1
|
Orts JM, Naranjo E, Pina S, Orts A, Muñoz-Martí M, Tejada M, Parrado J. Polyurethane waste valorization: A Two-Phase process using Ozonization and Rhodococcus pyridinivorans fermentation for biofertilizer production. BIORESOURCE TECHNOLOGY 2025; 416:131814. [PMID: 39542054 DOI: 10.1016/j.biortech.2024.131814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 11/11/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
A circular economy process has been developed to convert polyurethane waste into biofertilizing microorganisms through a sequential chemical/biological process. The chemical phase involves the complete depolymerization of polyurethane using ozone attack, generating an aqueous extract (OLE) composed of small, bioavailable molecules such as polyols, isocyanate derivatives, and carboxylic acids. The biological phase utilizes OLE for the generation of biomass with biofertilizing functional activity through Rhodococcus pyridinivorans fermentation. The metabolic-proteomic expression during the biodegradation of OLE involves the synthesis of numerous enzymes such as cutinases, hydrolases, proteases, esterases and oxidoreductases, which participate in the degradation of chemical compounds like benzene derivatives, phenols, or plastic polymers. OLE has been converted into microorganisms with biofertilizing properties, including nitrogen fixation, phytohormone production and siderophores. This process contributes to sustainability by diverting polyurethane waste from landfills, reducing the environmental impact of chemical fertilizers and promoting a more sustainable agricultural system.
Collapse
Affiliation(s)
- Jose M Orts
- Departament of Biochemistry and Molecular Biology, Facultad de Farmacia, University of Seville, St./Prof. García Gonzalez 2, 41012 Seville, Spain.
| | - Emilia Naranjo
- Departament of Biochemistry and Molecular Biology, Facultad de Farmacia, University of Seville, St./Prof. García Gonzalez 2, 41012 Seville, Spain
| | - Susana Pina
- Departament of Biochemistry and Molecular Biology, Facultad de Farmacia, University of Seville, St./Prof. García Gonzalez 2, 41012 Seville, Spain
| | - Angel Orts
- Departament of Biochemistry and Molecular Biology, Facultad de Farmacia, University of Seville, St./Prof. García Gonzalez 2, 41012 Seville, Spain
| | - Marta Muñoz-Martí
- Materials Area, Technology Centre of Furniture and Wood of the Region of Murcia (CETEM), St./ Perales, no number, 30510 Yecla, Murcia, Spain
| | - Manuel Tejada
- Environmental Edaphologic Research Group, Department of Crystallography, Mineralogy and Agricultural Chemistry E.T.S.I.A. University of Seville, Seville, Spain
| | - Juan Parrado
- Departament of Biochemistry and Molecular Biology, Facultad de Farmacia, University of Seville, St./Prof. García Gonzalez 2, 41012 Seville, Spain
| |
Collapse
|
2
|
Zampolli J, Collina E, Lasagni M, Di Gennaro P. Insights into polyethylene biodegradative fingerprint of Pseudomonas citronellolis E5 and Rhodococcus erythropolis D4 by phenotypic and genome-based comparative analyses. Front Bioeng Biotechnol 2024; 12:1472309. [PMID: 39726982 PMCID: PMC11669507 DOI: 10.3389/fbioe.2024.1472309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 11/08/2024] [Indexed: 12/28/2024] Open
Abstract
Polyethylene (PE) is the most-produced polyolefin, and consequently, it is the most widely found plastic waste worldwide. PE biodegradation is under study by applying different (micro)organisms in order to understand the biodegradative mechanism in the majority of microbes. This study aims to identify novel bacterial species with compelling metabolic potential and strategic genetic repertoires for PE biodegradation. Pseudomonas citronellolis E5 is newly isolated from solid organic waste contaminated with plastic debris, and Rhodococcus erythropolis D4 was selected for its promising potential in biodegradable plastic determined by its genetic repertoire. P. citronellolis E5 was selected for its ability to grow on PE as the only carbon and energy source. Meaningful extracellular secreted laccase activity was also characterized for D4 during growth on PE (E5 and D4 strains have a laccase activity of (2 ± 1)×10-3 U mg-1 and (3 ± 1)×10-3 U mg-1, respectively). Despite the highest level of cell numbers recorded at 7 days of growth on PE for both strains, the patterns of the metabolic products obtained and degraded during 60 days on PE were dissimilar in the two bacteria at different sampling times. However, they mainly produced metabolites belonging to carboxylic acids and alkanes with varying numbers of carbons in the aliphatic chains. Whole-genome sequence analyses of P. citronellolis E5 compared to R. erythropolis D4 and genetic determinant prediction (by gene annotation and multiple sequence alignment with reference gene products) have been performed, providing a list of 16 and 42 gene products putatively related to different metabolic steps of PE biodegradation. Altogether, these results support insights into PE biodegradation by bacteria of the Pseudomonas and Rhodococcus genera from metabolic and genetic perspectives as a base to build up novel biotechnological platforms.
Collapse
Affiliation(s)
- Jessica Zampolli
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Elena Collina
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milan, Italy
| | - Marina Lasagni
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milan, Italy
| | - Patrizia Di Gennaro
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
3
|
Anwer A, Shahzadi A, Nawaz H, Majeed MI, Alshammari A, Albekairi NA, Hussain MU, Amin I, Bano A, Ashraf A, Rehman N, Pallares RM, Akhtar N. Differentiation of different dibenzothiophene (DBT) desulfurizing bacteria via surface-enhanced Raman spectroscopy (SERS). RSC Adv 2024; 14:20290-20299. [PMID: 38932985 PMCID: PMC11200166 DOI: 10.1039/d4ra01735h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/01/2024] [Indexed: 06/28/2024] Open
Abstract
Fossil fuels are considered vital natural energy resources on the Earth, and sulfur is a natural component present in them. The combustion of fossil fuels releases a large amount of sulfur in the form of SO x in the atmosphere. SO x is the major cause of environmental problems, mainly air pollution. The demand for fuels with ultra-low sulfur is growing rapidly. In this aspect, microorganisms are proven extremely effective in removing sulfur through a process known as biodesulfurization. A major part of sulfur in fossil fuels (coal and oil) is present in thiophenic structures such as dibenzothiophene (DBT) and substituted DBTs. In this study, the identification and characterization of DBT desulfurizing bacteria (Chryseobacterium sp. IS, Gordonia sp. 4N, Mycolicibacterium sp. J2, and Rhodococcus sp. J16) based on their specific biochemical constituents were conducted using surface-enhanced Raman spectroscopy (SERS). By differentiating DBT desulfurizing bacteria, researchers can gain insights into their unique characteristics, thus leading to improved biodesulfurization strategies. SERS was used to differentiate all these species based on their biochemical differences and different SERS vibrational bands, thus emerging as a potential technique. Moreover, multivariate data analysis techniques such as principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) were employed to differentiate these DBT desulfurizing bacteria on the basis of their characteristic SERS spectral signals. For all these isolates, the accuracy, sensitivity, and specificity are above 90%, and an AUC (area under the curve) value of close to 1 was achieved for all PLS-DA models.
Collapse
Affiliation(s)
- Ayesha Anwer
- Department of Chemistry, University of Agriculture Faisalabad Faisalabad 38000 Pakistan
| | - Aqsa Shahzadi
- Department of Chemistry, University of Agriculture Faisalabad Faisalabad 38000 Pakistan
| | - Haq Nawaz
- Department of Chemistry, University of Agriculture Faisalabad Faisalabad 38000 Pakistan
| | - Muhammad Irfan Majeed
- Department of Chemistry, University of Agriculture Faisalabad Faisalabad 38000 Pakistan
| | - Abdulrahman Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University Post Box 2455 Riyadh 11451 Saudi Arabia
| | - Norah A Albekairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University Post Box 2455 Riyadh 11451 Saudi Arabia
| | - Muhammad Umar Hussain
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS) Faisalabad 38000 Pakistan
| | - Itfa Amin
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS) Faisalabad 38000 Pakistan
| | - Aqsa Bano
- Department of Chemistry, University of Agriculture Faisalabad Faisalabad 38000 Pakistan
| | - Ayesha Ashraf
- Department of Chemistry, University of Agriculture Faisalabad Faisalabad 38000 Pakistan
| | - Nimra Rehman
- Department of Chemistry, University of Agriculture Faisalabad Faisalabad 38000 Pakistan
| | - Roger M Pallares
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital Aachen 52074 Germany
| | - Nasrin Akhtar
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS) Faisalabad 38000 Pakistan
| |
Collapse
|
4
|
Ferrari E, Di Benedetto G, Firrincieli A, Presentato A, Frascari D, Cappelletti M. Unravelling the role of the group 6 soluble di-iron monooxygenase (SDIMO) SmoABCD in alkane metabolism and chlorinated alkane degradation. Microb Biotechnol 2024; 17:e14453. [PMID: 38683670 PMCID: PMC11057499 DOI: 10.1111/1751-7915.14453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/07/2024] [Accepted: 03/09/2024] [Indexed: 05/02/2024] Open
Abstract
Soluble di-iron monooxygenases (SDIMOs) are multi-component enzymes catalysing the oxidation of various substrates. These enzymes are characterized by high sequence and functional diversity that is still not well understood despite their key role in biotechnological processes including contaminant biodegradation. In this study, we analysed a mutant of Rhodoccocus aetherivorans BCP1 (BCP1-2.10) characterized by a transposon insertion in the gene smoA encoding the alpha subunit of the plasmid-located SDIMO SmoABCD. The mutant BCP1-2.10 showed a reduced capacity to grow on propane, lost the ability to grow on butane, pentane and n-hexane and was heavily impaired in the capacity to degrade chloroform and trichloroethane. The expression of the additional SDIMO prmABCD in BCP1-2.10 probably allowed the mutant to partially grow on propane and to degrade it, to some extent, together with the other short-chain n-alkanes. The complementation of the mutant, conducted by introducing smoABCD in the genome as a single copy under a constitutive promoter or within a plasmid under a thiostreptone-inducible promoter, allowed the recovery of the alkanotrophic phenotype as well as the capacity to degrade chlorinated n-alkanes. The heterologous expression of smoABCD allowed a non-alkanotrophic Rhodococcus strain to grow on pentane and n-hexane when the gene cluster was introduced together with the downstream genes encoding alcohol and aldehyde dehydrogenases and a GroEL chaperon. BCP1 smoA gene was shown to belong to the group 6 SDIMOs, which is a rare group of monooxygenases mostly present in Mycobacterium genus and in a few Rhodococcus strains. SmoABCD originally evolved in Mycobacterium and was then acquired by Rhodococcus through horizontal gene transfer events. This work extends the knowledge of the biotechnologically relevant SDIMOs by providing functional and evolutionary insights into a group 6 SDIMO in Rhodococcus and demonstrating its key role in the metabolism of short-chain alkanes and degradation of chlorinated n-alkanes.
Collapse
Affiliation(s)
- Eleonora Ferrari
- Department of Pharmacy and Biotechnology (FaBit)University of BolognaBolognaItaly
| | - Giulio Di Benedetto
- Department of Pharmacy and Biotechnology (FaBit)University of BolognaBolognaItaly
| | - Andrea Firrincieli
- Department for Innovation in Biological, Agro‐Food and Forest SystemsUniversity of TusciaViterboItaly
| | - Alessandro Presentato
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF)University of PalermoPalermoItaly
| | - Dario Frascari
- Department of Civil, Chemical, Environmental and Materials Engineering (DICAM)University of BolognaBolognaItaly
| | - Martina Cappelletti
- Department of Pharmacy and Biotechnology (FaBit)University of BolognaBolognaItaly
| |
Collapse
|
5
|
Zampolli J, Vezzini D, Brocca S, Di Gennaro P. Insights into the biodegradation of polycaprolactone through genomic analysis of two plastic-degrading Rhodococcus bacteria. Front Microbiol 2024; 14:1284956. [PMID: 38235436 PMCID: PMC10791956 DOI: 10.3389/fmicb.2023.1284956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/17/2023] [Indexed: 01/19/2024] Open
Abstract
Polycaprolactone (PCL) is an aliphatic polyester often utilized as a model to investigate the biodegradation potential of bacteria and the involved catabolic enzymes. This study aims to characterize PCL biodegradative metabolic potential and correlate it to genomic traits of two plastic-degrading bacteria-Rhodococcus erythropolis D4 strain, a new isolate from plastic-rich organic waste treatment plant, and Rhodococcus opacus R7, known for its relevant biodegradative potential on polyethylene and similar compounds. After preliminary screening for bacteria capable of hydrolyzing tributyrin and PCL, the biodegradation of PCL was evaluated in R. erythropolis D4 and R. opacus R7 by measuring their growth and the release of PCL catabolism products up to 42 days. After 7 days, an increase of at least one order of magnitude of cell number was observed. GC-MS analyses of 28-day culture supernatants showed an increase in carboxylic acids in both Rhodococcus cultures. Furthermore, hydrolytic activity (~5 U mg-1) on short/medium-chain p-nitrophenyl esters was detected in their supernatant. Finally, a comparative genome analysis was performed between two Rhodococcus strains. A comparison with genes annotated in reference strains revealed hundreds of gene products putatively related to polyester biodegradation. Based on additional predictive analysis of gene products, gene expression was performed on a smaller group of genes, revealing that exposure to PCL elicits the greatest increase in transcription for a single gene in strain R7 and two genes, including that encoding a putative lipase, in strain D4. This work exhibits a multifaceted experimental approach to exploit the broad potential of Rhodococcus strains in the field of plastic biodegradation.
Collapse
Affiliation(s)
| | | | | | - Patrizia Di Gennaro
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
6
|
Giovanella P, Taketani RG, Gil-Solsona R, Saldanha LL, Naranjo SBE, Sancho JV, Portolés T, Andreote FD, Rodríguez-Mozaz S, Barceló D, Sette LD. A comprehensive study on diesel oil bioremediation under microcosm conditions using a combined microbiological, enzymatic, mass spectrometry, and metabarcoding approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:101250-101266. [PMID: 37648922 DOI: 10.1007/s11356-023-29474-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 08/20/2023] [Indexed: 09/01/2023]
Abstract
This study aims at the application of a marine fungal consortium (Aspergillus sclerotiorum CRM 348 and Cryptococcus laurentii CRM 707) for the bioremediation of diesel oil-contaminated soil under microcosm conditions. The impact of biostimulation (BS) and/or bioaugmentation (BA) treatments on diesel-oil biodegradation, soil quality, and the structure of the microbial community were studied. The use of the fungal consortium together with nutrients (BA/BS) resulted in a TPH (Total Petroleum Hydrocarbon) degradation 42% higher than that obtained by natural attenuation (NA) within 120 days. For the same period, a 72 to 92% removal of short-chain alkanes (C12 to C19) was obtained by BA/BS, while only 3 to 65% removal was achieved by NA. BA/BS also showed high degradation efficiency of long-chain alkanes (C20 to C24) at 120 days, reaching 90 and 92% of degradation of icosane and heneicosane, respectively. In contrast, an increase in the levels of cyclosiloxanes (characterized as bacterial bioemulsifiers and biosurfactants) was observed in the soil treated by the consortium. Conversely, the NA presented a maximum of 37% of degradation of these alkane fractions. The 5-ringed PAH benzo(a)pyrene, was removed significantly better with the BA/BS treatment than with the NA (48 vs. 38 % of biodegradation, respectively). Metabarcoding analysis revealed that BA/BS caused a decrease in the soil microbial diversity with a concomitant increase in the abundance of specific microbial groups, including hydrocarbon-degrading (bacteria and fungi) and also an enhancement in soil microbial activity. Our results highlight the great potential of this consortium for soil treatment after diesel spills, as well as the relevance of the massive sequencing, enzymatic, microbiological and GC-HRMS analyses for a better understanding of diesel bioremediation.
Collapse
Affiliation(s)
- Patricia Giovanella
- Departamento de Biologia Geral e Aplicada, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil
- Centro de Estudos Ambientais (CEA), Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil
| | - Rodrigo Gouvêa Taketani
- Escola Superior de Agricultura Luiz de Queiroz (ESALQ), Universidade de São Paulo (USP), Piracicaba, SP, Brazil
- Sustainable Soils and Crops, Rothamsted Research, Harpenden, United Kingdom
| | - Ruben Gil-Solsona
- Catalan Institute for Water Research (ICRA-CERCA), Parc Científic i Tecnològic de la Universitat de Girona, Girona, Spain
- University of Girona, Girona, Spain
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research - Severo Ochoa Excellence Center (IDAEA), Spanish Council of Scientific Research (CSIC), Barcelona, Spain
| | - Luiz Leonardo Saldanha
- Departamento de Biologia Geral e Aplicada, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil
| | - Samantha Beatríz Esparza Naranjo
- Departamento de Biologia Geral e Aplicada, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil
- Instituto Latino-Americano de Ciências da Vida e da Natureza, Universidade Federal da Integração Latino Americana, Parque tecnológico Itaipu, Foz do Iguaçu, PR, Brazil
| | - Juan V Sancho
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water (IUPA), University Jaume I, Castellón de la Plana, Spain
| | - Tania Portolés
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water (IUPA), University Jaume I, Castellón de la Plana, Spain
| | - Fernando Dini Andreote
- Escola Superior de Agricultura Luiz de Queiroz (ESALQ), Universidade de São Paulo (USP), Piracicaba, SP, Brazil
| | - Sara Rodríguez-Mozaz
- Catalan Institute for Water Research (ICRA-CERCA), Parc Científic i Tecnològic de la Universitat de Girona, Girona, Spain
- University of Girona, Girona, Spain
| | - Damià Barceló
- Catalan Institute for Water Research (ICRA-CERCA), Parc Científic i Tecnològic de la Universitat de Girona, Girona, Spain
- University of Girona, Girona, Spain
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research - Severo Ochoa Excellence Center (IDAEA), Spanish Council of Scientific Research (CSIC), Barcelona, Spain
| | - Lara Durães Sette
- Departamento de Biologia Geral e Aplicada, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil.
- Centro de Estudos Ambientais (CEA), Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil.
| |
Collapse
|
7
|
Ma J, Zhuang Y, Wang Y, Zhu N, Wang T, Xiao H, Chen J. Update on new trend and progress of the mechanism of polycyclic aromatic hydrocarbon biodegradation by Rhodococcus, based on the new understanding of relevant theories: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:93345-93362. [PMID: 37548784 DOI: 10.1007/s11356-023-28894-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 07/17/2023] [Indexed: 08/08/2023]
Abstract
Rapid industrial and societal developments have led to substantial increases in the use and exploitation of petroleum, and petroleum hydrocarbon pollution has become a serious threat to human health and the environment. Polycyclic aromatic hydrocarbons (PAHs) are primary components of petroleum hydrocarbons. In recent years, microbial remediation of PAHs pollution has been regarded as the most promising and cost-effective treatment measure because of its low cost, robust efficacy, and lack of secondary pollution. Rhodococcus bacteria are regarded as one of main microorganisms that can effectively degrade PAHs because of their wide distribution, broad degradation spectrum, and network-like evolution of degradation gene clusters. In this review, we focus on the biological characteristics of Rhodococcus; current trends in PAHs degradation based on knowledge maps; and the cellular structural, biochemical, and enzymatic basis of degradation mechanisms, along with whole genome and transcriptional regulation. These research advances provide clues for the prospects of Rhodococcus-based applications in environmental protection.
Collapse
Affiliation(s)
- Jinglin Ma
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Yan Zhuang
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Yonggang Wang
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Ning Zhu
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Ting Wang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730030, China
| | - Hongbin Xiao
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730030, China
| | - Jixiang Chen
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, 730050, China.
| |
Collapse
|
8
|
Musialowski M, Kowalewska Ł, Stasiuk R, Krucoń T, Debiec-Andrzejewska K. Metabolically versatile psychrotolerant Antarctic bacterium Pseudomonas sp. ANT_H12B is an efficient producer of siderophores and accompanying metabolites (SAM) useful for agricultural purposes. Microb Cell Fact 2023; 22:85. [PMID: 37120505 PMCID: PMC10149013 DOI: 10.1186/s12934-023-02105-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/21/2023] [Indexed: 05/01/2023] Open
Abstract
BACKGROUND Bacterial siderophores are chelating compounds with the potential of application in agriculture, due to their plant growth-promoting (PGP) properties, however, high production and purification costs are limiting factors for their wider application. Cost-efficiency of the production could be increased by omitting purification processes, especially since siderophores accompanying metabolites (SAM) often also possess PGP traits. In this study, the metabolism versatility of Pseudomonas sp. ANT_H12B was used for the optimization of siderophores production and the potential of these metabolites and SAM was characterized in the context of PGP properties. RESULTS The metabolic diversity of ANT_H12B was examined through genomic analysis and phenotype microarrays. The strain was found to be able to use numerous C, N, P, and S sources, which allowed for the design of novel media suitable for efficient production of siderophores in the form of pyoverdine (223.50-512.60 μM). Moreover, depending on the culture medium, the pH of the siderophores and SAM solutions varied from acidic (pH < 5) to alkaline (pH > 8). In a germination test, siderophores and SAM were shown to have a positive effect on plants, with a significant increase in germination percentage observed in beetroot, pea, and tobacco. The PGP potential of SAM was further elucidated through GC/MS analysis, which revealed other compounds with PGP potential, such as indolic acetic acids, organic acids, fatty acids, sugars and alcohols. These compounds not only improved seed germination but could also potentially be beneficial for plant fitness and soil quality. CONCLUSIONS Pseudomonas sp. ANT_H12B was presented as an efficient producer of siderophores and SAM which exhibit PGP potential. It was also shown that omitting downstream processes could not only limit the costs of siderophores production but also improve their agricultural potential.
Collapse
Affiliation(s)
- M Musialowski
- Department of Geomicrobiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Ł Kowalewska
- Department of Plant Anatomy and Cytology, Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, 02-096, Warsaw, Poland
| | - R Stasiuk
- Department of Geomicrobiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - T Krucoń
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - K Debiec-Andrzejewska
- Department of Geomicrobiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland.
| |
Collapse
|
9
|
Wei G, Zhang G, Li M, Liu C, Wei F, Wang Y, Huang Z, Chen Z, Zheng Y, Chen S, Dong L. Core rhizosphere microbiome of Panax notoginseng and its associations with belowground biomass and saponin contents. Environ Microbiol 2022; 24:6238-6251. [PMID: 36229418 DOI: 10.1111/1462-2920.16245] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 10/01/2022] [Indexed: 01/12/2023]
Abstract
The core rhizosphere microbiome is critical for plant fitness. However, its contribution to the belowground biomass and saponin contents of Panax notoginseng remains unclear. High-throughput sequencing of amplicon and metagenome was performed to obtain the microbiome profiles and functional traits in P. notoginseng rhizosphere across a large spatial scale. We obtained 639 bacterial and 310 fungal core OTUs, which were mainly affected by soil pH and organic matter (OM). The core taxa were grouped into four ecological clusters (i.e. high pH, low pH, high OM and low OM) for sharing similar habitat preferences. Furthermore, structural equation modelling (SEM) and correlation analyses revealed that the diversity and composition of core microbiomes, as well as the metagenome-derived microbial functions, were related to belowground biomass and saponin contents. Key microbial genera related to the two plant indicators were also identified. In short, this study explored the main driving environmental factors of core microbiomes in the P. notoginseng rhizosphere and revealed that the core microbiomes and microbial functions potentially contributed to the belowground biomass and saponin contents of the plant. This work may enhance our understanding of interactions between microbes and perennial plants and improve our ability to manage root microbiota for the sustainable production of herbal medicine.
Collapse
Affiliation(s)
- Guangfei Wei
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Guozhuang Zhang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Mengzhi Li
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Congsheng Liu
- Zhangzhou Pien Tze Huang Pharmaceutical Co., Ltd, Fujian, China
| | - Fugang Wei
- Wenshan Miaoxiang Notoginseng Technology, Co., Ltd, Wenshan, China
| | - Yong Wang
- Institute of Sanqi Research, Wenshan University, Wenshan, China
| | - Zhixin Huang
- Zhangzhou Pien Tze Huang Pharmaceutical Co., Ltd, Fujian, China
| | - Zhongjian Chen
- Wenshan Miaoxiang Notoginseng Technology, Co., Ltd, Wenshan, China
| | - Yuqing Zheng
- Zhangzhou Pien Tze Huang Pharmaceutical Co., Ltd, Fujian, China
| | - Shilin Chen
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Linlin Dong
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
10
|
Ivshina I, Bazhutin G, Tyumina E. Rhodococcus strains as a good biotool for neutralizing pharmaceutical pollutants and obtaining therapeutically valuable products: Through the past into the future. Front Microbiol 2022; 13:967127. [PMID: 36246215 PMCID: PMC9557007 DOI: 10.3389/fmicb.2022.967127] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 09/12/2022] [Indexed: 11/18/2022] Open
Abstract
Active pharmaceutical ingredients present a substantial risk when they reach the environment and drinking water sources. As a new type of dangerous pollutants with high chemical resistance and pronounced biological effects, they accumulate everywhere, often in significant concentrations (μg/L) in ecological environments, food chains, organs of farm animals and humans, and cause an intense response from the aquatic and soil microbiota. Rhodococcus spp. (Actinomycetia class), which occupy a dominant position in polluted ecosystems, stand out among other microorganisms with the greatest variety of degradable pollutants and participate in natural attenuation, are considered as active agents with high transforming and degrading impacts on pharmaceutical compounds. Many representatives of rhodococci are promising as unique sources of specific transforming enzymes, quorum quenching tools, natural products and novel antimicrobials, biosurfactants and nanostructures. The review presents the latest knowledge and current trends regarding the use of Rhodococcus spp. in the processes of pharmaceutical pollutants’ biodegradation, as well as in the fields of biocatalysis and biotechnology for the production of targeted pharmaceutical products. The current literature sources presented in the review can be helpful in future research programs aimed at promoting Rhodococcus spp. as potential biodegraders and biotransformers to control pharmaceutical pollution in the environment.
Collapse
|
11
|
Zampolli J, Orro A, Vezzini D, Di Gennaro P. Genome-Based Exploration of Rhodococcus Species for Plastic-Degrading Genetic Determinants Using Bioinformatic Analysis. Microorganisms 2022; 10:1846. [PMID: 36144448 PMCID: PMC9506104 DOI: 10.3390/microorganisms10091846] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/07/2022] [Accepted: 09/13/2022] [Indexed: 11/24/2022] Open
Abstract
Plastic polymer waste management is an increasingly prevalent issue. In this paper, Rhodococcus genomes were explored to predict new plastic-degrading enzymes based on recently discovered biodegrading enzymes for diverse plastic polymers. Bioinformatics prediction analyses were conducted using 124 gene products deriving from diverse microorganisms retrieved from databases, literature data, omic-approaches, and functional analyses. The whole results showed the plastic-degrading potential of Rhodococcus genus. Among the species with high plastic-degrading potential, R. erythropolis, R. equi, R. opacus, R. qingshengii, R. fascians, and R. rhodochrous appeared to be the most promising for possible plastic removal. A high number of genetic determinants related to polyester biodegradation were obtained from different Rhodococcus species. However, score calculation demonstrated that Rhodococcus species (especially R. pyridinivorans, R. qingshengii, and R. hoagii) likely possess PE-degrading enzymes. The results identified diverse oxidative systems, including multicopper oxidases, alkane monooxygenases, cytochrome P450 hydroxylases, para-nitrobenzylesterase, and carboxylesterase, and they could be promising reference sequences for the biodegradation of plastics with C-C backbone, plastics with heteroatoms in the main chain, and polyesters, respectively. Notably, the results of this study could be further exploited for biotechnological applications in biodegradative processes using diverse Rhodococcus strains and through catalytic reactions.
Collapse
Affiliation(s)
- Jessica Zampolli
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Alessandro Orro
- Institute of Biomedical Technologies, National Research Council, CNR, Via Fratelli Cervi 19, 20133 Segrate, Italy
| | - Daniele Vezzini
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Patrizia Di Gennaro
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| |
Collapse
|
12
|
Identification of a Novel Biosurfactant with Antimicrobial Activity Produced by Rhodococcus opacus R7. Microorganisms 2022; 10:microorganisms10020475. [PMID: 35208929 PMCID: PMC8877126 DOI: 10.3390/microorganisms10020475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 11/18/2022] Open
Abstract
Rhodococcus members excrete secondary metabolites, especially compounds which act as biosurfactants. In this work, we demonstrated the ability of Rhodococcus opacus R7 to produce a novel bioactive compound belonging to the class of biosurfactants with antimicrobial properties during the growth on naphthalene. Chemical and biochemical analyses of the isolated compound demonstrated that the biosurfactant could be classified as a hydrophobic peptide. The ESI-full mass spectrometry revealed that the isolated biosurfactant showed a molecular weight of 1292 Da and NMR spectra evidenced the composition of the following amino acid residues: Ala, Thr, Asp, Gly, Ser. Surfactant activity of the R. opacus R7 compound was quantified by the critical micelle dilution (CMD) method and the critical micelle concentration (CMC) was estimated around 20 mg L−1 with a corresponding surface tension of 48 mN m−1. Moreover, biological assays demonstrated that R. opacus R7 biosurfactant peptide exhibited antimicrobial activity against Escherichia coli ATCC 29522 and Staphylococcus aureus ATCC 6538 with the minimum inhibition growth concentration (MIC) values of 2.6 mg mL−1 and 1.7 mg mL−1, respectively. In this study for the first time, a hydrophobic peptide with both biosurfactant and antimicrobial activity was isolated from a bacterium belonging to Rhodococcus genus.
Collapse
|
13
|
Firrincieli A, Grigoriev B, Dostálová H, Cappelletti M. The Complete Genome Sequence and Structure of the Oleaginous Rhodococcus opacus Strain PD630 Through Nanopore Technology. Front Bioeng Biotechnol 2022; 9:810571. [PMID: 35252163 PMCID: PMC8892189 DOI: 10.3389/fbioe.2021.810571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 12/27/2021] [Indexed: 11/19/2022] Open
Affiliation(s)
- Andrea Firrincieli
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Beatrice Grigoriev
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | | | - Martina Cappelletti
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
- *Correspondence: Martina Cappelletti,
| |
Collapse
|
14
|
Zampolli J, Orro A, Manconi A, Ami D, Natalello A, Di Gennaro P. Transcriptomic analysis of Rhodococcus opacus R7 grown on polyethylene by RNA-seq. Sci Rep 2021; 11:21311. [PMID: 34716360 PMCID: PMC8556283 DOI: 10.1038/s41598-021-00525-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/12/2021] [Indexed: 12/20/2022] Open
Abstract
Plastic waste management has become a global issue. Polyethylene (PE) is the most abundant synthetic plastic worldwide, and one of the most resistant to biodegradation. Indeed, few bacteria can degrade polyethylene. In this paper, the transcriptomic analysis unveiled for the first time Rhodococcus opacus R7 complex genetic system based on diverse oxidoreductases for polyethylene biodegradation. The RNA-seq allowed uncovering genes putatively involved in the first step of oxidation. In-depth investigations through preliminary bioinformatic analyses and enzymatic assays on the supernatant of R7 grown in the presence of PE confirmed the activation of genes encoding laccase-like enzymes. Moreover, the transcriptomic data allowed identifying candidate genes for the further steps of short aliphatic chain oxidation including alkB gene encoding an alkane monooxygenase, cyp450 gene encoding cytochrome P450 hydroxylase, and genes encoding membrane transporters. The PE biodegradative system was also validated by FTIR analysis on R7 cells grown on polyethylene.
Collapse
Affiliation(s)
- Jessica Zampolli
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
| | - Alessandro Orro
- Institute of Biomedical Technologies, National Research Council, CNR, via Fratelli Cervi 19, Segrate, 20133, Milan, Italy
| | - Andrea Manconi
- Institute of Biomedical Technologies, National Research Council, CNR, via Fratelli Cervi 19, Segrate, 20133, Milan, Italy
| | - Diletta Ami
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
| | - Antonino Natalello
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
| | - Patrizia Di Gennaro
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milan, Italy.
| |
Collapse
|
15
|
Donini E, Firrincieli A, Cappelletti M. Systems biology and metabolic engineering of Rhodococcus for bioconversion and biosynthesis processes. Folia Microbiol (Praha) 2021; 66:701-713. [PMID: 34215934 PMCID: PMC8449775 DOI: 10.1007/s12223-021-00892-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 06/12/2021] [Indexed: 11/04/2022]
Abstract
Rhodococcus spp. strains are widespread in diverse natural and anthropized environments thanks to their high metabolic versatility, biodegradation activities, and unique adaptation capacities to several stress conditions such as the presence of toxic compounds and environmental fluctuations. Additionally, the capability of Rhodococcus spp. strains to produce high value-added products has received considerable attention, mostly in relation to lipid accumulation. In relation with this, several works carried out omic studies and genome comparative analyses to investigate the genetic and genomic basis of these anabolic capacities, frequently in association with the bioconversion of renewable resources and low-cost substrates into triacylglycerols. This review is focused on these omic analyses and the genetic and metabolic approaches used to improve the biosynthetic and bioconversion performance of Rhodococcus. In particular, this review summarizes the works that applied heterologous expression of specific genes and adaptive laboratory evolution approaches to manipulate anabolic performance. Furthermore, recent molecular toolkits for targeted genome editing as well as genome-based metabolic models are described here as novel and promising strategies for genome-scaled rational design of Rhodococcus cells for efficient biosynthetic processes application.
Collapse
Affiliation(s)
- Eva Donini
- Department of Pharmacy and Biotechnology, University of Bologna, Via Irnerio 42, 40126, Bologna, Italy
| | - Andrea Firrincieli
- Department of Pharmacy and Biotechnology, University of Bologna, Via Irnerio 42, 40126, Bologna, Italy
| | - Martina Cappelletti
- Department of Pharmacy and Biotechnology, University of Bologna, Via Irnerio 42, 40126, Bologna, Italy.
| |
Collapse
|
16
|
Undabarrena A, Valencia R, Cumsille A, Zamora-Leiva L, Castro-Nallar E, Barona-Gomez F, Cámara B. Rhodococcus comparative genomics reveals a phylogenomic-dependent non-ribosomal peptide synthetase distribution: insights into biosynthetic gene cluster connection to an orphan metabolite. Microb Genom 2021; 7:000621. [PMID: 34241590 PMCID: PMC8477407 DOI: 10.1099/mgen.0.000621] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 06/04/2021] [Indexed: 01/14/2023] Open
Abstract
Natural products (NPs) are synthesized by biosynthetic gene clusters (BGCs), whose genes are involved in producing one or a family of chemically related metabolites. Advances in comparative genomics have been favourable for exploiting huge amounts of data and discovering previously unknown BGCs. Nonetheless, studying distribution patterns of novel BGCs and elucidating the biosynthesis of orphan metabolites remains a challenge. To fill this knowledge gap, our study developed a pipeline for high-quality comparative genomics for the actinomycete genus Rhodococcus , which is metabolically versatile, yet understudied in terms of NPs, leading to a total of 110 genomes, 1891 BGCs and 717 non-ribosomal peptide synthetases (NRPSs). Phylogenomic inferences showed four major clades retrieved from strains of several ecological habitats. BiG-SCAPE sequence similarity BGC networking revealed 44 unidentified gene cluster families (GCFs) for NRPS, which presented a phylogenomic-dependent evolution pattern, supporting the hypothesis of vertical gene transfer. As a proof of concept, we analysed in-depth one of our marine strains, Rhodococcus sp. H-CA8f, which revealed a unique BGC distribution within its phylogenomic clade, involved in producing a chloramphenicol-related compound. While this BGC is part of the most abundant and widely distributed NRPS GCF, corason analysis unveiled major differences regarding its genetic context, co-occurrence patterns and modularity. This BGC is composed of three sections, two well-conserved right/left arms flanking a very variable middle section, composed of nrps genes. The presence of two non-canonical domains in H-CA8f’s BGC may contribute to adding chemical diversity to this family of NPs. Liquid chromatography-high resolution MS and dereplication efforts retrieved a set of related orphan metabolites, the corynecins, which to our knowledge are reported here for the first time in Rhodococcus . Overall, our data provide insights to connect BGC uniqueness with orphan metabolites, by revealing key comparative genomic features supported by models of BGC distribution along phylogeny.
Collapse
Affiliation(s)
- Agustina Undabarrena
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química y Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso 2340000, Chile
| | - Ricardo Valencia
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química y Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso 2340000, Chile
- Present address: Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, King’s Buildings, Edinburgh, UK
| | - Andrés Cumsille
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química y Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso 2340000, Chile
| | - Leonardo Zamora-Leiva
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química y Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso 2340000, Chile
| | - Eduardo Castro-Nallar
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Francisco Barona-Gomez
- Evolution of Metabolic Diversity Laboratory, Unidad de Genómica Avanzada (Langebio), Cinvestav, Irapuato, Guanajuato, Mexico
| | - Beatriz Cámara
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química y Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso 2340000, Chile
| |
Collapse
|
17
|
Costantini PE, Firrincieli A, Fedi S, Parolin C, Viti C, Cappelletti M, Vitali B. Insight into phenotypic and genotypic differences between vaginal Lactobacillus crispatus BC5 and Lactobacillus gasseri BC12 to unravel nutritional and stress factors influencing their metabolic activity. Microb Genom 2021; 7. [PMID: 34096840 PMCID: PMC8461478 DOI: 10.1099/mgen.0.000575] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The vaginal microbiota, normally characterized by lactobacilli presence, is crucial for vaginal health. Members belonging to L. crispatus and L. gasseri species exert crucial protective functions against pathogens, although a total comprehension of factors that influence their dominance in healthy women is still lacking. Here we investigated the complete genome sequence and comprehensive phenotypic profile of L. crispatus strain BC5 and L. gasseri strain BC12, two vaginal strains featured by anti-bacterial and anti-viral activities. Phenotype microarray (PM) results revealed an improved capacity of BC5 to utilize different carbon sources as compared to BC12, although some specific carbon sources that can be associated to the human diet were only metabolized by BC12, i.e. uridine, amygdalin, tagatose. Additionally, the two strains were mostly distinct in the capacity to utilize the nitrogen sources under analysis. On the other hand, BC12 showed tolerance/resistance towards twice the number of stressors (i.e. antibiotics, toxic metals etc.) with respect to BC5. The divergent phenotypes observed in PM were supported by the identification in either BC5 or BC12 of specific genetic determinants that were found to be part of the core genome of each species. The PM results in combination with comparative genome data provide insights into the possible environmental factors and genetic traits supporting the predominance of either L. crispatus BC5 or L. gasseri BC12 in the vaginal niche, giving also indications for metabolic predictions at the species level.
Collapse
Affiliation(s)
| | - Andrea Firrincieli
- Department of Pharmacy and Biotechnology (FaBit), University of Bologna, Bologna, Italy
| | - Stefano Fedi
- Department of Pharmacy and Biotechnology (FaBit), University of Bologna, Bologna, Italy
| | - Carola Parolin
- Department of Pharmacy and Biotechnology (FaBit), University of Bologna, Bologna, Italy
| | - Carlo Viti
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Florence, Italy
| | - Martina Cappelletti
- Department of Pharmacy and Biotechnology (FaBit), University of Bologna, Bologna, Italy
| | - Beatrice Vitali
- Department of Pharmacy and Biotechnology (FaBit), University of Bologna, Bologna, Italy
| |
Collapse
|
18
|
Pátek M, Grulich M, Nešvera J. Stress response in Rhodococcus strains. Biotechnol Adv 2021; 53:107698. [PMID: 33515672 DOI: 10.1016/j.biotechadv.2021.107698] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 01/13/2021] [Accepted: 01/15/2021] [Indexed: 12/13/2022]
Abstract
Rhodococci are bacteria which can survive under various extreme conditions, in the presence of toxic compounds, and in other hostile habitats. Their tolerance of unfavorable conditions is associated with the structure of their cell wall and their large array of enzymes, which degrade or detoxify harmful compounds. Their physiological and biotechnological properties, together with tools for their genetic manipulation, enable us to apply them in biotransformations, biodegradation and bioremediation. Many such biotechnological applications cause stresses that positively or negatively affect their efficiency. Whereas numerous reviews on rhodococci described their enzyme activities, the optimization of degradation or production processes, and corresponding technological solutions, only a few reviews discussed some specific effects of stresses on the physiology of rhodococci and biotechnological processes. This review aims to comprehensively describe individual stress responses in Rhodococcus strains, the interconnection of different types of stresses and their consequences for cell physiology. We examine here the responses to (1) environmental stresses (desiccation, heat, cold, osmotic and pH stress), (2) the presence of stress-inducing compounds (metals, organic compounds and antibiotics) in the environment (3) starvation and (4) stresses encountered during biotechnological applications. Adaptations of the cell envelope, the formation of multicellular structures and stresses induced by the interactions of hosts with pathogenic rhodococci are also included. The roles of sigma factors of RNA polymerase in the global regulation of stress responses in rhodococci are described as well. Although the review covers a large number of stressful conditions, our intention was to provide an overview of the selected stress responses and their possible connection to biotechnological processes, not an exhaustive survey of the scientific literature. The findings on stress responses summarized in this review and the demonstration of gaps in current knowledge may motivate researchers working to fill these gaps.
Collapse
Affiliation(s)
- Miroslav Pátek
- Institute of Microbiology of the CAS, v. v. i., Prague, Czech Republic.
| | - Michal Grulich
- Institute of Microbiology of the CAS, v. v. i., Prague, Czech Republic.
| | - Jan Nešvera
- Institute of Microbiology of the CAS, v. v. i., Prague, Czech Republic.
| |
Collapse
|
19
|
Cappelletti M, Presentato A, Piacenza E, Firrincieli A, Turner RJ, Zannoni D. Biotechnology of Rhodococcus for the production of valuable compounds. Appl Microbiol Biotechnol 2020; 104:8567-8594. [PMID: 32918579 PMCID: PMC7502451 DOI: 10.1007/s00253-020-10861-z] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/14/2020] [Accepted: 08/26/2020] [Indexed: 12/31/2022]
Abstract
Bacteria belonging to Rhodococcus genus represent ideal candidates for microbial biotechnology applications because of their metabolic versatility, ability to degrade a wide range of organic compounds, and resistance to various stress conditions, such as metal toxicity, desiccation, and high concentration of organic solvents. Rhodococcus spp. strains have also peculiar biosynthetic activities that contribute to their strong persistence in harsh and contaminated environments and provide them a competitive advantage over other microorganisms. This review is focused on the metabolic features of Rhodococcus genus and their potential use in biotechnology strategies for the production of compounds with environmental, industrial, and medical relevance such as biosurfactants, bioflocculants, carotenoids, triacylglycerols, polyhydroxyalkanoate, siderophores, antimicrobials, and metal-based nanostructures. These biosynthetic capacities can also be exploited to obtain high value-added products from low-cost substrates (industrial wastes and contaminants), offering the possibility to efficiently recover valuable resources and providing possible waste disposal solutions. Rhodococcus spp. strains have also recently been pointed out as a source of novel bioactive molecules highlighting the need to extend the knowledge on biosynthetic capacities of members of this genus and their potential utilization in the framework of bioeconomy. KEY POINTS: • Rhodococcus possesses promising biosynthetic and bioconversion capacities. • Rhodococcus bioconversion capacities can provide waste disposal solutions. • Rhodococcus bioproducts have environmental, industrial, and medical relevance. Graphical abstract.
Collapse
Affiliation(s)
- Martina Cappelletti
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Bologna, Italy.
| | - Alessandro Presentato
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Elena Piacenza
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Florence, Italy
| | - Andrea Firrincieli
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Bologna, Italy
| | - Raymond J Turner
- Department of Biological Sciences, Calgary University, Calgary, AB, Canada
| | - Davide Zannoni
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Bologna, Italy
| |
Collapse
|
20
|
Zampolli J, Di Canito A, Manconi A, Milanesi L, Di Gennaro P, Orro A. Transcriptomic Analysis of Rhodococcus opacus R7 Grown on o-Xylene by RNA-Seq. Front Microbiol 2020; 11:1808. [PMID: 32903390 PMCID: PMC7434839 DOI: 10.3389/fmicb.2020.01808] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 07/09/2020] [Indexed: 11/13/2022] Open
Abstract
Xylenes are considered one of the most common hazardous sources of environmental contamination. The biodegradation of these compounds has been often reported, rarer the ability to oxidize the ortho-isomer. Among few o-xylene-degrading bacteria, Rhodococcus opacus R7 is well known for its capability to degrade diverse aromatic hydrocarbons and toxic compounds, including o-xylene as only carbon and energy source. This work shows for the first time the RNA-seq approach to elucidate the genetic determinants involved in the o-xylene degradation pathway in R. opacus R7. Transcriptomic data showed 542 differentially expressed genes that are associated with the oxidation of aromatic hydrocarbons and stress response, osmotic regulation and central metabolism. Gene ontology (GO) enrichment and KEGG pathway analysis confirmed significant changes in aromatic compound catabolic processes, fatty acid metabolism, beta-oxidation, TCA cycle enzymes, and biosynthesis of metabolites when cells are cultured in the presence of o-xylene. Interestingly, the most up-regulated genes belong to the akb gene cluster encoding for the ethylbenzene (Akb) dioxygenase system. Moreover, the transcriptomic approach allowed identifying candidate enzymes involved in R7 o-xylene degradation for their likely participation in the formation of the metabolites that have been previously identified. Overall, this approach supports the identification of several oxidative systems likely involved in o-xylene metabolism confirming that R. opacus R7 possesses a redundancy of sequences that converge in o-xylene degradation through R7 peculiar degradation pathway. This work advances our understanding of o-xylene metabolism in bacteria belonging to Rhodococcus genus and provides a framework of useful enzymes (molecular tools) that can be fruitfully targeted for optimized o-xylene consumption.
Collapse
Affiliation(s)
- Jessica Zampolli
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Alessandra Di Canito
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Andrea Manconi
- Institute of Biomedical Technologies, National Research Council, CNR, Milan, Italy
| | - Luciano Milanesi
- Institute of Biomedical Technologies, National Research Council, CNR, Milan, Italy
| | - Patrizia Di Gennaro
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Alessandro Orro
- Institute of Biomedical Technologies, National Research Council, CNR, Milan, Italy
| |
Collapse
|
21
|
Jałowiecki Ł, Krzymińska I, Górska M, Płaza G, Ratman-Kłosińska I. Effect of the freeze-drying process on the phenotypic diversity of Pseudomonas putida strains isolated from the interior of healthy roots of Sida hermaphrodita: Phenotype microarrays (PMs). Cryobiology 2020; 96:145-151. [PMID: 32702362 DOI: 10.1016/j.cryobiol.2020.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/15/2020] [Accepted: 07/15/2020] [Indexed: 11/30/2022]
Abstract
The objective of this study was to research the effect of the freeze-drying process on the metabolic changes of Pseudomonas putida strains (E41, E42, R85) isolated from the interior of Sida hermaphrodita roots with the use of the phenotypic microarrays (PM) technology. The proposed method of the freeze-drying process with inulin as component lycoprotectant demonstrated a high bacterial survival ratio (BSR) immediately after freeze-drying and storage after 12 months. While, after 360 days of freeze-drying BSR decreased to value of 74.38. Pseudomonas putida strains were assayed on microplates PM1-PM5, and PM9-PM13 testing 664 different substrates. However, no significant differences in the use of C substrates were observed either before or after the freeze drying process. An insignificant negative effect of the freeze-drying on the use of these substrates was observed. The utilization of N, P and S sources was low or showed no metabolic activity for most of the compounds after freeze-drying. The freeze-drying process increased the sensitivity of the bacteria to antibiotics and selected chemicals. In this study, the freeze-drying process decreased the metabolic activities of the tested strains and their resistance to antibiotics and chemicals.
Collapse
Affiliation(s)
- Łukasz Jałowiecki
- Environmental Microbiology Unit, Institute for Ecology of Industrial Areas, Kossutha 6, 40-844, Katowice, Poland
| | - Izabela Krzymińska
- Department of Microbiology, Institute of Microbial Technologies, NSZZ Solidarnosc 9 Av., 62-700, Turek, Poland
| | - Magdalena Górska
- ProBiotics Polska Magdalena Górska, Bratuszyn 21, 62-720, Brudzew, Poland
| | - Grażyna Płaza
- Environmental Microbiology Unit, Institute for Ecology of Industrial Areas, Kossutha 6, 40-844, Katowice, Poland.
| | - Izabela Ratman-Kłosińska
- Office of Projects Coordination, Marketing and Research Commercialisation, Institute for Ecology of Industrial Areas, Kossutha 6, 40-844, Katowice, Poland
| |
Collapse
|
22
|
Garrido-Sanz D, Redondo-Nieto M, Martín M, Rivilla R. Comparative Genomics of the Rhodococcus Genus Shows Wide Distribution of Biodegradation Traits. Microorganisms 2020; 8:microorganisms8050774. [PMID: 32455698 PMCID: PMC7285261 DOI: 10.3390/microorganisms8050774] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/17/2020] [Accepted: 05/20/2020] [Indexed: 11/24/2022] Open
Abstract
The genus Rhodococcus exhibits great potential for bioremediation applications due to its huge metabolic diversity, including biotransformation of aromatic and aliphatic compounds. Comparative genomic studies of this genus are limited to a small number of genomes, while the high number of sequenced strains to date could provide more information about the Rhodococcus diversity. Phylogenomic analysis of 327 Rhodococcus genomes and clustering of intergenomic distances identified 42 phylogenomic groups and 83 species-level clusters. Rarefaction models show that these numbers are likely to increase as new Rhodococcus strains are sequenced. The Rhodococcus genus possesses a small “hard” core genome consisting of 381 orthologous groups (OGs), while a “soft” core genome of 1253 OGs is reached with 99.16% of the genomes. Models of sequentially randomly added genomes show that a small number of genomes are enough to explain most of the shared diversity of the Rhodococcus strains, while the “open” pangenome and strain-specific genome evidence that the diversity of the genus will increase, as new genomes still add more OGs to the whole genomic set. Most rhodococci possess genes involved in the degradation of aliphatic and aromatic compounds, while short-chain alkane degradation is restricted to a certain number of groups, among which a specific particulate methane monooxygenase (pMMO) is only found in Rhodococcus sp. WAY2. The analysis of Rieske 2Fe-2S dioxygenases among rhodococci genomes revealed that most of these enzymes remain uncharacterized.
Collapse
|
23
|
Biodegradation of naphthenic acids: identification of Rhodococcus opacus R7 genes as molecular markers for environmental monitoring and their application in slurry microcosms. Appl Microbiol Biotechnol 2020; 104:2675-2689. [PMID: 31993702 DOI: 10.1007/s00253-020-10378-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 10/30/2019] [Accepted: 01/14/2020] [Indexed: 10/25/2022]
Abstract
Nowadays, the increase of the unconventional oil deposit exploitation and the amount of oil sands process-affected waters (OSPW) in tailing ponds emerges the importance of developing bio-monitoring strategies for the restoration of these habitats. The major constituents of such deposits are naphthenic acids (NAs), emerging contaminant mixtures with toxic and recalcitrant properties. With the aim of developing bio-monitoring strategies based on culture-independent approach, we identified genes coding for enzymes involved in NA degradation from Rhodococcus opacus R7 genome, after the evaluation of its ability to mineralize model NAs. R. opacus R7 whole-genome analysis unveiled the presence of pobA and chcpca gene clusters putatively involved in NAs degradation. Gene expression analysis demonstrated the specific induction of R7 aliA1 gene, encoding for a long-chain-fatty-acid-CoA ligase, in the presence of cyclohexanecarboxylic acid (CHCA) and hexanoic acid (HA), selected as representative compounds for alicyclic and linear NAs, respectively. Therefore, aliA1 gene was selected as a molecular marker to monitor the biodegradative potential of slurry-phase sand microcosms in different conditions: spiked with CHCA, in the presence of R. opacus R7, the autochthonous microbial community, and combining these factors. Results revealed that the aliA1-targeting culture-independent approach could be a useful method for bio-monitoring of NA degradation in a model laboratory system.
Collapse
|
24
|
Bukliarevich HA, Charniauskaya MI, Akhremchuk AE, Valentovich LN, Titok MA. Effect of the Structural and Regulatory Heat Shock Proteins on Hydrocarbon Degradation by Rhodococcus pyridinivorans 5Ap. Microbiology (Reading) 2019. [DOI: 10.1134/s0026261719050023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
25
|
Firrincieli A, Presentato A, Favoino G, Marabottini R, Allevato E, Stazi SR, Scarascia Mugnozza G, Harfouche A, Petruccioli M, Turner RJ, Zannoni D, Cappelletti M. Identification of Resistance Genes and Response to Arsenic in Rhodococcus aetherivorans BCP1. Front Microbiol 2019; 10:888. [PMID: 31133997 PMCID: PMC6514093 DOI: 10.3389/fmicb.2019.00888] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 04/08/2019] [Indexed: 11/28/2022] Open
Abstract
Arsenic (As) ranks among the priority metal(loid)s that are of public health concern. In the environment, arsenic is present in different forms, organic or inorganic, featured by various toxicity levels. Bacteria have developed different strategies to deal with this toxicity involving different resistance genetic determinants. Bacterial strains of Rhodococcus genus, and more in general Actinobacteria phylum, have the ability to cope with high concentrations of toxic metalloids, although little is known on the molecular and genetic bases of these metabolic features. Here we show that Rhodococcus aetherivorans BCP1, an extremophilic actinobacterial strain able to tolerate high concentrations of organic solvents and toxic metalloids, can grow in the presence of high concentrations of As(V) (up to 240 mM) under aerobic growth conditions using glucose as sole carbon and energy source. Notably, BCP1 cells improved their growth performance as well as their capacity of reducing As(V) into As(III) when the concentration of As(V) is within 30–100 mM As(V). Genomic analysis of BCP1 compared to other actinobacterial strains revealed the presence of three gene clusters responsible for organic and inorganic arsenic resistance. In particular, two adjacent and divergently oriented ars gene clusters include three arsenate reductase genes (arsC1/2/3) involved in resistance mechanisms against As(V). A sequence similarity network (SSN) and phylogenetic analysis of these arsenate reductase genes indicated that two of them (ArsC2/3) are functionally related to thioredoxin (Trx)/thioredoxin reductase (TrxR)-dependent class and one of them (ArsC1) to the mycothiol (MSH)/mycoredoxin (Mrx)-dependent class. A targeted transcriptomic analysis performed by RT-qPCR indicated that the arsenate reductase genes as well as other genes included in the ars gene cluster (possible regulator gene, arsR, and arsenite extrusion genes, arsA, acr3, and arsD) are transcriptionally induced when BCP1 cells were exposed to As(V) supplied at two different sub-lethal concentrations. This work provides for the first time insights into the arsenic resistance mechanisms of a Rhodococcus strain, revealing some of the unique metabolic requirements for the environmental persistence of this bacterial genus and its possible use in bioremediation procedures of toxic metal contaminated sites.
Collapse
Affiliation(s)
- Andrea Firrincieli
- Department for the Innovation in Biological Systems, Agro-Food and Forestry, University of Tuscia, Viterbo, Italy
| | - Alessandro Presentato
- Department of Biotechnology, University of Verona, Verona, Italy.,Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Giusi Favoino
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Rosita Marabottini
- Department for the Innovation in Biological Systems, Agro-Food and Forestry, University of Tuscia, Viterbo, Italy
| | - Enrica Allevato
- Department for the Innovation in Biological Systems, Agro-Food and Forestry, University of Tuscia, Viterbo, Italy
| | - Silvia Rita Stazi
- Department for the Innovation in Biological Systems, Agro-Food and Forestry, University of Tuscia, Viterbo, Italy
| | - Giuseppe Scarascia Mugnozza
- Department for the Innovation in Biological Systems, Agro-Food and Forestry, University of Tuscia, Viterbo, Italy
| | - Antoine Harfouche
- Department for the Innovation in Biological Systems, Agro-Food and Forestry, University of Tuscia, Viterbo, Italy
| | - Maurizio Petruccioli
- Department for the Innovation in Biological Systems, Agro-Food and Forestry, University of Tuscia, Viterbo, Italy
| | - Raymond J Turner
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Davide Zannoni
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Martina Cappelletti
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| |
Collapse
|
26
|
Lai JYH, Zhang H, Chiang MHY, Lun CHI, Zhang R, Lau SCK. The putative functions of lysogeny in mediating the survivorship of Escherichia coli in seawater and marine sediment. FEMS Microbiol Ecol 2019; 94:4780272. [PMID: 29293955 DOI: 10.1093/femsec/fix187] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 12/25/2017] [Indexed: 01/07/2023] Open
Abstract
Escherichia coli colonizes various body parts of animal hosts as a commensal and a pathogen. It can also persist in the external environment in the absence of fecal pollution. It remains unclear how this species has evolved to adapt to such contrasting habitats. Lysogeny plays pivotal roles in the diversification of the phenotypic and ecologic characters of E. coli as a symbiont. We hypothesized that lysogeny could also confer fitness to survival in the external environment. To test this hypothesis, we used the induced phages of an E. coli strain originating from marine sediment to infect a fecal E. coli strain to obtain an isogenic lysogen of the latter. The three strains were tested for survivorship in microcosms of seawater, marine sediment and sediment interstitial water as well as swimming motility, glycogen accumulation, biofilm formation, substrate utilization and stress resistance. The results indicate that lysogenic infection led to tractable changes in many of the ecophysiological attributes tested. Particularly, the lysogen had better survivorship in the microcosms and had a substrate utilization profile resembling the sediment strain more than the wild type fecal strain. Our findings provide new insights into the understanding of how E. coli survives in the natural environment.
Collapse
Affiliation(s)
- Jennifer Yuet Ha Lai
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | - Hao Zhang
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | - Miranda Hei Yin Chiang
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | - Clare Hau In Lun
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | - Rui Zhang
- Institute of Marine Microbes and Ecospheres, and State Key Laboratory of Marine Environmental Science, Xiamen University, People's Republic of China
| | - Stanley Chun Kwan Lau
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| |
Collapse
|
27
|
Presentato A, Piacenza E, Cappelletti M, Turner RJ. Interaction of Rhodococcus with Metals and Biotechnological Applications. BIOLOGY OF RHODOCOCCUS 2019. [DOI: 10.1007/978-3-030-11461-9_12] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
28
|
Zampolli J, Zeaiter Z, Di Canito A, Di Gennaro P. Genome analysis and -omics approaches provide new insights into the biodegradation potential of Rhodococcus. Appl Microbiol Biotechnol 2018; 103:1069-1080. [PMID: 30554387 DOI: 10.1007/s00253-018-9539-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 11/21/2018] [Accepted: 11/22/2018] [Indexed: 01/05/2023]
Abstract
The past few years observed a breakthrough of genome sequences of bacteria of Rhodococcus genus with significant biodegradation abilities. Invaluable knowledge from genome data and their functional analysis can be applied to develop and design strategies for attenuating damages caused by hydrocarbon contamination. With the advent of high-throughput -omic technologies, it is currently possible to utilize the functional properties of diverse catabolic genes, analyze an entire system at the level of molecule (DNA, RNA, protein, and metabolite), simultaneously predict and construct catabolic degradation pathways. In this review, the genes involved in the biodegradation of hydrocarbons and several emerging plasticizer compounds in Rhodococcus strains are described in detail (aliphatic, aromatics, PAH, phthalate, polyethylene, and polyisoprene). The metabolic biodegradation networks predicted from omics-derived data along with the catabolic enzymes exploited in diverse biotechnological and bioremediation applications are characterized.
Collapse
Affiliation(s)
- Jessica Zampolli
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
| | - Zahraa Zeaiter
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
| | - Alessandra Di Canito
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
| | - Patrizia Di Gennaro
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milan, Italy.
| |
Collapse
|
29
|
Di Canito A, Zampolli J, Orro A, D’Ursi P, Milanesi L, Sello G, Steinbüchel A, Di Gennaro P. Genome-based analysis for the identification of genes involved in o-xylene degradation in Rhodococcus opacus R7. BMC Genomics 2018; 19:587. [PMID: 30081830 PMCID: PMC6080516 DOI: 10.1186/s12864-018-4965-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 07/30/2018] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Bacteria belonging to the Rhodococcus genus play an important role in the degradation of many contaminants, including methylbenzenes. These bacteria, widely distributed in the environment, are known to be a powerhouse of numerous degradation functions, due to their ability to metabolize a wide range of organic molecules including aliphatic, aromatic, polycyclic aromatic compounds (PAHs), phenols, and nitriles. In accordance with their immense catabolic diversity, Rhodococcus spp. possess large and complex genomes, which contain a multiplicity of catabolic genes, a high genetic redundancy of biosynthetic pathways and a sophisticated regulatory network. The present study aimed to identify genes involved in the o-xylene degradation in R. opacus strain R7 through a genome-based approach. RESULTS Using genome-based analysis we identified all the sequences in the R7 genome annotated as dioxygenases or monooxygenases/hydroxylases and clustered them into two different trees. The akb, phe and prm sequences were selected as genes encoding respectively for dioxygenases, phenol hydroxylases and monooxygenases and their putative involvement in o-xylene oxidation was evaluated. The involvement of the akb genes in o-xylene oxidation was demonstrated by RT-PCR/qPCR experiments after growth on o-xylene and by the selection of the R7-50 leaky mutant. Although the akb genes are specifically activated for o-xylene degradation, metabolic intermediates of the pathway suggested potential alternative oxidation steps, possibly through monooxygenation. This led us to further investigate the role of the prm and the phe genes. Results showed that these genes were transcribed in a constitutive manner, and that the activity of the Prm monooxygenase was able to transform o-xylene slowly in intermediates as 3,4-dimethylphenol and 2-methylbenzylalcohol. Moreover, the expression level of phe genes, homologous to the phe genes of Rhodococcus spp. 1CP and UPV-1 with a 90% identity, could explain their role in the further oxidation of o-xylene and R7 growth on dimethylphenols. CONCLUSIONS These results suggest that R7 strain is able to degrade o-xylene by the Akb dioxygenase system leading to the production of the corresponding dihydrodiol. Likewise, the redundancy of sequences encoding for several monooxygenases/phenol hydroxylases, supports the involvement of other oxygenases converging in the o-xylene degradation pathway in R7 strain.
Collapse
Affiliation(s)
- Alessandra Di Canito
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Jessica Zampolli
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Alessandro Orro
- ITB, CNR, via Fratelli Cervi 19, 20133 Segrate, Milan, Italy
| | | | | | - Guido Sello
- Department of Chemistry, University of Milano, via Golgi 19, 20133 Milan, Italy
| | - Alexander Steinbüchel
- Department of Molecular Microbiology and Biotechnology, Westfälische Wilhelms-Universität Münster, Münster, Germany
- Environmental Sciences Department, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Patrizia Di Gennaro
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| |
Collapse
|
30
|
Brzeszcz J, Kaszycki P. Aerobic bacteria degrading both n-alkanes and aromatic hydrocarbons: an undervalued strategy for metabolic diversity and flexibility. Biodegradation 2018; 29:359-407. [PMID: 29948519 DOI: 10.1007/s10532-018-9837-x] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 06/01/2018] [Indexed: 10/14/2022]
Abstract
Environmental pollution with petroleum toxic products has afflicted various ecosystems, causing devastating damage to natural habitats with serious economic implications. Some crude oil components may serve as growth substrates for microorganisms. A number of bacterial strains reveal metabolic capacities to biotransform various organic compounds. Some of the hydrocarbon degraders are highly biochemically specialized, while the others display a versatile metabolism and can utilize both saturated aliphatic and aromatic hydrocarbons. The extended catabolic profiles of the latter group have been subjected to systematic and complex studies relatively rarely thus far. Growing evidence shows that numerous bacteria produce broad biochemical activities towards different hydrocarbon types and such an enhanced metabolic potential can be found in many more species than the already well-known oil-degraders. These strains may play an important role in the removal of heterogeneous contamination. They are thus considered to be a promising solution in bioremediation applications. The main purpose of this article is to provide an overview of the current knowledge on aerobic bacteria involved in the mineralization or transformation of both n-alkanes and aromatic hydrocarbons. Variant scientific approaches enabling to evaluate these features on biochemical as well as genetic levels are presented. The distribution of multidegradative capabilities between bacterial taxa is systematically shown and the possibility of simultaneous transformation of complex hydrocarbon mixtures is discussed. Bioinformatic analysis of the currently available genetic data is employed to enable generation of phylogenetic relationships between environmental strain isolates belonging to the phyla Actinobacteria, Proteobacteria, and Firmicutes. The study proves that the co-occurrence of genes responsible for concomitant metabolic bioconversion reactions of structurally-diverse hydrocarbons is not unique among various systematic groups.
Collapse
Affiliation(s)
- Joanna Brzeszcz
- Department of Microbiology, Oil and Gas Institute-National Research Institute, ul. Lubicz 25A, 31-503, Kraków, Poland.
| | - Paweł Kaszycki
- Unit of Biochemistry, Institute of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Kraków, al. 29 Listopada 54, 31-425, Kraków, Poland
| |
Collapse
|
31
|
Jin T, Wang Y, Huang Y, Xu J, Zhang P, Wang N, Liu X, Chu H, Liu G, Jiang H, Li Y, Xu J, Kristiansen K, Xiao L, Zhang Y, Zhang G, Du G, Zhang H, Zou H, Zhang H, Jie Z, Liang S, Jia H, Wan J, Lin D, Li J, Fan G, Yang H, Wang J, Bai Y, Xu X. Taxonomic structure and functional association of foxtail millet root microbiome. Gigascience 2018; 6:1-12. [PMID: 29050374 PMCID: PMC7059795 DOI: 10.1093/gigascience/gix089] [Citation(s) in RCA: 165] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 08/28/2017] [Indexed: 01/09/2023] Open
Abstract
The root microbes play pivotal roles in plant productivity, nutrient uptakes, and disease resistance. The root microbial community structure has been extensively investigated by 16S/18S/ITS amplicons and metagenomic sequencing in crops and model plants. However, the functional associations between root microbes and host plant growth are poorly understood. This work investigates the root bacterial community of foxtail millet (Setaria italica) and its potential effects on host plant productivity. We determined the bacterial composition of 2882 samples from foxtail millet rhizoplane, rhizosphere and corresponding bulk soils from 2 well-separated geographic locations by 16S rRNA gene amplicon sequencing. We identified 16 109 operational taxonomic units (OTUs), and defined 187 OTUs as shared rhizoplane core OTUs. The β-diversity analysis revealed that microhabitat was the major factor shaping foxtail millet root bacterial community, followed by geographic locations. Large-scale association analysis identified the potential beneficial bacteria correlated with plant high productivity. Besides, the functional prediction revealed specific pathways enriched in foxtail millet rhizoplane bacterial community. We systematically described the root bacterial community structure of foxtail millet and found its core rhizoplane bacterial members. Our results demonstrated that host plants enrich specific bacteria and functions in the rhizoplane. The potentially beneficial bacteria may serve as a valuable knowledge foundation for bio-fertilizer development in agriculture.
Collapse
Affiliation(s)
- Tao Jin
- BGI-Qingdao, Qingdao, 266510, China.,China National Genebank-Shenzhen, BGI-Shenzhen, Shenzhen, 518083, China
| | | | | | - Jin Xu
- BGI-Qingdao, Qingdao, 266510, China.,Citrus Research and Education Center, Department of Microbiology and Cell Science, IFAS, University of Florida, Lake Alfred, FL, USA
| | - Pengfan Zhang
- BGI-Qingdao, Qingdao, 266510, China.,BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, 518083, China
| | - Nian Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, IFAS, University of Florida, Lake Alfred, FL, USA
| | - Xin Liu
- BGI-Qingdao, Qingdao, 266510, China.,China National Genebank-Shenzhen, BGI-Shenzhen, Shenzhen, 518083, China
| | - Haiyan Chu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, East Beijing Road 71, Nanjing, 210008, China
| | | | | | | | - Jing Xu
- BGI-Qingdao, Qingdao, 266510, China
| | - Karsten Kristiansen
- BGI-Qingdao, Qingdao, 266510, China.,Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, DK-2100, Copenhagen, Denmark
| | | | - Yunzeng Zhang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, IFAS, University of Florida, Lake Alfred, FL, USA
| | | | | | | | - Hongfeng Zou
- BGI-Qingdao, Qingdao, 266510, China.,BGI Millet Co., Ltd, Shenzhen, 518083, China
| | | | | | | | | | | | | | | | - Guangyi Fan
- BGI-Qingdao, Qingdao, 266510, China.,China National Genebank-Shenzhen, BGI-Shenzhen, Shenzhen, 518083, China
| | - Huanming Yang
- BGI-Qingdao, Qingdao, 266510, China.,James D. Watson Institute of Genome Sciences, Hangzhou 310058, China
| | - Jian Wang
- BGI-Qingdao, Qingdao, 266510, China.,James D. Watson Institute of Genome Sciences, Hangzhou 310058, China
| | - Yang Bai
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Science, Beijing, 100101, China.,Centre of Excellence for Plant and Microbial Sciences (CEPAMS), Institute of Genetics and Developmental Biology, Chinese Academy of Science & John Innes Centre, Beijing, 100101, China.,The University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xun Xu
- BGI-Qingdao, Qingdao, 266510, China.,China National Genebank-Shenzhen, BGI-Shenzhen, Shenzhen, 518083, China
| |
Collapse
|
32
|
Presentato A, Cappelletti M, Sansone A, Ferreri C, Piacenza E, Demeter MA, Crognale S, Petruccioli M, Milazzo G, Fedi S, Steinbüchel A, Turner RJ, Zannoni D. Aerobic Growth of Rhodococcus aetherivorans BCP1 Using Selected Naphthenic Acids as the Sole Carbon and Energy Sources. Front Microbiol 2018; 9:672. [PMID: 29706937 PMCID: PMC5906575 DOI: 10.3389/fmicb.2018.00672] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 03/22/2018] [Indexed: 11/13/2022] Open
Abstract
Naphthenic acids (NAs) are an important group of toxic organic compounds naturally occurring in hydrocarbon deposits. This work shows that Rhodococcus aetherivorans BCP1 cells not only utilize a mixture of eight different NAs (8XNAs) for growth but they are also capable of marked degradation of two model NAs, cyclohexanecarboxylic acid (CHCA) and cyclopentanecarboxylic acid (CPCA) when supplied at concentrations from 50 to 500 mgL-1. The growth curves of BCP1 on 8XNAs, CHCA, and CPCA showed an initial lag phase not present in growth on glucose, which presumably was related to the toxic effects of NAs on the cell membrane permeability. BCP1 cell adaptation responses that allowed survival on NAs included changes in cell morphology, production of intracellular bodies and changes in fatty acid composition. Transmission electron microscopy (TEM) analysis of BCP1 cells grown on CHCA or CPCA showed a slight reduction in the cell size, the production of EPS-like material and intracellular electron-transparent and electron-dense inclusion bodies. The electron-transparent inclusions increased in the amount and size in NA-grown BCP1 cells under nitrogen limiting conditions and contained storage lipids as suggested by cell staining with the lipophilic Nile Blue A dye. Lipidomic analyses revealed significant changes with increases of methyl-branched (MBFA) and polyunsaturated fatty acids (PUFA) examining the fatty acid composition of NAs-growing BCP1 cells. PUFA biosynthesis is not usual in bacteria and, together with MBFA, can influence structural and functional processes with resulting effects on cell vitality. Finally, through the use of RT (Reverse Transcription)-qPCR, a gene cluster (chcpca) was found to be transcriptionally induced during the growth on CHCA and CPCA. Based on the expression and bioinformatics results, the predicted products of the chcpca gene cluster are proposed to be involved in aerobic NA degradation in R. aetherivorans BCP1. This study provides first insights into the genetic and metabolic mechanisms allowing a Rhodococcus strain to aerobically degrade NAs.
Collapse
Affiliation(s)
- Alessandro Presentato
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Martina Cappelletti
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Anna Sansone
- ISOF, Consiglio Nazionale delle Ricerche, Bologna, Italy
| | - Carla Ferreri
- ISOF, Consiglio Nazionale delle Ricerche, Bologna, Italy
| | - Elena Piacenza
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Marc A. Demeter
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Silvia Crognale
- Department for Innovation in Biological, Agro-food and Forest Systems (DIBAF), University of Tuscia, Viterbo, Italy
| | - Maurizio Petruccioli
- Department for Innovation in Biological, Agro-food and Forest Systems (DIBAF), University of Tuscia, Viterbo, Italy
| | - Giorgio Milazzo
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Stefano Fedi
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Alexander Steinbüchel
- Institute of Molecular Microbiology and Biotechnology, University of Münster, Münster, Germany
- Department of Environmental Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Raymond J. Turner
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Davide Zannoni
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| |
Collapse
|
33
|
Presentato A, Piacenza E, Darbandi A, Anikovskiy M, Cappelletti M, Zannoni D, Turner RJ. Assembly, growth and conductive properties of tellurium nanorods produced by Rhodococcus aetherivorans BCP1. Sci Rep 2018; 8:3923. [PMID: 29500440 PMCID: PMC5834534 DOI: 10.1038/s41598-018-22320-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 02/21/2018] [Indexed: 12/22/2022] Open
Abstract
Tellurite (TeO32-) is a hazardous and toxic oxyanion for living organisms. However, several microorganisms can bioconvert TeO32- into the less toxic form of elemental tellurium (Te0). Here, Rhodococcus aetherivorans BCP1 resting (non-growing) cells showed the proficiency to produce tellurium-based nanoparticles (NPs) and nanorods (NRs) through the bioconversion of TeO32-, depending on the oxyanion initial concentration and time of cellular incubation. Te-nanostructures initially appeared in the cytoplasm of BCP1 cells as spherical NPs, which, as the exposure time increased, were converted into NRs. This observation suggested the existence of an intracellular mechanism of TeNRs assembly and growth that resembled the chemical surfactant-assisted process for NRs synthesis. The TeNRs produced by the BCP1 strain showed an average length (>700 nm) almost doubled compared to those observed in other studies. Further, the biogenic TeNRs displayed a regular single-crystalline structure typically obtained for those chemically synthesized. The chemical-physical characterization of the biogenic TeNRs reflected their thermodynamic stability that is likely derived from amphiphilic biomolecules present in the organic layer surrounding the NRs. Finally, the biogenic TeNRs extract showed good electrical conductivity. Thus, these findings support the suitability of this strain as eco-friendly biocatalyst to produce high quality tellurium-based nanomaterials exploitable for technological purposes.
Collapse
Affiliation(s)
- Alessandro Presentato
- Microbial Biochemistry Laboratory, Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N 1N4, Canada.
| | - Elena Piacenza
- Microbial Biochemistry Laboratory, Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N 1N4, Canada
| | - Ali Darbandi
- Microscopy and Imaging Facility, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr. NW, Calgary, AB T2N 4N1, Canada
| | - Max Anikovskiy
- Department of Chemistry, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N 1N4, Canada
| | - Martina Cappelletti
- Unit of General and Applied Microbiology, Department of Pharmacy and Biotechnology, University of Bologna, Via Irnerio 42, Bologna, 40126, Italy
| | - Davide Zannoni
- Unit of General and Applied Microbiology, Department of Pharmacy and Biotechnology, University of Bologna, Via Irnerio 42, Bologna, 40126, Italy
| | - Raymond J Turner
- Microbial Biochemistry Laboratory, Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N 1N4, Canada.
| |
Collapse
|
34
|
Genomic insights of aromatic hydrocarbon degrading Klebsiella pneumoniae AWD5 with plant growth promoting attributes: a paradigm of soil isolate with elements of biodegradation. 3 Biotech 2018; 8:118. [PMID: 29430379 PMCID: PMC5803133 DOI: 10.1007/s13205-018-1134-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 01/23/2018] [Indexed: 12/13/2022] Open
Abstract
This research employs draft genome sequence data of Klebsiella pneumoniae AWD5 to explore genes that contribute to the degradation of polyaromatic hydrocarbon (PAH) and stimulate plant growth, for rhizosphere-mediated bioremediation. Annotation analysis suggests that the strain AWD5 not only possess gene clusters for PAH utilization, but also for utilization of benzoate, fluorobenzoate, phenylacetate (paa), hydroxyphenylacetic acid (hpa), 3-hydroxyphenyl propionate (mhp). A comparative genome analysis revealed that the genome of AWD5 was highly similar with genomes of environmental as well as clinical K. pneumoniae isolates. The artemis output confirmed that there are 139 different genes present in AWD5 which were absent in genome of clinical strain K. pneumoniae ATCC BAA-2146, and 25 genes were identified to be present in AWD5 genome but absent in genome of environmental strain K. pneumoniae KP-1. Pathway analyzed using Kyoto Encyclopedia of Genes and Genomes enzyme database revealed the presence of gene clusters that code for enzymes to initiate the opening of aromatic rings. The polyaromatic hydrocarbon and benzoate degradation were found to be metabolized through ortho-cleavage pathway, mineralizing the compounds to TCA cycle intermediates. Genes for plant growth promoting attributes such as Indole acetic acid (IAA) synthesis, siderophore production, and phosphate solubilization were detected in the genome. These attributes were verified in vitro, including IAA (14.75 µg/ml), siderophore production (13.56%), phosphate solubilization (198.28 ng/ml), and ACC deaminase (0.118 mM α-ketobutyrate/mg) in the presence of pyrene, and also compared with results obtained in glucose amended medium. K. pneumoniae AWD5 enhanced the growth of Jatropha curcas in the presence of pyrene-contaminated soil. Moreover, AWD5 harbors heavy metal resistance genes indicating adaptation to contaminants. The study revealed the genomic attributes of K. pneumoniae AWD5 for its catabolic characteristics for different aromatic compounds, which makes it suitable for rhizoremediation of PAH-contaminated soil.
Collapse
|
35
|
Ceniceros A, Dijkhuizen L, Petrusma M. Molecular characterization of a Rhodococcus jostii RHA1 γ-butyrolactone(-like) signalling molecule and its main biosynthesis gene gblA. Sci Rep 2017; 7:17743. [PMID: 29255143 PMCID: PMC5735094 DOI: 10.1038/s41598-017-17853-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 12/01/2017] [Indexed: 01/25/2023] Open
Abstract
Rhodococcus genome sequence analysis has revealed a surprisingly large (and unexplored) potential for the production of secondary metabolites. Also, putative γ-butyrolactone gene clusters have been identified in some Rhodococci. These signalling molecules are known to regulate secondary metabolism in Streptomyces. This work provides evidence for synthesis of a γ-butyrolactone(-like) molecule by Rhodococci (RJB), the first report in the Rhodococcus genus. The Rhodococcus jostii RHA1 RJB molecule was detected by a reporter system based on the γ-butyrolactone receptor protein (ScbR) of Streptomyces coelicolor. This RJB is structurally identical to 6-dehydro SCB2, the predicted precursor of the S. coelicolor γ-butyrolactone SCB2. The R. jostii RHA1 key RJB biosynthesis gene was identified (gblA): Deletion of gblA resulted in complete loss of RJB synthesis whereas higher RJB levels were detected when gblA was overexpressed. Interaction of the RJB molecule with ScbR indicates that communication may occur between these two Actinomycete genera in their natural habitat. Furthermore, RJB may provide a highly relevant tool for awakening cryptic secondary metabolic gene clusters in Rhodococci. This study provides preliminary evidence that R. jostii RHA1 indeed synthesizes diffusible molecules with antimicrobial activity, but a possible role for RJB in this remains to be established.
Collapse
Affiliation(s)
- Ana Ceniceros
- Microbial Physiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, 9747AG, Groningen, The Netherlands
| | - Lubbert Dijkhuizen
- Microbial Physiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, 9747AG, Groningen, The Netherlands.
| | - Mirjan Petrusma
- Microbial Physiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, 9747AG, Groningen, The Netherlands
| |
Collapse
|
36
|
Liu Z, He Z, Huang H, Ran X, Oluwafunmilayo AO, Lu Z. pH Stress-Induced Cooperation between Rhodococcus ruber YYL and Bacillus cereus MLY1 in Biodegradation of Tetrahydrofuran. Front Microbiol 2017; 8:2297. [PMID: 29209303 PMCID: PMC5702389 DOI: 10.3389/fmicb.2017.02297] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 11/07/2017] [Indexed: 11/28/2022] Open
Abstract
Microbial consortia consisting of cooperational strains exhibit biodegradation performance superior to that of single microbial strains and improved remediation efficiency by relieving the environmental stress. Tetrahydrofuran (THF), a universal solvent widely used in chemical and pharmaceutical synthesis, significantly affects the environment. As a refractory pollutant, THF can be degraded by some microbial strains under suitable conditions. There are often a variety of stresses, especially pH stress, that inhibit the THF-degradation efficiency of microbial consortia. Therefore, it is necessary to study the molecular mechanisms of microbial cooperational degradation of THF. In this study, under conditions of low pH (initial pH = 7.0) stress, a synergistic promotion of the THF degradation capability of the strain Rhodococcus ruber YYL was found in the presence of a non-THF degrading strain Bacillus cereus MLY1. Metatranscriptome analysis revealed that the low pH stress induced the strain YYL to up-regulate the genes involved in anti-oxidation, mutation, steroid and bile acid metabolism, and translation, while simultaneously down-regulating the genes involved in ATP production. In the co-culture system, strain MLY1 provides fatty acids, ATP, and amino acids for strain YYL in response to low pH stress during THF degradation. In return, YYL shares the metabolic intermediates of THF with MLY1 as carbon sources. This study provides the preliminary mechanism to understand how microbial consortia improve the degradation efficiency of refractory furan pollutants under environmental stress conditions.
Collapse
Affiliation(s)
- Zubi Liu
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Zhixing He
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Hui Huang
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Xuebin Ran
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | | | - Zhenmei Lu
- College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
37
|
Biosynthesis of selenium-nanoparticles and -nanorods as a product of selenite bioconversion by the aerobic bacterium Rhodococcus aetherivorans BCP1. N Biotechnol 2017; 41:1-8. [PMID: 29174512 DOI: 10.1016/j.nbt.2017.11.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 11/13/2017] [Accepted: 11/20/2017] [Indexed: 02/03/2023]
Abstract
The wide anthropogenic use of selenium compounds represents the major source of selenium pollution worldwide, causing environmental issues and health concerns. Microbe-based strategies for metal removal/recovery have received increasing interest thanks to the association of the microbial ability to detoxify toxic metal/metalloid polluted environments with the production of nanomaterials. This study investigates the tolerance and the bioconversion of selenite (SeO32-) by the aerobically grown Actinomycete Rhodococcus aetherivorans BCP1 in association with its ability to produce selenium nanoparticles and nanorods (SeNPs and SeNRs). The BCP1 strain showed high tolerance towards SeO32- with a Minimal Inhibitory Concentration (MIC) of 500mM. The bioconversion of SeO32- was evaluated considering two different physiological states of the BCP1 strain, i.e. unconditioned and/or conditioned cells, which correspond to cells exposed for the first time or after re-inoculation in fresh medium to either 0.5 or 2mM of Na2SeO3, respectively. SeO32- bioconversion was higher for conditioned grown cells compared to the unconditioned ones. Selenium nanostructures appeared polydisperse and not aggregated, as detected by electron microscopy, being embedded in an organic coating likely responsible for their stability, as suggested by the physical-chemical characterization. The production of smaller and/or larger SeNPs was influenced by the initial concentration of provided precursor, which resulted in the growth of longer and/or shorter SeNRs, respectively. The strong ability to tolerate high SeO32- concentrations coupled with SeNP and SeNR biosynthesis highlights promising new applications of Rhodococcus aetherivorans BCP1 as cell factory to produce stable Se-nanostructures, whose suitability might be exploited for biotechnology purposes.
Collapse
|
38
|
Kambouris ME, Pavlidis C, Skoufas E, Arabatzis M, Kantzanou M, Velegraki A, Patrinos GP. Culturomics: A New Kid on the Block of OMICS to Enable Personalized Medicine. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2017; 22:108-118. [PMID: 28402209 DOI: 10.1089/omi.2017.0017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This innovation analysis highlights the underestimated and versatile potential of the new field of culturomics and examines its relation to other OMICS system sciences such as infectiomics, metabolomics, phenomics, and pharmacomicrobiomics. The advent of molecular biology, followed by the emergence of various disciplines of the genomics, and most importantly metagenomics, brought about the sharp decline of conventional microbiology methods. Emergence of culturomics has a natural synergy with therapeutic and clinical genomic approaches so as to realize personalized medicine. Notably, the concept of culturomics expands on that of phenomics and allows a reintroduction of the culture-based phenotypic characterization into the 21st century research repertoire, bolstered by robust technology for automated and massive execution, but its potential is largely unappreciated at present; the few available references show unenthusiastic pursuit and in narrow applications. This has not to be so: depending on the specific brand of culturomics, the scope of applications may extend to medicine, agriculture, environmental sciences, pharmacomicrobiomics, and biotechnology innovation. Moreover, culturomics may produce Big Data. This calls for a new generation of data scientists and innovative ways of harnessing and valorizing Big Data beyond classical genomics. Much more detailed and objective classification and identification of microbiota may soon be at hand through culturomics, thus enabling precision diagnosis toward truly personalized medicine. Culturomics may both widen the scope of microbiology and improve its contributions to diagnostics and personalized medicine, characterizing microbes and determining their associations with health and disease dynamics.
Collapse
Affiliation(s)
- Manousos E Kambouris
- 1 The Golden Helix Foundation , London, United Kingdom .,2 Department of Oenology and Beverage Technology, School of Food Technology, Higher Technological Educational Institute , Athens, Greece
| | | | - Efthymios Skoufas
- 3 Department of Pharmacy, School of Health Sciences, University of Patras , Patras, Greece
| | - Michael Arabatzis
- 4 Department of Microbiology, School of Medicine, National and Kapodistrian University of Athens , Athens Greece
| | - Maria Kantzanou
- 5 Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens , Athens, Greece
| | - Aristea Velegraki
- 4 Department of Microbiology, School of Medicine, National and Kapodistrian University of Athens , Athens Greece
| | - George P Patrinos
- 3 Department of Pharmacy, School of Health Sciences, University of Patras , Patras, Greece .,6 Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University , Al-Ain, United Arab Emirates
| |
Collapse
|
39
|
Presentato A, Piacenza E, Anikovskiy M, Cappelletti M, Zannoni D, Turner RJ. Rhodococcus aetherivorans BCP1 as cell factory for the production of intracellular tellurium nanorods under aerobic conditions. Microb Cell Fact 2016; 15:204. [PMID: 27978836 PMCID: PMC5157098 DOI: 10.1186/s12934-016-0602-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 11/24/2016] [Indexed: 01/05/2023] Open
Abstract
Background Tellurite (TeO32−) is recognized as a toxic oxyanion to living organisms. However, mainly anaerobic or facultative-anaerobic microorganisms are able to tolerate and convert TeO32− into the less toxic and available form of elemental Tellurium (Te0), producing Te-deposits or Te-nanostructures. The use of TeO32−-reducing bacteria can lead to the decontamination of polluted environments and the development of “green-synthesis” methods for the production of nanomaterials. In this study, the tolerance and the consumption of TeO32− have been investigated, along with the production and characterization of Te-nanorods by Rhodococcus aetherivorans BCP1 grown under aerobic conditions. Results Aerobically grown BCP1 cells showed high tolerance towards TeO32− with a minimal inhibitory concentration (MIC) of 2800 μg/mL (11.2 mM). TeO32− consumption has been evaluated exposing the BCP1 strain to either 100 or 500 μg/mL of K2TeO3 (unconditioned growth) or after re-inoculation in fresh medium with new addition of K2TeO3 (conditioned growth). A complete consumption of TeO32− at 100 μg/mL was observed under both growth conditions, although conditioned cells showed higher consumption rate. Unconditioned and conditioned BCP1 cells partially consumed TeO32− at 500 μg/mL. However, a greater TeO32− consumption was observed with conditioned cells. The production of intracellular, not aggregated and rod-shaped Te-nanostructures (TeNRs) was observed as a consequence of TeO32− reduction. Extracted TeNRs appear to be embedded in an organic surrounding material, as suggested by the chemical–physical characterization. Moreover, we observed longer TeNRs depending on either the concentration of precursor (100 or 500 μg/mL of K2TeO3) or the growth conditions (unconditioned or conditioned grown cells). Conclusions Rhodococcus aetherivorans BCP1 is able to tolerate high concentrations of TeO32− during its growth under aerobic conditions. Moreover, compared to unconditioned BCP1 cells, TeO32−conditioned cells showed a higher oxyanion consumption rate (for 100 μg/mL of K2TeO3) or to consume greater amount of TeO32− (for 500 μg/mL of K2TeO3). TeO32− consumption by BCP1 cells led to the production of intracellular and not aggregated TeNRs embedded in an organic surrounding material. The high resistance of BCP1 to TeO32− along with its ability to produce Te-nanostructures supports the application of this microorganism as a possible eco-friendly nanofactory. Electronic supplementary material The online version of this article (doi:10.1186/s12934-016-0602-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alessandro Presentato
- Microbial Biochemistry Laboratory, Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada.
| | - Elena Piacenza
- Microbial Biochemistry Laboratory, Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada
| | - Max Anikovskiy
- Department of Chemistry, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada
| | - Martina Cappelletti
- Department of Pharmacy and Biotechnology, Unit of General and Applied Microbiology, Via Irnerio 42, Bologna, 40126, Italy
| | - Davide Zannoni
- Department of Pharmacy and Biotechnology, Unit of General and Applied Microbiology, Via Irnerio 42, Bologna, 40126, Italy
| | - Raymond J Turner
- Microbial Biochemistry Laboratory, Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada.
| |
Collapse
|
40
|
Shubin M, Schaufler K, Tedin K, Vehkala M, Corander J. Identifying Multiple Potential Metabolic Cycles in Time-Series from Biolog Experiments. PLoS One 2016; 11:e0162276. [PMID: 27676629 PMCID: PMC5038949 DOI: 10.1371/journal.pone.0162276] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 08/20/2016] [Indexed: 11/26/2022] Open
Abstract
Biolog Phenotype Microarray (PM) is a technology allowing simultaneous screening of the metabolic behaviour of bacteria under a large number of different conditions. Bacteria may often undergo several cycles of metabolic activity during a Biolog experiment. We introduce a novel algorithm to identify these metabolic cycles in PM experimental data, thus increasing the potential of PM technology in microbiology. Our method is based on a statistical decomposition of the time-series measurements into a set of growth models. We show that the method is robust to measurement noise and captures accurately the biologically relevant signals from the data. Our implementation is made freely available as a part of an R package for PM data analysis and can be found at www.helsinki.fi/bsg/software/Biolog_Decomposition.
Collapse
Affiliation(s)
- Mikhail Shubin
- Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland
- * E-mail:
| | - Katharina Schaufler
- Institute of Microbiology and Epizootics, Freie Univerität Berlin, Berlin, Germany
| | - Karsten Tedin
- Institute of Microbiology and Epizootics, Freie Univerität Berlin, Berlin, Germany
| | - Minna Vehkala
- Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland
| | - Jukka Corander
- Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland
- Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
41
|
Phenotype microarray analysis may unravel genetic determinants of the stress response by Rhodococcus aetherivorans BCP1 and Rhodococcus opacus R7. Res Microbiol 2016; 167:766-773. [PMID: 27394988 DOI: 10.1016/j.resmic.2016.06.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 05/24/2016] [Accepted: 06/24/2016] [Indexed: 11/23/2022]
Abstract
In the present study, the response of Rhodococcus aetherivorans BCP1 and Rhodococcus opacus R7 to various stress conditions and several antimicrobials was examined by PM in relation with genetic determinants, as revealed by annotation analysis of the two genomes. Comparison between metabolic activities and genetic features of BCP1 and R7 provided new insight into the environmental persistence of these two members of the genus Rhodococcus.
Collapse
|