1
|
Joo JI, Choi M, Jang SH, Choi S, Park SM, Shin D, Cho KH. Realizing Cancer Precision Medicine by Integrating Systems Biology and Nanomaterial Engineering. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1906783. [PMID: 32253807 DOI: 10.1002/adma.201906783] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/19/2019] [Indexed: 06/11/2023]
Abstract
Many clinical trials for cancer precision medicine have yielded unsatisfactory results due to challenges such as drug resistance and low efficacy. Drug resistance is often caused by the complex compensatory regulation within the biomolecular network in a cancer cell. Recently, systems biological studies have modeled and simulated such complex networks to unravel the hidden mechanisms of drug resistance and identify promising new drug targets or combinatorial or sequential treatments for overcoming resistance to anticancer drugs. However, many of the identified targets or treatments present major difficulties for drug development and clinical application. Nanocarriers represent a path forward for developing therapies with these "undruggable" targets or those that require precise combinatorial or sequential application, for which conventional drug delivery mechanisms are unsuitable. Conversely, a challenge in nanomedicine has been low efficacy due to heterogeneity of cancers in patients. This problem can also be resolved through systems biological approaches by identifying personalized targets for individual patients or promoting the drug responses. Therefore, integration of systems biology and nanomaterial engineering will enable the clinical application of cancer precision medicine to overcome both drug resistance of conventional treatments and low efficacy of nanomedicine due to patient heterogeneity.
Collapse
Affiliation(s)
- Jae Il Joo
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Minsoo Choi
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Seong-Hoon Jang
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Sea Choi
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Sang-Min Park
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Dongkwan Shin
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Kwang-Hyun Cho
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| |
Collapse
|
2
|
Abstract
Complex disease such as cancer is often caused by genetic mutations that eventually alter the signal flow in the intra-cellular signaling network and result in different cell fate. Therefore, it is crucial to identify control targets that can most effectively block such unwanted signal flow. For this purpose, systems biological analysis provides a useful framework, but mathematical modeling of complicated signaling networks requires massive time-series measurements of signaling protein activity levels for accurate estimation of kinetic parameter values or regulatory logics. Here, we present a novel method, called SFC (Signal Flow Control), for identifying control targets without the information of kinetic parameter values or regulatory logics. Our method requires only the structural information of a signaling network and is based on the topological estimation of signal flow through the network. SFC will be particularly useful for a large-scale signaling network to which parameter estimation or inference of regulatory logics is no longer applicable in practice. The identified control targets have significant implication in drug development as they can be putative drug targets.
Collapse
|
3
|
Wang C, Bi J, Olde Rikkert MGM. Early warning signals for critical transitions in cardiopulmonary health, related to air pollution in an urban Chinese population. ENVIRONMENT INTERNATIONAL 2018; 121:240-249. [PMID: 30219611 DOI: 10.1016/j.envint.2018.09.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 08/27/2018] [Accepted: 09/04/2018] [Indexed: 06/08/2023]
Abstract
Respiratory, and cardio-cerebrovascular health-related diseases significantly threaten human health and together with air pollution form a complex pathophysiological system. Other complex biological systems show that increased variance and autocorrelations in time series may act as valid early warning signals for critical transitions. On population level, we determined the likelihood that increased variance and autocorrelation of hospital visit on cardiopulmonary disease preceded critical transitions in population health by human-pollution interactions. We investigated long-term hospital visits from a hospital in Nanjing City, China during 2006-2016 for the most important cardiopulmonary diseases likely to be influenced by air pollution: cerebrovascular accident disease (CVAD), coronary artery disease (CAD), chronic obstructive pulmonary disease (COPD), lung cancer disease (LCD), and the grouped categories of respiratory system disease (RESD) and cardio-cerebrovascular system disease (CCD). The time series of standard deviations (SDs) and autocorrelation at-lag-1 (AR-1) were studied as potential Early-Warning Indicators (EWIs) of transitions in population health. Elevated SDs provided an early warning for critical transitions in visit for LCD and overall CCD and CVAD, for the period of 2012-2013, after which a real transition of increased visit occurred for these disease categories. Statistical testing showed that these SDs were significantly increased (p < 0.1). The long-term air pollution together with intermittent pollution episodes may have triggered critical transitions in population health for cardiopulmonary disease. It is recommended to consider significant increases in variability in time series of relevant system parameters, such as visit, as early warning signs for future transitions in populations' health states.
Collapse
Affiliation(s)
- Ce Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China.
| | - Jun Bi
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China.
| | - Marcel G M Olde Rikkert
- Department of Geriatrics, Radboud University Nijmegen Medical Center, Nijmegen, the Netherlands; SPARCS Synergy Programme for Analyzing Resilience and Critical Transitions, Wageningen, the Netherlands.
| |
Collapse
|
4
|
Zhang Q, Li J, Middleton A, Bhattacharya S, Conolly RB. Bridging the Data Gap From in vitro Toxicity Testing to Chemical Safety Assessment Through Computational Modeling. Front Public Health 2018; 6:261. [PMID: 30255008 PMCID: PMC6141783 DOI: 10.3389/fpubh.2018.00261] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 08/21/2018] [Indexed: 12/18/2022] Open
Abstract
Chemical toxicity testing is moving steadily toward a human cell and organoid-based in vitro approach for reasons including scientific relevancy, efficiency, cost, and ethical rightfulness. Inferring human health risk from chemical exposure based on in vitro testing data is a challenging task, facing various data gaps along the way. This review identifies these gaps and makes a case for the in silico approach of computational dose-response and extrapolation modeling to address many of the challenges. Mathematical models that can mechanistically describe chemical toxicokinetics (TK) and toxicodynamics (TD), for both in vitro and in vivo conditions, are the founding pieces in this regard. Identifying toxicity pathways and in vitro point of departure (PoD) associated with adverse health outcomes requires an understanding of the molecular key events in the interacting transcriptome, proteome, and metabolome. Such an understanding will in turn help determine the sets of sensitive biomarkers to be measured in vitro and the scope of toxicity pathways to be modeled in silico. In vitro data reporting both pathway perturbation and chemical biokinetics in the culture medium serve to calibrate the toxicity pathway and virtual tissue models, which can then help predict PoDs in response to chemical dosimetry experienced by cells in vivo. Two types of in vitro to in vivo extrapolation (IVIVE) are needed. (1) For toxic effects involving systemic regulations, such as endocrine disruption, organism-level adverse outcome pathway (AOP) models are needed to extrapolate in vitro toxicity pathway perturbation to in vivo PoD. (2) Physiologically-based toxicokinetic (PBTK) modeling is needed to extrapolate in vitro PoD dose metrics into external doses for expected exposure scenarios. Linked PBTK and TD models can explore the parameter space to recapitulate human population variability in response to chemical insults. While challenges remain for applying these modeling tools to support in vitro toxicity testing, they open the door toward population-stratified and personalized risk assessment.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| | - Jin Li
- Unilever, Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, United Kingdom
| | - Alistair Middleton
- Unilever, Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, United Kingdom
| | - Sudin Bhattacharya
- Biomedical Engineering, Michigan State University, East Lansing, MI, United States
| | - Rory B Conolly
- Integrated Systems Toxicology Division, National Health and Environmental Effects Research Laboratory, United States Environmental Protection Agency, Durham, NC, United States
| |
Collapse
|
5
|
Lee D, Cho KH. Topological estimation of signal flow in complex signaling networks. Sci Rep 2018; 8:5262. [PMID: 29588498 PMCID: PMC5869720 DOI: 10.1038/s41598-018-23643-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 03/16/2018] [Indexed: 12/15/2022] Open
Abstract
In a cell, any information about extra- or intra-cellular changes is transferred and processed through a signaling network and dysregulation of signal flow often leads to disease such as cancer. So, understanding of signal flow in the signaling network is critical to identify drug targets. Owing to the development of high-throughput measurement technologies, the structure of a signaling network is becoming more available, but detailed kinetic parameter information about molecular interactions is still very limited. A question then arises as to whether we can estimate the signal flow based only on the structure information of a signaling network. To answer this question, we develop a novel algorithm that can estimate the signal flow using only the topological information and apply it to predict the direction of activity change in various signaling networks. Interestingly, we find that the average accuracy of the estimation algorithm is about 60–80% even though we only use the topological information. We also find that this predictive power gets collapsed if we randomly alter the network topology, showing the importance of network topology. Our study provides a basis for utilizing the topological information of signaling networks in precision medicine or drug target discovery.
Collapse
Affiliation(s)
- Daewon Lee
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Kwang-Hyun Cho
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
6
|
van Wietmarschen HA, Wortelboer HM, van der Greef J. Grip on health: A complex systems approach to transform health care. J Eval Clin Pract 2018; 24:269-277. [PMID: 28032412 DOI: 10.1111/jep.12679] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 07/13/2016] [Accepted: 10/26/2016] [Indexed: 11/29/2022]
Abstract
This article addresses the urgent need for a transition in health care to deal with the increasing prevalence of chronic diseases and associated rapid rise of health care costs. Chronic diseases evolve and are predominantly related to lifestyle and environment. A shift is needed from a reductionist repair mode of thinking, toward a more integrated biopsychosocial way of thinking about health. The aim of this article is to discuss the opportunities that complexity science offer for transforming health care toward optimal treatment and prevention of chronic lifestyle diseases. Health and health care is discussed from a complexity science perspective. The benefits of concepts developed in the field of complexity science for stimulating transitions in health care are explored. Complexity science supports the elucidation of the essence of health processes. It provides a unique perspective on health with a focus on the relationships within networks of dynamically interacting factors and the emergence of health out of the organization of those relationships. Novel types of complexity science-based intervention strategies are being developed. The first application in practice is the integrated obesity treatment program currently piloted in the Netherlands, focusing on health awareness and healing relationships. Complexity science offers various theories and methods to capture the path toward unhealthy and healthy states, facilitating the development of a dynamic integrated biopsychosocial perspective on health. This perspective offers unique insights into health processes for patients and citizens. In addition, dynamic models driven by personal data provide simulations of health processes and the ability to detect transitions between health states. Such models are essential for aligning and reconnecting the many institutions and disciplines involved in the health care sector and evolve toward an integrated health care ecosystem.
Collapse
Affiliation(s)
- Herman A van Wietmarschen
- Department of Microbiology and Systems Biology, TNO Netherlands Organization for Applied Scientific Research, PO Box 360, 3700, AJ, Zeist, The Netherlands
| | - Heleen M Wortelboer
- Department of Microbiology and Systems Biology, TNO Netherlands Organization for Applied Scientific Research, PO Box 360, 3700, AJ, Zeist, The Netherlands
| | - Jan van der Greef
- Department of Microbiology and Systems Biology, TNO Netherlands Organization for Applied Scientific Research, PO Box 360, 3700, AJ, Zeist, The Netherlands
| |
Collapse
|
7
|
Poret A, Guziolowski C. Therapeutic target discovery using Boolean network attractors: improvements of kali. ROYAL SOCIETY OPEN SCIENCE 2018; 5:171852. [PMID: 29515890 PMCID: PMC5830779 DOI: 10.1098/rsos.171852] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 01/04/2018] [Indexed: 06/10/2023]
Abstract
In a previous article, an algorithm for identifying therapeutic targets in Boolean networks modelling pathological mechanisms was introduced. In the present article, the improvements made on this algorithm, named kali, are described. These improvements are (i) the possibility to work on asynchronous Boolean networks, (ii) a finer assessment of therapeutic targets and (iii) the possibility to use multivalued logic. kali assumes that the attractors of a dynamical system, such as a Boolean network, are associated with the phenotypes of the modelled biological system. Given a logic-based model of pathological mechanisms, kali searches for therapeutic targets able to reduce the reachability of the attractors associated with pathological phenotypes, thus reducing their likeliness. kali is illustrated on an example network and used on a biological case study. The case study is a published logic-based model of bladder tumorigenesis from which kali returns consistent results. However, like any computational tool, kali can predict but cannot replace human expertise: it is a supporting tool for coping with the complexity of biological systems in the field of drug discovery.
Collapse
|
8
|
|
9
|
Yuan R, Zhu X, Wang G, Li S, Ao P. Cancer as robust intrinsic state shaped by evolution: a key issues review. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2017; 80:042701. [PMID: 28212112 DOI: 10.1088/1361-6633/aa538e] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Cancer is a complex disease: its pathology cannot be properly understood in terms of independent players-genes, proteins, molecular pathways, or their simple combinations. This is similar to many-body physics of a condensed phase that many important properties are not determined by a single atom or molecule. The rapidly accumulating large 'omics' data also require a new mechanistic and global underpinning to organize for rationalizing cancer complexity. A unifying and quantitative theory was proposed by some of the present authors that cancer is a robust state formed by the endogenous molecular-cellular network, which is evolutionarily built for the developmental processes and physiological functions. Cancer state is not optimized for the whole organism. The discovery of crucial players in cancer, together with their developmental and physiological roles, in turn, suggests the existence of a hierarchical structure within molecular biology systems. Such a structure enables a decision network to be constructed from experimental knowledge. By examining the nonlinear stochastic dynamics of the network, robust states corresponding to normal physiological and abnormal pathological phenotypes, including cancer, emerge naturally. The nonlinear dynamical model of the network leads to a more encompassing understanding than the prevailing linear-additive thinking in cancer research. So far, this theory has been applied to prostate, hepatocellular, gastric cancers and acute promyelocytic leukemia with initial success. It may offer an example of carrying physics inquiring spirit beyond its traditional domain: while quantitative approaches can address individual cases, however there must be general rules/laws to be discovered in biology and medicine.
Collapse
Affiliation(s)
- Ruoshi Yuan
- Key Laboratory of Systems Biomedicine, Ministry of Education, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | | | | | | | | |
Collapse
|
10
|
Cho KH, Joo JI, Shin D, Kim D, Park SM. The reverse control of irreversible biological processes. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2016; 8:366-77. [PMID: 27327189 PMCID: PMC5094504 DOI: 10.1002/wsbm.1346] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 04/16/2016] [Accepted: 04/28/2016] [Indexed: 12/17/2022]
Abstract
Most biological processes have been considered to be irreversible for a long time, but some recent studies have shown the possibility of their reversion at a cellular level. How can we then understand the reversion of such biological processes? We introduce a unified conceptual framework based on the attractor landscape, a molecular phase portrait describing the dynamics of a molecular regulatory network, and the phenotype landscape, a map of phenotypes determined by the steady states of particular output molecules in the attractor landscape. In this framework, irreversible processes involve reshaping of the phenotype landscape, and the landscape reshaping causes the irreversibility of processes. We suggest reverse control by network rewiring which changes network dynamics with constant perturbation, resulting in the restoration of the original phenotype landscape. The proposed framework provides a conceptual basis for the reverse control of irreversible biological processes through network rewiring. WIREs Syst Biol Med 2016, 8:366–377. doi: 10.1002/wsbm.1346 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Kwang-Hyun Cho
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Jae Il Joo
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Dongkwan Shin
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Dongsan Kim
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Sang-Min Park
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| |
Collapse
|