1
|
Zimmerman SJ, Aldridge CL, Schroeder MA, Fike JA, Cornman RS, Oyler-McCance SJ. The potential influence of genome-wide adaptive divergence on conservation translocation outcome in an isolated greater sage-grouse population. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2024; 38:e14254. [PMID: 38563102 DOI: 10.1111/cobi.14254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/20/2023] [Accepted: 01/20/2024] [Indexed: 04/04/2024]
Abstract
Conservation translocations are an important conservation tool commonly employed to augment declining or reestablish extirpated populations. One goal of augmentation is to increase genetic diversity and reduce the risk of inbreeding depression (i.e., genetic rescue). However, introducing individuals from significantly diverged populations risks disrupting coadapted traits and reducing local fitness (i.e., outbreeding depression). Genetic data are increasingly more accessible for wildlife species and can provide unique insight regarding the presence and retention of introduced genetic variation from augmentation as an indicator of effectiveness and adaptive similarity as an indicator of source and recipient population suitability. We used 2 genetic data sets to evaluate augmentation of isolated populations of greater sage-grouse (Centrocercus urophasianus) in the northwestern region of the species range (Washington, USA) and to retrospectively evaluate adaptive divergence among source and recipient populations. We developed 2 statistical models for microsatellite data to evaluate augmentation outcomes. We used one model to predict genetic diversity after augmentation and compared these predictions with observations of genetic change. We used the second model to quantify the amount of observed reproduction attributed to transplants (proof of population integration). We also characterized genome-wide adaptive divergence among source and recipient populations. Observed genetic diversity (HO = 0.65) was higher in the recipient population than predicted had no augmentation occurred (HO = 0.58) but less than what was predicted by our model (HO = 0.75). The amount of shared genetic variation between the 2 geographically isolated resident populations increased, which is evidence of periodic gene flow previously assumed to be rare. Among candidate adaptive genes associated with elevated fixation index (FST) (143 genes) or local environmental variables (97 and 157 genes for each genotype-environment association method, respectively), we found clusters of genes with related functions that may influence the ability of transplants to use local resources and navigate unfamiliar environments and their reproductive potential, all possible reasons for low genetic retention from augmentation.
Collapse
Affiliation(s)
- Shawna J Zimmerman
- Fort Collins Science Center, U.S. Geological Survey, Fort Collins, Colorado, USA
| | - Cameron L Aldridge
- Fort Collins Science Center, U.S. Geological Survey, Fort Collins, Colorado, USA
| | | | - Jennifer A Fike
- Fort Collins Science Center, U.S. Geological Survey, Fort Collins, Colorado, USA
| | - Robert Scott Cornman
- Fort Collins Science Center, U.S. Geological Survey, Fort Collins, Colorado, USA
| | - Sara J Oyler-McCance
- Fort Collins Science Center, U.S. Geological Survey, Fort Collins, Colorado, USA
| |
Collapse
|
2
|
Jiang M, Zhang GH, Yu Y, Zhao YH, Liu J, Zeng Q, Feng MY, Ye F, Xiong DS, Wang L, Zhang YN, Yu L, Wei JJ, He LB, Zhi W, Du XR, Li NJ, Han CL, Yan HQ, Zhou ZT, Miao YB, Wang W, Liu WX. De novo design of a nanoregulator for the dynamic restoration of ovarian tissue in cryopreservation and transplantation. J Nanobiotechnology 2024; 22:330. [PMID: 38862987 PMCID: PMC11167790 DOI: 10.1186/s12951-024-02602-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/28/2024] [Indexed: 06/13/2024] Open
Abstract
The cryopreservation and transplantation of ovarian tissue underscore its paramount importance in safeguarding reproductive capacity and ameliorating reproductive disorders. However, challenges persist in ovarian tissue cryopreservation and transplantation (OTC-T), including the risk of tissue damage and dysfunction. Consequently, there has been a compelling exploration into the realm of nanoregulators to refine and enhance these procedures. This review embarks on a meticulous examination of the intricate anatomical structure of the ovary and its microenvironment, thereby establishing a robust groundwork for the development of nanomodulators. It systematically categorizes nanoregulators and delves deeply into their functions and mechanisms, meticulously tailored for optimizing ovarian tissue cryopreservation and transplantation. Furthermore, the review imparts valuable insights into the practical applications and obstacles encountered in clinical settings associated with OTC-T. Moreover, the review advocates for the utilization of microbially derived nanomodulators as a potent therapeutic intervention in ovarian tissue cryopreservation. The progression of these approaches holds the promise of seamlessly integrating nanoregulators into OTC-T practices, thereby heralding a new era of expansive applications and auspicious prospects in this pivotal domain.
Collapse
Affiliation(s)
- Min Jiang
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, 610045, China
| | - Guo-Hui Zhang
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, 610045, China
| | - Yuan Yu
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Yu-Hong Zhao
- School of Clinical Laboratory Medicine, Chengdu Medical College, Chengdu, 610083, China
| | - Jun Liu
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Qin Zeng
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, 610045, China
| | - Meng-Yue Feng
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Fei Ye
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, 610045, China
| | - Dong-Sheng Xiong
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, 610045, China
| | - Li Wang
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, 610045, China
| | - Ya-Nan Zhang
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, 610045, China
| | - Ling Yu
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, 610045, China
| | - Jia-Jing Wei
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, 610045, China
| | - Li-Bing He
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, 610045, China
| | - Weiwei Zhi
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, 610045, China
| | - Xin-Rong Du
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Ning-Jing Li
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Chang-Li Han
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - He-Qiu Yan
- School of Clinical Laboratory Medicine, Chengdu Medical College, Chengdu, 610083, China
| | - Zhuo-Ting Zhou
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Yang-Bao Miao
- Department of Haematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610000, China.
| | - Wen Wang
- Department of Haematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610000, China.
| | - Wei-Xin Liu
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China.
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, 610045, China.
| |
Collapse
|
3
|
Fatima A, Zaheer T, Pal K, Abbas RZ, Akhtar T, Ali S, Mahmood MS. Zinc Oxide Nanoparticles Significant Role in Poultry and Novel Toxicological Mechanisms. Biol Trace Elem Res 2024; 202:268-290. [PMID: 37060542 DOI: 10.1007/s12011-023-03651-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/27/2023] [Indexed: 04/16/2023]
Abstract
Zinc oxide nanoparticles (ZnO NPs) have involved a lot of consideration owing to their distinctive features. The ZnO NPs can be described as particularly synthesized mineral salts via nanotechnology, varying in size from 1 to 100 nm, while zinc oxide (ZnO), it is an inorganic substrate of zinc (Zn). The Zn is a critical trace element necessary for various biological and physiological processes in the body. Studies have revealed ZnO NPs' efficient immuno-modulatory, growth-promoting, and antimicrobial properties in poultry birds. They offer increased bioavailability as compared to their traditional sources, producing better results in terms of productivity and welfare and consequently reducing ecological harm in the poultry sector. However, they have also been reported for their toxicological effects, which are size, shape, concentration, and exposure route dependent. The investigations done so far have yielded inconsistent results, therefore, a lot of additional studies and research are required to clarify the harmful consequences of ZnO NPs and to bring them to a logical end. This review explores an overview of efficient possible role of ZnO NPs, while comparing them with other nutritional Zn sources, in the poultry industry, primarily as dietary supplements that effect the growth, health, and performance of the birds. In addition to the anti-bacterial mechanisms of ZnO NPs and their promising role as antifungal, and anti-colloidal agent, this paper also covers the toxicological mechanisms of ZnO NPs and their consequent toxicological hazards to vital organs and the reproductive system of poultry birds.
Collapse
Affiliation(s)
- Arjmand Fatima
- Institute of Microbiology, University of Agriculture, Faisalabad, Pakistan
| | - Tean Zaheer
- Institute of Parasitology, University of Agriculture, Faisalabad, Pakistan
| | - Kaushik Pal
- University Center for Research and Development (UCRD), Department of Physics, Chandigarh University, Mohali, Gharuan, Punjab, 140413, India.
| | - Rao Zahid Abbas
- Institute of Parasitology, University of Agriculture, Faisalabad, Pakistan.
| | - Tayyaba Akhtar
- KBCMA College of Veterinary and Animal Sciences, Sub-Campus UVAS-Lahore, Narowal, Pakistan
| | - Sultan Ali
- Institute of Microbiology, University of Agriculture, Faisalabad, Pakistan
| | | |
Collapse
|
4
|
Shin TH, Lee G. Reduced lysosomal activity and increased amyloid beta accumulation in silica-coated magnetic nanoparticles-treated microglia. Arch Toxicol 2024; 98:121-134. [PMID: 37798515 DOI: 10.1007/s00204-023-03612-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/20/2023] [Indexed: 10/07/2023]
Abstract
Nanoparticles have been used in neurological research in recent years because of their blood-brain barrier penetration activity. However, their potential neuronanotoxicity remains a concern. In particular, microglia, which are resident phagocytic cells, are mainly exposed to nanoparticles in the brain. We investigated the changes in lysosomal function in silica-coated magnetic nanoparticles containing rhodamine B isothiocyanate dye [MNPs@SiO2(RITC)]-treated BV2 murine microglial cells. In addition, we analyzed amyloid beta (Aβ) accumulation and molecular changes through the integration of transcriptomics, proteomics, and metabolomics (triple-omics) analyses. Aβ accumulation significantly increased in the 0.1 μg/μl MNPs@SiO2(RITC)-treated BV2 cells compared to the untreated control and 0.01 μg/μl MNPs@SiO2(RITC)-treated BV2 cells. Moreover, the MNPs@SiO2(RITC)-treated BV2 cells showed lysosomal swelling, a dose-dependent reduction in proteolytic activity, and an increase in lysosomal swelling- and autophagy-related protein levels. Moreover, proteasome activity decreased in the MNPs@SiO2(RITC)-treated BV2 cells, followed by a concomitant reduction in intracellular adenosine triphosphate (ATP). By employing triple-omics and a machine learning algorithm, we generated an integrated single molecular network including reactive oxygen species (ROS), autophagy, lysosomal storage disease, and amyloidosis. In silico analysis of the single triple omics network predicted an increase in ROS, suppression of autophagy, and aggravation of lysosomal storage disease and amyloidosis in the MNPs@SiO2(RITC)-treated BV2 cells. Aβ accumulation and lysosomal swelling in the cells were alleviated by co-treatment with glutathione (GSH) and citrate. These findings suggest that MNPs@SiO2(RITC)-induced reduction in lysosomal activity and proteasomes can be recovered by GSH and citrate treatment. These results also highlight the relationship between nanotoxicity and Aβ accumulation.
Collapse
Affiliation(s)
- Tae Hwan Shin
- Department of Biomedical Sciences, Dong-A University, Busan, 49315, Republic of Korea.
| | - Gwang Lee
- Department of Physiology, Ajou University School of Medicine, Suwon, 16499, Republic of Korea.
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Republic of Korea.
| |
Collapse
|
5
|
Histological and biochemical apoptosis changes of female rats' ovary by Zinc oxide nanoparticles and potential protective effects of l-arginine: An experimental study. Ann Med Surg (Lond) 2022; 74:103290. [PMID: 35198165 PMCID: PMC8844786 DOI: 10.1016/j.amsu.2022.103290] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/05/2022] [Accepted: 01/22/2022] [Indexed: 12/18/2022] Open
Abstract
Background This research aims to investigate the adverse effects of ZnO NP on ovarian tissue and the follicular and menstrual cycle and the protective effects of l-arginine on the aforementioned tissues. Material and methods 30 rats were divided into five groups. The first group was the control group. The second and fourth groups received 100 mg/kg and 200 mg/kg ZnO NP, respectively. The third and fifth groups received the same doses of ZnO NP as the second and fourth groups, respectively. However, the third and fifth groups received an additional dose of 1.3 gr/kg of LA amino acid. ZnO NP and LA are given intraperitoneal for 21 days. Blood samples from each rat and a part of the ovarium were collected to test for gene expression and histological analysis. Results Compared to levels of housekeeping gene β-actine, levels of apoptosis effectors such as Bax, Bcl, Caspase 3, and Caspase 9 were significantly increased in all groups. In groups that received doses of LA (three and five), atretic follicle size was smaller compared to groups that did not receive LA (two and four). In addition, in the third group, the secondary and primordial follicle's generated oocytes were smaller compared with groups two, four, and five. Compared with the control group, all groups experienced morphological degeneration of follicles and tissue. Conclusion ZnO NP has inevitable, morphological, and physiological effects on the ovary and can detrimentally impact the tissue. LA can aid in the regeneration of the tissue and block damage induced by stress and toxicity. Zinc oxide nanoparticles are widely used in various everyday products, such as food packaging, additives, cosmetics, and bioimaging. Using Zinc oxide nanoparticles in daily life may cause infertility by reducing the number of follicles in the ovary. L-Arginine may be a beneficial daily supplement to prevent damage to the ovaries induced by Zinc oxide nanoparticles.
Collapse
|
6
|
Al-Ali AAA, Al-Tamimi SQ, Al-Maliki SJ, Abdullah MA. Toxic effects of zinc oxide nanoparticles and histopathological and caspase-9 expression changes in the liver and lung tissues of male mice model. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-021-02248-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
7
|
Shin TH, Manavalan B, Lee DY, Basith S, Seo C, Paik MJ, Kim SW, Seo H, Lee JY, Kim JY, Kim AY, Chung JM, Baik EJ, Kang SH, Choi DK, Kang Y, Maral Mouradian M, Lee G. Silica-coated magnetic-nanoparticle-induced cytotoxicity is reduced in microglia by glutathione and citrate identified using integrated omics. Part Fibre Toxicol 2021; 18:42. [PMID: 34819099 PMCID: PMC8614058 DOI: 10.1186/s12989-021-00433-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 10/25/2021] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Nanoparticles have been utilized in brain research and therapeutics, including imaging, diagnosis, and drug delivery, owing to their versatile properties compared to bulk materials. However, exposure to nanoparticles leads to their accumulation in the brain, but drug development to counteract this nanotoxicity remains challenging. To date, concerns have risen about the potential toxicity to the brain associated with nanoparticles exposure via penetration of the brain blood barrier to address this issue. METHODS Here the effect of silica-coated-magnetic nanoparticles containing the rhodamine B isothiocyanate dye [MNPs@SiO2(RITC)] were assessed on microglia through toxicological investigation, including biological analysis and integration of transcriptomics, proteomics, and metabolomics. MNPs@SiO2(RITC)-induced biological changes, such as morphology, generation of reactive oxygen species, intracellular accumulation of MNPs@SiO2(RITC) using transmission electron microscopy, and glucose uptake efficiency, were analyzed in BV2 murine microglial cells. Each omics data was collected via RNA-sequencing-based transcriptome analysis, liquid chromatography-tandem mass spectrometry-based proteome analysis, and gas chromatography- tandem mass spectrometry-based metabolome analysis. The three omics datasets were integrated and generated as a single network using a machine learning algorithm. Nineteen compounds were screened and predicted their effects on nanotoxicity within the triple-omics network. RESULTS Intracellular reactive oxygen species production, an inflammatory response, and morphological activation of cells were greater, but glucose uptake was lower in MNPs@SiO2(RITC)-treated BV2 microglia and primary rat microglia in a dose-dependent manner. Expression of 121 genes (from 41,214 identified genes), and levels of 45 proteins (from 5918 identified proteins) and 17 metabolites (from 47 identified metabolites) related to the above phenomena changed in MNPs@SiO2(RITC)-treated microglia. A combination of glutathione and citrate attenuated nanotoxicity induced by MNPs@SiO2(RITC) and ten other nanoparticles in vitro and in the murine brain, protecting mostly the hippocampus and thalamus. CONCLUSIONS Combination of glutathione and citrate can be one of the candidates for nanotoxicity alleviating drug against MNPs@SiO2(RITC) induced detrimental effect, including elevation of intracellular reactive oxygen species level, activation of microglia, and reduction in glucose uptake efficiency. In addition, our findings indicate that an integrated triple omics approach provides useful and sensitive toxicological assessment for nanoparticles and screening of drug for nanotoxicity.
Collapse
Affiliation(s)
- Tae Hwan Shin
- Department of Physiology, Ajou University School of Medicine, 206 World cup-ro, Suwon, 16499 Republic of Korea
| | - Balachandran Manavalan
- Department of Physiology, Ajou University School of Medicine, 206 World cup-ro, Suwon, 16499 Republic of Korea
| | - Da Yeon Lee
- Department of Physiology, Ajou University School of Medicine, 206 World cup-ro, Suwon, 16499 Republic of Korea
| | - Shaherin Basith
- Department of Physiology, Ajou University School of Medicine, 206 World cup-ro, Suwon, 16499 Republic of Korea
| | - Chan Seo
- College of Pharmacy, Sunchon National University, 255 Jungang-ro, Suncheon, 57922 Republic of Korea
| | - Man Jeong Paik
- College of Pharmacy, Sunchon National University, 255 Jungang-ro, Suncheon, 57922 Republic of Korea
| | - Sang-Wook Kim
- Department of Molecular Science and Technology, Ajou University, 206 World cup-ro, Suwon, 16499 Republic of Korea
| | - Haewoon Seo
- Department of Molecular Science and Technology, Ajou University, 206 World cup-ro, Suwon, 16499 Republic of Korea
| | - Ju Yeon Lee
- Research Center of Bioconvergence Analysis, Korea Basic Science Institute, 162 Yeongudanji-ro, Cheongju, 28119 Republic of Korea
| | - Jin Young Kim
- Research Center of Bioconvergence Analysis, Korea Basic Science Institute, 162 Yeongudanji-ro, Cheongju, 28119 Republic of Korea
| | - A Young Kim
- Department of Physiology, Ajou University School of Medicine, 206 World cup-ro, Suwon, 16499 Republic of Korea
| | - Jee Min Chung
- Department of Physiology, Ajou University School of Medicine, 206 World cup-ro, Suwon, 16499 Republic of Korea
| | - Eun Joo Baik
- Department of Physiology, Ajou University School of Medicine, 206 World cup-ro, Suwon, 16499 Republic of Korea
| | - Seong Ho Kang
- Department of Chemistry, Graduate School, Kyung Hee University, Yongin-si, Gyeonggi-do 17104 Republic of Korea
- Department of Applied Chemistry and Institute of Natural Sciences, Kyung Hee University, Yongin-si, Gyeonggi-do 17104 Republic of Korea
| | - Dong-Kug Choi
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, 268 Chungwondaero, Chungju, 27478 Republic of Korea
| | - Yup Kang
- Department of Physiology, Ajou University School of Medicine, 206 World cup-ro, Suwon, 16499 Republic of Korea
| | - M. Maral Mouradian
- RWJMS Institute for Neurological Therapeutics, Rutgers Biomedical and Health Sciences, and Department of Neurology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854 USA
| | - Gwang Lee
- Department of Molecular Science and Technology, Ajou University, Suwon-si, Gyeonggi-do 16499 Republic of Korea
- Department of Physiology, Ajou University School of Medicine, Suwon-si, Gyeonggi-do 16499 Republic of Korea
| |
Collapse
|
8
|
Paul V, Krishnakumar S, Gowd GS, Nair SV, Koyakutty M, Paul-Prasanth B. Sex-Dependent Bioaccumulation of Nano Zinc Oxide and Its Adverse Effects on Sexual Behavior and Reproduction in Japanese Medaka. ACS APPLIED BIO MATERIALS 2021; 4:7408-7421. [DOI: 10.1021/acsabm.1c00575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Vinod Paul
- Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi 682041, India
| | | | | | - Shantikumar V. Nair
- Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi 682041, India
| | - Manzoor Koyakutty
- Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi 682041, India
| | - Bindhu Paul-Prasanth
- Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi 682041, India
| |
Collapse
|
9
|
Santacruz-Márquez R, González-De Los Santos M, Hernández-Ochoa I. Ovarian toxicity of nanoparticles. Reprod Toxicol 2021; 103:79-95. [PMID: 34098047 DOI: 10.1016/j.reprotox.2021.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/30/2021] [Accepted: 06/01/2021] [Indexed: 12/15/2022]
Abstract
The ovary is a highly important organ for female reproduction. The main functions include sex steroid hormone synthesis, follicular development, and achievement of oocyte meiotic and development competence for proper fertilization. Nanoparticle (NP) exposure is becoming unavoidable because of its wide use in different products, including cosmetics, food, health, and personal care products. Studies examining different nonreproductive tissues or systems have shown that characteristics such as the size, shape, core material, agglomeration, and dissolution influence the effects of NPs. However, most studies evaluating NP-mediated reproductive toxicity have paid little or no attention to the influence of the physicochemical characteristics of NP on the observed effects. As accumulating evidence indicates that NP may reach the ovary to impair proper functions, this review summarizes the available data on NP accumulation in ovarian tissue, as well as data describing toxicity to ovarian functions, including sex steroid hormone production, follicular development, oocyte quality, and fertility. Due to their toxicological relevance, this review also describes the main physicochemical characteristics involved in NP toxicity and the importance of considering NP physicochemical characteristics as factors influencing the ovarian toxicity of NPs. Finally, this review summarizes the main mechanisms of toxicity described in ovarian cells.
Collapse
Affiliation(s)
- Ramsés Santacruz-Márquez
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, Ciudad de México 07360, Mexico
| | - Marijose González-De Los Santos
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, Ciudad de México 07360, Mexico
| | - Isabel Hernández-Ochoa
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, Ciudad de México 07360, Mexico.
| |
Collapse
|
10
|
Torres-Martinez Z, Delgado Y, Ferrer-Acosta Y, Suarez-Arroyo IJ, Joaquín-Ovalle FM, Delinois LJ, Griebenow K. Key genes and drug delivery systems to improve the efficiency of chemotherapy. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2021; 4:163-191. [PMID: 34142021 PMCID: PMC8208690 DOI: 10.20517/cdr.2020.64] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cancer cells can develop resistance to anticancer drugs, thereby becoming tolerant to treatment through different mechanisms. The biological mechanisms leading to the generation of anticancer treatment resistance include alterations in transmembrane proteins, DNA damage and repair mechanisms, alterations in target molecules, and genetic responses, among others. The most common anti-cancer drugs reported to develop resistance to cancer cells include cisplatin, doxorubicin, paclitaxel, and fluorouracil. These anticancer drugs have different mechanisms of action, and specific cancer types can be affected by different genes. The development of drug resistance is a cellular response which uses differential gene expression, to enable adaptation and survival of the cell to diverse threatening environmental agents. In this review, we briefly look at the key regulatory genes, their expression, as well as the responses and regulation of cancer cells when exposed to anticancer drugs, along with the incorporation of alternative nanocarriers as treatments to overcome anticancer drug resistance.
Collapse
Affiliation(s)
- Zally Torres-Martinez
- Chemistry Department, University of Puerto Rico- Rio Piedras campus, San Juan, PR 00936, USA
| | - Yamixa Delgado
- Biochemistry & Pharmacology Department, San Juan Bautista School of Medicine, Caguas, PR 00726, USA
| | - Yancy Ferrer-Acosta
- Neuroscience Department, Universidad Central del Caribe, Bayamon, PR 00956, USA
| | | | - Freisa M Joaquín-Ovalle
- Chemistry Department, University of Puerto Rico- Rio Piedras campus, San Juan, PR 00936, USA
| | - Louis J Delinois
- Chemistry Department, University of Puerto Rico- Rio Piedras campus, San Juan, PR 00936, USA
| | - Kai Griebenow
- Chemistry Department, University of Puerto Rico- Rio Piedras campus, San Juan, PR 00936, USA
| |
Collapse
|
11
|
Hou J, Zhao L, Tang H, He X, Ye G, Shi F, Kang M, Chen H, Li Y. Silver Nanoparticles Induced Oxidative Stress and Mitochondrial Injuries Mediated Autophagy in HC11 Cells Through Akt/AMPK/mTOR Pathway. Biol Trace Elem Res 2021; 199:1062-1073. [PMID: 32666434 DOI: 10.1007/s12011-020-02212-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 05/19/2020] [Indexed: 12/14/2022]
Abstract
Silver nanoparticles (AgNPs) are widely used in industrial products, and they have good antibacterial properties, with potential for prevention and treatment of cow mastitis. However, concerns exist about the cytotoxicity of AgNPs. Thus, we have studied the role of autophagy in AgNP-induced cytotoxicity in mouse HC11 mammary epithelium cells. We found that AgNPs injured HC11 cells, with release of lactate dehydrogenase (LDH). AgNPs also induced autophagy in HC11 cells, which was associated with oxidative stress, as indicated by increased reactive oxygen species (ROS) and increased expression of hemoxygenase-1(HO-1) and Nrf2. Mitochondria were altered by AgNPs: mitochondrial membrane potential (MMP) was decreased and the expression of PINK1 and Parkin was increased. AgNPs also increased the expression of p-AMPK and decreased the expression of p-Akt and p-mTOR. The addition of 3-methyl adenine inhibited autophagy and enhanced the cytotoxicity of AgNPs, indicating that autophagy is protective against AgNP-induced cell death. In summary, AgNPs induced protective autophagy in HC11 cells via the Akt/AMPK/mTOR pathway, associated with cellular oxidative stress and mitochondrial alterations. Our research confirms that AgNPs may damage the breast tissue in clinical applications and should be used with caution. Further research is necessary to clarify whether the damage caused by AgNPs will affect the lactation function of the mammary glands and possible residues in milk.
Collapse
Affiliation(s)
- Jin Hou
- College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Chengdu, 611130, Sichuan, China
| | - Ling Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Chengdu, 611130, Sichuan, China
| | - Huaqiao Tang
- College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Chengdu, 611130, Sichuan, China
| | - Xiaoli He
- College of Science, Sichuan Agricultural University, 211 Huimin Road, Chengdu, 611130, Sichuan, China
| | - Gang Ye
- College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Chengdu, 611130, Sichuan, China
| | - Fei Shi
- College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Chengdu, 611130, Sichuan, China
| | - Min Kang
- College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Chengdu, 611130, Sichuan, China
| | - Helin Chen
- College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Chengdu, 611130, Sichuan, China
| | - Yinglun Li
- College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
12
|
Jevapatarakul D, T-Thienprasert J, Payungporn S, Chavalit T, Khamwut A, T-Thienprasert NP. Utilization of Cratoxylum formosum crude extract for synthesis of ZnO nanosheets: Characterization, biological activities and effects on gene expression of nonmelanoma skin cancer cell. Biomed Pharmacother 2020; 130:110552. [DOI: 10.1016/j.biopha.2020.110552] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/13/2020] [Accepted: 07/24/2020] [Indexed: 12/20/2022] Open
|
13
|
Synthesis and Bio-physical Characterization of Crustin Capped Zinc Oxide Nanoparticles, and Their Photocatalytic, Antibacterial, Antifungal and Antibiofilm Activity. J CLUST SCI 2020. [DOI: 10.1007/s10876-020-01849-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
14
|
Kesmati M, Torabi M, Pourreza N, Abdollahzadeh R, Rahiminezhadseta R, Banitorof MB. Effects of Nanoparticle and Conventional-Size Suspensions of MgO and ZnO on Recognition Memory in Mice. NEUROPHYSIOLOGY+ 2020. [DOI: 10.1007/s11062-020-09847-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Zhai QY, Ge W, Wang JJ, Sun XF, Ma JM, Liu JC, Zhao Y, Feng YZ, Dyce PW, De Felici M, Shen W. Exposure to Zinc oxide nanoparticles during pregnancy induces oocyte DNA damage and affects ovarian reserve of mouse offspring. Aging (Albany NY) 2019; 10:2170-2189. [PMID: 30153657 PMCID: PMC6128443 DOI: 10.18632/aging.101539] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 06/23/2018] [Indexed: 12/22/2022]
Abstract
Zinc oxide nanoparticles (nZnO) have been shown to have higher toxic effects likely due to their ion-shedding ability and low solubility under neutral conditions. In order to investigate whether exposure to nZnO during embryonic development affects ovary development, 12.5 day post coitum (dpc) fetal mouse ovaries were cultured in the presence of nZnO for 6 days. We found that the nanoparticles (NPs) accumulated within the oocyte cytoplasm in a dose dependent manner, caused DNA damage and apoptosis, and result in a significant decrease in oocyte numbers. No such effects were observed when the ovaries were incubated in the presence of ZnSO4 or bulk ZnO as controls. In addition, we injected intravenously 16 mg/kg body weight nZnO in 12.5 dpc pregnant mice on two consecutive days and analyzed the ovaries of fetuses or offspring at three critical periods of oogenesis: 17.5 dpc, 3 days post-partum (dpp) and 21 dpp. Evidence of increased DNA damage in pachytene oocytes in fetal ovaries and impaired primordial follicle assembly and folliculogenesis dynamics in the ovaries of the offspring were found. Our results indicate that certain types of NPs affect pre- and post-natal oogenesis in vitro and in vivo.
Collapse
Affiliation(s)
- Qiu-Yue Zhai
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Wei Ge
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Jun-Jie Wang
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Xiao-Feng Sun
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Jin-Mei Ma
- Animal Husbandry and Veterinary Station of Penglai City, Yantai 265600, China
| | - Jing-Cai Liu
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Yong Zhao
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Yan-Zhong Feng
- Institute of Animal Sciences, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang 150086, China
| | - Paul W Dyce
- Department of Animal Sciences, Auburn University, Auburn, AL 36849, USA
| | - Massimo De Felici
- Department of Biomedicine and Prevention, University of Rome 'Tor Vergata', Rome 00133, Italy
| | - Wei Shen
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
16
|
Singh S. Zinc oxide nanoparticles impacts: cytotoxicity, genotoxicity, developmental toxicity, and neurotoxicity. Toxicol Mech Methods 2019; 29:300-311. [DOI: 10.1080/15376516.2018.1553221] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Sanjiv Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Science and Education, Raebareli, India
| |
Collapse
|
17
|
Zhang T, Gaffrey MJ, Thrall BD, Qian WJ. Mass spectrometry-based proteomics for system-level characterization of biological responses to engineered nanomaterials. Anal Bioanal Chem 2018; 410:6067-6077. [PMID: 29947897 PMCID: PMC6119095 DOI: 10.1007/s00216-018-1168-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 05/17/2018] [Accepted: 05/28/2018] [Indexed: 12/21/2022]
Abstract
The widespread use of engineered nanomaterials or nanotechnology makes the characterization of biological responses to nanomaterials an important area of research. The application of omics approaches, such as mass spectrometry-based proteomics, has revealed new insights into the cellular responses of exposure to nanomaterials, including how nanomaterials interact and alter cellular pathways. In addition, exposure to engineered nanomaterials often leads to the generation of reactive oxygen species and cellular oxidative stress, which implicates a redox-dependent regulation of cellular responses under such conditions. In this review, we discuss quantitative proteomics-based approaches, with an emphasis on redox proteomics, as a tool for system-level characterization of the biological responses induced by engineered nanomaterials. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Tong Zhang
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Matthew J Gaffrey
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Brian D Thrall
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| |
Collapse
|
18
|
Liu J, Zhao Y, Ge W, Zhang P, Liu X, Zhang W, Hao Y, Yu S, Li L, Chu M, Min L, Zhang H, Shen W. Oocyte exposure to ZnO nanoparticles inhibits early embryonic development through the γ-H2AX and NF-κB signaling pathways. Oncotarget 2018; 8:42673-42692. [PMID: 28487501 PMCID: PMC5522097 DOI: 10.18632/oncotarget.17349] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 04/11/2017] [Indexed: 01/01/2023] Open
Abstract
The impacts of zinc oxide nanoparticles on embryonic development following oocyte stage exposure are unknown and the underlying mechanisms are sparsely understood. In the current investigation, intact nanoparticles were detected in ovarian tissue in vivo and cultured cells in vitro under zinc oxide nanoparticles treatment. Zinc oxide nanoparticles exposure during the oocyte stage inhibited embryonic development. Notably, in vitro culture data closely matched in vivo embryonic data, in that the impairments caused by Zinc oxide nanoparticles treatment passed through cell generations; and both gamma-H2AX and NF-kappaB pathways were involved in zinc oxide nanoparticles caused embryo-toxicity. Copper oxide and silicon dioxide nanoparticles have been used to confirm that particles are important for the toxicity of zinc oxide nanoparticles. The toxic effects of zinc oxide nanoparticles emanate from both intact nanoparticles and Zn2+. Our investigation along with others suggests that zinc oxide nanoparticles are toxic to the female reproductive system [ovaries (oocytes)] and subsequently embryo-toxic and that precaution should be taken regarding human exposure to their everyday use.
Collapse
Affiliation(s)
- Jing Liu
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, P. R. China.,Core Laboratories of Qingdao Agricultural University, Qingdao 266109, P. R. China
| | - Yong Zhao
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, P. R. China.,State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Wei Ge
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, P. R. China
| | - Pengfei Zhang
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, P. R. China
| | - Xinqi Liu
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, P. R. China
| | - Weidong Zhang
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, P. R. China
| | - Yanan Hao
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, P. R. China
| | - Shuai Yu
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, P. R. China
| | - Lan Li
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, P. R. China
| | - Meiqiang Chu
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, P. R. China
| | - Lingjiang Min
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, P. R. China
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Wei Shen
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, P. R. China
| |
Collapse
|
19
|
Liu J, Yang M, Jing L, Ren L, Wei J, Zhang J, Zhang F, Duan J, Zhou X, Sun Z. Silica nanoparticle exposure inducing granulosa cell apoptosis and follicular atresia in female Balb/c mice. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:3423-3434. [PMID: 29151191 DOI: 10.1007/s11356-017-0724-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 11/07/2017] [Indexed: 06/07/2023]
Abstract
Given that the effects of ultrafine fractions (< 0.1 μm) on reproductive diseases are gaining attention, this study aimed to explore the influence of silica nanoparticle (SiNP)-induced female reproductive dysfunction. In this study, 80 female mice were randomly divided into four groups including a control group and three concentrations of SiNP groups (7, 21, 35 mg/kg). Mice were exposed to the vehicle control and silica nanoparticles by tracheal perfusion every 3 days a total of five times in 15 days. Then, half of the mice in each group were sacrificed on 15 and 30 days after the first dose, respectively. Our findings indicated that SiNPs can result in ovarian damage, cause an imbalance of sex hormones, increase the number of atretic and primary follicles, and induce oxidative stress and DNA strand breaks in ovary by day 15. The protein expressions of ATM, CHK-2, P53, E2F1, P73, BAX, Caspase-9, and Caspase-3 were significantly increased, while expressions of RAD51 were down-regulated after SiNP exposure by days 15. Estradiol increased, while progesterone increased in low dose and decreased in high dose after SiNP exposure by 15 days. However, these changes were recovered by 30 days. The results suggest that SiNPs can cause reversible damage to follicles in mice. SiNPs could primarily cause DNA damage and DNA damage response through oxidative stress, while DNA damage repair failure because of severe DNA damage activated the mitochondrial apoptosis pathway and therefore resulted in apoptosis of granulosa cell. In addition, the disorder of reproductive endocrine function caused by SiNPs could be another reason for SiNP-induced reproductive dysfunction in mice. These events in turn induce the follicles to undergo atresia.
Collapse
Affiliation(s)
- Jianhui Liu
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Man Yang
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Li Jing
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Lihua Ren
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Jialiu Wei
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Jin Zhang
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Feng Zhang
- College of Life Science, Qilu Normal University, Jinan, 250013, China
| | - Junchao Duan
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Xianqing Zhou
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China.
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China.
| | - Zhiwei Sun
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| |
Collapse
|
20
|
Shin TH, Lee DY, Lee HS, Park HJ, Jin MS, Paik MJ, Manavalan B, Mo JS, Lee G. Integration of metabolomics and transcriptomics in nanotoxicity studies. BMB Rep 2018; 51:14-20. [PMID: 29301609 PMCID: PMC5796629 DOI: 10.5483/bmbrep.2018.51.1.237] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Indexed: 12/24/2022] Open
Abstract
Biomedical research involving nanoparticles has produced useful products with medical applications. However, the potential toxicity of nanoparticles in biofluids, cells, tissues, and organisms is a major challenge. The '-omics' analyses provide molecular profiles of multifactorial biological systems instead of focusing on a single molecule. The 'omics' approaches are necessary to evaluate nanotoxicity because classical methods for the detection of nanotoxicity have limited ability in detecting miniscule variations within a cell and do not accurately reflect the actual levels of nanotoxicity. In addition, the 'omics' approaches allow analyses of in-depth changes and compensate for the differences associated with high-throughput technologies between actual nanotoxicity and results from traditional cytotoxic evaluations. However, compared with a single omics approach, integrated omics provides precise and sensitive information by integrating complex biological conditions. Thus, these technologies contribute to extended safety evaluations of nanotoxicity and allow the accurate diagnoses of diseases far earlier than was once possible in the nanotechnology era. Here, we review a novel approach for evaluating nanotoxicity by integrating metabolomics with metabolomic profiling and transcriptomics, which is termed "metabotranscriptomics". [BMB Reports 2018; 51(1): 14-20].
Collapse
Affiliation(s)
- Tae Hwan Shin
- Institute of Molecular Science and Technology, Ajou University,
Korea
- Department of Physiology, Ajou University School of Medicine, Suwon 16499,
Korea
| | - Da Yeon Lee
- Department of Physiology, Ajou University School of Medicine, Suwon 16499,
Korea
| | - Hyeon-Seong Lee
- College of Pharmacy, Sunchon National University, Suncheon 57922,
Korea
| | - Hyung Jin Park
- Department of Physiology, Ajou University School of Medicine, Suwon 16499,
Korea
| | - Moon Suk Jin
- Department of Physiology, Ajou University School of Medicine, Suwon 16499,
Korea
| | - Man-Jeong Paik
- College of Pharmacy, Sunchon National University, Suncheon 57922,
Korea
| | | | - Jung-Soon Mo
- Genomic Instability Research Center, Ajou University School of Medicine, Suwon 16499,
Korea
| | - Gwang Lee
- Institute of Molecular Science and Technology, Ajou University,
Korea
- Department of Physiology, Ajou University School of Medicine, Suwon 16499,
Korea
| |
Collapse
|
21
|
Li Q, Wang X, Liu X, Liao Q, Sun J, He X, Yang T, Yin J, Jia J, Li X, Colotte M, Bonnet J. Long-Term Room Temperature Storage of Dry Ribonucleic Acid for Use in RNA-Seq Analysis. Biopreserv Biobank 2017; 15:502-511. [PMID: 29022740 DOI: 10.1089/bio.2017.0024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
RNA is an essential biological material for research in genomics and translational medicine. As such, its storage for biobanking is an important field of study. Traditionally, long-term storage in the cold (generally freezers or liquid nitrogen) is used to maintain high-quality (in terms of quantity and integrity) RNA. Room temperature (RT) preservation provides an alternative to the cold, which is plagued by serious problems (mainly cost and safety), for RNA long-term storage. In this study, we evaluated the performance of several RT storage procedures, including the RNAshell® from Imagene, where the RNA is dried and kept protected from the atmosphere, and the vacuum drying of RNA with additives such as the Imagene stabilization solution and a home-made trehalose solution. This evaluation was performed through accelerated (equivalent to 10 years for RNAshell) aging and real-time studies (4 years). To check RNA quality and integrity, we used RNA integrity number values and RNA-seq. Our study shows that isolation from atmosphere offers a superior protective effect for RNA storage compared with vacuum drying alone, and demonstrates that RNAshell permits satisfactory RNA quality for long-term RT storage. Thus, the RNA quality could meet the demand of downstream applications such as RNA-seq.
Collapse
Affiliation(s)
- Qiyuan Li
- 1 China National GeneBank-Shenzhen , BGI-Shenzhen, Shenzhen, China
| | - Xian Wang
- 1 China National GeneBank-Shenzhen , BGI-Shenzhen, Shenzhen, China
| | - Xiaopan Liu
- 1 China National GeneBank-Shenzhen , BGI-Shenzhen, Shenzhen, China
| | - Qiuyan Liao
- 1 China National GeneBank-Shenzhen , BGI-Shenzhen, Shenzhen, China
| | - Jianbo Sun
- 1 China National GeneBank-Shenzhen , BGI-Shenzhen, Shenzhen, China
| | - Xuheng He
- 1 China National GeneBank-Shenzhen , BGI-Shenzhen, Shenzhen, China
| | - Ting Yang
- 1 China National GeneBank-Shenzhen , BGI-Shenzhen, Shenzhen, China
| | - Jiefang Yin
- 1 China National GeneBank-Shenzhen , BGI-Shenzhen, Shenzhen, China
| | - Jia Jia
- 1 China National GeneBank-Shenzhen , BGI-Shenzhen, Shenzhen, China
| | - Xue Li
- 1 China National GeneBank-Shenzhen , BGI-Shenzhen, Shenzhen, China
| | - Marthe Colotte
- 2 Imagene, Production Platform , Rue Henri Desbruères, Evry, France
| | - Jacques Bonnet
- 3 Institut Bergonié, Université de Bordeaux , Bordeaux, France .,4 Imagene, R&D Department, Université de Bordeaux , ENSTBB, Bordeaux, France
| |
Collapse
|
22
|
Hao Y, Liu J, Feng Y, Yu S, Zhang W, Li L, Min L, Zhang H, Shen W, Zhao Y. Molecular evidence of offspring liver dysfunction after maternal exposure to zinc oxide nanoparticles. Toxicol Appl Pharmacol 2017. [DOI: 10.1016/j.taap.2017.06.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
23
|
Zhang P, Zhao Y, Yu S, Liu J, Hao Y, Zhang H, Ge W, Min L, Shen W, Li Q, Kou X, Ma H, Li L. Proteome analysis of egg yolk after exposure to zinc oxide nanoparticles. Theriogenology 2017; 95:154-162. [PMID: 28460670 DOI: 10.1016/j.theriogenology.2017.03.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 03/13/2017] [Accepted: 03/13/2017] [Indexed: 01/07/2023]
Abstract
Zinc oxide nanoparticles (ZnO NPs) are promising candidates as animal diet additive. However, several studies have reported that ZnO NPs cause adverse effects on organisms. Hen egg yolk proteins play vital roles during embryonic development. Although we found ZnO NPs altered the function of the ovary and liver, the effects of ZnO NPs on egg yolk proteins are not as yet understood. In this report, egg yolk proteome was investigated after ZnO NPs treatment. A total of 37 proteins were specifically regulated just by ZnO-NP-50 mg/kg, and 22 proteins were changed solely by ZnSO4-50 mg/kg. Seventeen proteins were regulated by both ZnO-NP-50 mg/kg and ZnSO4-50 mg/kg treatments. Furthermore, the proteins changed by ZnO NPs or ZnSO4 were enriched into different functional groups, respectively, by GO analysis and KEGG pathway enrichment. For the first time, this investigation reports that intact NPs produce a different impact on the egg yolk proteome compared to that of Zn2+. The changes in protein levels by ZnO NPs in egg yolk might influence the value of egg yolk as nutrient and the embryonic development.
Collapse
Affiliation(s)
- Pengfei Zhang
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao 266109, PR China
| | - Yong Zhao
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao 266109, PR China
| | - Shuai Yu
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao 266109, PR China
| | - Jing Liu
- Core Laboratories of Qingdao Agricultural University, Qingdao 266109, PR China
| | - Yanan Hao
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao 266109, PR China
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China
| | - Wei Ge
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao 266109, PR China
| | - Lingjing Min
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao 266109, PR China
| | - Wei Shen
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao 266109, PR China
| | - Qunjie Li
- Shouguan Veterinary and Livestock Administration, Weifang, 261000, PR China
| | - Xin Kou
- Shouguan Veterinary and Livestock Administration, Weifang, 261000, PR China
| | - Huanfa Ma
- Shouguan Veterinary and Livestock Administration, Weifang, 261000, PR China
| | - Lan Li
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao 266109, PR China.
| |
Collapse
|
24
|
Regulation of steroid hormones and energy status with cysteamine and its effect on spermatogenesis. Toxicol Appl Pharmacol 2016; 313:149-158. [DOI: 10.1016/j.taap.2016.10.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 10/25/2016] [Accepted: 10/30/2016] [Indexed: 01/23/2023]
|
25
|
Hydrogen Sulfide and/or Ammonia Reduces Spermatozoa Motility through AMPK/AKT Related Pathways. Sci Rep 2016; 6:37884. [PMID: 27883089 PMCID: PMC5121643 DOI: 10.1038/srep37884] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 11/02/2016] [Indexed: 12/24/2022] Open
Abstract
A number of emerging studies suggest that air pollutants such as hydrogen sulfide (H2S) and ammonia (NH3) may cause a decline in spermatozoa motility. The impact and underlying mechanisms are currently unknown. Boar spermatozoa (in vitro) and peripubertal male mice (in vivo) were exposed to H2S and/or NH3 to evaluate the impact on spermatozoa motility. Na2S and/or NH4Cl reduced the motility of boar spermatozoa in vitro. Na2S and/or NH4Cl disrupted multiple signaling pathways including decreasing Na+/K+ ATPase activity and protein kinase B (AKT) levels, activating Adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) and phosphatase and tensin homolog deleted on chromosome ten (PTEN), and increasing reactive oxygen species (ROS) to diminish boar spermatozoa motility. The increase in ROS might have activated PTEN, which in turn diminished AKT activation. The ATP deficiency (indicated by reduction in Na+/K+ ATPase activity), transforming growth factor (TGFβ) activated kinase-1 (TAK1) activation, and AKT deactivation stimulated AMPK, which caused a decline in boar spermatozoa motility. Simultaneously, the deactivation of AKT might play some role in the reduction of boar spermatozoa motility. Furthermore, Na2S and/or NH4Cl declined the motility of mouse spermatozoa without affecting mouse body weight gain in vivo. Findings of the present study suggest that H2S and/or NH3 are adversely associated with spermatozoa motility.
Collapse
|
26
|
Suman S, Mishra S, Shukla Y. Toxicoproteomics in human health and disease: an update. Expert Rev Proteomics 2016; 13:1073-1089. [DOI: 10.1080/14789450.2016.1252676] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Shankar Suman
- Proteomics and Environmental Carcinogenesis Laboratory, Food, Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Lucknow, India
| | - Sanjay Mishra
- Proteomics and Environmental Carcinogenesis Laboratory, Food, Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Lucknow, India
| | - Yogeshwer Shukla
- Proteomics and Environmental Carcinogenesis Laboratory, Food, Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Lucknow, India
| |
Collapse
|
27
|
Choi JS, Kim RO, Yoon S, Kim WK. Developmental Toxicity of Zinc Oxide Nanoparticles to Zebrafish (Danio rerio): A Transcriptomic Analysis. PLoS One 2016; 11:e0160763. [PMID: 27504894 PMCID: PMC4978389 DOI: 10.1371/journal.pone.0160763] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 07/25/2016] [Indexed: 12/12/2022] Open
Abstract
Zinc oxide nanoparticles (ZnO NPs) are being utilized in an increasing number of fields and commercial applications. While their general toxicity and associated oxidative stress have been extensively studied, the toxicological pathways that they induce in developmental stages are still largely unknown. In this study, the developmental toxicity of ZnO NPs to embryonic/larval zebrafish was investigated. The transcriptional expression profiles induced by ZnO NPs were also investigated to ascertain novel genomic responses related to their specific toxicity pathway. Zebrafish embryos were exposed to 0.01, 0.1, 1, and 10 mg/L ZnO NPs for 96 h post-fertilization. The toxicity of ZnO NPs, based on their Zn concentration, was quite similar to that in embryonic/larval zebrafish exposed to corresponding ZnSO4 concentrations. Pericardial edema and yolk-sac edema were the principal malformations induced by ZnO NPs. Gene-expression profiling using microarrays demonstrated 689 genes that were differentially regulated (fold change >1.5) following exposure to ZnO NPs (498 upregulated, 191 downregulated). Several genes that were differentially regulated following ZnO NP exposure shared similar biological pathways with those observed with ZnSO4 exposure, but six genes (aicda, cyb5d1, edar, intl2, ogfrl2 and tnfsf13b) associated with inflammation and the immune system responded specifically to ZnO NPs (either in the opposite direction or were unchanged in ZnSO4 exposure). Real-time reverse-transcription quantitative polymerase chain reaction confirmed that the responses of these genes to ZnO NPs were significantly different from their response to ZnSO4 exposure. ZnO NPs may affect genes related to inflammation and the immune system, resulting in yolk-sac edema and pericardia edema in embryonic/larval developmental stages. These results will assist in elucidating the mechanisms of toxicity of ZnO NPs during development of zebrafish.
Collapse
Affiliation(s)
- Jin Soo Choi
- Future Environmental Research Center, Korea Institute of Toxicology, Jinju, 660-844, Republic of Korea
| | - Ryeo-Ok Kim
- System Toxicology Research Center, Korea Institute of Toxicology, Daejeon, 305-343, Republic of Korea
| | - Seokjoo Yoon
- System Toxicology Research Center, Korea Institute of Toxicology, Daejeon, 305-343, Republic of Korea
| | - Woo-Keun Kim
- System Toxicology Research Center, Korea Institute of Toxicology, Daejeon, 305-343, Republic of Korea
| |
Collapse
|
28
|
Regulation of neuroendocrine cells and neuron factors in the ovary by zinc oxide nanoparticles. Toxicol Lett 2016; 256:19-32. [PMID: 27215404 DOI: 10.1016/j.toxlet.2016.05.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 04/23/2016] [Accepted: 05/02/2016] [Indexed: 12/12/2022]
Abstract
The pubertal period is an important window during the development of the female reproductive system. Development of the pubertal ovary, which supplies the oocytes intended for fertilization, requires growth factors, hormones, and neuronal factors. It has been reported that zinc oxide nanoparticles (ZnO NPs) cause cytotoxicity of neuron cells. However, there have been no reports of the effects of ZnO NPs on neuronal factors and neuroendocrine cells in the ovary (in vivo). For the first time, this in vivo study investigated the effects of ZnO NPs on gene and protein expression of neuronal factors and the population of neuroendocrine cells in ovaries. Intact NPs were detected in ovarian tissue and although ZnO NPs did not alter body weight, they reduced the ovary organ index. Compared to the control or ZnSO4 treatments, ZnO NPs treatments differentially regulated neuronal factor protein and gene expression, and the population of neuroendocrine cells. ZnO NPs changed the contents of essential elements in the ovary; however, they did not alter levels of the steroid hormones estrogen and progesterone. These data together suggest that intact ZnO NPs might pose a toxic effect on neuron development in the ovary and eventually negatively affect ovarian developmental at puberty.
Collapse
|
29
|
Regulation of MicroRNAs, and the Correlations of MicroRNAs and Their Targeted Genes by Zinc Oxide Nanoparticles in Ovarian Granulosa Cells. PLoS One 2016; 11:e0155865. [PMID: 27196542 PMCID: PMC4873213 DOI: 10.1371/journal.pone.0155865] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Accepted: 05/05/2016] [Indexed: 11/19/2022] Open
Abstract
Zinc oxide (ZnO) nanoparticles (NPs) have been applied in numerous industrial products and personal care products like sunscreens and cosmetics. The released ZnO NPs from consumer and household products into the environment might pose potential health issues for animals and humans. In this study the expression of microRNAs and the correlations of microRNAs and their targeted genes in ZnO NPs treated chicken ovarian granulosa cells were investigated. ZnSO4 was used as the sole Zn2+ provider to differentiate the effects of NPs from Zn2+. It was found that ZnO-NP-5 μg/ml specifically regulated the expression of microRNAs involved in embryonic development although ZnO-NP-5 μg/ml and ZnSO4-10 μg/ml treatments produced the same intracellular Zn concentrations and resulted in similar cell growth inhibition. And ZnO-NP-5 μg/ml also specifically regulated the correlations of microRNAs and their targeted genes. This is the first investigation that intact NPs in ZnO-NP-5 μg/ml treatment specifically regulated the expression of microRNAs, and the correlations of microRNAs and their targeted genes compared to that by Zn2+. This expands our knowledge for biological effects of ZnO NPs and at the same time it raises the health concerns that ZnO NPs might adversely affect our biological systems, even the reproductive systems through regulation of specific signaling pathways.
Collapse
|
30
|
Alteration of gene expression by zinc oxide nanoparticles or zinc sulfate in vivo and comparison with in vitro data: A harmonious case. Theriogenology 2016; 86:850-861.e1. [PMID: 27118516 DOI: 10.1016/j.theriogenology.2016.03.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 03/02/2016] [Accepted: 03/05/2016] [Indexed: 10/22/2022]
Abstract
Granulosa cells (GCs) are those somatic cells closest to the female germ cell. GCs play a vital role in oocyte growth and development, and the oocyte is necessary for multiplication of a species. Zinc oxide (ZnO) nanoparticles (NPs) readily cross biologic barriers to be absorbed into biologic systems that make them promising candidates as food additives. The objective of the present investigation was to explore the impact of intact NPs on gene expression and the functional classification of altered genes in hen GCs in vivo, to compare the data from in vivo and in vitro studies, and finally to point out the adverse effects of ZnO NPs on the reproductive system. After a 24-week treatment, hen GCs were isolated and gene expression was quantified. Intact NPs were found in the ovary and other organs. Zn levels were similar in ZnO-NP-100 mg/kg- and ZnSO4-100 mg/kg-treated hen ovaries. ZnO-NP-100 mg/kg and ZnSO4-100 mg/kg regulated the expression of the same sets of genes, and they also altered the expression of different sets of genes individually. The number of genes altered by the ZnO-NP-100 mg/kg and ZnSO4-100 mg/kg treatments was different. Gene Ontology (GO) functional analysis reported that different results for the two treatments and, in Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment, 12 pathways (out of the top 20 pathways) in each treatment were different. These results suggested that intact NPs and Zn(2+) had different effects on gene expression in GCs in vivo. In our recent publication, we noted that intact NPs and Zn(2+) differentially altered gene expression in GCs in vitro. However, GO functional classification and KEGG pathway enrichment analyses revealed close similarities for the changed genes in vivo and in vitro after ZnO NP treatment. Furthermore, close similarities were observed for the changed genes after ZnSO4 treatments in vivo and in vitro by GO functional classification and KEGG pathway enrichment analyses. Therefore, the effects of ZnO NPs on gene expression in vitro might represent their effects on gene expression in vivo. The results from this study and our earlier studies support previous findings indicating ZnO NPs promote adverse effects on organisms. Therefore, precautions should be taken when ZnO NPs are used as diet additives for hens because they might cause reproductive issues.
Collapse
|