1
|
Farnesi E, Rinaldi S, Liu C, Ballmaier J, Guntinas-Lichius O, Schmitt M, Cialla-May D, Popp J. Label-Free SERS and MD Analysis of Biomarkers for Rapid Point-of-Care Sensors Detecting Head and Neck Cancer and Infections. SENSORS (BASEL, SWITZERLAND) 2023; 23:8915. [PMID: 37960614 PMCID: PMC10648186 DOI: 10.3390/s23218915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/05/2023] [Accepted: 10/17/2023] [Indexed: 11/15/2023]
Abstract
For the progress of point-of-care medicine, where individual health status can be easily and quickly monitored using a handheld sensor, saliva serves as one of the best-suited body fluids thanks to its availability and abundance of physiological indicators. Salivary biomarkers, combined with rapid and highly sensitive detection tools, may pave the way to new real-time health monitoring and personalized preventative therapy branches using saliva as a target matrix. Saliva is increasing in importance in liquid biopsy, a non-invasive approach that helps physicians diagnose and characterize specific diseases in patients. Here, we propose a proof-of-concept study combining the unique specificity in biomolecular recognition provided by surface-enhanced Raman spectroscopy (SERS) in combination with molecular dynamics (MD) simulations, which give leave to explore the biomolecular absorption mechanism on nanoparticle surfaces, in order to verify the traceability of two validated salivary indicators, i.e., interleukin-8 (IL-8) and lysozyme (LYZ), implicated in oropharyngeal squamous cell carcinoma (OSCC) and oral infection. This strategy simultaneously assures the detection and interpretation of protein biomarkers in saliva, ultimately opening a new route for the evolution of fast and accurate point-of-care SERS-based sensors of interest in precision medicine diagnostics.
Collapse
Affiliation(s)
- Edoardo Farnesi
- Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Member of Leibniz Centre for Photonics in Infection Research (LPI), Helmholtzweg 4, 07743 Jena, Germany; (E.F.); (C.L.); (M.S.); (J.P.)
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745 Jena, Germany
| | - Silvia Rinaldi
- Institute for the Chemistry of Organo Metallic Compounds, National Research Council of Italy (CNR), Via Madonna del Piano 10, Sesto Fiorentino, 50019 Florence, Italy;
| | - Chen Liu
- Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Member of Leibniz Centre for Photonics in Infection Research (LPI), Helmholtzweg 4, 07743 Jena, Germany; (E.F.); (C.L.); (M.S.); (J.P.)
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745 Jena, Germany
| | - Jonas Ballmaier
- Department of Otorhinolaryngology-Head and Neck Surgery, Jena University Hospital, 07747 Jena, Germany; (J.B.); (O.G.-L.)
| | - Orlando Guntinas-Lichius
- Department of Otorhinolaryngology-Head and Neck Surgery, Jena University Hospital, 07747 Jena, Germany; (J.B.); (O.G.-L.)
| | - Michael Schmitt
- Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Member of Leibniz Centre for Photonics in Infection Research (LPI), Helmholtzweg 4, 07743 Jena, Germany; (E.F.); (C.L.); (M.S.); (J.P.)
| | - Dana Cialla-May
- Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Member of Leibniz Centre for Photonics in Infection Research (LPI), Helmholtzweg 4, 07743 Jena, Germany; (E.F.); (C.L.); (M.S.); (J.P.)
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745 Jena, Germany
| | - Juergen Popp
- Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Member of Leibniz Centre for Photonics in Infection Research (LPI), Helmholtzweg 4, 07743 Jena, Germany; (E.F.); (C.L.); (M.S.); (J.P.)
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745 Jena, Germany
| |
Collapse
|
2
|
Haarindraprasad RP, Thurga Devi N, Thevendran R, Maheswaran S. Spiked nanorosette: A novel zinc oxide-gold textured nanostructure for impedance biosensing of target DNA signatures. Biotechnol J 2023; 18:e2300092. [PMID: 37139895 DOI: 10.1002/biot.202300092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/23/2023] [Accepted: 04/26/2023] [Indexed: 05/05/2023]
Abstract
The creation of nanostructure is profound for the generation of nanobiosensors in several medical diagnosis. Here, we employed an aqueous hydrothermal route using Zinc-oxide (ZnO) and Gold (Au), which under optimal conditions formed an ultra-crystalline rose-like nanostructure textured with nanowires on the surface, coined as "spiked nanorosette." The spiked nanorosette structures was further characterized to possess crystallites of ZnO and Au grains with average sizes of 27.60 and 32.33 nm, respectively. The intensity for both ZnO (002) and Au (111) planes of the nanocomposite was inferred to be controlled by fine-tuning the percentage of Au nanoparticles doped in the ZnO/Au matrix, as referred by X-ray diffraction analysis. The formation of ZnO/Au-hybrid nanorosettes were additionally verified by the distinct corresponding peaks from photoluminescence and X-ray photoelectron spectroscopy, supported by electrical validations. The biorecognition properties of the spiked nanorosettes were also examined using custom targeted and non-target DNA sequences. The DNA targeting capabilities of the nanostructures were analyzed by Fourier Transform Infrared and electrochemical impedance spectroscopy. The fabricated nanowire-embedded nanorosette exhibited a detection limit at the lower picomolar range of 1 × 10-12 M, with high selectivity, stability and reproducibility and good linearity, under optimal conditions. Impedance-based techniques are more sensitive to the detection of nucleic acid molecule whereas this novel spiked nanorosette demonstrate promising attributes as excellent nanostructures for nanobiosensor developments and their potential future application for nucleic-acids or disease diagnostics.
Collapse
Affiliation(s)
- Rajintra Prasad Haarindraprasad
- Faculty of Engineering and Computer Technology (FECT), AIMST University, Bedong-Semeling, Kedah, Malaysia
- Centre for Excellence in Biomaterials Engineering (CoEBE), AIMST University, Bedong-Semeling, Kedah, Malaysia
| | - Nathan Thurga Devi
- Clinical Research Centre, Hospital Sultan Abdul Halim, Sungai Petani, Kedah, Malaysia
| | - Ramesh Thevendran
- Department of Biotechnology, Faculty of Applied Sciences, AIMST University, Bedong, Kedah, Malaysia
| | - Solayappan Maheswaran
- Department of Biotechnology, Faculty of Applied Sciences, AIMST University, Bedong, Kedah, Malaysia
- Centre of Excellence for Nanobiotechnology & Nanomedicine (CoExNano), Faculty of Applied Sciences, AIMST University, Bedong, Kedah, Malaysia
| |
Collapse
|
3
|
Høj PH, Møller-Sørensen J, Wissing AL, Alatraktchi FA. Electrochemical biosensors for monitoring of selected pregnancy hormones during the first trimester: A systematic review. Talanta 2023; 258:124396. [PMID: 36870154 DOI: 10.1016/j.talanta.2023.124396] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 02/27/2023]
Abstract
The hormones human chorionic gonadotropin, progesterone, estrogen and four of its metabolites (estradiol, estrone, estriol, estetrol), as well as relaxin play an essential role in the development of the fetus during the first trimester. Imbalances in these hormones during the first trimester have been directly linked to miscarriages. However, frequent monitoring of the hormones is limited by the current conventional centralized analytical tools that do not allow a rapid response time. Electrochemical sensing is considered an ideal tool to detect hormones owing to its advantages such as quick response, user-friendliness, low economic costs, and possibility of use in point-of-care settings. Electrochemical detection of pregnancy hormones is an emerging field that has been demonstrated primarily at research level. Thus, it is timely with a comprehensive overview of the characteristics of the reported detection techniques. This is the first extensive review focusing on the advances related to electrochemical detection of hormones linked to the first trimester of pregnancy. Additionally, this review offers insights into the main challenges that must be addressed imminently to ensure progress from research to clinical applications.
Collapse
Affiliation(s)
- Pernille Hagen Høj
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Jon Møller-Sørensen
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | | | | |
Collapse
|
4
|
Rawat R, Roy S, Goswami T, Mathur A. An Electroanalytical Flexible Biosensor Based on Reduced Graphene Oxide-DNA Hybrids for the Early Detection of Human Papillomavirus-16. Diagnostics (Basel) 2022; 12:diagnostics12092087. [PMID: 36140489 PMCID: PMC9498135 DOI: 10.3390/diagnostics12092087] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/18/2022] [Accepted: 08/26/2022] [Indexed: 01/10/2023] Open
Abstract
Human Papilloma Virus 16 (HPV 16) is the well-known causative species responsible for triggering cervical cancer. When left undiagnosed and untreated, this disease leads to life-threatening events among the female populace, especially in developing nations where healthcare resources are already being stretched to their limits. Considering various drawbacks of conventional techniques for diagnosing this highly malignant cancer, it becomes imperative to develop miniaturized biosensing platforms which can aid in early detection of cervical cancer for enhanced patient outcomes. The current study reports on the development of an electrochemical biosensor based on reduced graphene oxide (rGO)/DNA hybrid modified flexible carbon screen-printed electrode (CSPE) for the detection of HPV 16. The carbon-coated SPEs were initially coated with rGO followed by probe DNA (PDNA) immobilization. The nanostructure characterization was performed using UV-Vis spectroscopy, Fourier transform infrared (FTIR) spectroscopy, Raman spectroscopy and X-ray diffraction (XRD) techniques. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were employed to study the electrochemical characterization of the nano-biohybrid sensor surface. The optimization studies and analytical performance were assessed using differential pulse voltammetry (DPV), eventually exhibiting a limit of detection (LoD) ~2 pM. The developed sensor was found to be selective solely to HPV 16 target DNA and exhibited a shelf life of 1 month. The performance of the developed flexible sensor further exhibited a promising response in spiked serum samples, which validates its application in future point-of-care scenarios.
Collapse
Affiliation(s)
- Reema Rawat
- Department of Allied Sciences, School of Health Sciences and Technology, University of Petroleum and Energy Studies, Dehradun 248007, India
| | - Souradeep Roy
- Centre for Interdisciplinary Research and Innovation (CIDRI), University of Petroleum and Energy Studies, Dehradun 248007, India
| | - Tapas Goswami
- Department of Chemistry, School of Engineering, University of Petroleum and Energy Studies, Dehradun 248007, India
- Correspondence: (T.G.); (A.M.)
| | - Ashish Mathur
- Centre for Interdisciplinary Research and Innovation (CIDRI), University of Petroleum and Energy Studies, Dehradun 248007, India
- Department of Physics, School of Engineering, University of Petroleum and Energy Studies, Dehradun 248007, India
- Correspondence: (T.G.); (A.M.)
| |
Collapse
|
5
|
Nagabooshanam S, Talluri B, Thomas T, Krishnamurthy S, Mathur A. Ultra-Sensitive Impedimetric Immunosensor Using Copper Oxide Quantum Dots Grafted on the Gold Microelectrode for the Detection of Parathion. MICROMACHINES 2022; 13:1385. [PMID: 36144008 PMCID: PMC9505414 DOI: 10.3390/mi13091385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/11/2022] [Accepted: 08/16/2022] [Indexed: 06/16/2023]
Abstract
The extensive use of organophosphates (OPs) pollutes the environment, leading to serious health hazards for human beings. The current need is to fabricate a sensing platform that will be sensitive and selective towards the detection of OPs at trace levels in the nM to fM range. With this discussed in the present report, an ultra-sensitive immunosensing platform is developed using digestive-ripened copper oxide quantum dots grafted on a gold microelectrode (Au-µE) for the impedimetric detection of parathion (PT). The copper oxide quantum dots utilized in this study were of ultra-small size with a radius of approximately 2 to 3 nm and were monodispersed with readily available functional groups for the potential immobilization of antibody parathion (Anti-PT). The miniaturization is achieved by the utilization of Au-µE and the microfluidic platform utilized has the sample holding capacity of about 2 to 10 µL. The developed immunosensor provided a wide linear range of detection from 1 µM to 1 fM. The lower Limit of Detection (LoD) for the developed sensing platform was calculated to be 0.69 fM, with the sensitivity calculated to be 0.14 kΩ/nM/mm2. The stability of the sensor was found to be ~40 days with good selectivity. The developed sensor has the potential to integrate with a portable device for field applications.
Collapse
Affiliation(s)
- Shalini Nagabooshanam
- Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai 600036, India
- Amity Institute of Nanotechnology, Amity University Uttar Pradesh, Sector-125, Noida 201301, India
| | - Bhusankar Talluri
- Department of Metallurgical and Material Engineering, Indian Institute of Technology Madras, Chennai 600036, India
| | - Tiju Thomas
- Department of Metallurgical and Material Engineering, Indian Institute of Technology Madras, Chennai 600036, India
| | - Satheesh Krishnamurthy
- Nanoscale Energy and Surface Engineering School of Engineering and Innovation, The Open University, Milton Keynes MK7 6AA, UK
| | - Ashish Mathur
- Department of Physics, University of Petroleum and Energy Studies, Dehradun 248007, India
| |
Collapse
|
6
|
A novel electroanalytical biosensor based on ZIF‐8/acetylcholinesterase bio‐nanohybrids for early management of Hirschsprung Disease. ELECTROANAL 2022. [DOI: 10.1002/elan.202200203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
7
|
Yin M, Alexander Kim Z, Xu B. Micro/Nanofluidic‐Enabled Biomedical Devices: Integration of Structural Design and Manufacturing. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Affiliation(s)
- Mengtian Yin
- Department of Mechanical and Aerospace Engineering University of Virginia Charlottesville VA 22904 USA
| | - Zachary Alexander Kim
- Department of Mechanical and Aerospace Engineering University of Virginia Charlottesville VA 22904 USA
| | - Baoxing Xu
- Department of Mechanical and Aerospace Engineering University of Virginia Charlottesville VA 22904 USA
| |
Collapse
|
8
|
Vázquez M, Anfossi L, Ben-Yoav H, Diéguez L, Karopka T, Della Ventura B, Abalde-Cela S, Minopoli A, Di Nardo F, Shukla VK, Teixeira A, Tvarijonaviciute A, Franco-Martínez L. Use of some cost-effective technologies for a routine clinical pathology laboratory. LAB ON A CHIP 2021; 21:4330-4351. [PMID: 34664599 DOI: 10.1039/d1lc00658d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Classically, the need for highly sophisticated instruments with important economic costs has been a major limiting factor for clinical pathology laboratories, especially in developing countries. With the aim of making clinical pathology more accessible, a wide variety of free or economical technologies have been developed worldwide in the last few years. 3D printing and Arduino approaches can provide up to 94% economical savings in hardware and instrumentation in comparison to commercial alternatives. The vast selection of point-of-care-tests (POCT) currently available also limits the need for specific instruments or personnel, as they can be used almost anywhere and by anyone. Lastly, there are dozens of free and libre digital tools available in health informatics. This review provides an overview of the state-of-the-art on cost-effective alternatives with applications in routine clinical pathology laboratories. In this context, a variety of technologies including 3D printing and Arduino, lateral flow assays, plasmonic biosensors, and microfluidics, as well as laboratory information systems, are discussed. This review aims to serve as an introduction to different technologies that can make clinical pathology more accessible and, therefore, contribute to achieve universal health coverage.
Collapse
Affiliation(s)
- Mercedes Vázquez
- National Centre For Sensor Research, School of Chemical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Laura Anfossi
- Department of Chemistry, University of Turin, Via Giuria, 5, I-10125 Turin, Italy
| | - Hadar Ben-Yoav
- Nanobioelectronics Laboratory (NBEL), Department of Biomedical Engineering, Ilse Katz Institute of Nanoscale Science and Technology, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Lorena Diéguez
- Medical Devices Research Group, International Iberian Nanotechnology Laboratory - INL, 4715-330 Braga, Portugal
| | | | - Bartolomeo Della Ventura
- Department of Physics "E. Pancini", University of Naples Federico II, Via Cintia 26, I-80126 Napoli, Italy
| | - Sara Abalde-Cela
- Medical Devices Research Group, International Iberian Nanotechnology Laboratory - INL, 4715-330 Braga, Portugal
| | - Antonio Minopoli
- Department of Physics "E. Pancini", University of Naples Federico II, Via Cintia 26, I-80126 Napoli, Italy
| | - Fabio Di Nardo
- Department of Chemistry, University of Turin, Via Giuria, 5, I-10125 Turin, Italy
| | - Vikas Kumar Shukla
- Nanobioelectronics Laboratory (NBEL), Department of Biomedical Engineering, Ilse Katz Institute of Nanoscale Science and Technology, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Alexandra Teixeira
- Medical Devices Research Group, International Iberian Nanotechnology Laboratory - INL, 4715-330 Braga, Portugal
| | - Asta Tvarijonaviciute
- Interdisciplinary Laboratory of Clinical Pathology, Interlab-UMU, Regional Campus of International Excellence 'Campus Mare Nostrum', University of Murcia, 30100 Murcia, Spain.
| | - Lorena Franco-Martínez
- Interdisciplinary Laboratory of Clinical Pathology, Interlab-UMU, Regional Campus of International Excellence 'Campus Mare Nostrum', University of Murcia, 30100 Murcia, Spain.
| |
Collapse
|
9
|
Liu B, Dai Q, Liu P, Gopinath SC, Zhang L. Nanostructure-mediated glucose oxidase biofunctionalization for monitoring gestational diabetes. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.07.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
10
|
Gupta AK, Khanna M, Roy S, Pankaj, Nagabooshanam S, Kumar R, Wadhwa S, Mathur A. Design and development of a portable resistive sensor based on α-MnO 2 /GQD nanocomposites for trace quantification of Pb(II) in water. IET Nanobiotechnol 2021; 15:505-511. [PMID: 34694759 PMCID: PMC8675782 DOI: 10.1049/nbt2.12042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 11/02/2020] [Accepted: 11/30/2020] [Indexed: 11/20/2022] Open
Abstract
The occurrence of heavy metal ions in food chain is appearing to be a major problem for mankind. The traces of heavy metals, especially Pb(II) ions present in water bodies remains undetected, untreated, and it remains in the food cycle causing serious health hazards for human and livestock. The consumption of Pb(II) ions may lead to serious medical complications including multiple organ failure which can be fatal. The conventional methods of heavy metal detection are costly, time-consuming and require laboratory space. There is an immediate need to develop a cost-effective and portable sensing system which can easily be used by the common man without any technical knowhow. A portable resistive device with miniaturized electronics is developed with microfluidic well and α-MnO2 /GQD nanocomposites as a sensing material for the sensitive detection of Pb(II). α-MnO2 /GQD nanocomposites which can be easily integrated with the miniaturized electronics for real-time on-field applications. The proposed sensor exhibited a tremendous potential to be integrated with conventional water purification appliances (household and commercial) to give an indication of safety index for the drinking water. The developed portable sensor required low sample volume (200 µL) and was assessed within the Pb(II) concentration range of 0.001 nM to 1 uM. The Limit of Detection (LoD) and sensitivity was calculated to be 0.81 nM and 1.05 kΩ/nM/mm2 , and was validated with the commercial impedance analyser. The shelf-life of the portable sensor was found to be ∼45 days.
Collapse
Affiliation(s)
- Amit K. Gupta
- Amity Institute of NanotechnologyAmity UniversityUttar PradeshIndia
| | - Mansi Khanna
- Department of Electronics and Communication EngineeringAmity School of EngineeringAmity UniversityUttar PradeshIndia
| | - Souradeep Roy
- Amity Institute of NanotechnologyAmity UniversityUttar PradeshIndia
| | - Pankaj
- Amity Institute of NanotechnologyAmity UniversityUttar PradeshIndia
| | | | - Ranjit Kumar
- Amity Institute of NanotechnologyAmity UniversityUttar PradeshIndia
- Department of Chemistry, School of EngineeringUniversity of Petroleum and Energy StudiesBidholi CampusDehradunIndia
| | - Shikha Wadhwa
- Amity Institute of NanotechnologyAmity UniversityUttar PradeshIndia
- Department of Chemistry, School of EngineeringUniversity of Petroleum and Energy StudiesBidholi CampusDehradunIndia
| | - Ashish Mathur
- Amity Institute of NanotechnologyAmity UniversityUttar PradeshIndia
- Department of Physics, School of EngineeringUniversity of Petroleum and Energy StudiesBidholi CampusDehradunIndia
| |
Collapse
|
11
|
Zhou D, Gopinath SCB, Mohamed Saheed MS, Siva Sangu S, Lakshmipriya T. MXene Surface on Multiple Junction Triangles for Determining Osteosarcoma Cancer Biomarker by Dielectrode Microgap Sensor. Int J Nanomedicine 2020; 15:10171-10181. [PMID: 33363373 PMCID: PMC7754095 DOI: 10.2147/ijn.s284752] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/11/2020] [Indexed: 12/20/2022] Open
Abstract
Background In recent years, nanomaterials have justified their dissemination for biosensor application towards the sensitive and selective detections of clinical biomarkers at the lower levels. MXene is a two-dimensional layered transition metal, attractive for biosensing due to its chemical, physical and electrical properties along with the biocompatibility. Materials and Methods This work was focused on diagnosing osteosarcoma (OS), a common bone cancer, on MXene-modified multiple junction triangles by dielectrode sensing. Survivin protein gene is highly correlated with OS, identified on this sensing surface. Capture DNA was immobilized on MXene by using 3-glycidoxypropyltrimethoxysilane as an amine linker and duplexed by the target DNA sequence. Results The limitation and sensitivity of detection were found as 1 fM with the acceptable regression co-efficient value (y=1.0037⨰ + 0.525; R2=0.978) and the current enhancement was noted when increasing the target DNA concentrations. Moreover, the control sequences of single- and triple-mismatched and noncomplementary to the target DNA sequences failed to hybridize on the capture DNA, confirming the specificity. In addition, different batches were prepared with capture probe immobilized sensing surfaces and proved the efficient reproducibility. Conclusion This microgap device with Mxene-modified multiple junction triangles dielectrode surface is beneficial to quantify the survivin gene at its lower level and diagnosing OS complication levels.
Collapse
Affiliation(s)
- Dakai Zhou
- Department of Spinal Surgery, Xinxiang Central Hospital, Xinxiang City, Henan Province 453000, People's Republic of China
| | - Subash C B Gopinath
- Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis (UniMAP), Arau, Perlis 02600, Malaysia.,Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), Kangar, Perlis 01000, Malaysia
| | - Mohamed Shuaib Mohamed Saheed
- Department of Mechanical Engineering, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak Darul Ridzuan, Malaysia.,Centre of Innovative Nanostructures & Nanodevices (COINN), Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak Darul Ridzuan, Malaysia
| | - Sangeetha Siva Sangu
- Centre of Innovative Nanostructures & Nanodevices (COINN), Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak Darul Ridzuan, Malaysia.,Department of Fundamental & Applied Sciences, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak Darul Ridzuan, Malaysia
| | - Thangavel Lakshmipriya
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), Kangar, Perlis 01000, Malaysia
| |
Collapse
|
12
|
Electrochemical Sodium Ion Sensor Based on Silver Nanoparticles/Graphene Oxide Nanocomposite for Food Application. CHEMOSENSORS 2020. [DOI: 10.3390/chemosensors8030058] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
High sodium ion (Na+) consumption leads to high blood pressure which causes many health issues. Real-time determination of Na+ content in food is still important to limit Na+ intake and control the taste of food. In this work, we have developed an electrochemical sensor based on agglomeration of silver nanoparticles (AgNPs) and graphene oxide (GO) modified on a screen-printed silver electrode (SPE) for Na+ detection at room temperature by using cyclic voltammetry (CV). The AgNPs were synthesized through a simple green route using Pistia stratiotes extract as a reducing agent under blue light illumination and mixed with the GO to be a Na+ selective sensing nanocomposite. The AgNPs/GO/SPE sensor showed high sensitivity (0.269 mA/mM/cm2), high selectivity, linear relationship (0–100 mM), good stability, and excellent reproducibility to Na+ detection as well as low limit of detection (9.344 mM) for food application. The interfering species such as K+, Zn2+, Na+, Mg2+, glucose, and ascorbic acid did not have any influence on the Na+ determination. The AgNPs/GO/SPE sensor was successfully applied to determine Na+ in real samples such as fish sauce and seasoning powder of instant noodle.
Collapse
|
13
|
Roy S, Nagabooshanam S, Krishna K, Wadhwa S, Chauhan N, Jain U, Kumar R, Mathur A, Davis J. Electroanalytical Sensor for Diabetic Foot Ulcer Monitoring with Integrated Electronics for Connected Health Application. ELECTROANAL 2020. [DOI: 10.1002/elan.201900665] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Souradeep Roy
- Amity Institute of Nanotechnology Amity University Uttar Pradesh Noida India 201313
| | | | - Kushagra Krishna
- Amity Institute of Nanotechnology Amity University Uttar Pradesh Noida India 201313
| | - Shikha Wadhwa
- Amity Institute of Nanotechnology Amity University Uttar Pradesh Noida India 201313
| | - Nidhi Chauhan
- Amity Institute of Nanotechnology Amity University Uttar Pradesh Noida India 201313
| | - Utkarsh Jain
- Amity Institute of Nanotechnology Amity University Uttar Pradesh Noida India 201313
| | - Ranjit Kumar
- Amity Institute of Nanotechnology Amity University Uttar Pradesh Noida India 201313
| | - Ashish Mathur
- Amity Institute of Nanotechnology Amity University Uttar Pradesh Noida India 201313
| | - James Davis
- Nanotechnology and Integrated Bio-Engineering Center Ulster University Jordanstown UK BT370QB Jordanstown
| |
Collapse
|
14
|
Comparative Analysis on Dielectric Gold and Aluminium Triangular Junctions: Impact of Ionic Strength and Background Electrolyte by pH Variations. Sci Rep 2020; 10:6783. [PMID: 32321969 PMCID: PMC7176652 DOI: 10.1038/s41598-020-63831-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 02/27/2020] [Indexed: 11/23/2022] Open
Abstract
Field of generating a surface thin film is emerging broadly in sensing applications to obtain the quick and fast results by forming the high-performance sensors. Incorporation of thin film technologies in sensor development for the better sensing could be a promising way to attain the current requirements. This work predominantly delineates the fabrication of the dielectric sensor using two different sensing materials (Gold and Aluminium). Conventional photolithography was carried out using silicon as a base material and the photo mask of the dielectric sensor was designed by AutoCAD software. The physical characterization of the fabricated sensor was done by Scanning Electron Microscope, Atomic Force Microscope, High Power Microscope and 3D-nano profiler. The electrical characterization was performed using Keithley 6487 picoammeter with a linear sweep voltage of 0 to 2 V at 0.01 V step voltage. By pH scouting, I-V measurements on the bare sensor were carried out, whereby the gold electrodes conducts a least current than aluminium dielectrodes. Comparative analysis with pH scouting reveals that gold electrode is suitable under varied ionic strengths and background electrolytes, whereas aluminium electrodes were affected by the extreme acid (pH 1) and alkali (pH 12) solutions.
Collapse
|
15
|
Nagabooshanam S, Roy S, Mathur A, Mukherjee I, Krishnamurthy S, Bharadwaj LM. Electrochemical micro analytical device interfaced with portable potentiostat for rapid detection of chlorpyrifos using acetylcholinesterase conjugated metal organic framework using Internet of things. Sci Rep 2019; 9:19862. [PMID: 31882767 PMCID: PMC6934781 DOI: 10.1038/s41598-019-56510-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 09/04/2019] [Indexed: 01/27/2023] Open
Abstract
An Electrochemical micro Analytical Device (EµAD) was fabricated for sensitive detection of organophosphate pesticide chlorpyrifos in the food chain. Gold microelectrode (µE) modified with Zinc based Metal Organic Framework (MOF-Basolite Z1200) and Acetylcholinesterase (AChE) enzyme served as an excellent electro-analytical transducer for the detection of chlorpyrifos. Electrochemical techniques such as Cyclic Voltammetry (CV), Electrochemical Impedance Spectroscopy (EIS) and Differential Pulse Voltammetry (DPV) were performed for electrochemical analysis of the developed EµAD. The sensor needs only 2 µL of the analyte and it was tested within the linear range of 10 to 100 ng/L. The developed EµAD’s limit of detection (LoD) and sensitivity is 6 ng/L and 0.598 µ A/ng L−1/mm2 respectively. The applicability of the device for the detection of chlorpyrifos from the real vegetable sample was also tested within the range specified. The fabricated sensor showed good stability with a shelf-life of 20 days. The EµAD’s response time is of 50 s, including an incubation time of 20 s. The developed EµAD was also integrated with commercially available low-cost, handheld potentiostat (k-Stat) using Bluetooth and the results were comparable with a standard electrochemical workstation.
Collapse
Affiliation(s)
- Shalini Nagabooshanam
- Amity Institute of Nanotechnology, Amity University, Noida, Sector 125, Uttar Pradesh, 201301, India
| | - Souradeep Roy
- Amity Institute of Nanotechnology, Amity University, Noida, Sector 125, Uttar Pradesh, 201301, India
| | - Ashish Mathur
- Amity Institute of Nanotechnology, Amity University, Noida, Sector 125, Uttar Pradesh, 201301, India.
| | - Irani Mukherjee
- Division of Agricultural Chemicals, Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Satheesh Krishnamurthy
- Nanoscale Energy and Surface Engineering, School of Engineering and Innovation, The Open University, Walton Hall Campus, Milton Keynes, MK7 6AA, United Kingdom.
| | - Lalit M Bharadwaj
- Amity Institute of Nanotechnology, Amity University, Noida, Sector 125, Uttar Pradesh, 201301, India
| |
Collapse
|
16
|
Liu J, Mosavati B, Oleinikov AV, Du E. Biosensors for Detection of Human Placental Pathologies: A Review of Emerging Technologies and Current Trends. Transl Res 2019; 213:23-49. [PMID: 31170377 PMCID: PMC6783355 DOI: 10.1016/j.trsl.2019.05.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/13/2019] [Accepted: 05/14/2019] [Indexed: 02/06/2023]
Abstract
Substantial growth in the biosensor research has enabled novel, sensitive and point-of-care diagnosis of human diseases in the last decade. This paper presents an overview of the research in the field of biosensors that can potentially predict and diagnosis of common placental pathologies. A survey of biomarkers in maternal circulation and their characterization methods is presented, including markers of oxidative stress, angiogenic factors, placental debris, and inflammatory biomarkers that are associated with various pathophysiological processes in the context of pregnancy complications. Novel biosensors enabled by microfluidics technology and nanomaterials is then reviewed. Representative designs of plasmonic and electrochemical biosensors for highly sensitive and multiplexed detection of biomarkers, as well as on-chip sample preparation and sensing for automatic biomarker detection are illustrated. New trends in organ-on-a-chip based placental disease models are highlighted to illustrate the capability of these in vitro disease models in better understanding the complex pathophysiological processes, including mass transfer across the placental barrier, oxidative stress, inflammation, and malaria infection. Biosensor technologies that can be potentially embedded in the placental models for real time, label-free monitoring of these processes and events are suggested. Merger of cell culture in microfluidics and biosensing can provide significant potential for new developments in advanced placental models, and tools for diagnosis, drug screening and efficacy testing.
Collapse
Affiliation(s)
- Jia Liu
- College of Engineering and Computer Science, Department of Ocean and Mechanical Engineering, Florida Atlantic University, Boca Raton, Florida
| | - Babak Mosavati
- College of Engineering and Computer Science, Department of Ocean and Mechanical Engineering, Florida Atlantic University, Boca Raton, Florida
| | - Andrew V Oleinikov
- Charles E. Schmidt College of Medicine, Department of Biomedical Science, Florida Atlantic University, Boca Raton, Florida
| | - E Du
- College of Engineering and Computer Science, Department of Ocean and Mechanical Engineering, Florida Atlantic University, Boca Raton, Florida; Charles E. Schmidt College of Science, Department of Biological Sciences, Florida Atlantic University, Boca Raton, Florida.
| |
Collapse
|
17
|
Ong CC, Gopinath SCB, Rebecca LWX, Perumal V, Lakshmipriya T, Saheed MSM. Diagnosing human blood clotting deficiency. Int J Biol Macromol 2018; 116:765-773. [PMID: 29775720 DOI: 10.1016/j.ijbiomac.2018.05.084] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/13/2018] [Accepted: 05/14/2018] [Indexed: 11/19/2022]
Abstract
There are different clotting factors present in blood, carries the clotting cascade and excessive bleeding may cause a deficiency in the clotting Diagnosis of this deficiency in clotting drastically reduces the potential fatality. For enabling a sensor to detect the clotting factors, suitable probes such as antibody and aptamer have been used to capture these targets on the sensing surface. Two major clotting factors were widely studied for the diagnosis of clotting deficiency, which includes factor IX and thrombin. In addition, factor IX is considered as the substitute for heparin and the prothrombotic associated with the increased thrombin generation are taking into account their prevalence. The biosensors, surface plasmon resonance, evanescent-field-coupled waveguide-mode sensor, metal-enhanced PicoGreen fluorescence and electrochemical aptasensor were well-documented and improvements have been made for high-performance sensing. We overviewed detecting factor IX and thrombin using these biosensors, for the potential application in medical diagnosis.
Collapse
Affiliation(s)
- Chong Cheen Ong
- Department of Fundamental & Applied Science, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia.; Centre of Innovative Nanostructure & Nanodevices (COINN), Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Subash C B Gopinath
- School of Bioprocess Engineering, Universiti Malaysia Perlis, 02600 Arau, Perlis, Malaysia; Institute of Nano Electronic Engineering, University Malaysia Perlis, 01000 Kangar, Perlis, Malaysia.
| | - Leong Wei Xian Rebecca
- Department of Fundamental & Applied Science, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia.; Centre of Innovative Nanostructure & Nanodevices (COINN), Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Veeradasan Perumal
- Centre of Innovative Nanostructure & Nanodevices (COINN), Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia; Department of Mechanical Engineering, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Thangavel Lakshmipriya
- Centre of Innovative Nanostructure & Nanodevices (COINN), Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Mohamed Shuaib Mohamed Saheed
- Department of Fundamental & Applied Science, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia.; Centre of Innovative Nanostructure & Nanodevices (COINN), Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
| |
Collapse
|
18
|
Kozitsina AN, Svalova TS, Malysheva NN, Okhokhonin AV, Vidrevich MB, Brainina KZ. Sensors Based on Bio and Biomimetic Receptors in Medical Diagnostic, Environment, and Food Analysis. BIOSENSORS 2018; 8:E35. [PMID: 29614784 PMCID: PMC6022999 DOI: 10.3390/bios8020035] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 03/29/2018] [Accepted: 03/29/2018] [Indexed: 01/09/2023]
Abstract
Analytical chemistry is now developing mainly in two areas: automation and the creation of complexes that allow, on the one hand, for simultaneously analyzing a large number of samples without the participation of an operator, and on the other, the development of portable miniature devices for personalized medicine and the monitoring of a human habitat. The sensor devices, the great majority of which are biosensors and chemical sensors, perform the role of the latter. That last line is considered in the proposed review. Attention is paid to transducers, receptors, techniques of immobilization of the receptor layer on the transducer surface, processes of signal generation and detection, and methods for increasing sensitivity and accuracy. The features of sensors based on synthetic receptors and additional components (aptamers, molecular imprinted polymers, biomimetics) are discussed. Examples of bio- and chemical sensors' application are given. Miniaturization paths, new power supply means, and wearable and printed sensors are described. Progress in this area opens a revolutionary era in the development of methods of on-site and in-situ monitoring, that is, paving the way from the "test-tube to the smartphone".
Collapse
Affiliation(s)
- Alisa N Kozitsina
- Department of Analytical Chemistry, Institute of Chemical Engineering, Ural Federal University named after the first President of Russia B.N. Yeltsin, 620002 Yekaterinburg, Russia.
| | - Tatiana S Svalova
- Department of Analytical Chemistry, Institute of Chemical Engineering, Ural Federal University named after the first President of Russia B.N. Yeltsin, 620002 Yekaterinburg, Russia.
| | - Natalia N Malysheva
- Department of Analytical Chemistry, Institute of Chemical Engineering, Ural Federal University named after the first President of Russia B.N. Yeltsin, 620002 Yekaterinburg, Russia.
| | - Andrei V Okhokhonin
- Department of Analytical Chemistry, Institute of Chemical Engineering, Ural Federal University named after the first President of Russia B.N. Yeltsin, 620002 Yekaterinburg, Russia.
| | - Marina B Vidrevich
- Scientific and Innovation Center for Sensory Technologies, Ural State University of Economics, 620144 Yekaterinburg, Russia.
| | - Khiena Z Brainina
- Department of Analytical Chemistry, Institute of Chemical Engineering, Ural Federal University named after the first President of Russia B.N. Yeltsin, 620002 Yekaterinburg, Russia.
- Scientific and Innovation Center for Sensory Technologies, Ural State University of Economics, 620144 Yekaterinburg, Russia.
| |
Collapse
|
19
|
Jalal UM, Jin GJ, Eom KS, Kim MH, Shim JS. On-chip signal amplification of magnetic bead-based immunoassay by aviating magnetic bead chains. Bioelectrochemistry 2017; 122:221-226. [PMID: 29129601 DOI: 10.1016/j.bioelechem.2017.11.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Revised: 11/02/2017] [Accepted: 11/02/2017] [Indexed: 02/07/2023]
Abstract
In this work, a Lab-on-a-Chip (LOC) platform is used to electromagnetically actuate magnetic bead chains for an enhanced immunoassay. Custom-made electromagnets generate a magnetic field to form, rotate, lift and lower the magnetic bead chains (MBCs). The cost-effective, disposable LOC platform was made with a polymer substrate and an on-chip electrochemical sensor patterned via the screen-printing process. The movement of the MBCs is controlled to improve the electrochemical signal up to 230% when detecting beta-type human chorionic gonadotropin (β-hCG). Thus, the proposed on-chip MBC-based immunoassay is applicable for rapid, qualitative electrochemical point-of-care (POC) analysis.
Collapse
Affiliation(s)
- Uddin M Jalal
- Bio IT Convergence Laboratory, Department of Electronic Convergence Engineering, Kwangwoon University, Seoul, Republic of Korea
| | - Gyeong Jun Jin
- Bio IT Convergence Laboratory, Department of Electronic Convergence Engineering, Kwangwoon University, Seoul, Republic of Korea
| | - Kyu Shik Eom
- Bio IT Convergence Laboratory, Department of Electronic Convergence Engineering, Kwangwoon University, Seoul, Republic of Korea
| | - Min Ho Kim
- Bio IT Convergence Laboratory, Department of Electronic Convergence Engineering, Kwangwoon University, Seoul, Republic of Korea
| | - Joon S Shim
- Bio IT Convergence Laboratory, Department of Electronic Convergence Engineering, Kwangwoon University, Seoul, Republic of Korea.
| |
Collapse
|
20
|
Abstract
Human chorionic gonadotropin (HCG) is a glycoprotein secreted by placental trophoblast cells in pregnancy. HCG is a heterodimer composed of two different α- and β-subunits, with the latter being unique to HCG. As well as being the most important diagnostic markers for pregnancy, HCG is also a tumor marker, therefore, quantitative detection of HCG is of great value. Numerous advanced technologies have been developed for HCG concentration detection including electrochemical immunoassay, chemiluminescent immunoassay, fluorescence immunoassay, resonance scattering spectrometry, atomic emission spectrometry, radioimmunoassay, MS and so on. Some have pursued simple and easy operation, while others have emphasized on accuracy and applications in clinical medicine. This review provides a comprehensive summary of various methods of detecting HCG.
Collapse
|
21
|
A Label-Free and Ultrasensitive Immunosensor for Detection of Human Chorionic Gonadotrophin Based on Graphene FETs. BIOSENSORS-BASEL 2017; 7:bios7030027. [PMID: 28704926 PMCID: PMC5618033 DOI: 10.3390/bios7030027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 06/24/2017] [Accepted: 07/03/2017] [Indexed: 02/01/2023]
Abstract
We report on a label-free immunosensor based on graphene field effect transistors (G-FETs) for the ultrasensitive detection of Human Chorionic Gonadotrophin (hCG), as an indicator of pregnancy and related disorders, such as actopic pregnancy, choriocarcinoma and orchic teratoma. Pyrene based bioactive ester was non-covalently anchored onto the graphene channel in order to retain the sp² lattice. The G-FET transfer characteristics showed repeatable and reliable responses in all surface modifying steps using a direct current (DC) readout system. The hCG concentration gradient showed a detection limit of ~1 pg·mL-1. The proposed method facilitates the cost-effective and viable production of graphene point-of-care devices for clinical diagnosis.
Collapse
|
22
|
Voltammetric immunoassay for the human blood clotting factor IX by using nanogapped dielectrode junctions modified with gold nanoparticle-conjugated antibody. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2389-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
23
|
Perumal V, Hashim U, Gopinath SCB, Rajintra Prasad H, Wei-Wen L, Balakrishnan SR, Vijayakumar T, Rahim RA. Characterization of Gold-Sputtered Zinc Oxide Nanorods-a Potential Hybrid Material. NANOSCALE RESEARCH LETTERS 2016; 11:31. [PMID: 26787050 PMCID: PMC4718909 DOI: 10.1186/s11671-016-1245-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 01/06/2016] [Indexed: 06/05/2023]
Abstract
Generation of hybrid nanostructures has been attested as a promising approach to develop high-performance sensing substrates. Herein, hybrid zinc oxide (ZnO) nanorod dopants with different gold (Au) thicknesses were grown on silicon wafer and studied for their impact on physical, optical and electrical characteristics. Structural patterns displayed that ZnO crystal lattice is in preferred c-axis orientation and proved the higher purities. Observations under field emission scanning electron microscopy revealed the coverage of ZnO nanorods by Au-spots having diameters in the average ranges of 5-10 nm, as determined under transmission electron microscopy. Impedance spectroscopic analysis of Au-sputtered ZnO nanorods was carried out in the frequency range of 1 to 100 MHz with applied AC amplitude of 1 V RMS. The obtained results showed significant changes in the electrical properties (conductance and dielectric constant) with nanostructures. A clear demonstration with 30-nm thickness of Au-sputtering was apparent to be ideal for downstream applications, due to the lowest variation in resistance value of grain boundary, which has dynamic and superior characteristics.
Collapse
Affiliation(s)
- Veeradasan Perumal
- Biomedical Nano Diagnostics Research Group, Institute of Nano Electronic Engineering (INEE), Universiti Malaysia Perlis, 01000, Kangar, Perlis, Malaysia.
| | - Uda Hashim
- Biomedical Nano Diagnostics Research Group, Institute of Nano Electronic Engineering (INEE), Universiti Malaysia Perlis, 01000, Kangar, Perlis, Malaysia
| | - Subash C B Gopinath
- Biomedical Nano Diagnostics Research Group, Institute of Nano Electronic Engineering (INEE), Universiti Malaysia Perlis, 01000, Kangar, Perlis, Malaysia
- School of Bioprocess Engineering, Universiti Malaysia Perlis, 02600, Arau, Perlis, Malaysia
| | - Haarindraprasad Rajintra Prasad
- Biomedical Nano Diagnostics Research Group, Institute of Nano Electronic Engineering (INEE), Universiti Malaysia Perlis, 01000, Kangar, Perlis, Malaysia
| | - Liu Wei-Wen
- Biomedical Nano Diagnostics Research Group, Institute of Nano Electronic Engineering (INEE), Universiti Malaysia Perlis, 01000, Kangar, Perlis, Malaysia
| | - S R Balakrishnan
- Biomedical Nano Diagnostics Research Group, Institute of Nano Electronic Engineering (INEE), Universiti Malaysia Perlis, 01000, Kangar, Perlis, Malaysia
| | - Thivina Vijayakumar
- Biomedical Nano Diagnostics Research Group, Institute of Nano Electronic Engineering (INEE), Universiti Malaysia Perlis, 01000, Kangar, Perlis, Malaysia
| | - Ruslinda Abdul Rahim
- Biomedical Nano Diagnostics Research Group, Institute of Nano Electronic Engineering (INEE), Universiti Malaysia Perlis, 01000, Kangar, Perlis, Malaysia
| |
Collapse
|
24
|
Aptamer-based impedimetric determination of the human blood clotting factor IX in serum using an interdigitated electrode modified with a ZnO nanolayer. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-2001-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
25
|
Gold nanoparticle mediated method for spatially resolved deposition of DNA on nano-gapped interdigitated electrodes, and its application to the detection of the human Papillomavirus. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-1954-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
26
|
Sharma S, Raghav R, O’Kennedy R, Srivastava S. Advances in ovarian cancer diagnosis: A journey from immunoassays to immunosensors. Enzyme Microb Technol 2016; 89:15-30. [DOI: 10.1016/j.enzmictec.2016.03.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Revised: 03/01/2016] [Accepted: 03/06/2016] [Indexed: 01/12/2023]
|
27
|
A new nano-worm structure from gold-nanoparticle mediated random curving of zinc oxide nanorods. Biosens Bioelectron 2016; 78:14-22. [DOI: 10.1016/j.bios.2015.10.083] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 10/16/2015] [Accepted: 10/28/2015] [Indexed: 10/22/2022]
|
28
|
Lakshmipriya T, Gopinath SCB, Tang TH. Biotin-Streptavidin Competition Mediates Sensitive Detection of Biomolecules in Enzyme Linked Immunosorbent Assay. PLoS One 2016; 11:e0151153. [PMID: 26954237 PMCID: PMC4783082 DOI: 10.1371/journal.pone.0151153] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 02/24/2016] [Indexed: 01/19/2023] Open
Abstract
Enzyme Linked Immunosorbent Assay (ELISA) is the gold standard assay for detecting and identifying biomolecules using antibodies as the probe. Improving ELISA is crucial for detecting disease-causing agents and facilitating diagnosis at the early stages of disease. Biotinylated antibody and streptavidin-conjugated horse radish peroxide (streptavidin-HRP) often are used with ELISA to enhance the detection of various kinds of targets. In the present study, we used a competition-based strategy in which we pre-mixed free biotin with streptavidin-HRP to generate high-performance system, as free biotin occupies some of the biotin binding sites on streptavidin, thereby providing more chances for streptavidin-HRP to bind with biotinylated antibody. ESAT-6, which is a protein secreted early during tuberculosis infection, was used as the model target. We found that 8 fM of free biotin mixed with streptavidin-HRP anchored the higher detection level of ESAT-6 by four-fold compared with detection without free biotin (only streptavidin-HRP), and the limit of detection of the new method was 250 pM. These results suggest that biotin-streptavidin competition can be used to improve the diagnosis of analytes in other types of sensors.
Collapse
Affiliation(s)
- Thangavel Lakshmipriya
- Advanced Medical & Dental Institute (AMDI), Universiti Sains Malaysia, Kepala Batas, Penang, Malaysia
| | - Subash C. B. Gopinath
- Institute of Nano Electronic Engineering (INEE), Universiti Malaysia Perlis, Kangar, Perlis, Malaysia
- School of Bioprocess Engineering, Universiti Malaysia Perlis, Arau, Perlis, Malaysia
| | - Thean-Hock Tang
- Advanced Medical & Dental Institute (AMDI), Universiti Sains Malaysia, Kepala Batas, Penang, Malaysia
| |
Collapse
|
29
|
Derkus B, Ozkan M, Emregul KC, Emregul E. Single frequency analysis for clinical immunosensor design. RSC Adv 2016. [DOI: 10.1039/c5ra23783a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
A novel bioelectrochemical approach: Tau protein determination for the diagnosis of neurodiseases via time-dependant phase angle shift.
Collapse
Affiliation(s)
- Burak Derkus
- Bioelectrochemistry Lab
- Department of Chemistry
- Science Faculty
- Ankara University
- Ankara 06100
| | - Mustafa Ozkan
- Bioelectrochemistry Lab
- Department of Chemistry
- Science Faculty
- Ankara University
- Ankara 06100
| | - Kaan C. Emregul
- Bioelectrochemistry Lab
- Department of Chemistry
- Science Faculty
- Ankara University
- Ankara 06100
| | - Emel Emregul
- Bioelectrochemistry Lab
- Department of Chemistry
- Science Faculty
- Ankara University
- Ankara 06100
| |
Collapse
|
30
|
Perumal V, Hashim U, Gopinath SCB, Haarindraprasad R, Liu WW, Poopalan P, Balakrishnan SR, Thivina V, Ruslinda AR. Thickness Dependent Nanostructural, Morphological, Optical and Impedometric Analyses of Zinc Oxide-Gold Hybrids: Nanoparticle to Thin Film. PLoS One 2015; 10:e0144964. [PMID: 26694656 PMCID: PMC4687870 DOI: 10.1371/journal.pone.0144964] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 11/26/2015] [Indexed: 11/25/2022] Open
Abstract
The creation of an appropriate thin film is important for the development of novel sensing surfaces, which will ultimately enhance the properties and output of high-performance sensors. In this study, we have fabricated and characterized zinc oxide (ZnO) thin films on silicon substrates, which were hybridized with gold nanoparticles (AuNPs) to obtain ZnO-Aux (x = 10, 20, 30, 40 and 50 nm) hybrid structures with different thicknesses. Nanoscale imaging by field emission scanning electron microscopy revealed increasing film uniformity and coverage with the Au deposition thickness. Transmission electron microscopy analysis indicated that the AuNPs exhibit an increasing average diameter (5–10 nm). The face center cubic Au were found to co-exist with wurtzite ZnO nanostructure. Atomic force microscopy observations revealed that as the Au content increased, the overall crystallite size increased, which was supported by X-ray diffraction measurements. The structural characterizations indicated that the Au on the ZnO crystal lattice exists without any impurities in a preferred orientation (002). When the ZnO thickness increased from 10 to 40 nm, transmittance and an optical bandgap value decreased. Interestingly, with 50 nm thickness, the band gap value was increased, which might be due to the Burstein-Moss effect. Photoluminescence studies revealed that the overall structural defect (green emission) improved significantly as the Au deposition increased. The impedance measurements shows a decreasing value of impedance arc with increasing Au thicknesses (0 to 40 nm). In contrast, the 50 nm AuNP impedance arc shows an increased value compared to lower sputtering thicknesses, which indicated the presence of larger sized AuNPs that form a continuous film, and its ohmic characteristics changed to rectifying characteristics. This improved hybrid thin film (ZnO/Au) is suitable for a wide range of sensing applications.
Collapse
Affiliation(s)
- Veeradasan Perumal
- Biomedical Nano Diagnostics Research Group, Institute of Nano Electronic Engineering (INEE), Universiti Malaysia Perlis (UniMAP), Kangar, Perlis, Malaysia
| | - Uda Hashim
- Biomedical Nano Diagnostics Research Group, Institute of Nano Electronic Engineering (INEE), Universiti Malaysia Perlis (UniMAP), Kangar, Perlis, Malaysia.,School of Microelectronic Engineering, University Malaysia Perlis (UniMAP), Kuala Perlis, Perlis, Malaysia
| | - Subash C B Gopinath
- Biomedical Nano Diagnostics Research Group, Institute of Nano Electronic Engineering (INEE), Universiti Malaysia Perlis (UniMAP), Kangar, Perlis, Malaysia.,School of Bioprocess Engineering, Universiti Malaysia Perlis (UniMAP), Arau, Perlis, Malaysia
| | - R Haarindraprasad
- Biomedical Nano Diagnostics Research Group, Institute of Nano Electronic Engineering (INEE), Universiti Malaysia Perlis (UniMAP), Kangar, Perlis, Malaysia
| | - Wei-Wen Liu
- Biomedical Nano Diagnostics Research Group, Institute of Nano Electronic Engineering (INEE), Universiti Malaysia Perlis (UniMAP), Kangar, Perlis, Malaysia
| | - P Poopalan
- School of Microelectronic Engineering, University Malaysia Perlis (UniMAP), Kuala Perlis, Perlis, Malaysia
| | - S R Balakrishnan
- Biomedical Nano Diagnostics Research Group, Institute of Nano Electronic Engineering (INEE), Universiti Malaysia Perlis (UniMAP), Kangar, Perlis, Malaysia
| | - V Thivina
- Biomedical Nano Diagnostics Research Group, Institute of Nano Electronic Engineering (INEE), Universiti Malaysia Perlis (UniMAP), Kangar, Perlis, Malaysia
| | - A R Ruslinda
- Biomedical Nano Diagnostics Research Group, Institute of Nano Electronic Engineering (INEE), Universiti Malaysia Perlis (UniMAP), Kangar, Perlis, Malaysia
| |
Collapse
|
31
|
Balakrishnan SR, Hashim U, Gopinath SCB, Poopalan P, Ramayya HR, Veeradasan P, Haarindraprasad R, Ruslinda AR. Polysilicon nanogap lab-on-chip facilitates multiplex analyses with single analyte. Biosens Bioelectron 2015; 84:44-52. [PMID: 26560969 DOI: 10.1016/j.bios.2015.10.075] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 10/15/2015] [Accepted: 10/26/2015] [Indexed: 12/27/2022]
Abstract
Rationally designed biosensing system supports multiplex analyses is warranted for medical diagnosis to determine the level of analyte interaction. The chemically functionalized novel multi-electrode polysilicon nanogap (PSNG) lab-on-chip is designed in this study, facilitates multiplex analyses for a single analyte. On the fabricated 69nm PSNG, biocompatibility and structural characteristics were verified for the efficient binding of Human Chorionic Gonadotropin (hCG). With the assistance of microfluidics, hCG sample was delivered via single-injection to 3-Aminopropyl(triethoxy)silane (APTES) and Glycidoxypropyl(trimethoxy)silane (GPMS) modified PSNG electrodes and the transduced signal was used to investigate the dielectric mechanisms for multiplex analyses. The results from amperometric response and impedance measurement delivered the scale of interaction between anti-hCG antibody and hCG that exhibited 6.5 times higher sensitivity for the chemical linker, APTES than GPMS. Under optimized experimental conditions, APTES and GPMS modified immunosensor has a limit of detection as 0.56mIU/ml and 2.93mIU/ml (at S/N=3), with dissociation constants (Kd) of 5.65±2.5mIU/ml and 7.28±2.6mIU/ml, respectively. These results suggest that multiplex analysis of single target could enhance the accuracy of detection and reliable for real-time comparative analyses. The designed PSNG is simple, feasible, requires low sample consumption and could be applied for any given multiplex analyses.
Collapse
Affiliation(s)
- Sharma Rao Balakrishnan
- Biomedical Nano Diagnostics Research Group, Institute of Nano Electronic Engineering (INEE), Universiti Malaysia Perlis (UniMAP), Kangar, Perlis, Malaysia
| | - U Hashim
- Biomedical Nano Diagnostics Research Group, Institute of Nano Electronic Engineering (INEE), Universiti Malaysia Perlis (UniMAP), Kangar, Perlis, Malaysia; School of Microelectronic Engineering, University Malaysia Perlis (UniMAP), Kuala Perlis, Perlis, Malaysia.
| | - Subash C B Gopinath
- Biomedical Nano Diagnostics Research Group, Institute of Nano Electronic Engineering (INEE), Universiti Malaysia Perlis (UniMAP), Kangar, Perlis, Malaysia
| | - P Poopalan
- School of Microelectronic Engineering, University Malaysia Perlis (UniMAP), Kuala Perlis, Perlis, Malaysia
| | - H R Ramayya
- Department of Obstetrics and Gynaecology, Hospital Tuanku Fauziah, Kangar, Perlis, Malaysia
| | - P Veeradasan
- Biomedical Nano Diagnostics Research Group, Institute of Nano Electronic Engineering (INEE), Universiti Malaysia Perlis (UniMAP), Kangar, Perlis, Malaysia
| | - R Haarindraprasad
- Biomedical Nano Diagnostics Research Group, Institute of Nano Electronic Engineering (INEE), Universiti Malaysia Perlis (UniMAP), Kangar, Perlis, Malaysia
| | - A R Ruslinda
- Biomedical Nano Diagnostics Research Group, Institute of Nano Electronic Engineering (INEE), Universiti Malaysia Perlis (UniMAP), Kangar, Perlis, Malaysia
| |
Collapse
|