1
|
Velasquez X, Morov AR, Astrahan P, Tchernov D, Meron D, Almeda R, Rubin-Blum M, Rahav E, Guy-Haim T. Bioconcentration and lethal effects of gas-condensate and crude oil on nearshore copepod assemblages. MARINE POLLUTION BULLETIN 2024; 203:116402. [PMID: 38701601 DOI: 10.1016/j.marpolbul.2024.116402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 05/05/2024]
Abstract
The progressive establishment of gas platforms and increasing petroleum accidents pose a threat to zooplankton communities and thus to pelagic ecosystems. This study is the first to compare the impacts of gas-condensate and crude oil on copepod assemblages. We conducted microcosm experiments simulating slick scenarios at five different concentrations of gas-condensate and crude oil to determine and compare their lethal effects and the bioconcentration of low molecular weight polycyclic aromatic hydrocarbons (LMW-PAHs) in eastern Mediterranean coastal copepod assemblages. We found that gas-condensate had a two-times higher toxic effect than crude oil, significantly reducing copepod survival with increased exposure levels. The LMW-PAHs bioconcentration factor was 1-2 orders of magnitude higher in copepods exposed to gas-condensate than in those exposed to crude oil. The median lethal concentration (LC50) was significantly lower in calanoids vs. cyclopoid copepods, suggesting that calanoids are more susceptible to gas-condensate and crude oil pollution, with potential trophic implications.
Collapse
Affiliation(s)
- Ximena Velasquez
- National Institute of Oceanography, Israel Oceanographic and Limnological Research (IOLR), Haifa, Israel; Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Israel
| | - Arseniy R Morov
- National Institute of Oceanography, Israel Oceanographic and Limnological Research (IOLR), Haifa, Israel
| | - Peleg Astrahan
- The Yigal Alon Kinneret Limnological Laboratory (KKL), Israel Oceanographic and Limnological Research, Israel
| | - Dan Tchernov
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Israel
| | - Dalit Meron
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Israel
| | - Rodrigo Almeda
- University of las Palmas of Gran Canaria, 35017 Las Palmas de Gran Canaria, Spain
| | - Maxim Rubin-Blum
- National Institute of Oceanography, Israel Oceanographic and Limnological Research (IOLR), Haifa, Israel; Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Israel
| | - Eyal Rahav
- National Institute of Oceanography, Israel Oceanographic and Limnological Research (IOLR), Haifa, Israel
| | - Tamar Guy-Haim
- National Institute of Oceanography, Israel Oceanographic and Limnological Research (IOLR), Haifa, Israel.
| |
Collapse
|
2
|
Rubin-Blum M, Yudkovsky Y, Marmen S, Raveh O, Amrani A, Kutuzov I, Guy-Haim T, Rahav E. Tar patties are hotspots of hydrocarbon turnover and nitrogen fixation during a nearshore pollution event in the oligotrophic southeastern Mediterranean Sea. MARINE POLLUTION BULLETIN 2023; 197:115747. [PMID: 37995430 DOI: 10.1016/j.marpolbul.2023.115747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/29/2023] [Accepted: 11/01/2023] [Indexed: 11/25/2023]
Abstract
Weathered oil, that is, tar, forms hotspots of hydrocarbon degradation by complex biota in marine environment. Here, we used marker gene sequencing and metagenomics to characterize the communities of bacteria, archaea and eukaryotes that colonized tar patties and control samples (wood, plastic), collected in the littoral following an offshore spill in the warm, oligotrophic southeastern Mediterranean Sea (SEMS). We show potential aerobic and anaerobic hydrocarbon catabolism niches on tar interior and exterior, linking carbon, sulfur and nitrogen cycles. Alongside aromatics and larger alkanes, short-chain alkanes appear to fuel dominant populations, both the aerobic clade UBA5335 (Macondimonas), anaerobic Syntropharchaeales, and facultative Mycobacteriales. Most key organisms, including the hydrocarbon degraders and cyanobacteria, have the potential to fix dinitrogen, potentially alleviating the nitrogen limitation of hydrocarbon degradation in the SEMS. We highlight the complexity of these tar-associated communities, where bacteria, archaea and eukaryotes co-exist, likely exchanging metabolites and competing for resources and space.
Collapse
Affiliation(s)
- Maxim Rubin-Blum
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Haifa, Israel.
| | - Yana Yudkovsky
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Haifa, Israel
| | - Sophi Marmen
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Haifa, Israel
| | - Ofrat Raveh
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Haifa, Israel
| | - Alon Amrani
- Institute of Earth Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ilya Kutuzov
- Institute of Earth Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tamar Guy-Haim
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Haifa, Israel
| | - Eyal Rahav
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Haifa, Israel
| |
Collapse
|
3
|
Rahav E, Belkin N, Velasquez X, Sisma-Ventura G, Guy-Haim T, Paytan A, Rubin-Blum M. Downwind gas condensate volatiles affect phytoplankton communities. MARINE POLLUTION BULLETIN 2023; 195:115561. [PMID: 37734224 DOI: 10.1016/j.marpolbul.2023.115561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/29/2023] [Accepted: 09/16/2023] [Indexed: 09/23/2023]
Abstract
We investigated the effects of volatile organic carbons (VOCs) evaporated from gas condensate on the cyanobacteria Synechococcus sp. WH8103, the diatom Asterionellopsis glacialis, and the dinoflagellate Alexandrium minutum. We used custom algal incubation chambers enabling only the gas condensate-derived VOCs to interact with the cell cultures via an atmospheric bridge, without direct contact with the hydrocarbon oil. The exposure to gas condensate VOCs reduced the abundance, growth rate, and photosynthetic efficiency of Synechococcus sp. WH8103. Thiobarbituric acid reactive substances (TBARS) assays hint at oxidative damage to the chloroplasts and/or the thylakoid membranes in this organism. A.glacialis abundance, physiological state and growth rates remained unchanged, whereas A.minutum abundance and photosynthetic efficiency increased relative to their respective controls. Our results demonstrate that the effects of a gas condensate formed due to an oil spill will not be restricted to the polluted area, but may be prominent in downwind locations through atmospheric transport.
Collapse
Affiliation(s)
- E Rahav
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Haifa 3108001, Israel.
| | - N Belkin
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Haifa 3108001, Israel
| | - X Velasquez
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Haifa 3108001, Israel
| | - G Sisma-Ventura
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Haifa 3108001, Israel
| | - T Guy-Haim
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Haifa 3108001, Israel
| | - A Paytan
- Institute of Marine Science, University of California, Santa Cruz, CA 95064, USA
| | - M Rubin-Blum
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Haifa 3108001, Israel
| |
Collapse
|
4
|
Eigemann F, Rahav E, Grossart HP, Aharonovich D, Voss M, Sher D. Phytoplankton Producer Species and Transformation of Released Compounds over Time Define Bacterial Communities following Phytoplankton Dissolved Organic Matter Pulses. Appl Environ Microbiol 2023; 89:e0053923. [PMID: 37409944 PMCID: PMC10370336 DOI: 10.1128/aem.00539-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/19/2023] [Indexed: 07/07/2023] Open
Abstract
Phytoplankton-bacterium interactions are mediated, in part, by phytoplankton-released dissolved organic matter (DOMp). Two factors that shape the bacterial community accompanying phytoplankton are (i) the phytoplankton producer species, defining the initial composition of released DOMp, and (ii) the DOMp transformation over time. We added phytoplankton DOMp from the diatom Skeletonema marinoi and the cyanobacterium Prochlorococcus marinus MIT9312 to natural bacterial communities from the eastern Mediterranean and determined the bacterial responses over a time course of 72 h in terms of cell numbers, bacterial production, alkaline phosphatase activity, and changes in active bacterial community composition based on rRNA amplicon sequencing. Both DOMp types were demonstrated to serve the bacterial community as carbon and, potentially, phosphorus sources. Bacterial communities in diatom-derived DOM treatments maintained higher Shannon diversities throughout the experiment and yielded higher bacterial production and lower alkaline phosphatase activity compared to cyanobacterium-derived DOM after 24 h of incubation (but not after 48 and 72 h), indicating greater bacterial usability of diatom-derived DOM. Bacterial communities significantly differed between DOMp types as well as between different incubation times, pointing to a certain bacterial specificity for the DOMp producer as well as a successive utilization of phytoplankton DOM by different bacterial taxa over time. The highest differences in bacterial community composition with DOMp types occurred shortly after DOMp additions, suggesting a high specificity toward highly bioavailable DOMp compounds. We conclude that phytoplankton-associated bacterial communities are strongly shaped by the phytoplankton producer as well as the transformation of its released DOMp over time. IMPORTANCE Phytoplankton-bacterium interactions influence biogeochemical cycles of global importance. Phytoplankton photosynthetically fix carbon dioxide and subsequently release the synthesized compounds as dissolved organic matter (DOMp), which becomes processed and recycled by heterotrophic bacteria. Yet the importance of phytoplankton producers in combination with the time-dependent transformation of DOMp compounds on the accompanying bacterial community has not been explored in detail. The diatom Skeletonema marinoi and the cyanobacterium Prochlorococcus marinus MIT9312 belong to globally important phytoplankton genera, and our study revealed that DOMp of both species was selectively incorporated by the bacterial community. The producer species had the highest impact shortly after DOMp appropriation, and its effect diminished over time. Our results improve the understanding of the dynamics of organic matter produced by phytoplankton in the oceans as it is utilized and modified by cooccurring bacteria.
Collapse
Affiliation(s)
- Falk Eigemann
- Water Quality Engineering, Technical University of Berlin, Berlin, Germany
- Leibniz-Institute for Baltic Sea Research, Warnemuende, Germany
| | - Eyal Rahav
- Israel Oceanographic and Limnological Research, Haifa, Israel
| | - Hans-Peter Grossart
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
- Potsdam University, Potsdam, Germany
| | | | - Maren Voss
- Leibniz-Institute for Baltic Sea Research, Warnemuende, Germany
| | - Daniel Sher
- Leon H. Charney School of Marine Sciences, University Haifa, Israel
| |
Collapse
|
5
|
Rahav E, Belkin N, Nnebuo O, Sisma-Ventura G, Guy-Haim T, Sharon-Gojman R, Geisler E, Bar-Zeev E. Jellyfish swarm impair the pretreatment efficiency and membrane performance of seawater reverse osmosis desalination. WATER RESEARCH 2022; 215:118231. [PMID: 35247603 DOI: 10.1016/j.watres.2022.118231] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/16/2022] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
Circumstantial evidence has suggested that jellyfish swarms impair the operation of seawater reverse osmosis desalination facilities. However, only limited information is currently available on the pretreatment efficiency of jellyfish and their effects on reverse osmosis (RO) membrane performance. Here, we have comprehensively tested the pretreatment efficiency of a dual-media gravity filter and cartridge micro-filtration following the addition of jellyfish into the feedwater. Concurrently, the fouling propensity and performance of the RO membranes were examined. We show that jellyfish demise resulted in seawater eutrophication that triggered a significant increase in bacterial biomass (∼50-fold), activity (∼7-fold), and release of transparent exopolymer particles (∼5-fold), peaking three days after the addition of jellyfish into the feedwater. In parallel, a significant reduction in permeate water flux was recorded (∼10%) while trans-membrane pressure sharply increased (15%), reaching the operation pressure limit of our system (75 bar) after five days. At the conclusion of the experiments, the membrane surface was heavily covered by large chunks of organic-rich material and multilayered biofilms. Our results provide a holistic view on the operational challenges of seawater reverse osmosis (SWRO) desalination triggered by jellyfish swarms in coastal areas. Following the above, it can be inferred that freshwater production will likely be halted three days after drawing the jellyfish into the pretreatment system. Outcomes from these results may lead to the development of science-based operational protocols to cope with growing occurrence of jellyfish swarms around the intake of SWRO desalination facilities worldwide.
Collapse
Affiliation(s)
- Eyal Rahav
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Haifa 31080, Israel.
| | - Natalia Belkin
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Haifa 31080, Israel
| | - Oluebube Nnebuo
- Zuckerberg Institute for Water Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus 84990, Israel
| | - Guy Sisma-Ventura
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Haifa 31080, Israel
| | - Tamar Guy-Haim
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Haifa 31080, Israel
| | - Revital Sharon-Gojman
- Zuckerberg Institute for Water Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus 84990, Israel
| | - Eyal Geisler
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Haifa 31080, Israel; Zuckerberg Institute for Water Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus 84990, Israel
| | - Edo Bar-Zeev
- Zuckerberg Institute for Water Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus 84990, Israel.
| |
Collapse
|
6
|
Haber M, Roth Rosenberg D, Lalzar M, Burgsdorf I, Saurav K, Lionheart R, Lehahn Y, Aharonovich D, Gómez-Consarnau L, Sher D, Krom MD, Steindler L. Spatiotemporal Variation of Microbial Communities in the Ultra-Oligotrophic Eastern Mediterranean Sea. Front Microbiol 2022; 13:867694. [PMID: 35464964 PMCID: PMC9022036 DOI: 10.3389/fmicb.2022.867694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Marine microbial communities vary seasonally and spatially, but these two factors are rarely addressed together. In this study, the temporal and spatial patterns of the bacterial and archaeal community were studied along a coast-to-offshore transect in the Eastern Mediterranean Sea (EMS) over six cruises, in three seasons of 2 consecutive years. Amplicon sequencing of 16S rRNA genes and transcripts was performed to determine presence and activity, respectively. The ultra-oligotrophic status of the Southeastern Mediterranean Sea was reflected in the microbial community composition dominated by oligotrophic bacterial groups such as SAR11, even at the most coastal station sampled, throughout the year. Seasons significantly affected the microbial communities, explaining more than half of the observed variability. However, the same few taxa dominated the community over the 2-year sampling period, varying only in their degree of dominance. While there was no overall effect of station location on the microbial community, the most coastal site (16 km offshore) differed significantly in community structure and activity from the three further offshore stations in early winter and summer. Our data on the microbial community compositions and their seasonality support previous notions that the EMS behaves like an oceanic gyre.
Collapse
Affiliation(s)
- Markus Haber
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel.,Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre CAS, České Budějovice, Czechia
| | - Dalit Roth Rosenberg
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Maya Lalzar
- Bioinformatics Service Unit, University of Haifa, Haifa, Israel
| | - Ilia Burgsdorf
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Kumar Saurav
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Regina Lionheart
- The Dr. Moses Strauss Department of Marine Geosciences, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Yoav Lehahn
- The Dr. Moses Strauss Department of Marine Geosciences, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Dikla Aharonovich
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Laura Gómez-Consarnau
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States.,Department of Biological Oceanography, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Mexico
| | - Daniel Sher
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Michael D Krom
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel.,Morris Kahn Marine Research Station, Environmental Geochemistry Lab., Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Laura Steindler
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| |
Collapse
|
7
|
Eigemann F, Rahav E, Grossart HP, Aharonovich D, Sher D, Vogts A, Voss M. Phytoplankton exudates provide full nutrition to a subset of accompanying heterotrophic bacteria via carbon, nitrogen and phosphorus allocation. Environ Microbiol 2022; 24:2467-2483. [PMID: 35146867 DOI: 10.1111/1462-2920.15933] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 02/03/2022] [Indexed: 11/28/2022]
Abstract
Marine bacteria rely on phytoplankton exudates as carbon sources (DOCp). Yet, it is unclear to what extent phytoplankton exudates also provide nutrients such as phytoplankton-derived N and P (DONp, DOPp). We address these questions by mesocosm exudate addition experiments with spent media from the ubiquitous pico-cyanobacterium Prochlorococcus to bacterial communities in contrasting ecosystems in the Eastern Mediterranean - a coastal and an open-ocean, oligotrophic station with and without on-top additions of inorganic nutrients. Inorganic nutrient addition did not lower the incorporation of exudate DONp, nor did it reduce alkaline phosphatase activity, suggesting that bacterial communities are able to exclusively cover their nitrogen and phosphorus demands with organic forms provided by phytoplankton exudates. Approximately half of the cells in each ecosystem took up detectable amounts of Prochlorococcus-derived C and N, yet based on 16S rRNA sequencing different bacterial genera were responsible for the observed exudate utilization patterns. In the coastal community, several phylotypes of Aureimarina, Psychrosphaera and Glaciecola responded positively to the addition of phytoplankton exudates, whereas phylotypes of Pseudoalteromonas increased and dominated the open-ocean communities. Together, our results strongly indicate that phytoplankton exudates provide coastal and open-ocean bacterial communities with organic carbon, nitrogen and phosphorus, and that phytoplankton exudate serve a full-fledged meal for the accompanying bacterial community in the nutrient-poor eastern Mediterranean. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Falk Eigemann
- Leibniz-Institute for Baltic Sea Research Warnemünde.,Water quality engineering, Technical University of Berlin
| | - Eyal Rahav
- Israel Oceanographic and Limnological Research, Haifa
| | | | | | - Daniel Sher
- Leon H. Charney School of Marine Sciences, University Haifa
| | - Angela Vogts
- Leibniz-Institute for Baltic Sea Research Warnemünde
| | - Maren Voss
- Leibniz-Institute for Baltic Sea Research Warnemünde
| |
Collapse
|
8
|
Bar-Zeev E, Belkin N, Speter A, Reich T, Geisler E, Rahav E. Impacts of sewage outbursts on seawater reverse osmosis desalination. WATER RESEARCH 2021; 204:117631. [PMID: 34536688 DOI: 10.1016/j.watres.2021.117631] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
Sewage outbursts affect coastal environments as seawater is enriched with nutrients, organic matter and microbes, thus can potentially impair seawater reverse osmosis (SWRO) desalination. In this study, we evaluated how municipal sewage outbursts affect SWRO desalination in a pilot-scale system. To this end, feedwater characteristics (i.e., coastal water), the removal efficiency of organic foulants by a dual-media gravity filter, and cartridge micro-filtration were determined daily for 12 days. Permeate water flux was maintained constant during the study, while trans-membrane pressure (TMP) was automatically adjusted and continuously monitored. The results indicate that sewage outbursts caused an immediate (∼1 d) buildup of phyto/bacterioplankton biomass (up to 10-fold), and enhanced activity (maximal 30-fold) followed by an increase in transparent exopolymer particle (TEP) concentrations. After sewage addition, algal biomass was significantly removed by the pretreatment system (72-90%), while a considerable fraction of the bacterial biomass (42-65%) and TEP (53-65%) passed these procedures. The result was a negative impact on the desalination performance reflected by a significant increase (> 10%) in RO-TMP 7.5 d after the sewage addition. Our results indicate on a direct link between sewage outbursts, pretreatment efficiency, and SWRO desalination. Nevertheless, these findings can lead to new avenues for the development of science-based operational protocols to minimize the deleterious effects of abrupt sewage outbursts on SWRO desalination.
Collapse
Affiliation(s)
- Edo Bar-Zeev
- Zuckerberg Institute for Water Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 84990, Israel.
| | - Natalia Belkin
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Haifa 31080, Israel
| | - Adva Speter
- Zuckerberg Institute for Water Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 84990, Israel
| | - Tom Reich
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Haifa 31080, Israel
| | - Eyal Geisler
- Zuckerberg Institute for Water Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 84990, Israel; Israel Oceanographic and Limnological Research, National Institute of Oceanography, Haifa 31080, Israel
| | - Eyal Rahav
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Haifa 31080, Israel.
| |
Collapse
|
9
|
Roth Rosenberg D, Haber M, Goldford J, Lalzar M, Aharonovich D, Al-Ashhab A, Lehahn Y, Segrè D, Steindler L, Sher D. Particle-associated and free-living bacterial communities in an oligotrophic sea are affected by different environmental factors. Environ Microbiol 2021; 23:4295-4308. [PMID: 34036706 DOI: 10.1111/1462-2920.15611] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 05/23/2021] [Indexed: 12/20/2022]
Abstract
In the oceans and seas, environmental conditions change over multiple temporal and spatial scales. Here, we ask what factors affect the bacterial community structure across time, depth and size fraction during six seasonal cruises (2 years) in the ultra-oligotrophic Eastern Mediterranean Sea. The bacterial community varied most between size fractions (free-living (FL) vs. particle-associated), followed by depth and finally season. The FL community was taxonomically richer and more stable than the particle-associated (PA) one, which was characterized by recurrent 'blooms' of heterotrophic bacteria such as Alteromonas and Ralstonia. The heterotrophic FL and PA communities were also correlated with different environmental parameters: the FL population correlated with depth and phytoplankton, whereas PA bacteria were correlated primarily with the time of sampling. A significant part of the variability in community structure could, however, not be explained by the measured parameters. The metabolic potential of the PA community, predicted from 16S rRNA amplicon data using PICRUSt, was enriched in pathways associated with the degradation and utilization of biological macromolecules, as well as plastics, other petroleum products and herbicides. The FL community was enriched in predicted pathways for the metabolism of inositol phosphate, a potential phosphorus source, and of polycyclic aromatic hydrocarbons.
Collapse
Affiliation(s)
- Dalit Roth Rosenberg
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Markus Haber
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | | | - Maya Lalzar
- Bioinformatics Support Unit, University of Haifa, Haifa, Israel
| | - Dikla Aharonovich
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Ashraf Al-Ashhab
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel.,Microbial Metagenomics Division, Dead Sea and Arava Science Center, Masada, Israel
| | - Yoav Lehahn
- Department of Maritime Geosciences, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Daniel Segrè
- Bioinformatics Program, Boston University, Boston, MA, USA
| | - Laura Steindler
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Daniel Sher
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| |
Collapse
|
10
|
Bagnaro A, Baltar F, Brownstein G, Lee WG, Morales SE, Pritchard DW, Hepburn CD. Reducing the arbitrary: fuzzy detection of microbial ecotones and ecosystems - focus on the pelagic environment. ENVIRONMENTAL MICROBIOME 2020; 15:16. [PMID: 33902717 PMCID: PMC8066478 DOI: 10.1186/s40793-020-00363-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 07/18/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND One of the central objectives of microbial ecology is to study the distribution of microbial communities and their association with their environments. Biogeographical studies have partitioned the oceans into provinces and regions, but the identification of their boundaries remains challenging, hindering our ability to study transition zones (i.e. ecotones) and microbial ecosystem heterogeneity. Fuzzy clustering is a promising method to do so, as it creates overlapping sets of clusters. The outputs of these analyses thus appear both structured (into clusters) and gradual (due to the overlaps), which aligns with the inherent continuity of the pelagic environment, and solves the issue of defining ecosystem boundaries. RESULTS We show the suitability of applying fuzzy clustering to address the patchiness of microbial ecosystems, integrating environmental (Sea Surface Temperature, Salinity) and bacterioplankton data (Operational Taxonomic Units (OTUs) based on 16S rRNA gene) collected during six cruises over 1.5 years from the subtropical frontal zone off New Zealand. The technique was able to precisely identify ecological heterogeneity, distinguishing both the patches and the transitions between them. In particular we show that the subtropical front is a distinct, albeit transient, microbial ecosystem. Each water mass harboured a specific microbial community, and the characteristics of their ecotones matched the characteristics of the environmental transitions, highlighting that environmental mixing lead to community mixing. Further explorations into the OTU community compositions revealed that, although only a small proportion of the OTUs explained community variance, their associations with given water mass were consistent through time. CONCLUSION We demonstrate recurrent associations between microbial communities and dynamic oceanic features. Fuzzy clusters can be applied to any ecosystem (terrestrial, human, marine, etc) to solve uncertainties regarding the position of microbial ecological boundaries and to refine the relation between the distribution of microorganisms and their environment.
Collapse
Affiliation(s)
- Antoine Bagnaro
- Department of Marine Sciences, University of Otago, Dunedin, New Zealand.
| | - Federico Baltar
- Department of Marine Sciences, University of Otago, Dunedin, New Zealand
- NIWA, University of Otago, Dunedin, New Zealand
- Department of Functional & Evolutionary Ecology, Center of Functional Ecology, University of Vienna, Vienna, Austria
| | | | - William G Lee
- Manaaki Whenua, Landcare Research, Dunedin, New Zealand
| | - Sergio E Morales
- Department of Microbiology & Immunology, University of Otago, Dunedin, New Zealand
| | - Daniel W Pritchard
- Department of Marine Sciences, University of Otago, Dunedin, New Zealand
- Te Ao Tūroa, Te Rūnanga o Ngāi Tahu, Dunedin, New Zealand
| | | |
Collapse
|
11
|
Geisler E, Bogler A, Bar-Zeev E, Rahav E. Heterotrophic Nitrogen Fixation at the Hyper-Eutrophic Qishon River and Estuary System. Front Microbiol 2020; 11:1370. [PMID: 32670236 PMCID: PMC7326945 DOI: 10.3389/fmicb.2020.01370] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 05/27/2020] [Indexed: 12/04/2022] Open
Abstract
Planktonic heterotrophic diazotrophs (N2-fixers) are widely distributed in marine and freshwater systems, yet limited information is available on their activity, especially in environments with adverse conditions for diazotrophy (e.g., N-rich and oxygenated). Here, we followed the localization and activity of heterotrophic diazotrophs in the hyper-eutrophic N-rich Qishon River—an environment previously considered to be unfavorable for diazotrophy. Our results indicate high heterotrophic N2 fixation rates (up to 6.9 nmol N L–1 d–1), which were approximately three fold higher at an upstream location (freshwater) compared to an estuary (brackish) site. Further, active heterotrophic diazotrophs were capture associated with free-floating aggregates by a newly developed immunolocalization approach. These findings provide new insights on the activity of heterotrophic diazotrophs on aggregates in environments previously considered with adverse conditions for diazotrophy. Moreover, these new insights may be applicable to other aquatic regimes worldwide with similar N-rich/oxygenated conditions that should potentially inhibit N2 fixation.
Collapse
Affiliation(s)
- Eyal Geisler
- The Zuckerberg Institute for Water Research (ZIWR), The Jacob Blaustein Institutes for Desert Research (BIDR), Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Israel Oceanographic and Limnological Research, National Institute of Oceanography, Haifa, Israel
| | - Anne Bogler
- The Zuckerberg Institute for Water Research (ZIWR), The Jacob Blaustein Institutes for Desert Research (BIDR), Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Edo Bar-Zeev
- The Zuckerberg Institute for Water Research (ZIWR), The Jacob Blaustein Institutes for Desert Research (BIDR), Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Eyal Rahav
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Haifa, Israel
| |
Collapse
|
12
|
Bio-Aerosols Negatively Affect Prochlorococcus in Oligotrophic Aerosol-Rich Marine Regions. ATMOSPHERE 2020. [DOI: 10.3390/atmos11050540] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The marine cyanobacterium Prochlorococcus is a dominant photoautotroph in many oligotrophic Low-Nutrients-Low-Chlorophyll (LNLC) regions. While the chemical impact of aerosols upon interaction with surface seawater was documented in numerous studies, we show that Prochlorococcus cells are affected also by bio-aerosols (potentially biological agents in the dust/aerosols such as membrane-bound extracellular vesicles, small-size bacteria and/or viruses), resulting in lower surface seawater abundances in the oligotrophic Mediterranean Sea. We conducted experimental amendments of ‘live’ aerosol/dust particles and aerosol filtrates (<0.22-µm) to surface Southeastern Mediterranean seawater or to pure Prochlorococcus cultures (MED4). Results show a significant decline in cell biomass (<90%), while UV-sterilized aerosols elicited a much weaker and non-significant response (~10%). We suggest that the difference is due to a negative effect of bio-aerosols specific to Prochlorococcus. Accordingly, the dominance of Synechococcus over Prochlorococcus throughout the surface Mediterranean Sea (observed mainly in spring when atmospheric aerosol levels are relatively high) and the lack of spatial westward gradient in Prochlorococcus biomass as typically observed for chlorophyll-a or other cyanobacteria may be attributed, at least to some extent, to the impact of bio-aerosol deposition across the basin. Predictions for enhanced desertification and increased dust emissions may intensify the transport and potential impact of bio-aerosols in LNLC marine systems.
Collapse
|
13
|
Sisma-Ventura G, Rahav E. DOP Stimulates Heterotrophic Bacterial Production in the Oligotrophic Southeastern Mediterranean Coastal Waters. Front Microbiol 2019; 10:1913. [PMID: 31474972 PMCID: PMC6706821 DOI: 10.3389/fmicb.2019.01913] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 08/05/2019] [Indexed: 11/13/2022] Open
Abstract
Phytoplankton and heterotrophic bacteria rely on a suite of inorganic and organic macronutrients to satisfy their cellular needs. Here, we explored the effect of dissolved inorganic phosphate (PO4) and several dissolved organic molecules containing phosphorus [ATP, glucose-6-phosphate, 2-aminoethylphosphonic acid, collectively referred to as dissolved organic phosphorus (DOP)], on the activity and biomass of autotrophic and heterotrophic microbial populations in the coastal water of the southeastern Mediterranean Sea (SEMS) during summertime. To this end, surface waters were supplemented with PO4, one of the different organic molecules, or PO4 + ATP, and measured the PO4 turnover time (Tt), alkaline phosphatase activity (APA), heterotrophic bacterial production (BP), primary production (PP), and the abundance of the different microbial components. Our results show that PO4 alone does not stimulate any significant change in most of the autotrophic or heterotrophic bacterial variables tested. ATP addition (alone or with PO4) triggers the strongest increase in primary and bacterial productivity or biomass. Heterotrophic bacterial abundance and BP respond faster than phytoplankton (24 h post addition) to the various additions of DOP or PO4 + ATP, followed by a recovery of primary productivity (48 h post addition). These observations suggest that both autotrophic and heterotrophic microbial communities compete for labile organic molecules containing P, such as ATP, to satisfy their cellular needs. It also suggests that SEMS coastal water heterotrophic bacteria are likely C and P co-limited.
Collapse
Affiliation(s)
- Guy Sisma-Ventura
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Haifa, Israel
| | - Eyal Rahav
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Haifa, Israel
| |
Collapse
|
14
|
Raveh O, Angel DL, Astrahan P, Belkin N, Bar-Zeev E, Rahav E. Phytoplankton response to N-rich well amelioration brines: A mesocosm study from the southeastern Mediterranean Sea. MARINE POLLUTION BULLETIN 2019; 146:355-365. [PMID: 31426168 DOI: 10.1016/j.marpolbul.2019.06.067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 06/24/2019] [Accepted: 06/27/2019] [Indexed: 06/10/2023]
Abstract
Human-induced eutrophication of coastal water may be a major threat to aquatic life. Here, we investigated the effects of N-rich well amelioration brines (WAB) on coastal phytoplankton population's habitat in the surface oligotrophic waters of the southeastern Mediterranean Sea (SEM). To this end, we added WAB (2 concentrations) to mesocosms (1-m3 bags) to surface SEM water during summer and winter, where changes in phytoplankton biomass, activity and diversity was monitored daily for 8 days. Our results demonstrate that WAB addition triggered a phytoplankton bloom, resulting in elevated algal biomass (maximal +780%), increased primary production rates (maximal +675%) and a decrease in eukaryotic algal α-diversity (ca. -20%). Among the species that bloomed following WAB amendments, we found the potentially toxic dinoflagellate Karlodinium venificum. This study adds valuable perspective to the effect of nutrients discharged into nutrient limited SEM coastal waters, and in particular of N-derived WAB.
Collapse
Affiliation(s)
- Ofrat Raveh
- Israel Oceanographic and Limnological Research, National Institute on Oceanography, Haifa, Israel; Department of Maritime Civilizations, The Charney School for Marine Science, University of Haifa, Israel
| | - Dror L Angel
- Department of Maritime Civilizations, The Charney School for Marine Science, University of Haifa, Israel
| | - Peleg Astrahan
- Israel Oceanographic and Limnological Research, The Kinneret Limnological Laboratory, Migdal 14950, Israel
| | - Natalia Belkin
- Israel Oceanographic and Limnological Research, National Institute on Oceanography, Haifa, Israel
| | - Edo Bar-Zeev
- The Jacob Blaustein Institutes for Desert Research, Zuckerberg Institute for Water Research (ZIWR), Ben-Gurion University of the Negev, Sede Boqer Campus, 84990, Israel
| | - Eyal Rahav
- Israel Oceanographic and Limnological Research, National Institute on Oceanography, Haifa, Israel.
| |
Collapse
|
15
|
Dust-Associated Airborne Microbes Affect Primary and Bacterial Production Rates, and Eukaryotes Diversity, in the Northern Red Sea: A Mesocosm Approach. ATMOSPHERE 2019. [DOI: 10.3390/atmos10070358] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The northern Red Sea (NRS) is a low-nutrient, low-chlorophyll (LNLC) ecosystem with high rates of atmospheric deposition due to its proximity to arid regions. Impacts of atmospheric deposition on LNLC ecosystems have been attributed to the chemical constituents of dust, while overlooking bioaerosols. Understanding how these vast areas of the ocean will respond to future climate and anthropogenic change hinges on the response of microbial communities to these changes. We tested the impacts of bioaerosols on the surface water microbial diversity and the primary and bacterial production rates in the NRS, a system representative of other LNLC oceanic regions, using a mesocosm bioassay experiment. By treating NRS surface seawater with dust, which contained nutrients, metals, and viable organisms, and “UV-treated dust” (which contained only nutrients and metals), we were able to assess the impacts of bioaerosols on local natural microbial populations. Following amendments (20 and 44 h) the incubations treated with “live dust” showed different responses than those with UV-treated dust. After 44 h, primary production was suppressed (as much as 50%), and bacterial production increased (as much as 55%) in the live dust treatments relative to incubations amended with UV-treated dust or the control. The diversity of eukaryotes was lower in treatments with airborne microbes. These results suggest that the airborne microorganisms and viruses alter the surface microbial ecology of the NRS. These results may have implications for the carbon cycle in LNLC ecosystems, which are expanding and are especially important since dust storms are predicted to increase in the future due to desertification and expansion of arid regions.
Collapse
|
16
|
Direct Detection of Heterotrophic Diazotrophs Associated with Planktonic Aggregates. Sci Rep 2019; 9:9288. [PMID: 31243322 PMCID: PMC6594930 DOI: 10.1038/s41598-019-45505-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 05/24/2019] [Indexed: 12/03/2022] Open
Abstract
N2 fixation by planktonic heterotrophic diazotrophs is more wide spread than previously thought, including environments considered “unfavorable” for diazotrophy. These environments include a substantial fraction of the aquatic biosphere such as eutrophic estuaries with high ambient nitrogen concentrations and oxidized aphotic water. Different studies suggested that heterotrophic diazotrophs associated with aggregates may promote N2 fixation in such environments. However, this association was never validated directly and relies mainly on indirect relationships and different statistical approaches. Here, we identified, for the first time, a direct link between active heterotrophic diazotrophs and aggregates that comprise polysaccharides. Our new staining method combines fluorescent tagging of active diazotrophs by nitrogenase-immunolabeling, polysaccharides staining by Alcian blue or concanavalin-A, and total bacteria via nucleic-acid staining. Concomitant to N2 fixation rates and bacterial activity, this new method provided specific localization of heterotrophic diazotrophs on artificial and natural aggregates. We postulate that the insights gained by this new visualization approach will have a broad significance for future research on the aquatic nitrogen cycle, including environments in which diazotrophy has traditionally been overlooked.
Collapse
|
17
|
The Relationship between Air-Mass Trajectories and the Abundance of Dust-Borne Prokaryotes at the SE Mediterranean Sea. ATMOSPHERE 2019. [DOI: 10.3390/atmos10050280] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Airborne prokaryotes are transported along with dust/aerosols, yet very little attention is given to their temporal variability above the oceans and the factors that govern their abundance. We analyzed the abundance of autotrophic (cyanobacteria) and heterotopic airborne microbes in 34 sampling events between 2015–2018 at a coastal site in the SE Mediterranean Sea. We show that airborne autotrophic (0.2–7.6 cells × 103 m−3) and heterotrophic (0.2–30.6 cells × 103 m−3) abundances were affected by the origin and air mass trajectory, and the concentration of dust/aerosols in the air, while seasonality was not coherent. The averaged ratio between heterotrophic and autotrophic prokaryotes in marine-dominated trajectories was ~1.7 ± 0.6, significantly lower than for terrestrial routes (6.8 ± 6.1). Airborne prokaryotic abundances were linearly and positively correlated to the concentrations of total aerosol, while negatively correlated with the aerosol’s anthropogenic fraction (using Pb/Al or Cu/Al ratios as proxies). While aerosols may play a major role in dispersing terrestrial and marine airborne microbes in the SE Mediterranean Sea, the mechanisms involved in the dispersal and diversity of airborne microorganisms remain to be studied and should include standardization in collection and analysis protocols.
Collapse
|
18
|
Kress N, Rahav E, Silverman J, Herut B. Environmental status of Israel's Mediterranean coastal waters: Setting reference conditions and thresholds for nutrients, chlorophyll-a and suspended particulate matter. MARINE POLLUTION BULLETIN 2019; 141:612-620. [PMID: 30955776 DOI: 10.1016/j.marpolbul.2019.02.070] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 11/19/2018] [Accepted: 02/28/2019] [Indexed: 06/09/2023]
Abstract
Criteria for eutrophication related parameters to achieve and preserve good environmental status (GES) of the oligotrophic Israeli Mediterranean coast were proposed for nutrients, chlorophyll-a (Chl-a) and suspended particulate matter (SPM) concentrations. The criteria were derived from current conditions, the best choice for the area that has undergone large and irreversible ecological changes compared to the pristine background. A five-year data set (2010-2014, ca. 800 data points) was analyzed using statistical methods and best professional judgement. The coastal waters were divided into four provinces, data gaps were identified, and seasonal reference and threshold values for each province determined as the median and 1.5 times the median, respectively. Application of the derived criteria to data up to 2016 showed the coastal waters to be mainly in GES, with a few exceptions. Simplification of the proposed criteria for environmental management was addressed as well.
Collapse
Affiliation(s)
- Nurit Kress
- Israel Oceanographic & Limnological Research, The National Institute of Oceanography, Israel.
| | - Eyal Rahav
- Israel Oceanographic & Limnological Research, The National Institute of Oceanography, Israel
| | - Jacob Silverman
- Israel Oceanographic & Limnological Research, The National Institute of Oceanography, Israel
| | - Barak Herut
- Israel Oceanographic & Limnological Research, The National Institute of Oceanography, Israel
| |
Collapse
|
19
|
Frank H, Fussmann KE, Rahav E, Bar Zeev E. Chronic effects of brine discharge form large-scale seawater reverse osmosis desalination facilities on benthic bacteria. WATER RESEARCH 2019; 151:478-487. [PMID: 30641463 DOI: 10.1016/j.watres.2018.12.046] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 11/15/2018] [Accepted: 12/08/2018] [Indexed: 06/09/2023]
Abstract
Seawater desalination facilities continuously discharge hyper-saline brine into the coastal environment which often flows as a concentrated plume over the seafloor, hence possibly impacting benthic microorganisms. Yet, the effects of brine discharge from desalination plants on benthic bacteria, key players in biodegradation of organic material and nutrient recycling is unknown. In this study, we tested the chronic (years) effects of brine discharge from three large-scale desalination facilities on the abundance, metabolic activity and community composition of benthic bacteria. To this end, four sampling campaigns were carried at the outfall areas of the Ashkelon, Sorek and Hadera desalination facilities. The effects of the brine were compared to corresponding reference stations which were not influenced by the brine (i.e., water temperature and salinity). Our sampling data indicate that bacterial abundance and activity that includes bacterial growth efficiency were 1.3-2.6-fold higher at the outfall area than the reference station. Concomitant analysis pointed out that the bacterial community structure at the brine discharge area was also different than the reference station, yet varied between each desalination facility. Our results demonstrate that the impact of brine effluent from desalination facilities on benthic bacteria are site-specific and localized (<1.4 Km2) around the discharge point. Namely, that the effects on benthic bacteria are prominent at the brine mixing zone and change according to the discharge method used to disperse the brine as well as local stressors (e.g., eutrophication and elevated water temperature). Our results contribute new insights on the effects of desalination-brine to benthic microbes, while providing scientifically-based aspects on the ecological impacts of brine dispersion for decision makers.
Collapse
Affiliation(s)
- Hila Frank
- Zuckerberg Institute for Water Research (ZIWR), The Jacob Blaustein Institutes for Desert Research (BIDR) Ben-Gurion University of the Negev, 84990, Israel; Israel Oceanographic and Limnological Research, National Institute of Oceanography, Haifa, 8030, Israel
| | - Katarina E Fussmann
- Zuckerberg Institute for Water Research (ZIWR), The Jacob Blaustein Institutes for Desert Research (BIDR) Ben-Gurion University of the Negev, 84990, Israel; Israel Oceanographic and Limnological Research, National Institute of Oceanography, Haifa, 8030, Israel
| | - Eyal Rahav
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Haifa, 8030, Israel.
| | - Edo Bar Zeev
- Zuckerberg Institute for Water Research (ZIWR), The Jacob Blaustein Institutes for Desert Research (BIDR) Ben-Gurion University of the Negev, 84990, Israel.
| |
Collapse
|
20
|
Lu L, Xu L, Yang J, Li Z, Guo J, Xiao Y, Yao J. Contribution of heterotrophic bacterioplankton to cyanobacterial bloom formation in a tributary backwater area of the Three Gorges Reservoir, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:27402-27412. [PMID: 30039485 DOI: 10.1007/s11356-018-2790-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 07/17/2018] [Indexed: 06/08/2023]
Abstract
This study investigated phytoplankton and bacterioplankton communities by flow cytometer in a tributary backwater area of the Three Gorges Reservoir, China. Samplings were conducted in two cyanobacterial bloom periods (May and August) and no algal-blooms period (November) of 2014, representing three different operational stages of the reservoir, i.e., reservoir discharge period, fluctuating period in the summer flood season, and high water level in the impoundment period. Phyto- and bacterioplankton exhibit a wide range of variability along the depth profiles of the water column. In the investigated two cyanobacterial bloom periods, prokaryotes accounted for over 50% of the total phytoplankton. As for bacterioplankton, low nucleic acid bacteria were dominant in August and November. A positive correlation was observed between phytoplankton (pico- and nanophytoplankton), Chl a, and bacterioplankton. High nucleic acid groups and prokaryotes were highly coupled in May and August, which indicated that this high nucleic acid group could probably contribute to the explanation of cyanobacterial bloom formation in this area.
Collapse
Affiliation(s)
- Lunhui Lu
- Key Laboratory of Reservoir Aquatic Environment of CAS, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Linlin Xu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Jixiang Yang
- Key Laboratory of Reservoir Aquatic Environment of CAS, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Zhe Li
- Key Laboratory of Reservoir Aquatic Environment of CAS, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China.
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China.
| | - Jinsong Guo
- Key Laboratory of Reservoir Aquatic Environment of CAS, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Yan Xiao
- Key Laboratory of Reservoir Aquatic Environment of CAS, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Juanjuan Yao
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| |
Collapse
|
21
|
Phytoplankton and Bacterial Response to Desert Dust Deposition in the Coastal Waters of the Southeastern Mediterranean Sea: A Four-Year In Situ Survey. ATMOSPHERE 2018. [DOI: 10.3390/atmos9080305] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Atmospheric dust/aerosol deposition is an important source of external nutrients for the surface of the ocean. This study shows high-resolution observational data gathered in situ over a period of four years on bacterial and phytoplankton abundance and activity during typical background atmospheric conditions and during intense dust storm events in the low-nutrient, low-chlorophyll (LNLC) coastal waters of the southeastern Mediterranean Sea (SEMS). Chlorophyll a (an estimate for phytoplankton biomass) and bacterial abundance show moderate changes in response to dust deposition/events (−10% and +20%, respectively), while primary production, bacterial production, and N2 fixation rates were all significantly and positively affected by deposition (+25 to +40%; p < 0.05). The rapid changes in bacterial and/or phytoplankton rate parameters suggest that the released micro-/macronutrients from atmospheric deposition are tunneled directly in metabolic processes and, to a lesser extent, for biomass accumulation. The predicted expansion of LNLC areas in oceans in the future, and the projected increase in dust emission due to desertification, may affect the production of marine microbial communities in the surface of the ocean, yet only moderately affect their biomass or standing stock. Such alterations may impact carbon sequestration to the deep ocean.
Collapse
|
22
|
Chew J, Leypunskiy E, Lin J, Murugan A, Rust MJ. High protein copy number is required to suppress stochasticity in the cyanobacterial circadian clock. Nat Commun 2018; 9:3004. [PMID: 30068980 PMCID: PMC6070526 DOI: 10.1038/s41467-018-05109-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 06/12/2018] [Indexed: 11/09/2022] Open
Abstract
Circadian clocks generate reliable ~24-h rhythms despite being based on stochastic biochemical reactions. The circadian clock in Synechococcus elongatus uses a post-translational oscillator that cycles deterministically in a test tube. Because the volume of a single bacterial cell is much smaller than a macroscopic reaction, we asked how clocks in single cells function reliably. Here, we show that S. elongatus cells must express many thousands of copies of Kai proteins to effectively suppress timing errors. Stochastic modeling shows that this requirement stems from noise amplification in the post-translational feedback loop that sustains oscillations. The much smaller cyanobacterium Prochlorococcus expresses only hundreds of Kai protein copies and has a simpler, hourglass-like Kai system. We show that this timer strategy can outperform a free-running clock if internal noise is significant. This conclusion has implications for clock evolution and synthetic oscillator design, and it suggests hourglass-like behavior may be widespread in microbes. Circadian clocks must maintain their fidelity despite stochasticity arising from finite protein copy numbers. Here, the authors show that a small cyanobacterium relies on an environmentally driven timer likely because its low protein copy numbers cannot support an accurate free-running clock.
Collapse
Affiliation(s)
- Justin Chew
- Medical Scientist Training Program, Pritzker School of Medicine, University of Chicago, 900 E 57th St, Chicago, IL, 60637, USA
| | - Eugene Leypunskiy
- Graduate Program in Biophysical Sciences, University of Chicago, 900 E 57th St, Chicago, IL, 60637, USA
| | - Jenny Lin
- Department of Biochemistry and Molecular Biology, University of Chicago, 900 E 57th St, Chicago, IL, 60637, USA
| | - Arvind Murugan
- Department of Physics, University of Chicago, 900 E 57th St, Chicago, IL, 60637, USA
| | - Michael J Rust
- Department of Physics, University of Chicago, 900 E 57th St, Chicago, IL, 60637, USA. .,Department of Molecular Genetics and Cell Biology, University of Chicago, 900 E 57th St, Chicago, IL, 60637, USA.
| |
Collapse
|
23
|
Rahav E, Raveh O, Hazan O, Gordon N, Kress N, Silverman J, Herut B. Impact of nutrient enrichment on productivity of coastal water along the SE Mediterranean shore of Israel - A bioassay approach. MARINE POLLUTION BULLETIN 2018; 127:559-567. [PMID: 29475698 DOI: 10.1016/j.marpolbul.2017.12.048] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 12/07/2017] [Accepted: 12/19/2017] [Indexed: 06/08/2023]
Abstract
The coastal waters of the southeastern Mediterranean-Sea (SEMS) are routinely enriched with naturally-occurring and anthropogenic land-based nutrient loads. These external inputs may affect autotrophic and heterotrophic microbial biomass and activity. Here, we conducted 13 microcosm bioassays with different additions of inorganic NO3-(N), PO4-(P) and Si(OH)4-(Si) in different seasons along the Mediterranean coast of Israel. Our results indicate that cyanobacteria are mainly N-limited, whereas N or Si (or both) limit pico-eukaryotes. Furthermore, the degree to which N affects phytoplankton depends on the ambient seawater's inorganic N and N:P characteristics. Heterotrophic bacteria displayed no response in all treatments, except when all nutrients were added simultaneously, suggesting a possible co-limitation by nutrients. These results contrast the N+P co-limitation of phytoplankton and the P-limitation of bacteria in the open waters of the SEMS. These observations enable the application for a better science-based environmental monitoring and policy implementation along the SEMS coast of Israel.
Collapse
Affiliation(s)
- Eyal Rahav
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Haifa 31080, Israel.
| | - Ofrat Raveh
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Haifa 31080, Israel
| | - Or Hazan
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Haifa 31080, Israel
| | - Nurit Gordon
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Haifa 31080, Israel
| | - Nurit Kress
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Haifa 31080, Israel
| | - Jacob Silverman
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Haifa 31080, Israel
| | - Barak Herut
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Haifa 31080, Israel
| |
Collapse
|
24
|
Antimacrofouling Efficacy of Innovative Inorganic Nanomaterials Loaded with Booster Biocides. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2018. [DOI: 10.3390/jmse6010006] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
25
|
Sewage outburst triggers Trichodesmium bloom and enhance N 2 fixation rates. Sci Rep 2017; 7:4367. [PMID: 28663560 PMCID: PMC5491490 DOI: 10.1038/s41598-017-04622-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 05/25/2017] [Indexed: 11/09/2022] Open
Abstract
The southeastern Mediterranean Sea (SEMS) is a warm and sunlit marine environment with low ambient N concentration, thus considered ideal for diazotrophy by autotrophic diazotrophs such as Trichodesmium. Despite the favorable conditions, N2 fixation rates are often low and Trichodesmium has hardly been spotted in the SEMS. This study reports on the occurrence of a Trichodesmium bloom in the SEMS which was ascribed to T. erythraeum according to DNA fingerprinting of the nifH gene. We found that this bloom (1407 ± 983 cells L−1) was triggered by an intense outburst of raw sewage that supplied high concentrations of N, P and dissolved organic carbon (DOC), which resulted in low N:P (~12:1) and exceptionally high C:P (~1340:1) ratios. We surmise that these conditions provided favorable conditions for Trichodesmium bloom to form via mixotrophic metabolism. As a result, a fourfold increase in N2 fixation was recorded, which contributed ~70% to new primary production and spur a sharp increase in phytoplankton activity and biomass. The conclusions of this study point on a new paradigm for bloom-forming T. erythraeum which is tightly linked to anthropogenic sources and prompt microbial productivity in oligotrophic marine environments such as the SEMS.
Collapse
|
26
|
Rahav E, Giannetto MJ, Bar-Zeev E. Contribution of mono and polysaccharides to heterotrophic N2 fixation at the eastern Mediterranean coastline. Sci Rep 2016; 6:27858. [PMID: 27306501 PMCID: PMC4910064 DOI: 10.1038/srep27858] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 05/26/2016] [Indexed: 11/15/2022] Open
Abstract
N2 fixation should be a critical process in the nitrogen-poor surface water of the eastern Mediterranean Sea. Despite favorable conditions, diazotroph abundance and N2 fixation rates remains low for reasons yet explained. The main goal of this study was to investigate the limiting nutrients for diazotrophy in this oligotrophic environment. Hence, we conducted dedicated bottle-microcosms with eastern Mediterranean Sea water that were supplemented with mono and polysaccharides as well as inorganic nitrogen and phosphorous. Our results indicate that the diazotrophic community expressing nifH was primarily represented by heterotrophic Proteobacteria. N2 fixation and heterotrophic bacterial activity increased up-to tenfold following two days of dark incubations, once seawater was supplemented with organic carbon substrate in the form of glucose (monosaccharides) or gum-xanthan (polysaccharide surrogate). Furthermore, our results point that carbon-rich polysaccharides, such as transparent exopolymer particles, enhance heterotrophic N2 fixation, by forming microenvironments of intense metabolic activity, high carbon: nitrogen ratio, and possibly low O2 levels. The conclusions of this study indicate that diazotrophs in the eastern Mediterranean coast are primarily limited by organic carbon substrates, as possibly in many other marine regions.
Collapse
Affiliation(s)
- E. Rahav
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Haifa, 8030, Israel
| | - M. J. Giannetto
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06520, USA
| | - E. Bar-Zeev
- Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 84990, Midreshet Ben-Gurion, Israel
| |
Collapse
|