Diabetologia 2019; 62:2273-2286. [PMID: 31624901 DOI: 10.1007/s00125-019-05008-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 08/13/2019] [Indexed: 10/25/2022]
Abstract
AIMS/HYPOTHESIS The mechanisms responsible for beta cell compensation in obesity and for beta cell failure in type 2 diabetes are poorly defined. The mRNA levels of several metallothionein (MT) genes are upregulated in islets from individuals with type 2 diabetes, but their role in beta cells is not clear. Here we examined: (1) the temporal changes of islet Mt1 and Mt2 gene expression in mouse models of beta cell compensation and failure; and (2) the role of Mt1 and Mt2 in beta cell function and glucose homeostasis in mice. METHODS Mt1 and Mt2 expression was assessed in islets from: (1) control lean (chow diet-fed) and diet-induced obese (high-fat diet-fed for 6 weeks) mice; (2) mouse models of diabetes (db/db mice) at 6 weeks old (prediabetes) and 16 weeks old (after diabetes onset) and age-matched db/+ (control) mice; and (3) obese non-diabetic ob/ob mice (16-week-old) and age-matched ob/+ (control) mice. MT1E, MT1X and MT2A expression was assessed in islets from humans with and without type 2 diabetes. Mt1-Mt2 double-knockout (KO) mice, transgenic mice overexpressing Mt1 under the control of its natural promoter (Tg-Mt1) and corresponding control mice were also studied. In MIN6 cells, MT1 and MT2 were inhibited by small interfering RNAs. mRNA levels were assessed by real-time RT-PCR, plasma insulin and islet MT levels by ELISA, glucose tolerance by i.p. glucose tolerance tests and overnight fasting-1 h refeeding tests, insulin tolerance by i.p. insulin tolerance tests, insulin secretion by RIA, cytosolic free Ca2+ concentration with Fura-2 leakage resistant (Fura-2 LR), cytosolic free Zn2+ concentration with Fluozin-3, and NAD(P)H by autofluorescence. RESULTS Mt1 and Mt2 mRNA levels were reduced in islets of murine models of beta cell compensation, whereas they were increased in diabetic db/db mice. In humans, MT1X mRNA levels were significantly upregulated in islets from individuals with type 2 diabetes in comparison with non-diabetic donors, while MT1E and MT2A mRNA levels were unchanged. Ex vivo, islet Mt1 and Mt2 mRNA and MT1 and MT2 protein levels were downregulated after culture with glucose at 10-30 mmol/l vs 2-5 mmol/l, in association with increased insulin secretion. In human islets, mRNA levels of MT1E, MT1X and MT2A were downregulated by stimulation with physiological and supraphysiological levels of glucose. In comparison with wild-type (WT) mice, Mt1-Mt2 double-KO mice displayed improved glucose tolerance in association with increased insulin levels and enhanced insulin release from isolated islets. In contrast, isolated islets from Tg-Mt1 mice displayed impaired glucose-stimulated insulin secretion (GSIS). In both Mt1-Mt2 double-KO and Tg-Mt1 models, the changes in GSIS occurred despite similar islet insulin content, rises in cytosolic free Ca2+ concentration and NAD(P)H levels, or intracellular Zn2+ concentration vs WT mice. In MIN6 cells, knockdown of MT1 but not MT2 potentiated GSIS, suggesting that Mt1 rather than Mt2 affects beta cell function. CONCLUSIONS/INTERPRETATION These findings implicate Mt1 as a negative regulator of insulin secretion. The downregulation of Mt1 is associated with beta cell compensation in obesity, whereas increased Mt1 accompanies beta cell failure and type 2 diabetes.
Collapse
Affiliation(s)
- Mohammed Bensellam
- Pôle d'endocrinologie, Diabète et Nutrition, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Avenue Hippocrate 55 - B1.55.06, B-1200, Brussels, Belgium.
| | - Yan-Chuan Shi
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- St Vincent's Clinical School, UNSW Sydney, Sydney, New South Wales, Australia
| | - Jeng Yie Chan
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- St Vincent's Clinical School, UNSW Sydney, Sydney, New South Wales, Australia
| | - D Ross Laybutt
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- St Vincent's Clinical School, UNSW Sydney, Sydney, New South Wales, Australia
| | - Heeyoung Chae
- Pôle d'endocrinologie, Diabète et Nutrition, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Avenue Hippocrate 55 - B1.55.06, B-1200, Brussels, Belgium
| | - Michel Abou-Samra
- Pôle d'endocrinologie, Diabète et Nutrition, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Avenue Hippocrate 55 - B1.55.06, B-1200, Brussels, Belgium
| | - Evan G Pappas
- St Vincent's Institute, Department of Medicine, St Vincent's Hospital, The University of Melbourne, Fitzroy, Victoria, Australia
| | - Helen E Thomas
- St Vincent's Institute, Department of Medicine, St Vincent's Hospital, The University of Melbourne, Fitzroy, Victoria, Australia
| | - Patrick Gilon
- Pôle d'endocrinologie, Diabète et Nutrition, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Avenue Hippocrate 55 - B1.55.06, B-1200, Brussels, Belgium
| | - Jean-Christophe Jonas
- Pôle d'endocrinologie, Diabète et Nutrition, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Avenue Hippocrate 55 - B1.55.06, B-1200, Brussels, Belgium.
| |
Collapse
|
5
|
Guo M, Zhang T, Dong X, Xiang JZ, Lei M, Evans T, Graumann J, Chen S. Using hESCs to Probe the Interaction of the Diabetes-Associated Genes CDKAL1 and MT1E. Cell Rep 2018; 19:1512-1521. [PMID: 28538172 DOI: 10.1016/j.celrep.2017.04.070] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 02/28/2017] [Accepted: 04/24/2017] [Indexed: 02/06/2023] Open
Abstract
Genome-wide association studies (GWASs) have identified many disease-associated variant alleles, but understanding whether and how different genes/loci interact requires a platform for probing how the variant alleles act mechanistically. Isogenic mutant human embryonic stem cells (hESCs) provide an unlimited resource to derive and study human disease-relevant cells. Here, we focused on CDKAL1, linked by GWASs to diabetes. Through transcript profiling, we find that expression of the metallothionein (MT) gene family, also linked by GWASs to diabetes, is significantly downregulated in CDKAL1-/- cells that have been differentiated to insulin-expressing pancreatic beta-like cells. Forced MT1E expression rescues both hypersensitivity of CDKAL1 mutant cells to glycolipotoxicity and pancreatic beta-cell dysfunction in vitro and in vivo. MT1E functions at least in part through relief of ER stress. This study establishes an isogenic hESC-based platform to study the interaction of GWAS-identified diabetes gene variants and illuminate the molecular network impacting disease progression.
Collapse
Affiliation(s)
- Min Guo
- Department of Endocrinology in Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, China; Department of Surgery, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
| | - Tuo Zhang
- Genomic Core, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
| | - Xue Dong
- Department of Surgery, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
| | - Jenny Zhaoying Xiang
- Genomic Core, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
| | - Minxiang Lei
- Department of Endocrinology in Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, China
| | - Todd Evans
- Department of Surgery, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
| | - Johannes Graumann
- Department of Biochemistry, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA; Research Division, Weill Cornell Medical College in Qatar, Doha, State of Qatar
| | - Shuibing Chen
- Department of Surgery, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA; Department of Biochemistry, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
6
|
Giacconi R, Cai L, Costarelli L, Cardelli M, Malavolta M, Piacenza F, Provinciali M. Implications of impaired zinc homeostasis in diabetic cardiomyopathy and nephropathy. Biofactors 2017; 43:770-784. [PMID: 28845600 DOI: 10.1002/biof.1386] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/12/2017] [Accepted: 07/27/2017] [Indexed: 12/18/2022]
Abstract
Impaired zinc homeostasis is observed in diabetes mellitus (DM2) and its complications. Zinc has a specific role in pancreatic β-cells via insulin synthesis, storage, and secretion. Intracellular zinc homeostasis is tightly controlled by zinc transporters (ZnT and Zip families) and metallothioneins (MT) which modulate the uptake, storage, and distribution of zinc. Several investigations in animal models demonstrate the protective role of MT in DM2 and its cardiovascular or renal complications, while a copious literature shows that a common polymorphism (R325W) in ZnT8, which affects the protein's zinc transport activity, is associated with increased DM2 risk. Emerging studies highlight a role of other zinc transporters in β-cell function, suggesting that targeting them could make a possible contribution in managing the hyperglycemia in diabetic patients. This article summarizes the current findings concerning the role of zinc homeostasis in DM2 pathogenesis and development of diabetic cardiomyopathy and nephropathy and suggests novel therapeutic targets. © 2017 BioFactors, 43(6):770-784, 2017.
Collapse
Affiliation(s)
- Robertina Giacconi
- Translational Research Center of Nutrition and Ageing, Scientific and Technological Pole, Italian National Institute of Health and Science on Aging (INRCA), Ancona, Italy
| | - Lu Cai
- Pediatric Research Institute at the Department of Pediatrics, Wendy L. Novak Diabetes Care Center, University of Louisville, Louisville, KY, USA
| | - Laura Costarelli
- Translational Research Center of Nutrition and Ageing, Scientific and Technological Pole, Italian National Institute of Health and Science on Aging (INRCA), Ancona, Italy
| | - Maurizio Cardelli
- Advanced Technology Center for Aging Research, Scientific and Technological Pole, Italian National Institute of Health and Science on Aging (INRCA), Ancona, Italy
| | - Marco Malavolta
- Translational Research Center of Nutrition and Ageing, Scientific and Technological Pole, Italian National Institute of Health and Science on Aging (INRCA), Ancona, Italy
| | - Francesco Piacenza
- Translational Research Center of Nutrition and Ageing, Scientific and Technological Pole, Italian National Institute of Health and Science on Aging (INRCA), Ancona, Italy
| | - Mauro Provinciali
- Advanced Technology Center for Aging Research, Scientific and Technological Pole, Italian National Institute of Health and Science on Aging (INRCA), Ancona, Italy
| |
Collapse
|
7
|
Kadota Y, Toriuchi Y, Aki Y, Mizuno Y, Kawakami T, Nakaya T, Sato M, Suzuki S. Metallothioneins regulate the adipogenic differentiation of 3T3-L1 cells via the insulin signaling pathway. PLoS One 2017; 12:e0176070. [PMID: 28426713 PMCID: PMC5398611 DOI: 10.1371/journal.pone.0176070] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 04/05/2017] [Indexed: 12/18/2022] Open
Abstract
Knockout of metallothionein (MT) genes contributes to a heavier body weight in early life and the potential to become obese through the intake of a high fat diet (HFD) in mice. It has thus been suggested that MT genes regulate the formation of adipose tissue, which would become the base for later HFD-induced obesity. We evaluated the fat pads of mice during the lactation stage. The fat mass and adipocyte size of MT1 and MT2 knockout mice were greater than those of wild type mice. Next, we assayed the ability of small interfering RNA (siRNA) to silence MT genes in the 3T3-L1 cell line. The expressions of MT1 and MT2 genes were transiently upregulated during adipocyte differentiation, and the siRNA pretreatment led to the suppression of the expression of both MT mRNAs and proteins. The MT siRNA promoted lipid accumulation in adipocytes and caused proliferation of post-confluent preadipocytes; these effects were suppressed by an inhibitor of phosphatidylinositol 3-kinase (LY294002). In addition, MT siRNA promoted insulin-stimulated phosphorylation of Akt, a downstream kinase of the insulin signaling pathway. Enhanced lipid accumulation in 3T3-L1 cells resulting from MT-gene silencing was inhibited by pretreatment with an antioxidant, N-acetylcysteine, used as a substitute for antioxidant protein MTs. These results suggest that interference in MT expression enhanced the activation of the insulin signaling pathway, resulting in higher lipid accumulation in 3T3-L1 adipocytes.
Collapse
Affiliation(s)
- Yoshito Kadota
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
| | - Yuriko Toriuchi
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
| | - Yuka Aki
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
| | - Yuto Mizuno
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
| | - Takashige Kawakami
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
| | - Tomoko Nakaya
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
| | - Masao Sato
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
| | - Shinya Suzuki
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
| |
Collapse
|