1
|
Li CL, Liu JF, Liu SF. Mitochondrial Dysfunction in Chronic Obstructive Pulmonary Disease: Unraveling the Molecular Nexus. Biomedicines 2024; 12:814. [PMID: 38672169 PMCID: PMC11048013 DOI: 10.3390/biomedicines12040814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a prevalent and debilitating respiratory disorder characterized by persistent airflow limitation and chronic inflammation. In recent years, the role of mitochondrial dysfunction in COPD pathogenesis has emerged as a focal point of investigation. This review endeavors to unravel the molecular nexus between mitochondrial dysfunction and COPD, delving into the intricate interplay of oxidative stress, bioenergetic impairment, mitochondrial genetics, and downstream cellular consequences. Oxidative stress, a consequence of mitochondrial dysfunction, is explored as a driving force behind inflammation, exacerbating the intricate cascade of events leading to COPD progression. Bioenergetic impairment sheds light on the systemic consequences of mitochondrial dysfunction, impacting cellular functions and contributing to the overall energy imbalance observed in COPD patients. This review navigates through the genetic landscape, elucidating the role of mitochondrial DNA mutations, variations, and haplogroups in COPD susceptibility and severity. Cellular consequences, including apoptosis, autophagy, and cellular senescence, are examined, providing insights into the intricate mechanisms by which mitochondrial dysfunction influences COPD pathology. Therapeutic implications, spanning antioxidant strategies, mitochondria-targeted compounds, and lifestyle modifications, are discussed in the context of translational research. Important future directions include identifying novel biomarkers, advancing mitochondria-targeted therapies, and embracing patient-centric approaches to redefine COPD management. This abstract provides a comprehensive overview of our review, offering a roadmap for understanding and addressing the molecular nexus between mitochondrial dysfunction and COPD, with potential implications for precision medicine and improved patient outcomes.
Collapse
Affiliation(s)
- Chin-Ling Li
- Department of Respiratory Therapy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Jui-Fang Liu
- Department of Respiratory Care, Chang Gung University of Science and Technology, Chiayi 600, Taiwan
- Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Chiayi 600, Taiwan
| | - Shih-Feng Liu
- Department of Respiratory Therapy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- Department of Respiratory Care, Chang Gung University of Science and Technology, Chiayi 600, Taiwan
- Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Chiayi 600, Taiwan
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| |
Collapse
|
2
|
Nguyen J, Win PW, Nagano TS, Shin EH, Newcomb C, Arking DE, Castellani CA. Mitochondrial DNA copy number reduction via in vitro TFAM knockout remodels the nuclear epigenome and transcriptome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.29.577835. [PMID: 38352513 PMCID: PMC10862824 DOI: 10.1101/2024.01.29.577835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Mitochondrial DNA copy number (mtDNA-CN) is associated with several age-related chronic diseases and is a predictor of all-cause mortality. Here, we examine site-specific differential nuclear DNA (nDNA) methylation and differential gene expression resulting from in vitro reduction of mtDNA-CN to uncover shared genes and biological pathways mediating the effect of mtDNA-CN on disease. Epigenome and transcriptome profiles were generated for three independent human embryonic kidney (HEK293T) cell lines harbouring a mitochondrial transcription factor A (TFAM) heterozygous knockout generated via CRISPR-Cas9, and matched control lines. We identified 4,242 differentially methylated sites, 228 differentially methylated regions, and 179 differentially expressed genes associated with mtDNA-CN. Integrated analysis uncovered 381 Gene-CpG pairs. GABAA receptor genes and related pathways, the neuroactive ligand receptor interaction pathway, ABCD1/2 gene activity, and cell signalling processes were overrepresented, providing insight into the underlying biological mechanisms facilitating these associations. We also report evidence implicating chromatin state regulatory mechanisms as modulators of mtDNA-CN effect on gene expression. We demonstrate that mitochondrial DNA variation signals to the nuclear DNA epigenome and transcriptome and may lead to nuclear remodelling relevant to development, aging, and complex disease.
Collapse
Affiliation(s)
- Julia Nguyen
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Phyo W. Win
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Tyler Shin Nagano
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Elly H. Shin
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Charles Newcomb
- McKusick-Nathans Institute, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Dan E. Arking
- McKusick-Nathans Institute, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Christina A. Castellani
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
- Department of Epidemiology and Biostatistics, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
- McKusick-Nathans Institute, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Children’s Health Research Institute, Lawson Research Institute, London, Ontario, Canada
| |
Collapse
|
3
|
Faherty L, Kenny S, Cloonan SM. Iron and mitochondria in the susceptibility, pathogenesis and progression of COPD. Clin Sci (Lond) 2023; 137:219-237. [PMID: 36729089 DOI: 10.1042/cs20210504] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/22/2022] [Accepted: 01/04/2023] [Indexed: 02/03/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is a debilitating lung disease characterised by airflow limitation, chronic bronchitis, emphysema and airway remodelling. Cigarette smoke is considered the primary risk factor for the development of COPD; however, genetic factors, host responses and infection also play an important role. Accumulating evidence highlights a role for iron dyshomeostasis and cellular iron accumulation in the lung as a key contributing factor in the development and pathogenesis of COPD. Recent studies have also shown that mitochondria, the central players in cellular iron utilisation, are dysfunctional in respiratory cells in individuals with COPD, with alterations in mitochondrial bioenergetics and dynamics driving disease progression. Understanding the molecular mechanisms underlying the dysfunction of mitochondria and cellular iron metabolism in the lung may unveil potential novel investigational avenues and therapeutic targets to aid in the treatment of COPD.
Collapse
Affiliation(s)
- Lynne Faherty
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland
| | - Sarah Kenny
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland
| | - Suzanne M Cloonan
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, New York, NY, U.S.A
| |
Collapse
|
4
|
Liu SF, Chang HC, Chang YP, Kuo HC, Tsai YC. IL13 Promoter (-1055) Polymorphism Associated with Leukocyte Mitochondria DNA Copy Number in Chronic Obstructive Pulmonary Disease. Cells 2022; 11:cells11233787. [PMID: 36497047 PMCID: PMC9736668 DOI: 10.3390/cells11233787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/16/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
IL13 polymorphism is associated with chronic obstructive pulmonary disease (COPD). Patients with COPD have smaller numbers of mitochondria deoxyribonucleic acid copies (mtDNA-CN) than people without COPD do. However, whether IL13 polymorphism affects the mutation and recombination of mitochondria remains unclear. Data for patients with COPD and non-COPD were collected from Kaohsiung Chang Gung Memorial Hospital to enable a comparison of their leukocyte mtDNA-CN and the association of this information with IL-13 promoter (−1055) polymorphism. This study included 99 patients with COPD and 117 individuals without COPD. The non-COPD individuals included 77 healthy individuals that never smoked and 40 healthy smokers. The patients with COPD exhibited significantly lower mtDNA-CN than non-COPD did (250.34 vs. 440.03; p < 0.001); mtDNA-CN was particularly pronounced in individuals with the IL13 CC and CT genotypes compared with individuals with the TT genotype. When only individuals without COPD were considered and when all participants were considered, the differences in the mtDNA-CNs in individuals with the CC and CT genotypes were more significant than those in individuals with the TT genotype (448.4 and 533.6 vs. 282.8; p < 0.05 in non-COPD group); (368.8 and 362.6 vs. 249.6, p < 0.05 in all participants). The increase mtDNA-CN in the CC and CT genotypes was also more than that in the TT genotype in COPD patients, but showed no significance (260.1 and 230.5 vs. 149.9; p = 0.343). The finding shows that COPD is a mitochondria regulatory disorder and IL-13 promoter (−1055) polymorphism is associated with leukocyte mtDNA-CN. Developing COPD control methods based on mitochondrial regulation will be possible.
Collapse
Affiliation(s)
- Shih-Feng Liu
- Department of Respiratory Therapy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- Medical Department, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Correspondence: ; Tel.: +886-7-731-7123 (ext. 8199)
| | - Hui-Chuan Chang
- Department of Respiratory Therapy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Yu-Ping Chang
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- Medical Department, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Ho-Chang Kuo
- Department of Respiratory Therapy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- Medical Department, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Yuh-Chyn Tsai
- Department of Respiratory Therapy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| |
Collapse
|
5
|
Mori KM, McElroy JP, Weng DY, Chung S, Fadda P, Reisinger SA, Ying KL, Brasky TM, Wewers MD, Freudenheim JL, Shields PG, Song MA. Lung mitochondrial DNA copy number, inflammatory biomarkers, gene transcription and gene methylation in vapers and smokers. EBioMedicine 2022; 85:104301. [PMID: 36215783 PMCID: PMC9561685 DOI: 10.1016/j.ebiom.2022.104301] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 08/31/2022] [Accepted: 09/21/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Mitochondrial DNA copy number (mtCN) maintains cellular function and homeostasis, and is linked to nuclear DNA methylation and gene expression. Increased mtCN in the blood is associated with smoking and respiratory disease, but has received little attention for target organ effects for smoking or electronic cigarette (EC) use. METHODS Bronchoscopy biospecimens from healthy EC users, smokers (SM), and never-smokers (NS) were assessed for associations of mtCN with mtDNA point mutations, immune responses, nuclear DNA methylation and gene expression using linear regression. Ingenuity pathway analysis was used for enriched pathways. GEO and TCGA respiratory disease datasets were used to explore the involvement of mtCN-associated signatures. FINDINGS mtCN was higher in SM than NS, but EC was not statistically different from either. Overall there was a negative association of mtCN with a point mutation in the D-loop but no difference within groups. Positive associations of mtCN with IL-2 and IL-4 were found in EC only. mtCN was significantly associated with 71,487 CpGs and 321 transcripts. 263 CpGs were correlated with nearby transcripts for genes enriched in the immune system. EC-specific mtCN-associated-CpGs and genes were differentially expressed in respiratory diseases compared to controls, including genes involved in cellular movement, inflammation, metabolism, and airway hyperresponsiveness. INTERPRETATION Smoking may elicit a lung toxic effect through mtCN. While the impact of EC is less clear, EC-specific associations of mtCN with nuclear biomarkers suggest exposure may not be harmless. Further research is needed to understand the role of smoking and EC-related mtCN on lung disease risks. FUNDING The National Cancer Institute, the National Heart, Lung, and Blood Institute, the Food and Drug Administration Center for Tobacco Products, the National Center For Advancing Translational Sciences, and Pelotonia Intramural Research Funds.
Collapse
Affiliation(s)
- Kellie M Mori
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, OH, United States
| | - Joseph P McElroy
- Comprehensive Cancer Center, The Ohio State University and James Cancer Hospital, Columbus, OH, United States
| | - Daniel Y Weng
- Comprehensive Cancer Center, The Ohio State University and James Cancer Hospital, Columbus, OH, United States
| | - Sangwoon Chung
- Pulmonary and Critical Care Medicine, Department of Internal Medicine, The Ohio State University, Columbus, OH, United States
| | - Paolo Fadda
- Genomics Shared Resource, The Ohio State University and James Cancer Hospital, Columbus, OH, United States
| | - Sarah A Reisinger
- Comprehensive Cancer Center, The Ohio State University and James Cancer Hospital, Columbus, OH, United States
| | - Kevin L Ying
- Comprehensive Cancer Center, The Ohio State University and James Cancer Hospital, Columbus, OH, United States
| | - Theodore M Brasky
- Comprehensive Cancer Center, The Ohio State University and James Cancer Hospital, Columbus, OH, United States
| | - Mark D Wewers
- Pulmonary and Critical Care Medicine, Department of Internal Medicine, The Ohio State University, Columbus, OH, United States
| | - Jo L Freudenheim
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, United States
| | - Peter G Shields
- Comprehensive Cancer Center, The Ohio State University and James Cancer Hospital, Columbus, OH, United States.
| | - Min-Ae Song
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, OH, United States.
| |
Collapse
|
6
|
Casas-Recasens S, Mendoza N, López-Giraldo A, Garcia T, Cosio BG, Pascual-Guardia S, Acosta-Castro A, Borras-Santos A, Gea J, Garrabou G, Agusti A, Faner R. Telomere Length but Not Mitochondrial DNA Copy Number Is Altered in Both Young and Old COPD. Front Med (Lausanne) 2021; 8:761767. [PMID: 34901077 PMCID: PMC8652089 DOI: 10.3389/fmed.2021.761767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/13/2021] [Indexed: 11/13/2022] Open
Abstract
Accelerated ageing is implicated in the pathogenesis of respiratory diseases as chronic obstructive pulmonary disease (COPD), but recent evidence indicates that the COPD can have roots early in life. Here we hypothesise that the accelerated ageing markers might have a role in the pathobiology of young COPD. The objective of this study was to compare two hallmarks of ageing, telomere length (TL), and mitochondrial DNA copy number (mtDNA-CN, as a surrogate marker of mitochondrial dysfunction) in young (≤ 50 years) and old (>50 years) smokers, with and without COPD. Both, TL and mtDNA-CN were measured in whole blood DNA by quantitative PCR [qPCR] in: (1) young ever smokers with (n = 81) or without (n = 166) COPD; and (2) old ever smokers with (n = 159) or without (n = 29) COPD. A multivariable linear regression was used to assess the association of TL and mtDNA-CN with lung function. We observed that in the entire study population, TL and mtDNA-CN decreased with age, and the former but not the latter related to FEV1/FVC (%), FEV1 (% ref.), and DLCO (% ref.). The short telomeres were found both in the young and old patients with severe COPD (FEV1 <50% ref.). In addition, we found that TL and mtDNA-CN were significantly correlated, but their relationship was positive in younger while negative in the older patients with COPD, suggesting a mitochondrial dysfunction. We conclude that TL, but not mtDNA-CN, is associated with the lung function impairment. Both young and old patients with severe COPD have evidence of accelerated ageing (shorter TL) but differ in the direction of the correlation between TL and mtDNA-CN in relation to age.
Collapse
Affiliation(s)
- Sandra Casas-Recasens
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Nuria Mendoza
- Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Alejandra López-Giraldo
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain.,Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Respiratory Institute, Hospital Clinic, Barcelona, Spain
| | - Tamara Garcia
- Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Borja G Cosio
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain.,Department of Pneumology, University Hospital Son Espases, Palma de Mallorca, Spain.,Institut d'Investigació Sanitària Illes Balears (IdISBa), University Hospital Son Espases, Palma de Mallorca, Spain
| | - Sergi Pascual-Guardia
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain.,Servei de Pneumologia, Hospital del Mar - IMIM, Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain
| | - Ady Acosta-Castro
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain.,Pulmonary Service and Research Institute, Doce de Octubre University Hospital, Madrid, Spain
| | - Alicia Borras-Santos
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain.,ISGlobal, Barcelona, Spain
| | - Joaquim Gea
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain.,Servei de Pneumologia, Hospital del Mar - IMIM, Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain
| | - Gloria Garrabou
- Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain.,Muscle Research and Mitochondrial Function Laboratory, Internal Medicine Service, Hospital Clinic of Barcelona, Barcelona, Spain.,CIBERER-Spanish Biomedical Research Centre in Rare Diseases, Madrid, Spain
| | - Alvar Agusti
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain.,Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Respiratory Institute, Hospital Clinic, Barcelona, Spain.,Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Rosa Faner
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain.,Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| |
Collapse
|
7
|
Emerging methods for and novel insights gained by absolute quantification of mitochondrial DNA copy number and its clinical applications. Pharmacol Ther 2021; 232:107995. [PMID: 34592204 DOI: 10.1016/j.pharmthera.2021.107995] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 08/26/2021] [Accepted: 09/01/2021] [Indexed: 02/07/2023]
Abstract
The past thirty years have seen a surge in interest in pathophysiological roles of mitochondria, and the accurate quantification of mitochondrial DNA copy number (mCN) in cells and tissue samples is a fundamental aspect of assessing changes in mitochondrial health and biogenesis. Quantification of mCN between studies is surprisingly variable due to a combination of physiological variability and diverse protocols being used to measure this endpoint. The advent of novel methods to quantify nucleic acids like digital polymerase chain reaction (dPCR) and high throughput sequencing offer the ability to measure absolute values of mCN. We conducted an in-depth survey of articles published between 1969 -- 2020 to create an overview of mCN values, to assess consensus values of tissue-specific mCN, and to evaluate consistency between methods of assessing mCN. We identify best practices for methods used to assess mCN, and we address the impact of using specific loci on the mitochondrial genome to determine mCN. Current data suggest that clinical measurement of mCN can provide diagnostic and prognostic value in a range of diseases and health conditions, with emphasis on cancer and cardiovascular disease, and the advent of means to measure absolute mCN should improve future clinical applications of mCN measurements.
Collapse
|
8
|
Wang L, Pelgrim CE, Swart DH, Krenning G, van der Graaf AC, Kraneveld AD, Leusink-Muis T, van Ark I, Garssen J, Folkerts G, Braber S. SUL-151 Decreases Airway Neutrophilia as a Prophylactic and Therapeutic Treatment in Mice after Cigarette Smoke Exposure. Int J Mol Sci 2021; 22:4991. [PMID: 34066693 PMCID: PMC8125869 DOI: 10.3390/ijms22094991] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/01/2021] [Accepted: 05/06/2021] [Indexed: 12/31/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) caused by cigarette smoke (CS) is featured by oxidative stress and chronic inflammation. Due to the poor efficacy of standard glucocorticoid therapy, new treatments are required. Here, we investigated whether the novel compound SUL-151 with mitoprotective properties can be used as a prophylactic and therapeutic treatment in a murine CS-induced inflammation model. SUL-151 (4 mg/kg), budesonide (500 μg/kg), or vehicle were administered via oropharyngeal instillation in this prophylactic and therapeutic treatment setting. The number of immune cells was determined in the bronchoalveolar lavage fluid (BALF). Oxidative stress response, mitochondrial adenosine triphosphate (ATP) production, and mitophagy-related proteins were measured in lung homogenates. SUL-151 significantly decreased more than 70% and 50% of CS-induced neutrophils in BALF after prophylactic and therapeutic administration, while budesonide showed no significant reduction in neutrophils. Moreover, SUL-151 prevented the CS-induced decrease in ATP and mitochondrial mtDNA and an increase in putative protein kinase 1 expression in the lung homogenates. The concentration of SUL-151 was significantly correlated with malondialdehyde level and radical scavenging activity in the lungs. SUL-151 inhibited the increased pulmonary inflammation and mitochondrial dysfunction in this CS-induced inflammation model, which implied that SUL-151 might be a promising candidate for COPD treatment.
Collapse
Affiliation(s)
- Lei Wang
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands; (L.W.); (C.E.P.); (A.D.K.); (T.L.-M.); (I.v.A.); (J.G.); (G.F.)
| | - Charlotte E. Pelgrim
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands; (L.W.); (C.E.P.); (A.D.K.); (T.L.-M.); (I.v.A.); (J.G.); (G.F.)
| | - Daniël H. Swart
- Sulfateq B.V., Admiraal de Ruyterlaan 5, 9726 GN Groningen, The Netherlands; (D.H.S.); (G.K.); (A.C.v.d.G.)
| | - Guido Krenning
- Sulfateq B.V., Admiraal de Ruyterlaan 5, 9726 GN Groningen, The Netherlands; (D.H.S.); (G.K.); (A.C.v.d.G.)
- Cardiovascular Regenerative Medicine, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Adrianus C. van der Graaf
- Sulfateq B.V., Admiraal de Ruyterlaan 5, 9726 GN Groningen, The Netherlands; (D.H.S.); (G.K.); (A.C.v.d.G.)
| | - Aletta D. Kraneveld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands; (L.W.); (C.E.P.); (A.D.K.); (T.L.-M.); (I.v.A.); (J.G.); (G.F.)
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, 3584 CM Utrecht, The Netherlands
| | - Thea Leusink-Muis
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands; (L.W.); (C.E.P.); (A.D.K.); (T.L.-M.); (I.v.A.); (J.G.); (G.F.)
| | - Ingrid van Ark
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands; (L.W.); (C.E.P.); (A.D.K.); (T.L.-M.); (I.v.A.); (J.G.); (G.F.)
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands; (L.W.); (C.E.P.); (A.D.K.); (T.L.-M.); (I.v.A.); (J.G.); (G.F.)
- Nutricia Research, Department of Immunology, 3584 CT Utrecht, The Netherlands
| | - Gert Folkerts
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands; (L.W.); (C.E.P.); (A.D.K.); (T.L.-M.); (I.v.A.); (J.G.); (G.F.)
| | - Saskia Braber
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands; (L.W.); (C.E.P.); (A.D.K.); (T.L.-M.); (I.v.A.); (J.G.); (G.F.)
| |
Collapse
|
9
|
Sotgia S, Fois AG, Paliogiannis P, Carru C, Mangoni AA, Zinellu A. Methodological Fallacies in the Determination of Serum/Plasma Glutathione Limit Its Translational Potential in Chronic Obstructive Pulmonary Disease. Molecules 2021; 26:molecules26061572. [PMID: 33809301 PMCID: PMC8000559 DOI: 10.3390/molecules26061572] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/07/2021] [Accepted: 03/10/2021] [Indexed: 11/16/2022] Open
Abstract
This study aimed to review and critically appraise the current methodological issues undermining the suitability of the measurement of serum/plasma glutathione, both in the total and reduced form, as a measure of systemic oxidative stress in chronic obstructive pulmonary disease (COPD). Fourteen relevant articles published between 2001 and 2020, in 2003 subjects, 1111 COPD patients, and 892 controls, were reviewed. Nine studies, in 902 COPD patients and 660 controls, measured glutathione (GSH) in the reduced form (rGSH), while the remaining five, in 209 COPD patients and 232 controls, measured total GSH (tGSH). In the control group, tGSH ranged between 5.7 and 7.5 µmol/L, whilst in COPD patients, it ranged between 4.5 and 7.4 µmol/L. The mean tGSH was 6.6 ± 0.9 µmol/L in controls and 5.9 ± 1.4 µmol/L in patients. The concentrations of rGSH in the control group showed a wide range, between 0.47 and 415 µmol/L, and a mean value of 71.9 ± 143.1 µmol/L. Similarly, the concentrations of rGSH in COPD patients ranged between 0.49 and 279 µmol/L, with a mean value of 49.9 ± 95.9 µmol/L. Pooled tGSH concentrations were not significantly different between patients and controls (standard mean difference (SMD) = -1.92, 95% CI -1582 to 0.0219; p = 0.057). Depending on whether the mean concentrations of rGSH in controls were within the accepted normal range of 0.5-5.0 µmol/L, pooled rGSH concentrations showed either a significant (SMD = -3.8, 95% CI -2.266 to -0.709; p < 0.0001) or nonsignificant (SMD = -0.712, 95% CI -0.627 to 0.293; p = 0.48) difference. These results illustrate the existing and largely unaddressed methodological issues in the interpretation of the serum/plasma concentrations of tGSH and rGSH in COPD.
Collapse
Affiliation(s)
- Salvatore Sotgia
- Department of Biomedical Sciences, School of Medicine, University of Sassari, 07100 Sassari, Italy; (P.P.); (C.C.); (A.Z.)
- Correspondence: ; Tel.: +39-079-229775; Fax: +39-079-228120
| | - Alessandro G. Fois
- Department of Clinical and Experimental Medicine, School of Medicine, University of Sassari, 07100 Sassari, Italy;
- Department of Respiratory Diseases, University Hospital Sassari (AOU-SS), 07100 Sassari, Italy
| | - Panagiotis Paliogiannis
- Department of Biomedical Sciences, School of Medicine, University of Sassari, 07100 Sassari, Italy; (P.P.); (C.C.); (A.Z.)
| | - Ciriaco Carru
- Department of Biomedical Sciences, School of Medicine, University of Sassari, 07100 Sassari, Italy; (P.P.); (C.C.); (A.Z.)
| | - Arduino A. Mangoni
- Discipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders University and Flinders Medical Centre, Adelaide, SA 5042, Australia;
| | - Angelo Zinellu
- Department of Biomedical Sciences, School of Medicine, University of Sassari, 07100 Sassari, Italy; (P.P.); (C.C.); (A.Z.)
| |
Collapse
|
10
|
Su Y, Tao X, Xu J. Protective effect of Alpinetin on rats with chronic obstructive pulmonary disease. Food Sci Nutr 2020; 8:6603-6611. [PMID: 33312544 PMCID: PMC7723217 DOI: 10.1002/fsn3.1952] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 09/27/2020] [Accepted: 10/01/2020] [Indexed: 12/14/2022] Open
Abstract
To investigate the function and mechanism of Alpinetin on chronic obstructive pulmonary disease (COPD) in rat model. The markers of lung injury (body weight/pulmonary function) were measured, and the protein levels of inflammatory-, apoptosis-, and fibrotic-related were determined by Western blot. HE/TUNEL/Masson staining was performed to investigate the mechanisms involved. The levels of inflammatory factors lung injury were detected by ELISA. The in vivo activities of all molecules were determined using a rat model. Alpinetin suppressed the injury of alveolus pulmonis cells occurred in vivo due to the decrease in inflammatory factors and biochemical markers by reduced the expression of TGF-β1, α-SMA, and TNF-α (p < .05), associated with the declined of Caspase-3 and Caspase-9 (p < .01). Additionally, protective affection of Alpinetin downregulated the IL-6 and upregulated the IL-10 (p < .01). Protective affection of Alpinetin inhibits the apoptosis, inflammation, and fibrosis of alveolus pulmonis cells in rat models.
Collapse
Affiliation(s)
- Yu Su
- Pharmaceutical Administration SectionAnqing Municipal HospitalAnqingChina
| | - Xianqi Tao
- Pharmaceutical Administration SectionAnqing Municipal HospitalAnqingChina
| | - Jianghui Xu
- Pharmaceutical Administration SectionAnqing Municipal HospitalAnqingChina
| |
Collapse
|
11
|
Cocco MP, White E, Xiao S, Hu D, Mak A, Sleiman P, Yang M, Bobbitt KR, Gui H, Levin AM, Hochstadt S, Whitehouse K, Rynkowski D, Barczak AJ, Abecasis G, Blackwell TW, Kang HM, Nickerson DA, Germer S, Ding J, Lanfear DE, Gilliland F, Gauderman WJ, Kumar R, Erle DJ, Martinez F, Hakonarson H, Burchard EG, Williams LK. Asthma and its relationship to mitochondrial copy number: Results from the Asthma Translational Genomics Collaborative (ATGC) of the Trans-Omics for Precision Medicine (TOPMed) program. PLoS One 2020; 15:e0242364. [PMID: 33237978 PMCID: PMC7688161 DOI: 10.1371/journal.pone.0242364] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 10/30/2020] [Indexed: 02/07/2023] Open
Abstract
Background Mitochondria support critical cellular functions, such as energy production through oxidative phosphorylation, regulation of reactive oxygen species, apoptosis, and calcium homeostasis. Objective Given the heightened level of cellular activity in patients with asthma, we sought to determine whether mitochondrial DNA (mtDNA) copy number measured in peripheral blood differed between individuals with and without asthma. Methods Whole genome sequence data was generated as part of the Trans-Omics for Precision Medicine (TOPMed) Program on participants from the Study of Asthma Phenotypes and Pharmacogenomic Interactions by Race-ethnicity (SAPPHIRE) and the Study of African Americans, Asthma, Genes, & Environment II (SAGE II). We restricted our analysis to individuals who self-identified as African American (3,651 asthma cases and 1,344 controls). Mitochondrial copy number was estimated using the sequencing read depth ratio for the mitochondrial and nuclear genomes. Respiratory complex expression was assessed using RNA-sequencing. Results Average mitochondrial copy number was significantly higher among individuals with asthma when compared with controls (SAPPHIRE: 218.60 vs. 200.47, P<0.001; SAGE II: 235.99 vs. 223.07, P<0.001). Asthma status was significantly associated with mitochondrial copy number after accounting for potential explanatory variables, such as participant age, sex, leukocyte counts, and mitochondrial haplogroup. Despite the consistent relationship between asthma status and mitochondrial copy number, the latter was not associated with time-to-exacerbation or patient-reported asthma control. Mitochondrial respiratory complex gene expression was disproportionately lower in individuals with asthma when compared with individuals without asthma and other protein-encoding genes. Conclusions We observed a robust association between asthma and higher mitochondrial copy number. Asthma having an effect on mitochondria function was also supported by lower respiratory complex gene expression in this group.
Collapse
Affiliation(s)
- Maxwell P. Cocco
- Center for Individualized and Genomic Medicine Research (CIGMA), Department of Internal Medicine, Henry Ford Health System, Detroit, Michigan, United States of America
| | - Evan White
- Center for Individualized and Genomic Medicine Research (CIGMA), Department of Internal Medicine, Henry Ford Health System, Detroit, Michigan, United States of America
| | - Shujie Xiao
- Center for Individualized and Genomic Medicine Research (CIGMA), Department of Internal Medicine, Henry Ford Health System, Detroit, Michigan, United States of America
| | - Donglei Hu
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Angel Mak
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Patrick Sleiman
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Mao Yang
- Center for Individualized and Genomic Medicine Research (CIGMA), Department of Internal Medicine, Henry Ford Health System, Detroit, Michigan, United States of America
| | - Kevin R. Bobbitt
- Department of Public Health Sciences, Henry Ford Health System, Detroit, Michigan, United States of America
| | - Hongsheng Gui
- Center for Individualized and Genomic Medicine Research (CIGMA), Department of Internal Medicine, Henry Ford Health System, Detroit, Michigan, United States of America
| | - Albert M. Levin
- Department of Public Health Sciences, Henry Ford Health System, Detroit, Michigan, United States of America
| | - Samantha Hochstadt
- Center for Individualized and Genomic Medicine Research (CIGMA), Department of Internal Medicine, Henry Ford Health System, Detroit, Michigan, United States of America
| | - Kyle Whitehouse
- Center for Individualized and Genomic Medicine Research (CIGMA), Department of Internal Medicine, Henry Ford Health System, Detroit, Michigan, United States of America
| | - Dean Rynkowski
- Center for Individualized and Genomic Medicine Research (CIGMA), Department of Internal Medicine, Henry Ford Health System, Detroit, Michigan, United States of America
| | - Andrea J. Barczak
- Lung Biology Center and UCSF CoLabs, University of California San Francisco, San Francisco, California, United States of America
| | - Gonçalo Abecasis
- Center for Statistical Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York, United States of America
| | - Thomas W. Blackwell
- Center for Statistical Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Hyun Min Kang
- Center for Statistical Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Deborah A. Nickerson
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
- Northwest Genomics Center, Seattle, Washington, United States of America
- Brotman Baty Institute, Seattle, Washington, United States of America
| | - Soren Germer
- New York Genome Center, New York, New York, United States of America
| | - Jun Ding
- Human Statistical Genetics Unit, Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, United States of America
| | - David E. Lanfear
- Center for Individualized and Genomic Medicine Research (CIGMA), Department of Internal Medicine, Henry Ford Health System, Detroit, Michigan, United States of America
| | - Frank Gilliland
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - W. James Gauderman
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Rajesh Kumar
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - David J. Erle
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
- Lung Biology Center and UCSF CoLabs, University of California San Francisco, San Francisco, California, United States of America
| | - Fernando Martinez
- Arizona Respiratory Center and Department of Pediatrics, University of Arizona, Tucson, Arizona, United States of America
| | - Hakon Hakonarson
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Esteban G. Burchard
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
- Department of Bioengineering & Therapeutic Sciences, University of California San Francisco, San Francisco, California, United States of America
| | - L. Keoki Williams
- Center for Individualized and Genomic Medicine Research (CIGMA), Department of Internal Medicine, Henry Ford Health System, Detroit, Michigan, United States of America
- * E-mail:
| |
Collapse
|
12
|
Wang X, Hart JE, Liu Q, Wu S, Nan H, Laden F. Association of particulate matter air pollution with leukocyte mitochondrial DNA copy number. ENVIRONMENT INTERNATIONAL 2020; 141:105761. [PMID: 32388147 PMCID: PMC7419671 DOI: 10.1016/j.envint.2020.105761] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/07/2020] [Accepted: 04/22/2020] [Indexed: 05/22/2023]
Abstract
BACKGROUND Ambient particulate matter (PM) has been associated with mitochondrial damage and dysfunction caused by excessive oxidative stress, but the associations between long-term PM exposure and leukocyte mitochondrial DNA copy number (mtDNAcn), a biomarker of mitochondrial dysfunction due to oxidative stress, are less studied. OBJECTIVES To investigate the associations between short-, intermediate- and long-term exposure (1-, 3- and 12-months) to different size fractions of PM (PM2.5, PM2.5-10 and PM10) and leukocyte mtDNAcn in a cross-sectional study. METHODS The associations between each of the PM exposure metrics with z scores of log-transformed mtDNAcn were examined using generalized linear regression models in 2758 female participants from the Nurses' Health Study (NHS). Monthly exposures to PM were estimated from spatio-temporal prediction models matched to each participants' address history. Potential effect modification by selected covariates was examined using multiplicative interaction terms and subgroup analyses. RESULTS In single-size fraction models, increases in all size fractions of PM were associated with decreases in mtDNAcn, although only models with longer averages of PM2.5 reached statistical significance. For example, an interquartile range (IQR) increase in 12-month average ambient PM2.5 (5.5 μg/m3) was associated with a 0.07 [95% confidence interval (95% CI): -0.13, -0.01; p-value = 0.02] decrease in mtDNAcn z score in both basic- and multivariable-adjusted models. Associations for PM2.5 were stronger after controlling for PM2.5-10 in two size-fraction models. CONCLUSIONS Our study suggests that long-term exposure to ambient PM2.5 is associated with decreased mtDNAcn in healthy women.
Collapse
Affiliation(s)
- Xinmei Wang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Jaime E Hart
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Exposure, Epidemiology and Risk Program, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Qisijing Liu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Shaowei Wu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China; Key Laboratory of Molecular Cardiovascular Sciences, Peking University, Ministry of Education, China.
| | - Hongmei Nan
- Department of Epidemiology, Richard M. Fairbanks School of Public Health, Indiana University, Indianapolis, IN, USA; Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, IN, USA
| | - Francine Laden
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Exposure, Epidemiology and Risk Program, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
13
|
Wang C, Just A, Heiss J, Coull BA, Hou L, Zheng Y, Sparrow D, Vokonas PS, Baccarelli A, Schwartz J. Biomarkers of aging and lung function in the normative aging study. Aging (Albany NY) 2020; 12:11942-11966. [PMID: 32561690 PMCID: PMC7343502 DOI: 10.18632/aging.103363] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 05/20/2020] [Indexed: 12/17/2022]
Abstract
Elderly individuals who are never smokers but have the same height and chronological age can have substantial differences in lung function. The underlying biological mechanisms are unclear. To evaluate the associations of different biomarkers of aging (BoA) and lung function, we performed a repeated-measures analysis in the Normative Aging Study using linear mixed-effect models. We generated GrimAgeAccel, PhenoAgeAccel, extrinsic and intrinsic epigenetic age acceleration using a publically available online calculator. We calculated Zhang's DNAmRiskScore based on 10 CpGs. We measured telomere length (TL) and mitochondrial DNA copy number (mtDNA-CN) using quantitative real-time polymerase chain reaction. A pulmonary function test was performed measuring forced expiratory volume in 1 second / forced vital capacity (FEV1/FVC), FEV1, and maximum mid-expiratory flow (MMEF). Epigenetic-based BoA were associated with lower lung function. For example, a one-year increase in GrimAgeAccel was associated with a 13.64 mL [95% confidence interval (CI), 5.11 to 22.16] decline in FEV1; a 0.2 increase in Zhang's DNAmRiskScore was associated with a 0.009 L/s (0.005 to 0.013) reduction in MMEF. No association was found between TL/mtDNA-CN and lung function. Overall, this paper shows that epigenetics might be a potential mechanism underlying pulmonary dysfunction in the elderly.
Collapse
Affiliation(s)
- Cuicui Wang
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Allan Just
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jonathan Heiss
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Brent A Coull
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA.,Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Lifang Hou
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Yinan Zheng
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - David Sparrow
- VA Normative Aging Study, VA Boston Healthcare System, Boston, MA 02130, USA.,Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Pantel S Vokonas
- VA Normative Aging Study, VA Boston Healthcare System, Boston, MA 02130, USA.,Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Andrea Baccarelli
- Department of Epidemiology and Environmental Health Sciences, Columbia University, New York, NY 10027, USA
| | - Joel Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| |
Collapse
|
14
|
Manevski M, Muthumalage T, Devadoss D, Sundar IK, Wang Q, Singh KP, Unwalla HJ, Chand HS, Rahman I. Cellular stress responses and dysfunctional Mitochondrial-cellular senescence, and therapeutics in chronic respiratory diseases. Redox Biol 2020; 33:101443. [PMID: 32037306 PMCID: PMC7251248 DOI: 10.1016/j.redox.2020.101443] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 01/14/2020] [Accepted: 01/22/2020] [Indexed: 02/06/2023] Open
Abstract
The abnormal inflammatory responses due to the lung tissue damage and ineffective repair/resolution in response to the inhaled toxicants result in the pathological changes associated with chronic respiratory diseases. Investigation of such pathophysiological mechanisms provides the opportunity to develop the molecular phenotype-specific diagnostic assays and could help in designing the personalized medicine-based therapeutic approaches against these prevalent diseases. As the central hubs of cell metabolism and energetics, mitochondria integrate cellular responses and interorganellar signaling pathways to maintain cellular and extracellular redox status and the cellular senescence that dictate the lung tissue responses. Specifically, as observed in chronic obstructive pulmonary disease (COPD) and pulmonary fibrosis, the mitochondria-endoplasmic reticulum (ER) crosstalk is disrupted by the inhaled toxicants such as the combustible and emerging electronic nicotine-delivery system (ENDS) tobacco products. Thus, the recent research efforts have focused on understanding how the mitochondria-ER dysfunctions and oxidative stress responses can be targeted to improve inflammatory and cellular dysfunctions associated with these pathologic illnesses that are exacerbated by viral infections. The present review assesses the importance of these redox signaling and cellular senescence pathways that describe the role of mitochondria and ER on the development and function of lung epithelial responses, highlighting the cause and effect associations that reflect the disease pathogenesis and possible intervention strategies.
Collapse
Affiliation(s)
- Marko Manevski
- Department of Immunology and NanoMedicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Thivanka Muthumalage
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Dinesh Devadoss
- Department of Immunology and NanoMedicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Isaac K Sundar
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Qixin Wang
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Kameshwar P Singh
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Hoshang J Unwalla
- Department of Immunology and NanoMedicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Hitendra S Chand
- Department of Immunology and NanoMedicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
15
|
New Insights into the Implication of Mitochondrial Dysfunction in Tissue, Peripheral Blood Mononuclear Cells, and Platelets during Lung Diseases. J Clin Med 2020; 9:jcm9051253. [PMID: 32357474 PMCID: PMC7287602 DOI: 10.3390/jcm9051253] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/16/2020] [Accepted: 04/20/2020] [Indexed: 12/13/2022] Open
Abstract
Lung diseases such as chronic obstructive pulmonary disease, asthma, pulmonary arterial hypertension, or idiopathic pulmonary fibrosis are major causes of morbidity and mortality. Complex, their physiopathology is multifactorial and includes lung mitochondrial dysfunction and enhanced reactive oxygen species (ROS) release, which deserves increased attention. Further, and importantly, circulating blood cells (peripheral blood mononuclear cells-(PBMCs) and platelets) likely participate in these systemic diseases. This review presents the data published so far and shows that circulating blood cells mitochondrial oxidative capacity are likely to be reduced in chronic obstructive pulmonary disease (COPD), but enhanced in asthma and pulmonary arterial hypertension in a context of increased oxidative stress. Besides such PBMCs or platelets bioenergetics modifications, mitochondrial DNA (mtDNA) changes have also been observed in patients. These new insights open exciting challenges to determine their role as biomarkers or potential guide to a new therapeutic approach in lung diseases.
Collapse
|
16
|
Kračun D, Klop M, Knirsch A, Petry A, Kanchev I, Chalupsky K, Wolf CM, Görlach A. NADPH oxidases and HIF1 promote cardiac dysfunction and pulmonary hypertension in response to glucocorticoid excess. Redox Biol 2020; 34:101536. [PMID: 32413743 PMCID: PMC7226895 DOI: 10.1016/j.redox.2020.101536] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 03/31/2020] [Accepted: 04/04/2020] [Indexed: 12/22/2022] Open
Abstract
Cardiovascular side effects are frequent problems accompanying systemic glucocorticoid therapy, although the underlying mechanisms are not fully resolved. Reactive oxygen species (ROS) have been shown to promote various cardiovascular diseases although the link between glucocorticoid and ROS signaling has been controversial. As the family of NADPH oxidases has been identified as important source of ROS in the cardiovascular system we investigated the role of NADPH oxidases in response to the synthetic glucocorticoid dexamethasone in the cardiovascular system in vitro and in vivo in mice lacking functional NADPH oxidases due to a mutation in the gene coding for the essential NADPH oxidase subunit p22phox. We show that dexamethasone induced NADPH oxidase-dependent ROS generation, leading to vascular proliferation and angiogenesis due to activation of the transcription factor hypoxia-inducible factor-1 (HIF1). Chronic treatment of mice with low doses of dexamethasone resulted in the development of systemic hypertension, cardiac hypertrophy and left ventricular dysfunction, as well as in pulmonary hypertension and pulmonary vascular remodeling. In contrast, mice deficient in p22phox-dependent NADPH oxidases were protected against these cardiovascular side effects. Mechanistically, dexamethasone failed to upregulate HIF1α levels in these mice, while vascular HIF1α deficiency prevented pulmonary vascular remodeling. Thus, p22phox-dependent NADPH oxidases and activation of the HIF pathway are critical elements in dexamethasone-induced cardiovascular pathologies and might provide interesting targets to limit cardiovascular side effects in patients on chronic glucocorticoid therapy.
Collapse
Affiliation(s)
- Damir Kračun
- Experimental and Molecular Pediatric Cardiology, Department of Pediatric Cardiology and Congenital Heart Diseases, German Heart Center Munich at the Technical University Munich, Munich, 80636, Germany
| | - Mathieu Klop
- Experimental and Molecular Pediatric Cardiology, Department of Pediatric Cardiology and Congenital Heart Diseases, German Heart Center Munich at the Technical University Munich, Munich, 80636, Germany
| | - Anna Knirsch
- Experimental and Molecular Pediatric Cardiology, Department of Pediatric Cardiology and Congenital Heart Diseases, German Heart Center Munich at the Technical University Munich, Munich, 80636, Germany
| | - Andreas Petry
- Experimental and Molecular Pediatric Cardiology, Department of Pediatric Cardiology and Congenital Heart Diseases, German Heart Center Munich at the Technical University Munich, Munich, 80636, Germany
| | - Ivan Kanchev
- Experimental and Molecular Pediatric Cardiology, Department of Pediatric Cardiology and Congenital Heart Diseases, German Heart Center Munich at the Technical University Munich, Munich, 80636, Germany
| | - Karel Chalupsky
- Experimental and Molecular Pediatric Cardiology, Department of Pediatric Cardiology and Congenital Heart Diseases, German Heart Center Munich at the Technical University Munich, Munich, 80636, Germany; Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the ASCR, v. v. i., Prague, Czech Republic
| | - Cordula M Wolf
- Department of Pediatric Cardiology and Congenital Heart Diseases, German Heart Center Munich at the Technical University Munich, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Agnes Görlach
- Experimental and Molecular Pediatric Cardiology, Department of Pediatric Cardiology and Congenital Heart Diseases, German Heart Center Munich at the Technical University Munich, Munich, 80636, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany.
| |
Collapse
|
17
|
Zhang WZ, Rice MC, Hoffman KL, Oromendia C, Barjaktarevic IZ, Wells JM, Hastie AT, Labaki WW, Cooper CB, Comellas AP, Criner GJ, Krishnan JA, Paine R, Hansel NN, Bowler RP, Barr RG, Peters SP, Woodruff PG, Curtis JL, Han MK, Ballman KV, Martinez FJ, Choi AM, Nakahira K, Cloonan SM, Choi ME. Association of urine mitochondrial DNA with clinical measures of COPD in the SPIROMICS cohort. JCI Insight 2020; 5:133984. [PMID: 31895696 DOI: 10.1172/jci.insight.133984] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 12/26/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUNDMitochondrial dysfunction, a proposed mechanism of chronic obstructive pulmonary disease (COPD) pathogenesis, is associated with the leakage of mitochondrial DNA (mtDNA), which may be detected extracellularly in various bodily fluids. Despite evidence for the increased prevalence of chronic kidney disease in COPD subjects and for mitochondrial dysfunction in the kidneys of murine COPD models, whether urine mtDNA (u-mtDNA) associates with measures of disease severity in COPD is unknown.METHODSCell-free u-mtDNA, defined as copy number of mitochondrially encoded NADH dehydrogenase-1 (MTND1) gene, was measured by quantitative PCR and normalized to urine creatinine in cell-free urine samples from participants in the Subpopulations and Intermediate Outcome Measures in COPD Study (SPIROMICS) cohort. Urine albumin/creatinine ratios (UACR) were measured in the same samples. Associations between u-mtDNA, UACR, and clinical disease parameters - including FEV1 % predicted, clinical measures of exercise tolerance, respiratory symptom burden, and chest CT measures of lung structure - were examined.RESULTSU-mtDNA and UACR levels were measured in never smokers (n = 64), smokers without airflow obstruction (n = 109), participants with mild/moderate COPD (n = 142), and participants with severe COPD (n = 168). U-mtDNA was associated with increased respiratory symptom burden, especially among smokers without COPD. Significant sex differences in u-mtDNA levels were observed, with females having higher u-mtDNA levels across all study subgroups. U-mtDNA associated with worse spirometry and CT emphysema in males only and with worse respiratory symptoms in females only. Similar associations were not found with UACR.CONCLUSIONU-mtDNA levels may help to identify distinct clinical phenotypes and underlying pathobiological differences in males versus females with COPD.TRIAL REGISTRATIONThis study has been registered at ClinicalTrials.gov ( NCT01969344).FUNDINGUS NIH, National Heart, Lung and Blood Institute, supplemented by contributions made through the Foundation for the NIH and the COPD Foundation from AstraZeneca/MedImmune, Bayer, Bellerophon Therapeutics, Boehringer-Ingelheim Pharmaceuticals Inc., Chiesi Farmaceutici S.p.A., Forest Research Institute Inc., GlaxoSmithKline, Grifols Therapeutics Inc., Ikaria Inc., Novartis Pharmaceuticals Corporation, Nycomed GmbH, ProterixBio, Regeneron Pharmaceuticals Inc., Sanofi, Sunovion, Takeda Pharmaceutical Company, and Theravance Biopharma and Mylan.
Collapse
Affiliation(s)
- William Z Zhang
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, New York, New York, USA.,New York-Presbyterian Hospital, Weill Cornell Medicine, New York, New York, USA
| | - Michelle C Rice
- Division of Nephrology and Hypertension, Joan and Sanford I. Weill Department of Medicine, and
| | - Katherine L Hoffman
- Department of Healthcare Policy and Research, Division of Biostatistics and Epidemiology, Weill Cornell Medicine, New York, New York, USA
| | - Clara Oromendia
- Department of Healthcare Policy and Research, Division of Biostatistics and Epidemiology, Weill Cornell Medicine, New York, New York, USA
| | - Igor Z Barjaktarevic
- Division of Pulmonary and Critical Care Medicine, UCLA Medical Center, Los Angeles, California, USA
| | - J Michael Wells
- University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Annette T Hastie
- Pulmonary, Critical Care, Allergy, and Immunologic Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Wassim W Labaki
- Division of Pulmonary and Critical Care Medicine, University of Michigan Health System, Ann Arbor, Michigan, USA
| | - Christopher B Cooper
- Division of Pulmonary and Critical Care Medicine, UCLA Medical Center, Los Angeles, California, USA
| | - Alejandro P Comellas
- Division of Pulmonary and Critical Care, University of Iowa, Iowa City, Iowa, USA
| | - Gerard J Criner
- Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Jerry A Krishnan
- Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois College of Medicine, Chicago, Illinois, USA
| | - Robert Paine
- Division of Respiratory, Critical Care, and Occupational Pulmonary Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Nadia N Hansel
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Russell P Bowler
- Division of Pulmonary, Critical Care Medicine, National Jewish Health, Denver, Colorado, USA
| | - R Graham Barr
- Columbia University Medical Center, New York, New York, USA
| | - Stephen P Peters
- Pulmonary, Critical Care, Allergy, and Immunologic Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Prescott G Woodruff
- Division of Pulmonary and Critical Care Medicine, UCSF, School of Medicine, San Francisco, California, USA
| | - Jeffrey L Curtis
- Division of Pulmonary and Critical Care Medicine, University of Michigan Health System, Ann Arbor, Michigan, USA.,Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, Michigan, USA
| | - Meilan K Han
- Division of Pulmonary and Critical Care Medicine, University of Michigan Health System, Ann Arbor, Michigan, USA
| | - Karla V Ballman
- Department of Healthcare Policy and Research, Division of Biostatistics and Epidemiology, Weill Cornell Medicine, New York, New York, USA
| | - Fernando J Martinez
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, New York, New York, USA.,New York-Presbyterian Hospital, Weill Cornell Medicine, New York, New York, USA
| | - Augustine Mk Choi
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, New York, New York, USA.,New York-Presbyterian Hospital, Weill Cornell Medicine, New York, New York, USA
| | - Kiichi Nakahira
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, New York, New York, USA
| | - Suzanne M Cloonan
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, New York, New York, USA
| | - Mary E Choi
- New York-Presbyterian Hospital, Weill Cornell Medicine, New York, New York, USA.,Division of Nephrology and Hypertension, Joan and Sanford I. Weill Department of Medicine, and
| | | |
Collapse
|
18
|
Solanki A, Rajendran A, Mohan S, Raj R, Vundinti BR. Mitochondrial DNA variations and mitochondrial dysfunction in Fanconi anemia. PLoS One 2020; 15:e0227603. [PMID: 31940411 PMCID: PMC6961948 DOI: 10.1371/journal.pone.0227603] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 12/23/2019] [Indexed: 11/18/2022] Open
Abstract
In-vitro studies with different Fanconi anemia (FA) cell lines and FANC gene silenced cell lines indicating involvement of mitochondria function in pathogenesis of FA have been reported. However, in-vivo studies have not been studied so far to understand the role of mitochondrial markers in pathogenesis of FA. We have carried out a systematic set of biomarker studies for elucidating involvement of mitochondrial dysfunction in disease pathogenesis for Indian FA patients. We report changes in the mtDNA number in 59% of FA patients studied, a high frequency of mtDNA variations (37.5% of non-synonymous variations and 62.5% synonymous variations) and downregulation of mtDNA complex-I and complex-III encoding genes of OXPHOS (p<0.05) as strong biomarkers for impairment of mitochondrial functions in FA. Deregulation of expression of mitophagy genes (ATG; p>0.05, Beclin-1; p>0.05, and MAP1-LC3, p<0.05) has also been observed, suggesting inability of FA cells to clear off impaired mitochondria. We hypothesize that accumulation of such impaired mitochondria in FA cells therefore may be the principal cause for bone marrow failure (BMF) and a plausible effect of inefficient clearance of impaired mitochondria in FA.
Collapse
Affiliation(s)
- Avani Solanki
- Department of Cytogenetics, National Institute of Immunohaematology, K.E.M. Hospital Campus, Parel, Mumbai, Maharashtra, India
| | - Aruna Rajendran
- Department of Hematology, Institute of Child Health and Hospital for Children, Egmore, Chennai, Tamil Nadu, India
| | - Sheila Mohan
- Pediatric Haematology Department, Apollo Children’s Hospital, Chennai, Tamil Nadu, India
| | - Revathy Raj
- Pediatric Haematology Department, Apollo Children’s Hospital, Chennai, Tamil Nadu, India
| | - Babu Rao Vundinti
- Department of Cytogenetics, National Institute of Immunohaematology, K.E.M. Hospital Campus, Parel, Mumbai, Maharashtra, India
- * E-mail:
| |
Collapse
|
19
|
Zhan D, Tanavalee A, Tantavisut S, Ngarmukos S, Edwards SW, Honsawek S. Relationships between blood leukocyte mitochondrial DNA copy number and inflammatory cytokines in knee osteoarthritis. J Zhejiang Univ Sci B 2020; 21:42-52. [PMID: 31898441 DOI: 10.1631/jzus.b1900352] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Osteoarthritis (OA) is a degenerative articular disorder manifested by cartilage destruction, subchondral sclerosis, osteophytes, and synovitis, resulting in chronic joint pain and physical disability in the elderly. The purpose of this study was to investigate mitochondrial DNA copy number (mtDNACN) and inflammatory cytokines in primary knee OA patients and healthy volunteers. A total of 204 knee OA patients and 169 age-matched healthy volunteers were recruited. Their relative blood leukocyte mtDNACN was assessed by quantitative real-time polymerase chain reaction (qRT-PCR), and ten inflammatory cytokines in their plasma were detected by multiplex immunoassay. Blood leukocyte mtDNACN in the OA group was significantly lower than that in the control group. Leukocyte mtDNACN in the control group was negatively correlated with their age (r=-0.380, P<0.0001), whereas mtDNACN in the OA group was positively correlated with their age (r=0.198, P<0.001). Plasma interleukin-4 (IL-4) and IL-6 were significantly higher in the knee OA group than in the control group. The plasma IL-6 level was positively correlated with blood leukocyte mtDNACN in the OA group (r=0.547, P=0.0014). IL-5 showed as a major factor (coefficient 0.69) in the second dimension of principle components analysis (PCA)-transformed data and was significantly higher in the OA group (P<0.001) as well as negatively correlated with mtDNACN (r=-0.577, P<0.001). These findings suggest that elevation of plasma IL-4 and IL-6 and a relative reduction in mtDNACN might be effective biomarkers for knee OA. IL-5 is a plausible factor responsible for decreasing blood leukocyte mtDNACN in knee OA patients.
Collapse
Affiliation(s)
- Dong Zhan
- Joint PhD Program in Biomedical Sciences and Biotechnology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand.,Department of Biochemistry, Osteoarthritis and Musculoskeleton Research Unit, Faculty of Medicine, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Chulalongkorn University, Bangkok 10330, Thailand
| | - Aree Tanavalee
- Department of Orthopaedics, Vinai Parkpian Orthopaedic Research Center, Faculty of Medicine, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Chulalongkorn University, Bangkok 10330, Thailand
| | - Saran Tantavisut
- Department of Orthopaedics, Vinai Parkpian Orthopaedic Research Center, Faculty of Medicine, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Chulalongkorn University, Bangkok 10330, Thailand
| | - Srihatach Ngarmukos
- Department of Orthopaedics, Vinai Parkpian Orthopaedic Research Center, Faculty of Medicine, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Chulalongkorn University, Bangkok 10330, Thailand
| | - Steven W Edwards
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Sittisak Honsawek
- Department of Biochemistry, Osteoarthritis and Musculoskeleton Research Unit, Faculty of Medicine, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Chulalongkorn University, Bangkok 10330, Thailand.,Department of Orthopaedics, Vinai Parkpian Orthopaedic Research Center, Faculty of Medicine, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
20
|
Yoon YS, Jin M, Sin DD. Accelerated lung aging and chronic obstructive pulmonary disease. Expert Rev Respir Med 2019; 13:369-380. [PMID: 30735057 DOI: 10.1080/17476348.2019.1580576] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
INTRODUCTION The prevalence of chronic obstructive pulmonary disease (COPD) increases exponentially with aging. Its pathogenesis, however, is not well known and aside from smoking cessation, there are no disease-modifying treatments for this disease. Areas covered: COPD is associated with accelerating aging and aging-related diseases. In this review, we will discuss the hallmarks of aging including genomic instability, telomere attrition, epigenetic alteration, loss of proteostasis, mitochondrial dysfunction, deregulated nutrient sensing, cellular senescence, stem cell exhaustion, and altered intercellular communication, which may be involved in COPD pathogenesis. Expert commentary: COPD and the aging process share similar molecular and cellular changes. Aging-related molecular pathways may represent novel therapeutic targets and biomarkers for COPD.
Collapse
Affiliation(s)
- Young Soon Yoon
- a Centre for Heart and Lung Innovation , St. Paul's Hospital & University of British Columbia , Vancouver , BC , Canada.,b Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine , Dongguk University Ilsan Hospital , Goyang , South Korea
| | - Minhee Jin
- a Centre for Heart and Lung Innovation , St. Paul's Hospital & University of British Columbia , Vancouver , BC , Canada
| | - Don D Sin
- a Centre for Heart and Lung Innovation , St. Paul's Hospital & University of British Columbia , Vancouver , BC , Canada.,c Division of Respiratory Medicine (Department of Medicine) , University of British Columbia , Vancouver , BC , Canada
| |
Collapse
|
21
|
Mitochondrial DNA copy number is associated with psychosis severity and anti-psychotic treatment. Sci Rep 2018; 8:12743. [PMID: 30143692 PMCID: PMC6109159 DOI: 10.1038/s41598-018-31122-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 08/08/2018] [Indexed: 02/06/2023] Open
Abstract
Mitochondrial pathology has been implicated in the pathogenesis of psychotic disorders. A few studies have proposed reduced leukocyte mitochondrial DNA (mtDNA) copy number in schizophrenia and bipolar disorder type I, compared to healthy controls. However, it is unknown if mtDNA copy number alteration is driven by psychosis, comorbidity or treatment. Whole blood mtDNA copy number was determined in 594 psychosis patients and corrected for platelet to leukocyte count ratio (mtDNAcnres). The dependence of mtDNAcnres on clinical profile, metabolic comorbidity and antipsychotic drug exposure was assessed. mtDNAcnres was reduced with age (β = −0.210, p < 0.001), use of clozapine (β = −0.110,p = 0.012) and risperidone (β = −0.109,p = 0.014), dependent on prescribed dosage (p = 0.006 and p = 0.026, respectively), and the proportion of life on treatment (p = 0.006). Clozapine (p = 0.0005) and risperidone (p = 0.0126) had a reducing effect on the mtDNA copy number also in stem cell-derived human neurons in vitro at therapeutic plasma levels. For patients not on these drugs, psychosis severity had an effect (β = −0.129, p = 0.017), similar to age (β = −0.159, p = 0.003) and LDL (β = −0.119, p = 0.029) on whole blood mtDNAcnres. Further research is required to determine if mtDNAcnres reflects any psychosis-intrinsic mitochondrial changes.
Collapse
|
22
|
Oxidative stress in chronic lung disease: From mitochondrial dysfunction to dysregulated redox signaling. Mol Aspects Med 2018; 63:59-69. [PMID: 30098327 DOI: 10.1016/j.mam.2018.08.001] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 08/02/2018] [Accepted: 08/07/2018] [Indexed: 12/31/2022]
Abstract
The lung is a delicate organ with a large surface area that is continuously exposed to the external environment, and is therefore highly vulnerable to exogenous sources of oxidative stress. In addition, each of its approximately 40 cell types can also generate reactive oxygen species (ROS), as byproducts of cellular metabolism and in a more regulated manner by NOX enzymes with functions in host defense, immune regulation, and cell proliferation or differentiation. To effectively regulate the biological actions of exogenous and endogenous ROS, various enzymatic and non-enzymatic antioxidant defense systems are present in all lung cell types to provide adequate protection against their injurious effects and to allow for appropriate ROS-mediated biological signaling. Acute and chronic lung diseases are commonly thought to be associated with increased oxidative stress, evidenced by altered cellular or extracellular redox status, increased irreversible oxidative modifications in proteins or DNA, mitochondrial dysfunction, and altered expression or activity of NOX enzymes and antioxidant enzyme systems. However, supplementation strategies with generic antioxidants have been minimally successful in prevention or treatment of lung disease, most likely due to their inability to distinguish between harmful and beneficial actions of ROS. Recent studies have attempted to identify specific redox-based mechanisms that may mediate chronic lung disease, such as allergic asthma or pulmonary fibrosis, which provide opportunities for selective redox-based therapeutic strategies that may be useful in treatment of these diseases.
Collapse
|
23
|
Released Mitochondrial DNA Following Intestinal Ischemia Reperfusion Induces the Inflammatory Response and Gut Barrier Dysfunction. Sci Rep 2018; 8:7350. [PMID: 29743484 PMCID: PMC5943336 DOI: 10.1038/s41598-018-25387-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 03/06/2018] [Indexed: 01/10/2023] Open
Abstract
Ischemia-reperfusion (I/R) injury is a challenging clinical problem, especially injuries involving the gastrointestinal tract. Mitochondrial DNA (mtDNA) is released upon cell death and stress, and can induce the inflammatory response. We aimed to investigate the role of mtDNA in the pathogenesis of intestinal I/R. Intestinal I/R model was established with clamping of the superior mesenteric artery, and IEC-6 cells were incubated under hypoxia/reoxygenation (H/R) conditions to simulate I/R injury. Using in vitro models, H/R up-regulated oxidative stress, disrupted mitochondrial activity and the mitochondrial membrane potential, induced apoptosis and elevated the mtDNA levels in the supernatant of intestinal epithelial cells, and the co-culture of mtDNA with human primary dendritic cells significantly elevated TLR9-MyD88 expression and enhanced the production of inflammatory cytokines and chemokines. MtDNA was also released in a mouse model of intestinal I/R and was associated with the increased secretion of inflammatory cytokines and increased gut barrier injury compared with that of the sham group. We concluded that mtDNA contributes to I/R injury and may serve as a biomarker of intestinal I/R. We further suggest that oxidized mtDNA originated from IECs during intestinal I/R exacerbates the acute proinflammatory process by eliciting the production of proinflammatory cytokines and chemokines.
Collapse
|
24
|
Alpert NM, Guehl N, Ptaszek L, Pelletier-Galarneau M, Ruskin J, Mansour MC, Wooten D, Ma C, Takahashi K, Zhou Y, Shoup TM, Normandin MD, El Fakhri G. Quantitative in vivo mapping of myocardial mitochondrial membrane potential. PLoS One 2018; 13:e0190968. [PMID: 29338024 PMCID: PMC5770041 DOI: 10.1371/journal.pone.0190968] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 12/22/2017] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Mitochondrial membrane potential (ΔΨm) arises from normal function of the electron transport chain. Maintenance of ΔΨm within a narrow range is essential for mitochondrial function. Methods for in vivo measurement of ΔΨm do not exist. We use 18F-labeled tetraphenylphosphonium (18F-TPP+) to measure and map the total membrane potential, ΔΨT, as the sum of ΔΨm and cellular (ΔΨc) electrical potentials. METHODS Eight pigs, five controls and three with a scar-like injury, were studied. Pigs were studied with a dynamic PET scanning protocol to measure 18F-TPP+ volume of distribution, VT. Fractional extracellular space (fECS) was measured in 3 pigs. We derived equations expressing ΔΨT as a function of VT and the volume-fractions of mitochondria and fECS. Seventeen segment polar maps and parametric images of ΔΨT were calculated in millivolts (mV). RESULTS In controls, mean segmental ΔΨT = -129.4±1.4 mV (SEM). In pigs with segmental tissue injury, ΔΨT was clearly separated from control segments but variable, in the range -100 to 0 mV. The quality of ΔΨT maps was excellent, with low noise and good resolution. Measurements of ΔΨT in the left ventricle of pigs agree with previous in in-vitro measurements. CONCLUSIONS We have analyzed the factors affecting the uptake of voltage sensing tracers and developed a minimally invasive method for mapping ΔΨT in left ventricular myocardium of pigs. ΔΨT is computed in absolute units, allowing for visual and statistical comparison of individual values with normative data. These studies demonstrate the first in vivo application of quantitative mapping of total tissue membrane potential, ΔΨT.
Collapse
Affiliation(s)
- Nathaniel M. Alpert
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Nicolas Guehl
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Leon Ptaszek
- Cardiac Arrhythmia Service, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Matthieu Pelletier-Galarneau
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jeremy Ruskin
- Cardiac Arrhythmia Service, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Moussa C. Mansour
- Cardiac Arrhythmia Service, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Dustin Wooten
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Chao Ma
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Kazue Takahashi
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Yun Zhou
- The Russell H. Morgan Department of Radiology and Radiological Science, School of Medicine Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Timothy M. Shoup
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Marc D. Normandin
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Georges El Fakhri
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
25
|
Abstract
Aging is characterized by progressive deterioration of physiological integrity, decline in homeostasis, and degeneration of the tissues that occurs after the reproductive phase of life is complete, leading to impaired function. This deterioration is an important risk factor for chronic lung pathologies such as chronic obstructive pulmonary disease (COPD). COPD is a disease that develops gradually. Emphysematous changes in the lung take years to develop after exposure to cigarette smoke; hence, the vast majority of patients are elderly. There has been a dramatic increase in the life expectancy of the general population, resulting in an increased burden of chronic lung diseases. There is growing evidence that molecular mechanisms involved in aging may also play a role in COPD pathogenesis. Recently, the nine hallmarks of aging were identified. In this article, we will review the nine hallmarks of aging and how each hallmark contributes to the pathogenesis of COPD.
Collapse
Affiliation(s)
- Shweta P Kukrety
- Department of Internal Medicine, Creighton University, Omaha, NE, USA
| | - Jai D Parekh
- Department of Internal Medicine, Creighton University, Omaha, NE, USA
| | - Kristina L Bailey
- Department of Internal Medicine, University of Nebraska Medical Center; Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, USA
| |
Collapse
|
26
|
Zhang R, Wang Y, Ye K, Picard M, Gu Z. Independent impacts of aging on mitochondrial DNA quantity and quality in humans. BMC Genomics 2017; 18:890. [PMID: 29157198 PMCID: PMC5697406 DOI: 10.1186/s12864-017-4287-0] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 11/08/2017] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The accumulation of mitochondrial DNA (mtDNA) mutations, and the reduction of mtDNA copy number, both disrupt mitochondrial energetics, and may contribute to aging and age-associated phenotypes. However, there are few genetic and epidemiological studies on the spectra of blood mtDNA heteroplasmies, and the distribution of mtDNA copy numbers in different age groups and their impact on age-related phenotypes. In this work, we used whole-genome sequencing data of isolated peripheral blood mononuclear cells (PBMCs) from the UK10K project to investigate in parallel mtDNA heteroplasmy and copy number in 1511 women, between 17 and 85 years old, recruited in the TwinsUK cohorts. RESULTS We report a high prevalence of pathogenic mtDNA heteroplasmies in this population. We also find an increase in mtDNA heteroplasmies with age (β = 0.011, P = 5.77e-6), and showed that, on average, individuals aged 70-years or older had 58.5% more mtDNA heteroplasmies than those under 40-years old. Conversely, mtDNA copy number decreased by an average of 0.4 copies per year (β = -0.395, P = 0.0097). Multiple regression analyses also showed that age had independent effects on mtDNA copy number decrease and heteroplasmy accumulation. Finally, mtDNA copy number was positively associated with serum bicarbonate level (P = 4.46e-5), and inversely correlated with white blood cell count (P = 0.0006). Moreover, the aggregated heteroplasmy load was associated with blood apolipoprotein B level (P = 1.33e-5), linking the accumulation of mtDNA mutations to age-related physiological markers. CONCLUSIONS Our population-based study indicates that both mtDNA quality and quantity are influenced by age. An open question for the future is whether interventions that would contribute to maintain optimal mtDNA copy number and prevent the expansion of heteroplasmy could promote healthy aging.
Collapse
Affiliation(s)
- Ruoyu Zhang
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Yiqin Wang
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Kaixiong Ye
- Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Martin Picard
- Department of Psychiatry, Division of Behavioral Medicine, Department of Neurology and Columbia Translational Neuroscience Initiative, Columbia Aging Center, Columbia University Medical Center, New York, NY, 10032, USA
| | - Zhenglong Gu
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
27
|
Miłkowska-Dymanowska J, Białas AJ, Makowska J, Wardzynska A, Górski P, Piotrowski WJ. Geroprotectors as a therapeutic strategy for COPD - where are we now? Clin Interv Aging 2017; 12:1811-1817. [PMID: 29123386 PMCID: PMC5661461 DOI: 10.2147/cia.s142483] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Although current therapies in chronic obstructive pulmonary disease (COPD) improve the quality of life, they do not satisfactorily reduce disease progression or mortality. There are still many gaps in knowledge about the cellular, molecular, and genetic mechanisms contributing to pathobiology of this disease. However, increasing evidence suggests that accelerated aging, chronic systemic inflammation, and oxidative stress play major roles in pathogenesis in COPD, thus opening new opportunities in therapy. Therefore, the aim of our review was to describe and discuss some of the most widely used therapeutics that affect the root cause of aging and oxidative stress (metformin, melatonin, sirolimus, statins, vitamin D, and testosterone) in context of COPD therapy.
Collapse
Affiliation(s)
| | - Adam J Białas
- Department of Pneumology and Allergy, 1st Chair of Internal Medicine
- Healthy Aging Research Centre
| | | | - Aleksandra Wardzynska
- Healthy Aging Research Centre
- Department of Immunology, Rheumatology, and Allergy, Medical University of Lodz, Lodz, Poland
| | - Paweł Górski
- Department of Pneumology and Allergy, 1st Chair of Internal Medicine
- Healthy Aging Research Centre
| | - Wojciech J Piotrowski
- Department of Pneumology and Allergy, 1st Chair of Internal Medicine
- Healthy Aging Research Centre
| |
Collapse
|
28
|
Lee AY, Jang Y, Hong SH, Chang SH, Park S, Kim S, Kang KS, Kim JE, Cho MH. Ephedrine-induced mitophagy via oxidative stress in human hepatic stellate cells. J Toxicol Sci 2017; 42:461-473. [PMID: 28717105 DOI: 10.2131/jts.42.461] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
The herb Ephedra sinica (also known as Chinese ephedra or Ma Huang), used in traditional Chinese medicine, contains alkaloids identical to ephedrine and pseudoephedrine as its principal active constituents. Recent studies have reported that ephedrine has various side effects in the cardiovascular and nervous systems. In addition, herbal Ephedra, a plant containing many pharmacologically active alkaloids, principally ephedrine, has been reported to cause acute hepatitis. Many studies reported clinical cases, however, the cellular mechanism of liver toxicity by ephedrine remains unknown. In this study, we investigated hepatotoxicity and key regulation of mitophagy in ephedrine-treated LX-2 cells. Ephedrine triggered mitochondrial oxidative stress and depolarization. Mitochondrial swelling and autolysosome were observed in ephedrine-treated cells. Ephedrine also inhibited mitochondrial biogenesis, and the mitochondrial copy number was decreased. Parkin siRNA recovered the ephedrine-induced mitochondrial damage. Excessive mitophagy lead to cell death through imbalance of autophagic flux. Moreover, antioxidants and reducing Parkin level could serve as therapeutic targets for ephedrine-induced hepatotoxicity.
Collapse
Affiliation(s)
- Ah Young Lee
- Laboratory of Toxicology, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Korea
| | - Yoonjeong Jang
- Laboratory of Toxicology, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Korea
| | - Seong-Ho Hong
- Laboratory of Toxicology, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Korea.,Present address: New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Korea
| | - Seung-Hee Chang
- Laboratory of Toxicology, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Korea
| | - Sungjin Park
- Laboratory of Toxicology, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Korea.,Present address: Department of Pharmacology and Medical Science, Metabolic Diseases and Cell Signaling Laboratory, Research Institute for Medical Sciences, College of Medicine, Chungnam National University, Korea
| | - Sanghwa Kim
- Laboratory of Toxicology, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Korea.,Graduate Group of Tumor Biology, Seoul National University, Korea
| | - Kyung-Sun Kang
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Korea
| | - Ji-Eun Kim
- Laboratory of Toxicology, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Korea.,Present address: Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Canada
| | - Myung-Haing Cho
- Laboratory of Toxicology, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Korea.,Graduate School of Convergence Science and Technology, Seoul National University, Korea.,Graduate Group of Tumor Biology, Seoul National University, Korea.,Advanced Institute of Convergence Technology, Seoul National University, Korea.,Institute of GreenBio Science Technology, Seoul National University, Korea
| |
Collapse
|
29
|
Yang QF, Lu TT, Shu CM, Feng LF, Chang HT, Ji QY. Eosinophilic biomarkers for detection of acute exacerbation of chronic obstructive pulmonary disease with or without pulmonary embolism. Exp Ther Med 2017; 14:3198-3206. [PMID: 28912870 DOI: 10.3892/etm.2017.4876] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 05/19/2017] [Indexed: 01/09/2023] Open
Abstract
Eosinophilia has been implicated in the pathophysiology of acute exacerbation of chronic obstructive pulmonary disease (AECOPD). However, the role of eosinophil activation in the development of AECOPD remains unclear. In the present study, the reliability of plasma levels of eosinophil activation markers, including eosinophil cationic protein (ECP), major basic protein (MBP), eosinophil-derived neurotoxin (EDN) and eosinophil peroxidase (EPX), were measured and used as diagnostic biomarkers of AECOPD with or without pulmonary embolism (PE). A total of 47 patients with AECOPD, 30 patients with AECOPD/PE and 35 healthy adults were enrolled in the present study. Plasma levels of ECP, EDN, EPX and MBP were measured using commercial ELISA kits. The mean concentrations of plasma ECP, EDN, EPX and MBP in the patients with AECOPD was significantly 2.87-, 3.06-, 1.60- and 1.92-fold higher, respectively, compared with the control group (P<0.05). Similar results were obtained in patients with AECOPD/PE, for whom plasma levels of ECP, EDN, EPX and MBP were significantly 2.06-, 2.21-, 1.42- and 2.42-fold higher, respectively, compared with the controls (P<0.05). No significant differences were observed in the levels of these proteins between patients with AECOPD or AECOPD/PE. Among the four potential markers, ECP was determined to be the optimal marker for distinguishing patients with AECOPD or AECOPD/PE from the controls. No significant correlation was observed between marker concentrations and gender, age or disease severity. The results of the present study may have clinical applications in the diagnosis of AECOPD using these novel biomarkers.
Collapse
Affiliation(s)
- Qiong-Fang Yang
- Department of Respiratory Medicine, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang 322100, P.R. China
| | - Ting-Ting Lu
- Department of Science Education, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang 322100, P.R. China
| | - Cai-Min Shu
- Department of Respiratory Medicine, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang 322100, P.R. China
| | - Lan-Fang Feng
- Department of Respiratory Medicine, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang 322100, P.R. China
| | - Hao-Teng Chang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung 404, Taiwan, R.O.C.,Department of Computer Science and Information Engineering, Asia University, Taichung 413, Taiwan, R.O.C
| | - Qiao-Ying Ji
- Department of Respiratory Medicine, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang 322100, P.R. China
| |
Collapse
|
30
|
Kietzmann T, Petry A, Shvetsova A, Gerhold JM, Görlach A. The epigenetic landscape related to reactive oxygen species formation in the cardiovascular system. Br J Pharmacol 2017; 174:1533-1554. [PMID: 28332701 PMCID: PMC5446579 DOI: 10.1111/bph.13792] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 03/06/2017] [Accepted: 03/08/2017] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular diseases are among the leading causes of death worldwide. Reactive oxygen species (ROS) can act as damaging molecules but also represent central hubs in cellular signalling networks. Increasing evidence indicates that ROS play an important role in the pathogenesis of cardiovascular diseases, although the underlying mechanisms and consequences of pathophysiologically elevated ROS in the cardiovascular system are still not completely resolved. More recently, alterations of the epigenetic landscape, which can affect DNA methylation, post-translational histone modifications, ATP-dependent alterations to chromatin and non-coding RNA transcripts, have been considered to be of increasing importance in the pathogenesis of cardiovascular diseases. While it has long been accepted that epigenetic changes are imprinted during development or even inherited and are not changed after reaching the lineage-specific expression profile, it becomes more and more clear that epigenetic modifications are highly dynamic. Thus, they might provide an important link between the actions of ROS and cardiovascular diseases. This review will provide an overview of the role of ROS in modulating the epigenetic landscape in the context of the cardiovascular system. LINKED ARTICLES This article is part of a themed section on Redox Biology and Oxidative Stress in Health and Disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.12/issuetoc.
Collapse
Affiliation(s)
- Thomas Kietzmann
- Faculty of Biochemistry and Molecular Medicine, Biocenter OuluUniversity of OuluOuluFinland
| | - Andreas Petry
- Experimental and Molecular Pediatric CardiologyGerman Heart Center Munich at the TU MunichMunichGermany
- DZHK (German Centre for Cardiovascular Research)Partner Site Munich Heart AllianceMunichGermany
| | - Antonina Shvetsova
- Faculty of Biochemistry and Molecular Medicine, Biocenter OuluUniversity of OuluOuluFinland
| | - Joachim M Gerhold
- Institute of Molecular and Cell BiologyUniversity of TartuTartuEstonia
| | - Agnes Görlach
- Experimental and Molecular Pediatric CardiologyGerman Heart Center Munich at the TU MunichMunichGermany
- DZHK (German Centre for Cardiovascular Research)Partner Site Munich Heart AllianceMunichGermany
| |
Collapse
|
31
|
Affiliation(s)
- Claude A. Piantadosi
- Departments of Medicine, Pathology, and Anesthesiology, Duke University Medical Center, Durham, North Carolina 27710;
| | - Hagir B. Suliman
- Departments of Anesthesiology and Pathology, Duke University School of Medicine, Durham, North Carolina 27710;
| |
Collapse
|
32
|
Białas AJ, Sitarek P, Miłkowska-Dymanowska J, Piotrowski WJ, Górski P. The Role of Mitochondria and Oxidative/Antioxidative Imbalance in Pathobiology of Chronic Obstructive Pulmonary Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:7808576. [PMID: 28105251 PMCID: PMC5220474 DOI: 10.1155/2016/7808576] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Accepted: 10/23/2016] [Indexed: 12/12/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a common preventable and treatable disease, characterized by persistent airflow limitation that is usually progressive and associated with an enhanced chronic inflammatory response in the airways and the lung to noxious particles or gases. The major risk factor of COPD, which has been proven in many studies, is the exposure to cigarette smoke. However, it is 15-20% of all smokers who develop COPD. This is why we should recognize the pathobiology of COPD as involving a complex interaction between several factors, including genetic vulnerability. Oxidant-antioxidant imbalance is recognized as one of the significant factors in COPD pathogenesis. Numerous exogenous and endogenous sources of ROS are present in pathobiology of COPD. One of endogenous sources of ROS is mitochondria. Although leakage of electrons from electron transport chain and forming of ROS are the effect of physiological functioning of mitochondria, there are various intra- and extracellular factors which may increase this amount and significantly contribute to oxidative-antioxidative imbalance. With the coexistence with impaired antioxidant defence, all these issues lead to oxidative and carbonyl stress. Both of these states play a significant role in pathobiology of COPD and may account for development of major comorbidities of this disease.
Collapse
Affiliation(s)
- Adam Jerzy Białas
- Department of Pneumology and Allergy, 1st Chair of Internal Medicine, Medical University of Lodz, Łódź, Poland
- Healthy Aging Research Centre (HARC), Medical University of Lodz, Łódź, Poland
| | - Przemysław Sitarek
- Department of Biology and Pharmaceutical Botany, Medical University of Łódź, Łódź, Poland
| | - Joanna Miłkowska-Dymanowska
- Department of Pneumology and Allergy, 1st Chair of Internal Medicine, Medical University of Lodz, Łódź, Poland
- Healthy Aging Research Centre (HARC), Medical University of Lodz, Łódź, Poland
| | - Wojciech Jerzy Piotrowski
- Department of Pneumology and Allergy, 1st Chair of Internal Medicine, Medical University of Lodz, Łódź, Poland
- Healthy Aging Research Centre (HARC), Medical University of Lodz, Łódź, Poland
| | - Paweł Górski
- Department of Pneumology and Allergy, 1st Chair of Internal Medicine, Medical University of Lodz, Łódź, Poland
- Healthy Aging Research Centre (HARC), Medical University of Lodz, Łódź, Poland
| |
Collapse
|
33
|
Agrawal A, Mabalirajan U. Rejuvenating cellular respiration for optimizing respiratory function: targeting mitochondria. Am J Physiol Lung Cell Mol Physiol 2015; 310:L103-13. [PMID: 26566906 DOI: 10.1152/ajplung.00320.2015] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 11/10/2015] [Indexed: 12/26/2022] Open
Abstract
Altered bioenergetics with increased mitochondrial reactive oxygen species production and degradation of epithelial function are key aspects of pathogenesis in asthma and chronic obstructive pulmonary disease (COPD). This motif is not unique to obstructive airway disease, reported in related airway diseases such as bronchopulmonary dysplasia and parenchymal diseases such as pulmonary fibrosis. Similarly, mitochondrial dysfunction in vascular endothelium or skeletal muscles contributes to the development of pulmonary hypertension and systemic manifestations of lung disease. In experimental models of COPD or asthma, the use of mitochondria-targeted antioxidants, such as MitoQ, has substantially improved mitochondrial health and restored respiratory function. Modulation of noncoding RNA or protein regulators of mitochondrial biogenesis, dynamics, or degradation has been found to be effective in models of fibrosis, emphysema, asthma, and pulmonary hypertension. Transfer of healthy mitochondria to epithelial cells has been associated with remarkable therapeutic efficacy in models of acute lung injury and asthma. Together, these form a 3R model--repair, reprogramming, and replacement--for mitochondria-targeted therapies in lung disease. This review highlights the key role of mitochondrial function in lung health and disease, with a focus on asthma and COPD, and provides an overview of mitochondria-targeted strategies for rejuvenating cellular respiration and optimizing respiratory function in lung diseases.
Collapse
Affiliation(s)
- Anurag Agrawal
- CSIR Institute of Genomics and Integrative Biology, Delhi, India
| | | |
Collapse
|