1
|
Dill GM, Rounsville TF, Bryant AM, Groden E, Gardner AM. Effects of Peromyscus spp. (Rodentia: Cricetidae) presence, land use, and ecotone on Ixodes scapularis (Acari: Ixodidae) ecology in an emergent area for tick-borne disease. JOURNAL OF MEDICAL ENTOMOLOGY 2024; 61:1478-1488. [PMID: 39214519 PMCID: PMC11562968 DOI: 10.1093/jme/tjae113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/06/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
As the range of Ixodes scapularis Say expands, host abundance and land use can play important roles in regions where ticks and their associated pathogens are emerging. Small mammal hosts serve as reservoirs of tick-borne pathogens, with Peromyscus leucopus Rafinesque often considered a primary reservoir. A sympatric species Peromyscus maniculatus Wagner is also a competent reservoir and is notoriously difficult to differentiate from P. leucopus. Anthropogenic land use can alter host and habitat availability, potentially changing tick exposure risk. We tested the hypotheses that tick infestation and pathogen prevalence differ between the two Peromyscus spp. and that host-seeking I. scapularis density and pathogen prevalence differ across land use and ecotone gradients. We live trapped small mammals and collected ticks across 3 land-use classifications and ecotones in Maine, an emergent area for tick-borne disease. We tested each small mammal and tick sample for Borrelia burgdorferi, Anaplasma phagocytophilum, and Babesia microti. While both Peromyscus spp. serve as hosts for immature ticks, P. leucopus exhibited a higher tick infestation frequency and intensity. We did not detect any significant difference in pathogen infection prevalence between the two species. The density of I. scapularis nymphs and the density of infected nymphs did not differ significantly between land-use types, though did differ across ecotones. We also noted a significant north/south gradient, with higher tick densities and pathogen prevalence at the southern end of the study area. Our study highlights the potential variability in tick density and pathogen prevalence across fine spatial scales within an emerging region for tick-borne disease.
Collapse
Affiliation(s)
- Griffin M Dill
- University of Maine Cooperative Extension Diagnostic and Research Laboratory, 17 Godfrey Drive, Orono, ME 04473, USA
| | - Thomas F Rounsville
- University of Maine Cooperative Extension Diagnostic and Research Laboratory, 17 Godfrey Drive, Orono, ME 04473, USA
| | - Ann M Bryant
- University of Maine Cooperative Extension Diagnostic and Research Laboratory, 17 Godfrey Drive, Orono, ME 04473, USA
| | - Eleanor Groden
- School of Biology and Ecology, University of Maine, 5722 Deering Hall, Orono, ME 04469, USA
| | - Allison M Gardner
- School of Biology and Ecology, University of Maine, 5722 Deering Hall, Orono, ME 04469, USA
| |
Collapse
|
2
|
Shaw G, Lilly M, Mai V, Clark J, Summers S, Slater K, Karpathy S, Nakano A, Crews A, Lawrence A, Salomon J, Sambado SB, Swei A. The roles of habitat isolation, landscape connectivity and host community in tick-borne pathogen ecology. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240837. [PMID: 39507992 PMCID: PMC11540178 DOI: 10.1098/rsos.240837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/03/2024] [Accepted: 09/03/2024] [Indexed: 11/08/2024]
Abstract
Habitat loss and forest fragmentation are often linked to increased pathogen transmission, but the extent to which habitat isolation and landscape connectivity affect disease dynamics through movement of disease vectors and reservoir hosts has not been well examined. Tick-borne diseases are the most prevalent vector-borne diseases in the United States and on the West Coast, Ixodes pacificus is one of the most epidemiologically important vectors. We investigated the impacts of habitat fragmentation on pathogens transmitted by I. pacificus and sought to disentangle the effects of wildlife communities and landscape metrics predictive of pathogen diversity, prevalence and distribution. We collected pathogen data for four co-occurring bacteria transmitted by I. pacificus and measured wildlife parameters. We also used spatial data and cost-distance analysis integrating expert opinions to assess landscape metrics of habitat fragmentation. We found that landscape metrics were significant predictors of tick density and pathogen prevalence. However, wildlife variables were essential when predicting the prevalence and distribution of pathogens reliant on wildlife reservoir hosts for maintenance. We found that landscape structure was an informative predictor of tick-borne pathogen richness in an urban matrix. Our work highlights the implications of large-scale land management on human disease risk.
Collapse
Affiliation(s)
- Grace Shaw
- Department of Biology, San Francisco State University, Holloway Avenue, San Francisco, CA1600, USA
| | - Marie Lilly
- Department of Ecology, Evolution and Environmental Biology, Columbia University, Amsterdam Avenue, New York, NY1200, USA
| | - Vincent Mai
- Department of Biology, San Francisco State University, Holloway Avenue, San Francisco, CA1600, USA
| | - Jacoby Clark
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Rampart Road, Fort Collins, CO80521, USA
| | - Shannon Summers
- Department of Biology, San Francisco State University, Holloway Avenue, San Francisco, CA1600, USA
| | - Kimetha Slater
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Clifton Road, Atlanta, GA1600, USA
| | - Sandor Karpathy
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Clifton Road, Atlanta, GA1600, USA
| | - Angie Nakano
- San Mateo County Mosquito and Vector Control District, Rollins Rd, Burlingame, CA1351, USA
| | - Arielle Crews
- San Mateo County Mosquito and Vector Control District, Rollins Rd, Burlingame, CA1351, USA
| | - Alexandra Lawrence
- Division of Forestry and Natural Resources, West Virginia University, 322 Evansdale Dr Percival Hall, Morgantown, WV, USA
| | - Jordan Salomon
- Department of Veterinary Integrated Biosciences, Texas A&M University, College Station, TX, USA
| | - Samantha Brianne Sambado
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA, USA
| | - Andrea Swei
- Department of Biology, San Francisco State University, Holloway Avenue, San Francisco, CA1600, USA
| |
Collapse
|
3
|
Sharma Y, Laison EK, Philippsen T, Ma J, Kong J, Ghaemi S, Liu J, Hu F, Nasri B. Models and data used to predict the abundance and distribution of Ixodes scapularis (blacklegged tick) in North America: a scoping review. LANCET REGIONAL HEALTH. AMERICAS 2024; 32:100706. [PMID: 38495312 PMCID: PMC10943480 DOI: 10.1016/j.lana.2024.100706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 03/19/2024]
Abstract
Tick-borne diseases (TBD) remain prevalent worldwide, and risk assessment of tick habitat suitability is crucial to prevent or reduce their burden. This scoping review provides a comprehensive survey of models and data used to predict I. scapularis distribution and abundance in North America. We identified 4661 relevant primary research articles published in English between January 1st, 2012, and July 18th, 2022, and selected 41 articles following full-text review. Models used data-driven and mechanistic modelling frameworks informed by diverse tick, hydroclimatic, and ecological variables. Predictions captured tick abundance (n = 14, 34.1%), distribution (n = 22, 53.6%) and both (n = 5, 12.1%). All studies used tick data, and many incorporated both hydroclimatic and ecological variables. Minimal host- and human-specific data were utilized. Biases related to data collection, protocols, and tick data quality affect completeness and representativeness of prediction models. Further research and collaboration are needed to improve prediction accuracy and develop effective strategies to reduce TBD.
Collapse
Affiliation(s)
- Yogita Sharma
- Department of Mathematics and Statistics, University of Victoria, Victoria, Canada
| | - Elda K.E. Laison
- Département de Médecine Préventive et Sociale, University of Montréal, Montréal, Canada
| | - Tanya Philippsen
- Department of Mathematics and Statistics, University of Victoria, Victoria, Canada
| | - Junling Ma
- Department of Mathematics and Statistics, University of Victoria, Victoria, Canada
| | - Jude Kong
- Department of Mathematics and Statistics, York University, Toronto, Ontario, Canada
| | - Sajjad Ghaemi
- Digital Technologies Research Center, National Research Council of Canada, Toronto, Canada
| | - Juxin Liu
- Department of Mathematics and Statistics, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - François Hu
- Department of Mathematics and Statistics, University of Montréal, Montréal, Canada
| | - Bouchra Nasri
- Département de Médecine Préventive et Sociale, University of Montréal, Montréal, Canada
| |
Collapse
|
4
|
Schwartz S, Calvente E, Rollinson E, Sample Koon Koon D, Chinnici N. Tick-Borne Pathogens in Questing Blacklegged Ticks (Acari: Ixodidae) From Pike County, Pennsylvania. JOURNAL OF MEDICAL ENTOMOLOGY 2022; 59:1793-1804. [PMID: 35920050 PMCID: PMC9473652 DOI: 10.1093/jme/tjac107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Indexed: 06/15/2023]
Abstract
Active surveillance was conducted by collecting questing ticks from vegetation through a 2-yr survey in Pike County, Pennsylvania. Over a thousand blacklegged ticks (Ixodes scapularis Say) and American dog ticks (Dermacentor variabilis Say) were collected. A single specimen of the following species was collected: lone star tick (Amblyomma americanum L.), rabbit tick (Haemaphysalis leporispalustris Packard), and an Asian longhorned tick (Haemaphysalis longicornis Neumann). This study represents the largest county-wide study in Pennsylvania, surveying 988 questing I. scapularis adult and nymphs. Molecular detection of five distinct tick-borne pathogens was screened through real-time PCR at a single tick resolution. Respectively, the overall 2-yr adult and nymph prevalence were highest with Borrelia burgdorferi (Spirochaetales: Spirochaetacceae) (45.99%, 18.94%), Anaplasma phagocytophilum (Rickettsiales: Anaplasmataceae) (12.29%, 7.95%) where the variant-ha (8.29%, 3.03%) was overall more prevalent than the variant-v1 (2.49%, 4.17%), Babesia microti (Piroplasmida: Babesiidae) (4.97%, 5.30%), Borrelia miyamotoi (Spirochaetales: Spirochaetaceae) (1.38%, 1.89%), and Powassan virus lineage II [POWV]/deer tick virus (DTV) (2.07%, 0.76%). Adult and nymph coinfection prevalence of B. burgdorferi and B. microti (3.03%, 4.97%) and adult coinfection of B. burgdorferi and A. phagocytophilum or A. phagocytophilum and B. microti were significantly higher than the independent infection rate expected naturally. This study highlights the urgency to conduct diverse surveillance studies with large sample sizes to better understand the human risk for tick-borne diseases within small geographical areas.
Collapse
Affiliation(s)
- Sarah Schwartz
- Dr. Jane Huffman Wildlife Genetics Institute, East Stroudsburg University of Pennsylvania, 562 Independence Road, Suite 114, East Stroudsburg, PA 18301, USA
| | - Elizabeth Calvente
- Dr. Jane Huffman Wildlife Genetics Institute, East Stroudsburg University of Pennsylvania, 562 Independence Road, Suite 114, East Stroudsburg, PA 18301, USA
| | - Emily Rollinson
- East Stroudsburg University, 200 Prospect Street, East Stroudsburg, PA 18301, USA
| | - Destiny Sample Koon Koon
- Dr. Jane Huffman Wildlife Genetics Institute, East Stroudsburg University of Pennsylvania, 562 Independence Road, Suite 114, East Stroudsburg, PA 18301, USA
| | | |
Collapse
|
5
|
Mason SD, Sherratt SCR, Kruguer SM, Muthersbaugh M, Harris JP, Gatlin WC, Topp JD, Keller GS. Multi-scale analysis of habitat fragmentation on small-mammal abundance and tick-borne pathogen infection prevalence in Essex County, MA. PLoS One 2022; 17:e0269768. [PMID: 35696376 PMCID: PMC9191718 DOI: 10.1371/journal.pone.0269768] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 05/27/2022] [Indexed: 12/02/2022] Open
Abstract
Habitat fragmentation and heterogeneity transform otherwise contiguous tracks of forest into smaller patches in the northeastern U.S. and likely impact abundances, movement patterns, and disease transmission pathways for small-mammal communities at multiple scales. We sought to determine the structure of a small-mammal community in terms of mammal abundance and infection prevalence of Borrelia burgdorferi sensu stricto (s.s.), Anaplasma phagocytophilum, and Babesia microti within a fragmented landscape in Essex County, Massachusetts, USA. We studied communities at multiple spatial scales, including vegetation, edge type, and landscape (including 200-m, 500-m, and 1000-m radii) scales. A total of 16 study sites were chosen to represent four edge types: interior forest, pasture edge, natural edge, and residential edge. At each site, we trapped small mammals and conducted vegetation surveys and GIS analysis. Upon capture, a tissue sample was collected to analyze for presence of pathogens. Northern short-tailed shrew (Blarina brevicauda) abundance did not differ based on edge type, whereas abundance of the white-footed mouse (Peromyscus leucopus) was greatest at pasture edges, although the relationship was relatively weak. White-footed mouse abundance was negatively associated with amount of forested area within a 500-m radius, whereas northern short-tailed shrew abundance demonstrated a positive relationship with fragmentation indices at the 200-m radius. White-footed mice captured at interior-forest habitat were more likely be infected with B. burgdorferi (s.s.) than individuals from edge habitat. Greater prevalence of B. burgdorferi infection of white-footed mice in forest interiors compared to edge habitats counters previous studies. Reasons for this and implications are discussed.
Collapse
Affiliation(s)
- Samuel D. Mason
- Landscape Ecology Lab, Department of Biology, Gordon College, Wenham, Massachusetts, United States of America
| | - Samuel C. R. Sherratt
- Landscape Ecology Lab, Department of Biology, Gordon College, Wenham, Massachusetts, United States of America
| | - Samantha M. Kruguer
- Landscape Ecology Lab, Department of Biology, Gordon College, Wenham, Massachusetts, United States of America
| | - Michael Muthersbaugh
- Landscape Ecology Lab, Department of Biology, Gordon College, Wenham, Massachusetts, United States of America
| | - Jonathan P. Harris
- Landscape Ecology Lab, Department of Biology, Gordon College, Wenham, Massachusetts, United States of America
- Department of Integrative Biology, Oklahoma State University, Stillwater, Oklahoma, United States of America
| | - Wayne C. Gatlin
- Department of Biology, Endicott College, Beverly, Massachusetts, United States of America
| | - Justin D. Topp
- Landscape Ecology Lab, Department of Biology, Gordon College, Wenham, Massachusetts, United States of America
| | - Gregory S. Keller
- Landscape Ecology Lab, Department of Biology, Gordon College, Wenham, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
6
|
Combs MA, Kache PA, VanAcker MC, Gregory N, Plimpton LD, Tufts DM, Fernandez MP, Diuk-Wasser MA. Socio-ecological drivers of multiple zoonotic hazards in highly urbanized cities. GLOBAL CHANGE BIOLOGY 2022; 28:1705-1724. [PMID: 34889003 DOI: 10.1111/gcb.16033] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/14/2021] [Accepted: 12/04/2021] [Indexed: 06/13/2023]
Abstract
The ongoing COVID-19 pandemic is a stark reminder of the devastating consequences of pathogen spillover from wildlife to human hosts, particularly in densely populated urban centers. Prevention of future zoonotic disease is contingent on informed surveillance for known and novel threats across diverse human-wildlife interfaces. Cities are a key venue for potential spillover events because of the presence of zoonotic pathogens transmitted by hosts and vectors living in close proximity to dense human settlements. Effectively identifying and managing zoonotic hazards requires understanding the socio-ecological processes driving hazard distribution and pathogen prevalence in dynamic and heterogeneous urban landscapes. Despite increasing awareness of the human health impacts of zoonotic hazards, the integration of an eco-epidemiological perspective into public health management plans remains limited. Here we discuss how landscape patterns, abiotic conditions, and biotic interactions influence zoonotic hazards across highly urbanized cities (HUCs) in temperate climates to promote their efficient and effective management by a multi-sectoral coalition of public health stakeholders. We describe how to interpret both direct and indirect ecological processes, incorporate spatial scale, and evaluate networks of connectivity specific to different zoonotic hazards to promote biologically-informed and targeted decision-making. Using New York City, USA as a case study, we identify major zoonotic threats, apply knowledge of relevant ecological factors, and highlight opportunities and challenges for research and intervention. We aim to broaden the toolbox of urban public health stakeholders by providing ecologically-informed, practical guidance for the evaluation and management of zoonotic hazards.
Collapse
Affiliation(s)
- Matthew A Combs
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, New York, USA
| | - Pallavi A Kache
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, New York, USA
| | - Meredith C VanAcker
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, New York, USA
| | - Nichar Gregory
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, New York, USA
| | - Laura D Plimpton
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, New York, USA
| | - Danielle M Tufts
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, New York, USA
- Infectious Diseases and Microbiology Department, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Maria P Fernandez
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, New York, USA
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, Washington, USA
| | - Maria A Diuk-Wasser
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, New York, USA
| |
Collapse
|
7
|
Baldwin H, Landesman WJ, Borgmann-Winter B, Allen D. A Geographic Information System Approach to Map Tick Exposure Risk at a Scale for Public Health Intervention. JOURNAL OF MEDICAL ENTOMOLOGY 2022; 59:162-172. [PMID: 34642748 PMCID: PMC8755993 DOI: 10.1093/jme/tjab169] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Indexed: 05/29/2023]
Abstract
Tick-borne disease control and prevention have been largely ineffective compared to the control of other vector-borne diseases. Although control strategies exist, they are costly or ineffective at large spatial scales. We need tools to target these strategies to places of highest tick exposure risk. Here we present a geographic information system (GIS) method for mapping predicted tick exposure risk at a 200 m by 200 m resolution, appropriate for public health intervention. We followed the approach used to map tick habitat suitability over large areas. We used drag-cloth sampling to measure the density of nymphal blacklegged ticks (Ixodes scapularis, Say (Acari: Ixodidae)) at 24 sites in Addison and Rutland Counties, VT, United States. We used a GIS to average habitat, climatological, land-use/land-cover, and abiotic characteristics over 100 m, 400 m, 1,000 m, and 2,000 m buffers around each site to evaluate which characteristic at which buffer size best predicted density of nymphal ticks (DON). The relationships between predictor variables and DON were determined with random forest models. The 100 m buffer model performed best and explained 37.7% of the variation in DON, although was highly accurate at classifying sites as having below or above average DON. This model was applied to Addison County, VT, to predict tick exposure risk at a 200 m resolution. This GIS approach to map predicted DON over a small area with fine resolution, could be used to target public health campaigns and land management practices to reduce human exposure to ticks.
Collapse
Affiliation(s)
- Harper Baldwin
- Department of Biology, Middlebury College, Middlebury, VT, USA
| | - William J Landesman
- Environmental and Health Sciences Department, Northern Vermont University, Johnson, VT, USA
| | | | - David Allen
- Department of Biology, Middlebury College, Middlebury, VT, USA
| |
Collapse
|
8
|
Diuk-Wasser MA, VanAcker MC, Fernandez MP. Impact of Land Use Changes and Habitat Fragmentation on the Eco-epidemiology of Tick-Borne Diseases. JOURNAL OF MEDICAL ENTOMOLOGY 2021; 58:1546-1564. [PMID: 33095859 DOI: 10.1093/jme/tjaa209] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Indexed: 06/11/2023]
Abstract
The incidence of tick-borne diseases has increased in recent decades and accounts for the majority of vector-borne disease cases in temperate areas of Europe, North America, and Asia. This emergence has been attributed to multiple and interactive drivers including changes in climate, land use, abundance of key hosts, and people's behaviors affecting the probability of human exposure to infected ticks. In this forum paper, we focus on how land use changes have shaped the eco-epidemiology of Ixodes scapularis-borne pathogens, in particular the Lyme disease spirochete Borrelia burgdorferi sensu stricto in the eastern United States. We use this as a model system, addressing other tick-borne disease systems as needed to illustrate patterns or processes. We first examine how land use interacts with abiotic conditions (microclimate) and biotic factors (e.g., host community composition) to influence the enzootic hazard, measured as the density of host-seeking I. scapularis nymphs infected with B. burgdorferi s.s. We then review the evidence of how specific landscape configuration, in particular forest fragmentation, influences the enzootic hazard and disease risk across spatial scales and urbanization levels. We emphasize the need for a dynamic understanding of landscapes based on tick and pathogen host movement and habitat use in relation to human resource provisioning. We propose a coupled natural-human systems framework for tick-borne diseases that accounts for the multiple interactions, nonlinearities and feedbacks in the system and conclude with a call for standardization of methodology and terminology to help integrate studies conducted at multiple scales.
Collapse
Affiliation(s)
- Maria A Diuk-Wasser
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York
| | - Meredith C VanAcker
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York
| | - Maria P Fernandez
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York
| |
Collapse
|
9
|
Fleshman AC, Graham CB, Maes SE, Foster E, Eisen RJ. Reported County-Level Distribution of Lyme Disease Spirochetes, Borrelia burgdorferi sensu stricto and Borrelia mayonii (Spirochaetales: Spirochaetaceae), in Host-Seeking Ixodes scapularis and Ixodes pacificus Ticks (Acari: Ixodidae) in the Contiguous United States. JOURNAL OF MEDICAL ENTOMOLOGY 2021; 58:1219-1233. [PMID: 33600574 PMCID: PMC8355468 DOI: 10.1093/jme/tjaa283] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Indexed: 05/12/2023]
Abstract
Lyme disease is the most common vector-borne disease in the United States. While Lyme disease vectors are widespread, high incidence states are concentrated in the Northeast, North Central and Mid-Atlantic regions. Mapping the distribution of Lyme disease spirochetes in ticks may aid in providing data-driven explanations of epidemiological trends and recommendations for targeting prevention strategies to communities at risk. We compiled data from the literature, publicly available tickborne pathogen surveillance databases, and internal CDC pathogen testing databases to map the county-level distribution of Lyme disease spirochetes reported in host-seeking Ixodes pacificus and Ixodes scapularis across the contiguous United States. We report B. burgdorferi s.s.-infected I. scapularis from 384 counties spanning 26 eastern states located primarily in the North Central, Northeastern, and Mid-Atlantic regions, and in I. pacificus from 20 counties spanning 2 western states, with most records reported from northern and north-coastal California. Borrelia mayonii was reported in I. scapularis in 10 counties in Minnesota and Wisconsin in the North Central United States, where records of B. burgdorferi s.s. were also reported. In comparison to a broad distribution of vector ticks, the resulting map shows a more limited distribution of Lyme disease spirochetes.
Collapse
Affiliation(s)
- Amy C Fleshman
- Bacterial Diseases Branch, Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, CO
| | - Christine B Graham
- Bacterial Diseases Branch, Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, CO
| | - Sarah E Maes
- Bacterial Diseases Branch, Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, CO
| | - Erik Foster
- Bacterial Diseases Branch, Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, CO
| | - Rebecca J Eisen
- Bacterial Diseases Branch, Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, CO
- Corresponding author, e-mail:
| |
Collapse
|
10
|
Huang CI, Kay SC, Davis S, Tufts DM, Gaffett K, Tefft B, Diuk-Wasser MA. High burdens of Ixodes scapularis larval ticks on white-tailed deer may limit Lyme disease risk in a low biodiversity setting. Ticks Tick Borne Dis 2018; 10:258-268. [PMID: 30446377 PMCID: PMC6377166 DOI: 10.1016/j.ttbdis.2018.10.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 10/25/2018] [Accepted: 10/28/2018] [Indexed: 11/24/2022]
Abstract
An inverse relationship between biodiversity and human health has been termed the ‘dilution effect’ paradigm. In the case of tick-borne infections such as Lyme disease, the key assumption is that Borrelia burgdorferi sensu lato abundance is increased by the loss of less competent (dilution) hosts as biodiversity declines. White-tailed deer play a dual role in the pathogen cycle, as key reproductive hosts for adult ticks and incompetent hosts for the pathogen. While the role of deer as hosts of adult ticks is well established, the extent to which deer also feed immature ticks and reduce the proportion infected is unknown because of logistic constraints in measuring this empirically. We estimated the proportion of larvae that fed on deer in an extremely species-poor community on Block Island, RI, where tick nymphal infection prevalence was found to be lower than expected. In 2014, we measured the density, larval tick burdens, and realized reservoir competence of small mammal and bird hosts on Block Island, RI. In 2015, we measured the infection prevalence of host-seeking Ixodes scapularis nymphs resulting from larvae fed on available hosts in 2014. We back-estimated the proportion of larvae expected to have fed on deer in 2014 (the only unknown parameter) to result in the nymphal infection prevalence observed in 2015. Back-estimation predicted that 29% of larval ticks must have fed on deer to yield the observed 30% nymphal infection prevalence. In comparison, the proportion of larvae feeding on mice was 44% and 27% on birds. Our study identified an influential role of deer in reducing nymphal tick infection prevalence and a potential role as dilution hosts if the reduction in nymphal infection prevalence outweighs the role of deer as tick population amplifiers. Because both deer and competent hosts may increase in anthropogenic, fragmented habitats, the links between fragmentation, biodiversity, and Lyme disease risk may be complex and difficult to predict. Furthermore, a nonlinear relationship between deer abundance and Lyme disease risk would reduce the efficacy of deer population reduction efforts to control Lyme disease.
Collapse
Affiliation(s)
- Ching-I Huang
- Department of Ecology, Evolution, and Environmental Biology, Columbia University, 1200 Amsterdam Ave., 10027 New York, NY, United States.
| | - Samantha C Kay
- Department of Ecology, Evolution, and Environmental Biology, Columbia University, 1200 Amsterdam Ave., 10027 New York, NY, United States.
| | - Stephen Davis
- School of Science, Royal Melbourne Institute of Technology, 124 La Trobe St., Melbourne, Australia.
| | - Danielle M Tufts
- Department of Ecology, Evolution, and Environmental Biology, Columbia University, 1200 Amsterdam Ave., 10027 New York, NY, United States.
| | - Kimberley Gaffett
- The Nature Conservancy on Block Island, P.O. Box 1287, Block Island, RI 02807, United States.
| | - Brian Tefft
- Rhode Island Department of Environmental Management, Division of Fish and Wildlife, 277 Great Neck Road West Kingston, RI 02892, United States.
| | - Maria A Diuk-Wasser
- Department of Ecology, Evolution, and Environmental Biology, Columbia University, 1200 Amsterdam Ave., 10027 New York, NY, United States.
| |
Collapse
|
11
|
MacDonald AJ, Larsen AE, Plantinga AJ. Missing the people for the trees: Identifying coupled natural–human system feedbacks driving the ecology of Lyme disease. J Appl Ecol 2018. [DOI: 10.1111/1365-2664.13289] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Andrew J. MacDonald
- Department of Biology Stanford University Stanford California
- Earth Research Institute University of California Santa Barbara California
| | - Ashley E. Larsen
- Bren School of Environmental Science and Management University of California Santa Barbara California
| | - Andrew J. Plantinga
- Bren School of Environmental Science and Management University of California Santa Barbara California
| |
Collapse
|
12
|
Piedmonte NP, Shaw SB, Prusinski MA, Fierke MK. Landscape Features Associated With Blacklegged Tick (Acari: Ixodidae) Density and Tick-Borne Pathogen Prevalence at Multiple Spatial Scales in Central New York State. JOURNAL OF MEDICAL ENTOMOLOGY 2018; 55:1496-1508. [PMID: 30020499 DOI: 10.1093/jme/tjy111] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Indexed: 06/08/2023]
Abstract
Blacklegged ticks (Ixodes scapularis Say, Acari: Ixodidae) are the most commonly encountered and medically relevant tick species in New York State (NY) and have exhibited recent geographic range expansion. Forests and adjacent habitat are important determinants of I. scapularis density and may influence tick-borne pathogen prevalence. We examined how percent forest cover, dominant land cover type, and habitat type influenced I. scapularis nymph and adult density, and associated tick-borne pathogen prevalence, in an inland Lyme-emergent region of NY. I. scapularis nymphs and adults were collected from edge and wooded habitats using tick drags at 16 sites in Onondaga County, NY in 2015 and 2016. A subsample of ticks from each site was tested for the presence of Borrelia burgdorferi, Borrelia miyamotoi, Anaplasma phagocytophilum, and Babesia microti using a novel multiplex real-time polymerase chain reaction (PCR) assay, and deer tick virus using reverse transcription-PCR. Habitat type (wooded versus edge) was an important determinant of tick density; however, percent forest cover had little effect. B. burgdorferi was the most commonly detected pathogen and was present in ticks from all sites. Ba. microti and deer tick virus were not detected. Habitat type and dominant land cover type were not significantly related to B. burgdorferi presence or prevalence; however, ticks infected with A. phagocytophilum and B. miyamotoi were collected more often in urban environments. Similarity between B. burgdorferi prevalence in Onondaga County and hyperendemic areas of southeastern NY indicates a more rapid emergence than expected in a relatively naive region. Possible mechanistic processes underlying these observations are discussed.
Collapse
Affiliation(s)
- Nicholas P Piedmonte
- State University of New York College of Environmental Science and Forestry, Syracuse, NY
- Health Research Incorporated, Menands, NY
| | - Stephen B Shaw
- State University of New York College of Environmental Science and Forestry, Syracuse, NY
| | - Melissa A Prusinski
- New York State Department of Health, Bureau of Communicable Disease Control, Vector Ecology Laboratory, Wadsworth Center Biggs Laboratories, Empire State Plaza, Albany, NY
| | - Melissa K Fierke
- State University of New York College of Environmental Science and Forestry, Syracuse, NY
| |
Collapse
|
13
|
McClure M, Diuk-Wasser M. Reconciling the Entomological Hazard and Disease Risk in the Lyme Disease System. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:E1048. [PMID: 29789489 PMCID: PMC5982087 DOI: 10.3390/ijerph15051048] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 05/09/2018] [Accepted: 05/16/2018] [Indexed: 11/16/2022]
Abstract
Lyme disease (LD) is a commonly cited model for the link between habitat loss and/or fragmentation and disease emergence, based in part on studies showing that forest patch size is negatively related to LD entomological risk. An equivalent relationship has not, however, been shown between patch size and LD incidence (LDI). Because entomological risk is measured at the patch scale, while LDI is generally assessed in relation to aggregate landscape statistics such as forest cover, we posit that the contribution of individual patches to human LD risk has not yet been directly evaluated. We design a model that directly links theoretical entomological risk at the patch scale to larger-scale epidemiological data. We evaluate its predictions for relative LD risk in artificial landscapes with varying composition and configuration, and test its ability to predict countywide LDI in a 12-county region of New York. On simulated landscapes, we find that the model predicts a unimodal relationship between LD incidence and forest cover, mean patch size, and mean minimum distance (a measure of isolation), and a protective effect for percolation probability (a measure of connectivity). In New York, risk indices generated by this model are significantly related to countywide LDI. The results suggest that the lack of concordance between entomological risk and LDI may be partially resolved by this style of model.
Collapse
Affiliation(s)
- Max McClure
- Vagelos College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA.
| | - Maria Diuk-Wasser
- Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
14
|
Ferrell AM, Brinkerhoff RJ. Using Landscape Analysis to Test Hypotheses about Drivers of Tick Abundance and Infection Prevalence with Borrelia burgdorferi. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15040737. [PMID: 29649156 PMCID: PMC5923779 DOI: 10.3390/ijerph15040737] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 04/03/2018] [Accepted: 04/05/2018] [Indexed: 12/17/2022]
Abstract
Patterns of vector-borne disease risk are changing globally in space and time and elevated disease risk of vector-borne infection can be driven by anthropogenic modification of the environment. Incidence of Lyme disease, caused by the bacterium Borrelia burgdorferi sensu stricto, has risen in a number of locations in North America and this increase may be driven by spatially or numerically expanding populations of the primary tick vector, Ixodes scapularis. We used a model selection approach to identify habitat fragmentation and land-use/land cover variables to test the hypothesis that the amount and configuration of forest cover at spatial scales relevant to deer, the primary hosts of adult ticks, would be the predominant determinants of tick abundance. We expected that land cover heterogeneity and amount of forest edge, a habitat thought to facilitate deer foraging and survival, would be the strongest driver of tick density and that larger spatial scales (5-10 km) would be more important than smaller scales (1 km). We generated metrics of deciduous and mixed forest fragmentation using Fragstats 4.4 implemented in ArcMap 10.3 and found, after adjusting for multicollinearity, that total forest edge within a 5 km buffer had a significant negative effect on tick density and that the proportion of forested land cover within a 10 km buffer was positively associated with density of I. scapularis nymphs. None of the 1 km fragmentation metrics were found to significantly improve the fit of the model. Elevation, previously associated with increased density of I. scapularis nymphs in Virginia, while significantly predictive in univariate analysis, was not an important driver of nymph density relative to fragmentation metrics. Our results suggest that amount of forest cover (i.e., lack of fragmentation) is the most important driver of I. scapularis density in our study system.
Collapse
Affiliation(s)
- A Michelle Ferrell
- Department of Biology, University of Richmond, 28 Westhampton Way, Richmond, VA 23173, USA.
| | - R Jory Brinkerhoff
- Department of Biology, University of Richmond, 28 Westhampton Way, Richmond, VA 23173, USA.
- College of Life Sciences, University of KwaZulu-Natal, 3209 Pietermaritzburg, South Africa.
| |
Collapse
|
15
|
Transient influence of blood meal and natural environment on blacklegged tick bacterial communities. Ticks Tick Borne Dis 2018; 9:563-572. [PMID: 29409718 DOI: 10.1016/j.ttbdis.2018.01.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 01/12/2018] [Accepted: 01/13/2018] [Indexed: 11/20/2022]
Abstract
Blacklegged ticks (Ixodes scapularis) spend the majority of their life cycle off host, typically in woodland habitat, but require a blood meal at each of three life stages (larva, nymph, adult) to reach maturity and reproduce. Blood feeding usually lasts for several days each time and as blood is imbibed, a range of known pathogens from the host may also be acquired. Using next generation sequencing of 16S rRNA gene amplicons, we examined the influence of host blood meal on the internal bacterial community within nymphal blacklegged ticks across host-seeking, feeding, blood meal digestion, and after molting into the adult stage. Results demonstrate bacterial community structuring across host and ticks with 287 taxa found exclusively in ticks, suggesting the field environment plays a significant role in shaping the internal tick microbiome. A decrease in bacterial diversity was noted from unfed nymphs through feeding/digestion and after molting into adults, suggesting that bacterial species are lost during the corresponding physiological changes. The similarity in biochemical pathways across the different tick categories suggests that the loss of bacterial taxa does not mirror a large change in microbial function. Ticks likely lose bacterial taxa after feeding, but continual exposure to bacteria from the field environment counters this loss.
Collapse
|
16
|
Adalsteinsson SA, Shriver WG, Hojgaard A, Bowman JL, Brisson D, D’Amico V, Buler JJ. Multiflora rose invasion amplifies prevalence of Lyme disease pathogen, but not necessarily Lyme disease risk. Parasit Vectors 2018; 11:54. [PMID: 29361971 PMCID: PMC5781316 DOI: 10.1186/s13071-018-2623-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 01/05/2018] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Forests in urban landscapes differ from their rural counterparts in ways that may alter vector-borne disease dynamics. In urban forest fragments, tick-borne pathogen prevalence is not well characterized; mitigating disease risk in densely-populated urban landscapes requires understanding ecological factors that affect pathogen prevalence. We trapped blacklegged tick (Ixodes scapularis) nymphs in urban forest fragments on the East Coast of the United States and used multiplex real-time PCR assays to quantify the prevalence of four zoonotic, tick-borne pathogens. We used Bayesian logistic regression and WAIC model selection to understand how vegetation, habitat, and landscape features of urban forests relate to the prevalence of B. burgdorferi (the causative agent of Lyme disease) among blacklegged ticks. RESULTS In the 258 nymphs tested, we detected Borrelia burgdorferi (11.2% of ticks), Borrelia miyamotoi (0.8%) and Anaplasma phagocytophilum (1.9%), but we did not find Babesia microti (0%). Ticks collected from forests invaded by non-native multiflora rose (Rosa multiflora) had greater B. burgdorferi infection rates (mean = 15.9%) than ticks collected from uninvaded forests (mean = 7.9%). Overall, B. burgdorferi prevalence among ticks was positively related to habitat features (e.g. coarse woody debris and total understory cover) favorable for competent reservoir host species. CONCLUSIONS Understory structure provided by non-native, invasive shrubs appears to aggregate ticks and reservoir hosts, increasing opportunities for pathogen transmission. However, when we consider pathogen prevalence among nymphs in context with relative abundance of questing nymphs, invasive plants do not necessarily increase disease risk. Although pathogen prevalence is greater among ticks in invaded forests, the probability of encountering an infected tick remains greater in uninvaded forests characterized by thick litter layers, sparse understories, and relatively greater questing tick abundance in urban landscapes.
Collapse
Affiliation(s)
- Solny A. Adalsteinsson
- Department of Entomology and Wildlife Ecology, University of Delaware, Newark, DE USA
- Tyson Research Center, Washington University in St. Louis, St. Louis, MO USA
| | - W. Gregory Shriver
- Department of Entomology and Wildlife Ecology, University of Delaware, Newark, DE USA
| | - Andrias Hojgaard
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO USA
| | - Jacob L. Bowman
- Department of Entomology and Wildlife Ecology, University of Delaware, Newark, DE USA
| | - Dustin Brisson
- Department of Biology, University of Pennsylvania, Philadelphia, PA USA
| | - Vincent D’Amico
- Northern Research Station, USDA Forest Service, Newark, DE USA
| | - Jeffrey J. Buler
- Department of Entomology and Wildlife Ecology, University of Delaware, Newark, DE USA
| |
Collapse
|
17
|
Faust CL, Dobson AP, Gottdenker N, Bloomfield LSP, McCallum HI, Gillespie TR, Diuk-Wasser M, Plowright RK. Null expectations for disease dynamics in shrinking habitat: dilution or amplification? Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0173. [PMID: 28438921 DOI: 10.1098/rstb.2016.0173] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2016] [Indexed: 11/12/2022] Open
Abstract
As biodiversity declines with anthropogenic land-use change, it is increasingly important to understand how changing biodiversity affects infectious disease risk. The dilution effect hypothesis, which points to decreases in biodiversity as critical to an increase in infection risk, has received considerable attention due to the allure of a win-win scenario for conservation and human well-being. Yet some empirical data suggest that the dilution effect is not a generalizable phenomenon. We explore the response of pathogen transmission dynamics to changes in biodiversity that are driven by habitat loss using an allometrically scaled multi-host model. With this model, we show that declining habitat, and thus declining biodiversity, can lead to either increasing or decreasing infectious-disease risk, measured as endemic prevalence. Whether larger habitats, and thus greater biodiversity, lead to a decrease (dilution effect) or increase (amplification effect) in infection prevalence depends upon the pathogen transmission mode and how host competence scales with body size. Dilution effects were detected for most frequency-transmitted pathogens and amplification effects were detected for density-dependent pathogens. Amplification effects were also observed over a particular range of habitat loss in frequency-dependent pathogens when we assumed that host competence was greatest in large-bodied species. By contrast, only amplification effects were observed for density-dependent pathogens; host competency only affected the magnitude of the effect. These models can be used to guide future empirical studies of biodiversity-disease relationships across gradients of habitat loss. The type of transmission, the relationship between host competence and community assembly, the identity of hosts contributing to transmission, and how transmission scales with area are essential factors to consider when elucidating the mechanisms driving disease risk in shrinking habitat.This article is part of the themed issue 'Conservation, biodiversity and infectious disease: scientific evidence and policy implications'.
Collapse
Affiliation(s)
- Christina L Faust
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA .,Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
| | - Andrew P Dobson
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | - Nicole Gottdenker
- Department of Veterinary Pathology, University of Georgia, Athens, GA 30602, USA
| | - Laura S P Bloomfield
- Emmett Interdisciplinary Program in Environment and Resources, Stanford University, Stanford, CA 94305, USA
| | - Hamish I McCallum
- Environmental Futures Research Institute and Griffith School of Environment, Griffith University, Brisbane, Queensland 4222, Australia
| | - Thomas R Gillespie
- Department of Environmental Sciences, Rollins School of Public Health; Program In Population, Biology, Ecology and Evolution; Emory University, Atlanta, GA 30322, USA.,Department of Environmental Health, Rollins School of Public Health; Program In Population, Biology, Ecology and Evolution; Emory University, Atlanta, GA 30322, USA
| | - Maria Diuk-Wasser
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY 10027, USA
| | - Raina K Plowright
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
| |
Collapse
|
18
|
Kilpatrick AM, Dobson ADM, Levi T, Salkeld DJ, Swei A, Ginsberg HS, Kjemtrup A, Padgett KA, Jensen PM, Fish D, Ogden NH, Diuk-Wasser MA. Lyme disease ecology in a changing world: consensus, uncertainty and critical gaps for improving control. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0117. [PMID: 28438910 DOI: 10.1098/rstb.2016.0117] [Citation(s) in RCA: 160] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2016] [Indexed: 11/12/2022] Open
Abstract
Lyme disease is the most common tick-borne disease in temperate regions of North America, Europe and Asia, and the number of reported cases has increased in many regions as landscapes have been altered. Although there has been extensive work on the ecology and epidemiology of this disease in both Europe and North America, substantial uncertainty exists about fundamental aspects that determine spatial and temporal variation in both disease risk and human incidence, which hamper effective and efficient prevention and control. Here we describe areas of consensus that can be built on, identify areas of uncertainty and outline research needed to fill these gaps to facilitate predictive models of disease risk and the development of novel disease control strategies. Key areas of uncertainty include: (i) the precise influence of deer abundance on tick abundance, (ii) how tick populations are regulated, (iii) assembly of host communities and tick-feeding patterns across different habitats, (iv) reservoir competence of host species, and (v) pathogenicity for humans of different genotypes of Borrelia burgdorferi Filling these knowledge gaps will improve Lyme disease prevention and control and provide general insights into the drivers and dynamics of this emblematic multi-host-vector-borne zoonotic disease.This article is part of the themed issue 'Conservation, biodiversity and infectious disease: scientific evidence and policy implications'.
Collapse
Affiliation(s)
- A Marm Kilpatrick
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA 95064, USA
| | | | - Taal Levi
- Department of Fisheries and Wildlife, Oregon State University, Corvallis, OR 97331, USA
| | - Daniel J Salkeld
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Andrea Swei
- Department of Biology, San Francisco State University, San Francisco, CA 94132, USA
| | - Howard S Ginsberg
- USGS Patuxent Wildlife Research Center, RI Field Station, University of Rhode Island, Kingston, RI 02881, USA
| | - Anne Kjemtrup
- Vector-Borne Disease Section, Division of Communicable Disease Control, California Department of Public Health, Center for Infectious Diseases, Sacramento, CA 95814, USA
| | - Kerry A Padgett
- Vector-Borne Disease Section, Division of Communicable Disease Control, California Department of Public Health, Center for Infectious Diseases, Sacramento, CA 95814, USA
| | - Per M Jensen
- Department of Plant and Environmental Science, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | - Durland Fish
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, Yale University, New Haven, CT, USA
| | - Nick H Ogden
- Public Health Risk Sciences, National Microbiology Laboratory, Public Health Agency of Canada, 3200 Sicotte, Saint-Hyacinthe, Quebec, J2S 7C6, Canada
| | - Maria A Diuk-Wasser
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY 10027, USA
| |
Collapse
|
19
|
Kowalec M, Szewczyk T, Welc-Falęciak R, Siński E, Karbowiak G, Bajer A. Ticks and the city - are there any differences between city parks and natural forests in terms of tick abundance and prevalence of spirochaetes? Parasit Vectors 2017; 10:573. [PMID: 29157278 PMCID: PMC5697153 DOI: 10.1186/s13071-017-2391-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 09/19/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Ixodes ricinus ticks are commonly encountered in either natural or urban areas, contributing to Lyme disease agents Borreliella [(Borrelia burgdorferi (sensu lato)] spp. and Borrelia miyamotoi enzootic cycles in cities. It is an actual problem whether urbanization affects pathogen circulation and therefore risk of infection. The aim of the study was to evaluate main tick-borne disease risk factors in natural, endemic areas of north-east (NE) Poland (Białowieża) and urban areas of central Poland (Warsaw), measuring tick abundance/density, prevalence of infection with spirochaetes and diversity of these pathogens in spring-early summer and late summer-autumn periods between 2012 and 2015. METHODS Questing I. ricinus ticks were collected from three urban sites in Warsaw, central Poland and three natural sites in Białowieża, NE Poland. A total of 2993 ticks were analyzed for the presence of Borreliella spp. and/or Borrelia miyamotoi DNA by PCR. Tick abundance was analyzed by General Linear Models (GLM). Prevalence and distribution of spirochaetes was analyzed by Maximum Likelihood techniques based on log-linear analysis of contingency tables (HILOGLINEAR). Species typing and molecular phylogenetic analysis based on the sequenced flaB marker were carried out. RESULTS Overall 4617 I. ricinus ticks were collected (2258 nymphs and 2359 adults). We report well established population of ticks in urban areas (10.1 ± 0.9 ticks/100 m2), as in endemic natural areas with higher mean tick abundance (16.5 ± 1.5 ticks/100 m2). Tick densities were the highest in spring-early summer in both types of areas. We observed no effect of the type of area on Borreliella spp. and B. miyamotoi presence in ticks, resulting in similar prevalence of spirochaetes in urban and natural areas [10.9% (95% CI: 9.7-12.2%) vs 12.4% (95% CI: 10.1-15.1%), respectively]. Prevalence of spirochaetes was significantly higher in the summer-autumn period than in the spring-early summer [15.0% (95% CI: 12.8-17.5%) vs 10.4% (95% CI: 9.2-11.6%), respectively]. We have detected six species of bacteria present in both types of areas, with different frequencies: dominance of B. afzelii (69.3%) in urban and B. garinii (48.1%) in natural areas. Although we observed higher tick densities in forests than in maintained parks, the prevalence of spirochaetes was significantly higher in the latter [9.8% (95% CI: 8.6-11.0%) vs 17.5% (95% CI: 14.4-20.5%)]. CONCLUSIONS Surprisingly, a similar risk of infection with Borreliella spp. and/or B. miyamotoi was discovered in highly- and low-transformed areas. We suggest that the awareness of presence of these disease agents in cities should be raised.
Collapse
Affiliation(s)
- Maciej Kowalec
- Department of Parasitology, Institute of Zoology, Faculty of Biology, University of Warsaw, 1 Miecznikowa Street, 02-096, Warsaw, Poland
| | - Tomasz Szewczyk
- W. Stefański Institute of Parasitology of the Polish Academy of Sciences, 51/55 Twarda Street, 00-818, Warsaw, Poland
| | - Renata Welc-Falęciak
- Department of Parasitology, Institute of Zoology, Faculty of Biology, University of Warsaw, 1 Miecznikowa Street, 02-096, Warsaw, Poland
| | - Edward Siński
- Department of Parasitology, Institute of Zoology, Faculty of Biology, University of Warsaw, 1 Miecznikowa Street, 02-096, Warsaw, Poland
| | - Grzegorz Karbowiak
- W. Stefański Institute of Parasitology of the Polish Academy of Sciences, 51/55 Twarda Street, 00-818, Warsaw, Poland
| | - Anna Bajer
- Department of Parasitology, Institute of Zoology, Faculty of Biology, University of Warsaw, 1 Miecznikowa Street, 02-096, Warsaw, Poland.
| |
Collapse
|