1
|
Wang Y, Bai M, Peng Q, Li L, Tian F, Guo Y, Jing C. Angiogenesis, a key point in the association of gut microbiota and its metabolites with disease. Eur J Med Res 2024; 29:614. [PMID: 39710789 DOI: 10.1186/s40001-024-02224-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 12/15/2024] [Indexed: 12/24/2024] Open
Abstract
The gut microbiota is a complex and dynamic ecosystem that plays a crucial role in human health and disease, including obesity, diabetes, cardiovascular diseases, neurodegenerative diseases, inflammatory bowel disease, and cancer. Chronic inflammation is a common feature of these diseases and is closely related to angiogenesis (the process of forming new blood vessels), which is often dysregulated in pathological conditions. Inflammation potentially acts as a central mediator. This abstract aims to elucidate the connection between the gut microbiota and angiogenesis in various diseases. The gut microbiota influences angiogenesis through various mechanisms, including the production of metabolites that directly or indirectly affect vascularization. For example, short-chain fatty acids (SCFAs) such as butyrate, propionate, and acetate are known to regulate immune responses and inflammation, thereby affecting angiogenesis. In the context of cardiovascular diseases, the gut microbiota promotes atherosclerosis and vascular dysfunction by producing trimethylamine N-oxide (TMAO) and other metabolites that promote inflammation and endothelial dysfunction. Similarly, in neurodegenerative diseases, the gut microbiota may influence neuroinflammation and the integrity of the blood-brain barrier, thereby affecting angiogenesis. In cases of fractures and wound healing, the gut microbiota promotes angiogenesis by activating inflammatory responses and immune effects, facilitating the healing of tissue damage. In cancer, the gut microbiota can either inhibit or promote tumor growth and angiogenesis, depending on the specific bacterial composition and their metabolites. For instance, some bacteria can activate inflammasomes, leading to the production of inflammatory factors that alter the tumor immune microenvironment and activate angiogenesis-related signaling pathways, affecting tumor angiogenesis and metastasis. Some bacteria can directly interact with tumor cells, activating angiogenesis-related signaling pathways. Diet, as a modifiable factor, significantly influences angiogenesis through diet-derived microbial metabolites. Diet can rapidly alter the composition of the microbiota and its metabolic activity, thereby changing the concentration of microbial-derived metabolites and profoundly affecting the host's immune response and angiogenesis. For example, a high animal protein diet promotes the production of pro-atherogenic metabolites like TMAO, activating inflammatory pathways and interfering with platelet function, which is associated with the severity of coronary artery plaques, peripheral artery disease, and cardiovascular diseases. A diet rich in dietary fiber promotes the production of SCFAs, which act as ligands for cell surface or intracellular receptors, regulating various biological processes, including inflammation, tissue homeostasis, and immune responses, thereby influencing angiogenesis. In summary, the role of the gut microbiota in angiogenesis is multifaceted, playing an important role in disease progression by affecting various biological processes such as inflammation, immune responses, and multiple signaling pathways. Diet-derived microbial metabolites play a crucial role in linking the gut microbiota and angiogenesis. Understanding the complex interactions between diet, the gut microbiota, and angiogenesis has the potential to uncover novel therapeutic targets for managing these conditions. Therefore, interventions targeting the gut microbiota and its metabolites, such as through fecal microbiota transplantation (FMT) and the application of probiotics to alter the composition of the gut microbiota and enhance the production of beneficial metabolites, present a promising therapeutic strategy.
Collapse
Affiliation(s)
- Yan Wang
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China
| | - Mingshuai Bai
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China
| | - Qifan Peng
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China
| | - Leping Li
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Feng Tian
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China.
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
| | - Ying Guo
- Department of Breast and Thyroid Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
| | - Changqing Jing
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China.
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
| |
Collapse
|
2
|
Li CF, Chan TC, Fang FM, Yu SC, Huang HY. PAK1 overexpression promotes myxofibrosarcoma angiogenesis through STAT5B-mediated CSF2 transactivation: clinical and therapeutic relevance of amplification and nuclear entry. Int J Biol Sci 2023; 19:3920-3936. [PMID: 37564209 PMCID: PMC10411477 DOI: 10.7150/ijbs.83467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 07/19/2023] [Indexed: 08/12/2023] Open
Abstract
Myxofibrosarcoma is genetically complex without established nonsurgical therapies. In public datasets, PAK1 was recurrently gained with mRNA upregulation. Using myxofibrosarcoma cells, we explored the oncogenic underpinning of PAK1 with genetic manipulation and a pan-PAK inhibitor (PF3758309). Myxofibrosarcoma specimens were analyzed for the levels of PAK1, phospho-PAKT423, CSF2 and microvascular density (MVD) and those of PAK1 gene and mRNA. PAK1-expressing xenografts were assessed for the effects of PF3758309 and CSF2 silencing. Besides pro-proliferative and pro-migrator/pro-invasive attributes, PAK1 strongly enhanced angiogenesis in vitro, which, not phenocopied by PAK2-4, was identified as CSF2-mediated using antibody arrays. PAK1 underwent phosphorylation at tyrosines153,201,285 and threonine423 to facilitate nuclear entry, whereby nuclear PAK1 bound STAT5B to co-transactivate the CSF2 promoter, increasing CSF2 secretion needed for angiogenesis. Angiogenesis driven by PAK1-upregulated CSF2 was negated by CSF2 silencing, anti-CSF2, and PF3758309. Clinically, overexpressed whole-cell phospho-PAKT423, related to PAK1 amplification, was associated with increased grades, stages, and PAK1 mRNA, higher MVD, and CSF2 overexpression. Overexpressed whole-cell phospho-PAKT423 and CSF2 independently portended shorter metastasis-free survival and disease-specific survival, respectively. In vivo, both CSF2 silencing and PF3758309 suppressed PAK1-driven tumor proliferation and angiogenesis. Conclusively, the nuclear entry of overexpressed/activated PAK1 endows myxofibrosarcomas with pro-angiogenic function, highlighting the vulnerable PAK1/STAT5B/CSF2 regulatory axis.
Collapse
Affiliation(s)
- Chien-Feng Li
- Department of Medical Research, Chi-Mei Medical Center, Tainan, Taiwan
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
- Institute of Precision Medicine, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Ti-Chun Chan
- Department of Medical Research, Chi-Mei Medical Center, Tainan, Taiwan
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
| | - Fu-Min Fang
- Department of Radiation Oncology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Shih-Chen Yu
- Department of Anatomic Pathology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Hsuan-Ying Huang
- Department of Anatomic Pathology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| |
Collapse
|
3
|
Gao M, Fu J, Wang Y. The lncRNA FAL1 protects against hypoxia-reoxygenation- induced brain endothelial damages through regulating PAK1. J Bioenerg Biomembr 2020; 52:17-25. [PMID: 31927658 DOI: 10.1007/s10863-019-09819-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 12/12/2019] [Indexed: 01/03/2023]
Abstract
Dysregulation of cerebral microvascular endothelial cells plays an important role in the pathogenesis of stroke. However, the underlying mechanisms still need to be elucidated. In the current study, we found that the long non-coding RNA (lncRNA) FAL1 was significantly reduced in response to oxygen-glucose deprivation and reoxygenation (OGD/R) stimulation in human primary brain microvascular endothelial cells (HBMVECs). Interestingly, overexpression of FAL1 ameliorated OGD/R-induced oxidative stress by reducing the production of reactive oxygen species (ROS) and increasing the level of reduced glutathione (GSH). Also, overexpression of FAL1 suppressed OGD/R-induced secretions of interleukin-6 (IL-6), monocyte chemotactic protein-1 (MCP-1), and high mobility group box-1 (HMGB-1). We then found that OGD/R-induced reduction of cell viability and release of lactate dehydrogenase (LDH) were prevented by overexpression of FAL1. Additionally, exposure to OGD/R significantly reduced the phosphorylated levels of PAK1 and AKT as well as the total level of proliferating cell nuclear antigen (PCNA), which was restored by overexpression of FAL1. Importantly, overexpression of FAL1 restored OGD/R-induced reduction in the expression of endothelial nitric oxide synthase (eNOS) and the subsequent release of nitric oxide (NO). Our results implicate that FAL1 might be involved in the process of brain endothelial cell damage.
Collapse
Affiliation(s)
- Mingqing Gao
- Department of Neurosurgery, The Affiliated Hospital of Wei fang Medical University, No. 2428, Yuhe Road, Weifang, 261031, Shandong, China
| | - Jieting Fu
- Department of Hematology, The Affiliated Hospital of Wei fang Medical University, Shandong, China
| | - Yanqiang Wang
- Department of Neurology, The Affiliated Hospital of Wei fang Medical University, Shandong, China.
| |
Collapse
|
4
|
Xia P, Huang M, Zhang Y, Xiong X, Yan M, Xiong X, Yu W, Song E. NCK1 promotes the angiogenesis of cervical squamous carcinoma via Rac1/PAK1/MMP2 signal pathway. Gynecol Oncol 2018; 152:387-395. [PMID: 30442385 DOI: 10.1016/j.ygyno.2018.11.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/04/2018] [Accepted: 11/09/2018] [Indexed: 10/27/2022]
Abstract
OBJECTIVE The study was to explore the roles of Nck1 in the angiogenesis of cervical squamous cell carcinoma (CSCC). METHODS mRNA and protein levels were evaluated with real-time quantitative PCR and immunohistochemisty/western blotting respectively. The cancer microvessel density (MVD) was assayed with CD34 endothelial labeling. Nck1 gene knock-in (SiHa-Nck1+) and knock-down (SiHa-Nck1-) were achieved by gene transfection and siRNA respectively. Protein level from cellular supernatant was measured with ELISA. Proliferation, migration and tube formation of the Human Umbilical Vein Endothelial cells (HUVECs) were evaluated by CCK-8 cell viability assay, transwell chamber assay and in vitro Matrigel tubulation assay respectively. RESULTS Nck1 level gradually increased from normal cervical epithelia to high-grade CIN, overexpressed in CSCC and was associated with cancer MVD. The ability of proliferation, migration and tube formation of HUVECs was enhanced in SiHa-Nck1+-treated while decreased in SiHa-NcK1--treated cells compared to SiHa-control-treated cells. Mechanistically, RAC1-GTP, p-PAK1 and MMP2 were increased in SiHa-NCK1+ cells and pretreatment with the Rac1 inhibitor (NSC23766) significantly decreased their levels. Furthermore, inhibition of PAK1 reduced MMP2 level in SiHa-Nck1+ cells whereas the level of Rac1-GTP was unaltered. Also, inhibition of Rac1 or PAK1 impaired angiogenesis-inducing capacity of cancer cells. CONCLUSIONS Nck1 promotes the angiogenesis-inducing capacity of CSCC via the Rac1/PAK1/MMP2 signal pathway.
Collapse
Affiliation(s)
- Pei Xia
- Department of Pathology, Basic Medical College of Nanchang University, Nanchang, Bayi Road, 330006, China
| | - Mingchuan Huang
- Department of Urology, the First Affiliated Hospital of Nanchang University, Nanchang, Yong Wai zheng Road, 330006, China
| | - Yuting Zhang
- Department of Pathology, Basic Medical College of Nanchang University, Nanchang, Bayi Road, 330006, China
| | - Xiujuan Xiong
- Department of Pathology, Basic Medical College of Nanchang University, Nanchang, Bayi Road, 330006, China
| | - Min Yan
- Department of Pathology, Basic Medical College of Nanchang University, Nanchang, Bayi Road, 330006, China
| | - Xiaoliang Xiong
- Department of Pathology, Basic Medical College of Nanchang University, Nanchang, Bayi Road, 330006, China
| | - Weiwei Yu
- Department of Pathology, Basic Medical College of Nanchang University, Nanchang, Bayi Road, 330006, China
| | - Enlin Song
- Department of Pathology, Basic Medical College of Nanchang University, Nanchang, Bayi Road, 330006, China.
| |
Collapse
|
5
|
Zhang W, Chu W, Liu Q, Coates D, Shang Y, Li C. Deer thymosin beta 10 functions as a novel factor for angiogenesis and chondrogenesis during antler growth and regeneration. Stem Cell Res Ther 2018; 9:166. [PMID: 29921287 PMCID: PMC6009950 DOI: 10.1186/s13287-018-0917-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 04/29/2018] [Accepted: 05/28/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Deer antlers are the only known mammalian organ with vascularized cartilage that can completely regenerate. Antlers are of real significance as a model of mammalian stem cell-based regeneration with particular relevance to the fields of chondrogenesis, angiogenesis, and regenerative medicine. Recent research found that thymosin beta 10 (TMSB10) is highly expressed in the growth centers of growing antlers. The present study reports here the expression, functions, and molecular interactions of deer TMSB10. METHODS The TMSB10 expression level in both tissue and cells in the antler growth center was measured. The effects of both exogenous (synthetic protein) and endogenous deer TMSB10 (lentivirus-based overexpression) on antlerogenic periosteal cells (APCs; nonactivated antler stem cells with no basal expression of TMSB10) and human umbilical vein endothelial cells (HUVECs; endothelial cells with no basal expression of TMSB10) were evaluated to determine whether TMSB10 functions on chondrogenesis and angiogenesis. Differences in deer and human TMSB10 in angiogenesis and molecular structure were determined using animal models and molecular dynamics simulation, respectively. The molecular mechanisms underlying deer TMSB10 in promoting angiogenesis were also explored. RESULTS Deer TMSB10 was identified as a novel proangiogenic factor both in vitro and in vivo. Immunohistochemistry revealed that TMSB10 was widely expressed in the antler growth center in situ, with the highest expression in the reserve mesenchyme, precartilage, and transitional zones. Western blot analysis using deer cell lines further supports this result. Both exogenous and endogenous deer TMSB10 significantly decreased proliferation of APCs (P < 0.05), while increasing the proliferation of HUVECs (P < 0.05). Moreover, deer TMSB10 enhanced chondrogenesis in micromass cultures and nerve growth as assessed using a dorsal root ganglion model (P < 0.05). Deer TMSB10 was proangiogenic using models of chicken chorioallantoic membrane, tube formation, and aortic arch assay. At the molecular level, endogenous deer TMSB10 elevated the expression of vascular endothelial growth factor (VEGF), VEGF-B, VEGF-C, and VEGF-D, and VEGFR2 and VEGFR3 in HUVECs (P < 0.05). CONCLUSIONS Deer TMSB10, in contrast to its human counterpart, was identified as a novel stimulating factor for angiogenesis, cartilage formation, and nerve growth, which is understandable given that deer antlers (as the arguably fastest mammalian growing tissue) may require this extra boost during a period of rapid growth and regeneration.
Collapse
Affiliation(s)
- Wei Zhang
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, Jilin, People's Republic of China
- State Key Lab for Molecular Biology of Special Economic Animals, 4899 Juye Street, Changchun City, 130112, Jilin, People's Republic of China
| | - Wenhui Chu
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, Jilin, People's Republic of China
- State Key Lab for Molecular Biology of Special Economic Animals, 4899 Juye Street, Changchun City, 130112, Jilin, People's Republic of China
| | - Qingxiu Liu
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, Jilin, People's Republic of China
- State Key Lab for Molecular Biology of Special Economic Animals, 4899 Juye Street, Changchun City, 130112, Jilin, People's Republic of China
| | - Dawn Coates
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, PO Box 56, Dunedin, 9054, New Zealand
| | - Yudong Shang
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, Jilin, People's Republic of China
- State Key Lab for Molecular Biology of Special Economic Animals, 4899 Juye Street, Changchun City, 130112, Jilin, People's Republic of China
| | - Chunyi Li
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, Jilin, People's Republic of China.
- State Key Lab for Molecular Biology of Special Economic Animals, 4899 Juye Street, Changchun City, 130112, Jilin, People's Republic of China.
| |
Collapse
|
6
|
Zhang MS, Brunner SF, Huguenin-Dezot N, Liang AD, Schmied WH, Rogerson DT, Chin JW. Biosynthesis and genetic encoding of phosphothreonine through parallel selection and deep sequencing. Nat Methods 2017; 14:729-736. [PMID: 28553966 DOI: 10.1038/nmeth.4302] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 04/18/2017] [Indexed: 02/06/2023]
Abstract
The phosphorylation of threonine residues in proteins regulates diverse processes in eukaryotic cells, and thousands of threonine phosphorylations have been identified. An understanding of how threonine phosphorylation regulates biological function will be accelerated by general methods to biosynthesize defined phosphoproteins. Here we describe a rapid approach for directly discovering aminoacyl-tRNA synthetase-tRNA pairs that selectively incorporate non-natural amino acids into proteins; our method uses parallel positive selections combined with deep sequencing and statistical analysis and enables the direct, scalable discovery of aminoacyl-tRNA synthetase-tRNA pairs with mutually orthogonal substrate specificity. By combining a method to biosynthesize phosphothreonine in cells with this selection approach, we discover a phosphothreonyl-tRNA synthetase-tRNACUA pair and create an entirely biosynthetic route to incorporating phosphothreonine in proteins. We biosynthesize several phosphoproteins and demonstrate phosphoprotein structure determination and synthetic protein kinase activation.
Collapse
Affiliation(s)
- Michael Shaofei Zhang
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, England, UK
| | - Simon F Brunner
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, England, UK
| | - Nicolas Huguenin-Dezot
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, England, UK
| | - Alexandria D Liang
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, England, UK
| | - Wolfgang H Schmied
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, England, UK
| | - Daniel T Rogerson
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, England, UK
| | - Jason W Chin
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, England, UK
| |
Collapse
|
7
|
Kumar R, Sanawar R, Li X, Li F. Structure, biochemistry, and biology of PAK kinases. Gene 2016; 605:20-31. [PMID: 28007610 DOI: 10.1016/j.gene.2016.12.014] [Citation(s) in RCA: 158] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 11/24/2016] [Accepted: 12/14/2016] [Indexed: 02/07/2023]
Abstract
PAKs, p21-activated kinases, play central roles and act as converging junctions for discrete signals elicited on the cell surface and for a number of intracellular signaling cascades. PAKs phosphorylate a vast number of substrates and act by remodeling cytoskeleton, employing scaffolding, and relocating to distinct subcellular compartments. PAKs affect wide range of processes that are crucial to the cell from regulation of cell motility, survival, redox, metabolism, cell cycle, proliferation, transformation, stress, inflammation, to gene expression. Understandably, their dysregulation disrupts cellular homeostasis and severely impacts key cell functions, and many of those are implicated in a number of human diseases including cancers, neurological disorders, and cardiac disorders. Here we provide an overview of the members of the PAK family and their current status. We give special emphasis to PAK1 and PAK4, the prototypes of groups I and II, for their profound roles in cancer, the nervous system, and the heart. We also highlight other family members. We provide our perspective on the current advancements, their growing importance as strategic therapeutic targets, and our vision on the future of PAKs.
Collapse
Affiliation(s)
- Rakesh Kumar
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, George Washington University, Washington, DC 20037, USA; Cancer Biology Program, Rajiv Gandhi Center of Biotechnology, Thiruvananthapuram 695014, India.
| | - Rahul Sanawar
- Cancer Biology Program, Rajiv Gandhi Center of Biotechnology, Thiruvananthapuram 695014, India
| | - Xiaodong Li
- Department of Cell Biology, Key Laboratory of Medical Cell Biology, Chinese Ministry of Education, China Medical University, Shenyang 110122, China
| | - Feng Li
- Department of Cell Biology, Key Laboratory of Medical Cell Biology, Chinese Ministry of Education, China Medical University, Shenyang 110122, China.
| |
Collapse
|
8
|
Zou T, Mao X, Yin J, Li X, Chen J, Zhu T, Li Q, Zhou H, Liu Z. Emerging roles of RAC1 in treating lung cancer patients. Clin Genet 2016; 91:520-528. [PMID: 27790713 DOI: 10.1111/cge.12908] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 10/20/2016] [Accepted: 10/24/2016] [Indexed: 12/19/2022]
Abstract
The Ras-related C3 botulinum toxin substrate 1 (RAC1), a member of the Rho family of small guanosine triphosphatases, is critical for many cellular activities, such as phagocytosis, adhesion, migration, motility, cell proliferation, and axonal growth. In addition, RAC1 plays an important role in cancer angiogenesis, invasion, and migration, and it has been reported to be related to most cancers, such as breast cancer, gastric cancer, testicular germ cell cancer, and lung cancer. Recently, the therapeutic target of RAC1 in cancer has been investigated. In addition, some investigations have shown that inhibition of RAC1 can reverse drug-resistance in non-small cell lung cancer. In this review, we summarize the recent advances in understanding the role of RAC1 in lung cancer and the underlying mechanisms and discuss its value in clinical therapy.
Collapse
Affiliation(s)
- T Zou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, P.R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, P.R. China
| | - X Mao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, P.R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, P.R. China
| | - J Yin
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, P.R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, P.R. China
| | - X Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, P.R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, P.R. China
| | - J Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, P.R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, P.R. China
| | - T Zhu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, P.R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, P.R. China
| | - Q Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, P.R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, P.R. China
| | - H Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, P.R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, P.R. China
| | - Z Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, P.R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, P.R. China
| |
Collapse
|
9
|
Siavashi V, Sariri R, Nassiri SM, Esmaeilivand M, Asadian S, Cheraghi H, Barekati-Mowahed M, Rahbarghazi R. Angiogenic activity of endothelial progenitor cells through angiopoietin-1 and angiopoietin-2. Anim Cells Syst (Seoul) 2016. [DOI: 10.1080/19768354.2016.1189961] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
10
|
Kumar R, Li DQ. PAKs in Human Cancer Progression: From Inception to Cancer Therapeutic to Future Oncobiology. Adv Cancer Res 2016; 130:137-209. [PMID: 27037753 DOI: 10.1016/bs.acr.2016.01.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Since the initial recognition of a mechanistic role of p21-activated kinase 1 (PAK1) in breast cancer invasion, PAK1 has emerged as one of the widely overexpressed or hyperactivated kinases in human cancer at-large, allowing the PAK family to make in-roads in cancer biology, tumorigenesis, and cancer therapeutics. Much of our current understanding of the PAK family in cancer progression relates to a central role of the PAK family in the integration of cancer-promoting signals from cell membrane receptors as well as function as a key nexus-modifier of complex, cytoplasmic signaling network. Another core aspect of PAK signaling that highlights its importance in cancer progression is through PAK's central role in the cross talk with signaling and interacting proteins, as well as PAK's position as a key player in the phosphorylation of effector substrates to engage downstream components that ultimately leads to the development cancerous phenotypes. Here we provide a comprehensive review of the recent advances in PAK cancer research and its downstream substrates in the context of invasion, nuclear signaling and localization, gene expression, and DNA damage response. We discuss how a deeper understanding of PAK1's pathobiology over the years has widened research interest to the PAK family and human cancer, and positioning the PAK family as a promising cancer therapeutic target either alone or in combination with other therapies. With many landmark findings and leaps in the progress of PAK cancer research since the infancy of this field nearly 20 years ago, we also discuss postulated advances in the coming decade as the PAK family continues to shape the future of oncobiology.
Collapse
Affiliation(s)
- R Kumar
- School of Medicine and Health Sciences, George Washington University, Washington, DC, United States; Rajiv Gandhi Center of Biotechnology, Thiruvananthapuram, India.
| | - D-Q Li
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China; Key Laboratory of Breast Cancer in Shanghai, Shanghai Medical College, Fudan University, Shanghai, China; Key Laboratory of Epigenetics in Shanghai, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|