1
|
Regulation of Viral Restriction by Post-Translational Modifications. Viruses 2021; 13:v13112197. [PMID: 34835003 PMCID: PMC8618861 DOI: 10.3390/v13112197] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 12/17/2022] Open
Abstract
Intrinsic immunity is orchestrated by a wide range of host cellular proteins called restriction factors. They have the capacity to interfere with viral replication, and most of them are tightly regulated by interferons (IFNs). In addition, their regulation through post-translational modifications (PTMs) constitutes a major mechanism to shape their action positively or negatively. Following viral infection, restriction factor modification can be decisive. Palmitoylation of IFITM3, SUMOylation of MxA, SAMHD1 and TRIM5α or glycosylation of BST2 are some of those PTMs required for their antiviral activity. Nonetheless, for their benefit and by manipulating the PTMs machinery, viruses have evolved sophisticated mechanisms to counteract restriction factors. Indeed, many viral proteins evade restriction activity by inducing their ubiquitination and subsequent degradation. Studies on PTMs and their substrates are essential for the understanding of the antiviral defense mechanisms and provide a global vision of all possible regulations of the immune response at a given time and under specific infection conditions. Our aim was to provide an overview of current knowledge regarding the role of PTMs on restriction factors with an emphasis on their impact on viral replication.
Collapse
|
2
|
Miller KD, Matullo C, Williams R, Jones CB, Rall GF. Murine BST2/tetherin promotes measles virus infection of neurons. Virology 2021; 563:38-43. [PMID: 34416448 DOI: 10.1016/j.virol.2021.08.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 08/06/2021] [Accepted: 08/11/2021] [Indexed: 11/15/2022]
Abstract
BST2/tetherin is a transmembrane protein with antiviral activity; it is synthesized following exposure to interferons, and restricts the release of budding virus particles by tethering them to the host cell membrane. We previously showed that BST2 is induced in primary neurons following measles virus (MV) infection or type I interferon; however, BST2 was dispensable for protection against challenge with neuron-restricted MV. Here, we define the contribution of BST-2 in neuronal MV infection. Surprisingly, and in contrast to its antiviral role in non-neuronal cells, murine BST2 promotes MV infection in brains of permissive mice and in primary neuron cultures. Moreover, BST2 expression was predominantly observed in the non-synaptic fraction of purified neurons. These studies highlight a cell-type dependent role of a well-characterized antiviral protein in enhancing neuronal infection.
Collapse
Affiliation(s)
- Katelyn D Miller
- Program in Cell and Molecular Biology, University of Pennsylvania, Philadelphia, PA, USA; Program in Blood Cell Development and Function, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Christine Matullo
- Program in Blood Cell Development and Function, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Riley Williams
- Program in Blood Cell Development and Function, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Carli B Jones
- Program in Blood Cell Development and Function, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Glenn F Rall
- Program in Cell and Molecular Biology, University of Pennsylvania, Philadelphia, PA, USA; Program in Blood Cell Development and Function, Fox Chase Cancer Center, Philadelphia, PA, USA.
| |
Collapse
|
3
|
Qu M, Wang W, Li W, Cao J, Zhang X, Wang C, Wu J, Yu B, Zhang H, Wu H, Kong W, Yu X. Antiviral Activity of Feline BCA2 Is Mainly Dependent on Its Interference With Proviral Transcription Rather Than Degradation of FIV Gag. Front Microbiol 2020; 11:1230. [PMID: 32595622 PMCID: PMC7301684 DOI: 10.3389/fmicb.2020.01230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/14/2020] [Indexed: 12/12/2022] Open
Abstract
Human BCA2/RNF115/Rabring7 (hBCA2) is a RING type E3 ubiquitin ligase with the ability of autoubiquitination or promoting protein ubiquitination. It also acts as a host restriction factor has BST2-dependent and BST2-independent antiviral activity to inhibit the release of HIV-1. In a previous study, we demonstrated that feline BCA2 (fBCA2) also has E3 ubiquitin ligase activity, although its antiviral mechanism remained unclear. In this study, we showed that fBCA2 can interact with feline BST2 (fBST2) and exhibits an fBST2-independent antiviral function, and the RING domain is necessary for the antiviral activity of fBCA2. fBCA2 could degrade HIV-1 Gag and restrict HIV-1 transcription to counteract HIV-1 but not promote the degradation of HIV-1 through lysosomal. Furthermore, for both fBCA2 and hBCA2, restricting viral transcription is the main anti-FIV mechanism compared to degradation of FIV Gag or promoting viral degradation. Consequently, transcriptional regulation of HIV or FIV by BCA2 should be the primary restriction mechanism, even though the degradation mechanism is different when BCA2 counteracts HIV or FIV. This may be due to BCA2 has a special preference in antiviral mechanism in the transmission of primate or non-primate retroviruses.
Collapse
Affiliation(s)
- Meng Qu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Weiran Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Weiting Li
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Jiaming Cao
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Xin Zhang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Chu Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Jiaxin Wu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Bin Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Haihong Zhang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Hui Wu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Wei Kong
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China.,Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - Xianghui Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China.,Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| |
Collapse
|
4
|
Bai B, Wang XF, Zhang M, Na L, Zhang X, Zhang H, Yang Z, Wang X. The N-glycosylation of Equine Tetherin Affects Antiviral Activity by Regulating Its Subcellular Localization. Viruses 2020; 12:v12020220. [PMID: 32079099 PMCID: PMC7077275 DOI: 10.3390/v12020220] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/28/2020] [Accepted: 02/12/2020] [Indexed: 01/08/2023] Open
Abstract
Tetherin is an interferon-inducible type II transmembrane glycoprotein which inhibits the release of viruses, including retroviruses, through a “physical tethering” model. However, the role that the glycosylation of tetherin plays in its antiviral activity remains controversial. In this study, we found that mutation of N-glycosylation sites resulted in an attenuation of the antiviral activity of equine tetherin (eqTHN), as well as a reduction in the expression of eqTHN at the plasma membrane (PM). In addition, eqTHN N-glycosylation mutants colocalize obviously with ER, CD63, LAMP1 and endosomes, while WT eqTHN do not. Furthermore, we also found that N-glycosylation impacts the transport of eqTHN in the cell not by affecting the endocytosis, but rather by influencing the anterograde trafficking of the protein. These results suggest that the N-glycosylation of eqTHN is important for the antiviral activity of the protein through regulating its normal subcellular localization. This finding will enhance our understanding of the function of this important restriction factor.
Collapse
Affiliation(s)
- Bowen Bai
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin 150069, China; (B.B.); (X.-F.W.); (M.Z.); (L.N.); (X.Z.); (H.Z.)
| | - Xue-Feng Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin 150069, China; (B.B.); (X.-F.W.); (M.Z.); (L.N.); (X.Z.); (H.Z.)
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China;
| | - Mengmeng Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin 150069, China; (B.B.); (X.-F.W.); (M.Z.); (L.N.); (X.Z.); (H.Z.)
| | - Lei Na
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin 150069, China; (B.B.); (X.-F.W.); (M.Z.); (L.N.); (X.Z.); (H.Z.)
| | - Xiangmin Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin 150069, China; (B.B.); (X.-F.W.); (M.Z.); (L.N.); (X.Z.); (H.Z.)
| | - Haili Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin 150069, China; (B.B.); (X.-F.W.); (M.Z.); (L.N.); (X.Z.); (H.Z.)
| | - Zhibiao Yang
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China;
| | - Xiaojun Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin 150069, China; (B.B.); (X.-F.W.); (M.Z.); (L.N.); (X.Z.); (H.Z.)
- Correspondence: ; Tel.: +86-451-5105-1749
| |
Collapse
|
5
|
de Pablo-Maiso L, Doménech A, Echeverría I, Gómez-Arrebola C, de Andrés D, Rosati S, Gómez-Lucia E, Reina R. Prospects in Innate Immune Responses as Potential Control Strategies against Non-Primate Lentiviruses. Viruses 2018; 10:v10080435. [PMID: 30126090 PMCID: PMC6116218 DOI: 10.3390/v10080435] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 08/08/2018] [Accepted: 08/10/2018] [Indexed: 02/06/2023] Open
Abstract
Lentiviruses are infectious agents of a number of animal species, including sheep, goats, horses, monkeys, cows, and cats, in addition to humans. As in the human case, the host immune response fails to control the establishment of chronic persistent infection that finally leads to a specific disease development. Despite intensive research on the development of lentivirus vaccines, it is still not clear which immune responses can protect against infection. Viral mutations resulting in escape from T-cell or antibody-mediated responses are the basis of the immune failure to control the infection. The innate immune response provides the first line of defense against viral infections in an antigen-independent manner. Antiviral innate responses are conducted by dendritic cells, macrophages, and natural killer cells, often targeted by lentiviruses, and intrinsic antiviral mechanisms exerted by all cells. Intrinsic responses depend on the recognition of the viral pathogen-associated molecular patterns (PAMPs) by pathogen recognition receptors (PRRs), and the signaling cascades leading to an antiviral state by inducing the expression of antiviral proteins, including restriction factors. This review describes the latest advances on innate immunity related to the infection by animal lentiviruses, centered on small ruminant lentiviruses (SRLV), equine infectious anemia virus (EIAV), and feline (FIV) and bovine immunodeficiency viruses (BIV), specifically focusing on the antiviral role of the major restriction factors described thus far.
Collapse
MESH Headings
- Animals
- Cats
- Cattle
- Dendritic Cells/immunology
- Dendritic Cells/virology
- Gene Expression Regulation/immunology
- Goats
- Horses
- Immunity, Innate
- Immunodeficiency Virus, Bovine/immunology
- Immunodeficiency Virus, Bovine/pathogenicity
- Immunodeficiency Virus, Feline/immunology
- Immunodeficiency Virus, Feline/pathogenicity
- Infectious Anemia Virus, Equine/immunology
- Infectious Anemia Virus, Equine/pathogenicity
- Interferon Regulatory Factors/genetics
- Interferon Regulatory Factors/immunology
- Killer Cells, Natural/immunology
- Killer Cells, Natural/virology
- Lentivirus Infections/genetics
- Lentivirus Infections/immunology
- Lentivirus Infections/virology
- Macrophages/immunology
- Macrophages/virology
- Pathogen-Associated Molecular Pattern Molecules/immunology
- Receptors, Pattern Recognition/genetics
- Receptors, Pattern Recognition/immunology
- Sheep
- T-Lymphocytes/immunology
- T-Lymphocytes/virology
Collapse
Affiliation(s)
- Lorena de Pablo-Maiso
- Instituto de Agrobiotecnología (IdAB), UPNA-CSIC-Gobierno de Navarra, Navarra 31192, Spain.
| | - Ana Doménech
- Dpto. Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid 28040, Spain.
| | - Irache Echeverría
- Instituto de Agrobiotecnología (IdAB), UPNA-CSIC-Gobierno de Navarra, Navarra 31192, Spain.
| | - Carmen Gómez-Arrebola
- Instituto de Agrobiotecnología (IdAB), UPNA-CSIC-Gobierno de Navarra, Navarra 31192, Spain.
| | - Damián de Andrés
- Instituto de Agrobiotecnología (IdAB), UPNA-CSIC-Gobierno de Navarra, Navarra 31192, Spain.
| | - Sergio Rosati
- Malattie Infettive degli Animali Domestici, Dipartimento di Scienze Veterinarie, Università degli Studi di Torino, Torino 10095, Italy.
| | - Esperanza Gómez-Lucia
- Dpto. Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid 28040, Spain.
| | - Ramsés Reina
- Instituto de Agrobiotecnología (IdAB), UPNA-CSIC-Gobierno de Navarra, Navarra 31192, Spain.
| |
Collapse
|
6
|
Waheed AA, Gitzen A, Swiderski M, Freed EO. High-Mannose But Not Complex-Type Glycosylation of Tetherin Is Required for Restriction of HIV-1 Release. Viruses 2018; 10:v10010026. [PMID: 29303997 PMCID: PMC5795439 DOI: 10.3390/v10010026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 12/28/2017] [Accepted: 12/31/2017] [Indexed: 11/16/2022] Open
Abstract
Tetherin is an interferon-inducible antiviral protein that inhibits the release of a broad spectrum of enveloped viruses by retaining virions at the surface of infected cells. While the role of specific tetherin domains in antiviral activity is clearly established, the role of glycosylation in tetherin function is not clear. In this study, we carried out a detailed investigation of this question by using tetherin variants in which one or both sites of N-linked glycosylation were mutated (N65A, N92A, and N65,92A), and chemical inhibitors that prevent glycosylation at specific stages of oligosaccharide were added or modified. The single N-linked glycosylation mutants, N65A and N92A, efficiently inhibited the release of Vpu-defective human immunodeficiency virus type 1 (HIV-1). In contrast, the non-glycosylated double mutant, N65,92A, lost its ability to block HIV-1 release. The inability of the N65,92A mutant to inhibit HIV-1 release is associated with a lack of cell-surface expression. A role for glycosylation in cell-surface tetherin expression is supported by tunicamycin treatment, which inhibits the first step of N-linked glycosylation and impairs both cell-surface expression and antiviral activity. Inhibition of complex-type glycosylation with kifunensine, an inhibitor of the oligosaccharide processing enzyme mannosidase 1, had no effect on either the cell-surface expression or antiviral activity of tetherin. These results demonstrate that high-mannose modification of a single asparagine residue is necessary and sufficient, while complex-type glycosylation is dispensable, for cell-surface tetherin expression and antiviral activity.
Collapse
Affiliation(s)
- Abdul A Waheed
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, National Cancer Institute, Bldg. 535, Room 108B, 1050 Boyles St., Frederick, MD 21702-1201, USA.
| | - Ariana Gitzen
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, National Cancer Institute, Bldg. 535, Room 108B, 1050 Boyles St., Frederick, MD 21702-1201, USA.
| | - Maya Swiderski
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, National Cancer Institute, Bldg. 535, Room 108B, 1050 Boyles St., Frederick, MD 21702-1201, USA.
| | - Eric O Freed
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, National Cancer Institute, Bldg. 535, Room 108B, 1050 Boyles St., Frederick, MD 21702-1201, USA.
| |
Collapse
|
7
|
Liang Z, Zhang Y, Song J, Zhang H, Zhang S, Li Y, Tan J, Qiao W. The effect of bovine BST2A1 on the release and cell-to-cell transmission of retroviruses. Virol J 2017; 14:173. [PMID: 28877726 PMCID: PMC5588738 DOI: 10.1186/s12985-017-0835-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Accepted: 08/27/2017] [Indexed: 11/16/2022] Open
Abstract
Background Human BST2 (hBST2, also called Tetherin) is a host restriction factor that blocks the release of various enveloped viruses. BST2s from different mammals also possess antiviral activity. Bovine BST2s (bBST2s), bBST2A1 and bBST2A2, reduce production of cell-free bovine leukemia virus (BLV) and vesicular stomatitis virus (VSV). However, the effect of bBST2 on other retroviruses remains unstudied. Results Here, we studied the antiviral activity of wildtype and mutant bBST2A1 proteins on retroviruses including human immunodeficiency virus type 1 (HIV-1), prototypic foamy virus (PFV), bovine foamy virus (BFV) and bovine immunodeficiency virus (BIV). The results showed that wildtype bBST2A1 suppressed the release of HIV-1, PFV and BFV. We also generated bBST2A1 mutants, and found that GPI anchor and dimerization, but not glycosylation, are essential for antiviral activity of bBST2A1. Moreover, unlike hBST2, bBST2A1 displayed no inhibitory effect on cell-to-cell transmission of PFV, BFV and BIV. Conclusions Our data suggested that bBST2A1 inhibited retrovirus release, however, had no effect on cell-to-cell transmission of retroviruses.
Collapse
Affiliation(s)
- Zhibin Liang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yang Zhang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jie Song
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Hui Zhang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Suzhen Zhang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yue Li
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Juan Tan
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Wentao Qiao
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China. .,College of Life Sciences, Nankai University, 94 Weijin Rd, Tianjin, 300071, China.
| |
Collapse
|
8
|
Han Z, Lv M, Shi Y, Yu J, Niu J, Yu XF, Zhang W. Mutation of Glycosylation Sites in BST-2 Leads to Its Accumulation at Intracellular CD63-Positive Vesicles without Affecting Its Antiviral Activity against Multivesicular Body-Targeted HIV-1 and Hepatitis B Virus. Viruses 2016; 8:62. [PMID: 26938549 PMCID: PMC4810252 DOI: 10.3390/v8030062] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 02/12/2016] [Accepted: 02/17/2016] [Indexed: 11/29/2022] Open
Abstract
BST-2/tetherin blocks the release of various enveloped viruses including HIV-1 with a “physical tethering” model. The detailed contribution of N-linked glycosylation to this model is controversial. Here, we confirmed that mutation of glycosylation sites exerted an effect of post-translational mis-trafficking, leading to an accumulation of BST-2 at intracellular CD63-positive vesicles. BST-2 with this phenotype potently inhibited the release of multivesicular body-targeted HIV-1 and hepatitis B virus, without affecting the co-localization of BST-2 with EEA1 and LAMP1. These results suggest that N-linked glycosylation of human BST-2 is dispensable for intracellular virion retention and imply that this recently discovered intracellular tethering function may be evolutionarily distinguished from the canonical antiviral function of BST-2 by tethering nascent virions at the cell surface.
Collapse
Affiliation(s)
- Zhu Han
- Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun 130021, China.
| | - Mingyu Lv
- Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun 130021, China.
- Department of Hepatology, First Hospital of Jilin University, Changchun 130021, China.
| | - Ying Shi
- Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun 130021, China.
| | - Jinghua Yu
- Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun 130021, China.
| | - Junqi Niu
- Department of Hepatology, First Hospital of Jilin University, Changchun 130021, China.
| | - Xiao-Fang Yu
- Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun 130021, China.
| | - Wenyan Zhang
- Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun 130021, China.
| |
Collapse
|