1
|
Duan Z, Song J, Zhang M, Zhang Z, Li N, Fu Y, Sun Z, Lu T, Li S, Cao M, Wang Q, Sun C, Wang X. Effects of Yersinia pseudotuberculosis outer membrane vesicles on Pseudomonas aeruginosa antigens immune response. PLoS One 2024; 19:e0310652. [PMID: 39705292 DOI: 10.1371/journal.pone.0310652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/04/2024] [Indexed: 12/22/2024] Open
Abstract
Outer membrane vesicles (OMVs) are immunogenic self-adjuvanting vesicles produced by Gram-negative bacteria such as Pseudomonas aeruginosa and Yersinia pseudotuberculosis. While the effects of OMVs on different antigens immune stimulation are not clear. In this study, we constructed recombinant Yersinia pseudotuberculosis ΔlpxL strain,with pBlue-PcrV and pBlue-OprF/I, and then purified ΔlpxL rOMVPcrV (rOMVyp2P)and ΔlpxL rOMVOprF/I (rOMVyp2F) and analyzed its effect on immune response and protection against Pseudomonas aeruginosa PAO1 infection. The results showed that OMV assists in eliciting similar humoral immune responses to PcrV and OprF/I antigens. ΔlpxL rOMVPcrV and ΔlpxL rOMVOprF/I elicited Th1/Th2 balanced immune response, and higher IgM and IgA antibodies.However, there are differences in immune protection for the pulmonary. The survival rate of mice in ΔlpxL rOMVPcrV group was 20%, which was significantly better than that in ΔlpxL rOMVOprF/I group. ΔlpxL OMVPcrV is better cooperation for Pseudomonas immune protection in lung.
Collapse
Affiliation(s)
- Zhongxu Duan
- Engineering Research Center of Bioreactor and Drug Development, Ministry of Education, College of Life Sciences, Jilin Agricultural University, Changchun, China
- State Key Laboratory of Black Soils Conservation and Utilization, Key Laboratory of Wetland Ecology and Environment Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Jingqi Song
- Engineering Research Center of Bioreactor and Drug Development, Ministry of Education, College of Life Sciences, Jilin Agricultural University, Changchun, China
| | - Mingru Zhang
- Engineering Research Center of Bioreactor and Drug Development, Ministry of Education, College of Life Sciences, Jilin Agricultural University, Changchun, China
| | - Zhe Zhang
- Engineering Research Center of Bioreactor and Drug Development, Ministry of Education, College of Life Sciences, Jilin Agricultural University, Changchun, China
| | - Nan Li
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuqin Fu
- Engineering Research Center of Bioreactor and Drug Development, Ministry of Education, College of Life Sciences, Jilin Agricultural University, Changchun, China
| | - Zhe Sun
- Engineering Research Center of Bioreactor and Drug Development, Ministry of Education, College of Life Sciences, Jilin Agricultural University, Changchun, China
| | - Tiancheng Lu
- Engineering Research Center of Bioreactor and Drug Development, Ministry of Education, College of Life Sciences, Jilin Agricultural University, Changchun, China
| | - Siyuan Li
- Engineering Research Center of Bioreactor and Drug Development, Ministry of Education, College of Life Sciences, Jilin Agricultural University, Changchun, China
| | - Mingyue Cao
- Engineering Research Center of Bioreactor and Drug Development, Ministry of Education, College of Life Sciences, Jilin Agricultural University, Changchun, China
| | - Qingyu Wang
- Engineering Research Center of Bioreactor and Drug Development, Ministry of Education, College of Life Sciences, Jilin Agricultural University, Changchun, China
| | - Chunhui Sun
- Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Xiuran Wang
- Engineering Research Center of Bioreactor and Drug Development, Ministry of Education, College of Life Sciences, Jilin Agricultural University, Changchun, China
- School of Laboratory Animal & Shandong Laboratory Animal Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Huaiyin District, Jinan, China
| |
Collapse
|
2
|
Oral Administration of Universal Bacterium-Vectored Nucleocapsid-Expressing COVID-19 Vaccine is Efficacious in Hamsters. Microbiol Spectr 2023:e0503522. [PMID: 36916971 PMCID: PMC10100875 DOI: 10.1128/spectrum.05035-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Oral delivery of an inexpensive COVID-19 (coronavirus disease 2019) vaccine could dramatically improve immunization rates, especially in low- and middle-income countries. Previously, we described a potential universal COVID-19 vaccine, rLVS ΔcapB/MN, comprising a replicating bacterial vector, LVS (live vaccine strain) ΔcapB, expressing the highly conserved SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) membrane and nucleocapsid (N) proteins, which, when administered intradermally or intranasally, protects hamsters from severe COVID-19-like disease after high-dose SARS-CoV-2 respiratory challenge. Here, we show that oral administration of the vaccine also protects against high-dose SARS-CoV-2 respiratory challenge; its protection is comparable to that of intradermal, intranasal, or subcutaneous administration. Hamsters were protected against severe weight loss and lung pathology and had reduced oropharyngeal and lung virus titers. Protection against weight loss and histopathology by the vaccine, which in mice induces splenic and lung cell interferon gamma in response to N protein stimulation, was correlated in hamsters with pre-challenge serum anti-N TH1-biased IgG (IgG2/3). Thus, rLVS ΔcapB/MN has potential as an oral universal COVID-19 vaccine. IMPORTANCE The COVID-19 pandemic continues to rage into its fourth year worldwide. To protect the world's population most effectively from severe disease, hospitalization, and death, a vaccine is needed that is resistant to rapidly emerging viral variants of the causative agent SARS-CoV-2, inexpensive to manufacture, store, and transport, and easy to administer. Ideally, such a vaccine would be capable of oral administration, especially in resource-poor countries of the world where there are shortages of needles, syringes and trained personnel to administer injectable vaccines. Here, we show that oral administration of a bacterium-vectored vaccine meeting all these criteria protects naturally susceptible Syrian hamsters from severe COVID-19-like disease, including severe weight loss and lung pathology, after high-dose SARS-CoV-2 respiratory challenge. As the vaccine is based upon inducing immunity to highly conserved SARS-CoV-2 membrane and nucleocapsid proteins, as opposed to the rapidly mutating Spike protein, it should remain resistant to newly emerging SARS-CoV-2 variants.
Collapse
|
3
|
Fuche FJ, Jones JA, Ramachandran G, Higginson EE, Simon R, Tennant SM. Deletions in guaBA and htrA but not clpX or rfaL constitute a live-attenuated vaccine strain of Salmonella Newport to protect against serogroup C 2-C 3 Salmonella in mice. Hum Vaccin Immunother 2018; 15:1427-1435. [PMID: 29927725 PMCID: PMC6663134 DOI: 10.1080/21645515.2018.1491499] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Non-typhoidal Salmonella (NTS) are a leading cause of foodborne infections worldwide, and serogroups B, C1, C2-C3 and D are the most common serogroups associated with human disease. While live vaccine candidates that protect against S. Typhimurium (serogroup B) and S. Enteritidis (serogroup D) have been described by us and others, far less effort has been directed towards vaccines that target either serogroup C1 or C2-C3Salmonella. Here we describe a Salmonella Newport-based live-attenuated vaccine (serogroup C2-C3). Deletion of the genes clpX or rfaL, previously used in live vaccines to attenuate S. Typhimurium and/or S. Enteritidis, failed to attenuate S. Newport. However, we found that deletion of either guaBA or htrA raised the 50% lethal dose of S. Newport in an intraperitoneal infection model in BALB/c mice. Our live-attenuated vaccine candidate CVD 1966 (S. Newport ΔguaBA ΔhtrA) elicited strong antibody responses against COPS, flagellin and outer membrane proteins when administered intraperitoneally or orally. Following lethal challenge with the parental virulent strain of S. Newport, we observed vaccine efficacies of 53% for immunization via the intraperitoneal route and 47% for immunization via the oral route. Following intraperiteonal immunization, the vaccine also significantly reduced the bacterial burden of challenge organisms in the liver and spleen. Interestingly, reducing the LPS chain length by deleting rfaL did not induce a stronger immune response towards surface antigens, and failed to elicit any protection against lethal homologous challenge. In conclusion, we have developed a live-attenuated Salmonella serogroup C2-C3 vaccine that we are further evaluating.
Collapse
Affiliation(s)
- Fabien J Fuche
- a Center for Vaccine Development and Institute for Global Health, Department of Medicine , University of Maryland School of Medicine , Baltimore , MD , USA
| | | | | | | | | | | |
Collapse
|
4
|
Moon JY, Kim SY, Kim WK, Rao Z, Park JH, Mun JY, Kim B, Choi HS, Hur J. Protective efficacy of a Salmonella Typhimurium ghost vaccine candidate constructed with a recombinant lysozyme-PMAP36 fusion protein in a murine model. CANADIAN JOURNAL OF VETERINARY RESEARCH = REVUE CANADIENNE DE RECHERCHE VETERINAIRE 2017; 81:297-303. [PMID: 29081588 PMCID: PMC5644453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 04/20/2017] [Indexed: 06/07/2023]
Abstract
A Salmonella Typhimurium ghost vaccine was constructed with the use of a recombinant fusion protein consisting of lysozyme and porcine myeloid antimicrobial peptide 36 expressed by the Escherichia coli overexpression system. After confirmation of its effectiveness by transmission electron microscopy the vaccine was evaluated in a murine model. Of the 60 BALB/c mice equally divided into 4 groups, group A mice were intramuscularly inoculated with 100 μL of sterile phosphate-buffered saline, and the mice in groups B, C, and D were intramuscularly inoculated with approximately 1.0 × 104, 1.0 × 105, or 1.0 × 106 cells of the S. Typhimurium ghost vaccine, respectively, in 100-μL amounts. The serum IgG titers against S. Typhimurium outer membrane proteins were significantly higher in groups B to D than in group A, as were the concentrations of interleukin-10 and interferon gamma in supernatants of harvested splenocytes. After challenge with wild-type S. Typhimurium, all the vaccinated groups showed significant protection compared with group A, notably perfect protection in groups C and D. Overall, these results show that intramuscular vaccination with 1.0 × 105 cells of this ghost vaccine candidate provided efficient protection against systemic infection with virulent S. Typhimurium.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jin Hur
- Address all correspondence to Dr. Jin Hur; telephone: +82-63-850-0959; fax: +82-63-850-0910; e-mail:
| |
Collapse
|
5
|
Liu Q, Liu Q, Yi J, Liang K, Hu B, Zhang X, Curtiss R, Kong Q. Outer membrane vesicles from flagellin-deficient Salmonella enterica serovar Typhimurium induce cross-reactive immunity and provide cross-protection against heterologous Salmonella challenge. Sci Rep 2016; 6:34776. [PMID: 27698383 PMCID: PMC5048178 DOI: 10.1038/srep34776] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 09/16/2016] [Indexed: 01/12/2023] Open
Abstract
Outer membrane vesicles (OMVs) isolated from Salmonella Typhimurium are potentially useful for developing subunit vaccines because of high immunogenicity and protective efficacy. However, flagella might remain in OMV pellets following OMV purification, resulting in non-essential immune responses and counteraction of bacterial protective immune responses when developing a vaccine against infection of multiple serotypes Salmonella. In this study, a flagellin-deficient S. Typhimurium mutant was constructed. Lipopolysaccharide profiles, protein profiles and cryo-electron microscopy revealed that there were no significant differences between the wild-type and mutant OMVs, with the exception of a large amount of flagellin in the wild-type OMVs. Neither the wild-type OMVs nor the non-flagellin OMVs were toxic to macrophages. Mice immunized with the non-flagellin OMVs produced high concentrations of IgG. The non-flagellin OMVs elicited strong mucosal antibody responses in mice when administered via the intranasal route in addition to provoking higher cross-reactive immune responses against OMPs isolated from S. Choleraesuis and S. Enteritidis. Both intranasal and intraperitoneal immunization with the non-flagellin OMVs provided efficient protection against heterologous S. Choleraesuis and S. Enteritidis challenge. Our results indicate that the flagellin-deficient OMVs may represent a new vaccine platform that could be exploited to facilitate the production of a broadly protective vaccine.
Collapse
Affiliation(s)
- Qiong Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.,Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-5401, USA.,Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang, 330006, China
| | - Qing Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jie Yi
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Kang Liang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Bo Hu
- Department of Pathology and Laboratory Medicine, University of Texas Medical School at Houston, Houston, TX, 77030, USA
| | - Xiangmin Zhang
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy/Health Sciences, Wayne State University, Detroit, MI, 48202, USA
| | - Roy Curtiss
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-5401, USA
| | - Qingke Kong
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.,Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-5401, USA
| |
Collapse
|
6
|
Feng XM, Zheng WY, Zhang HM, Shi WY, Li Y, Cui BJ, Wang HY. Vaccination with Bivalent DNA Vaccine of α1-Giardin and CWP2 Delivered by Attenuated Salmonella typhimurium Reduces Trophozoites and Cysts in the Feces of Mice Infected with Giardia lamblia. PLoS One 2016; 11:e0157872. [PMID: 27332547 PMCID: PMC4917239 DOI: 10.1371/journal.pone.0157872] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 06/06/2016] [Indexed: 12/04/2022] Open
Abstract
Background Giardia lamblia is one of the most common infectious protozoans in human that may cause diarrhea in travelers. Searching for antigens that induced effectively protective immunity has become a key point in the development of vaccine against giardiasis. Methodology/Principal Findings Mice vaccinated with G. lamblia trophozozite-specific α1-giardin DNA vaccine delivered orally by attenuated Salmonella typhimurium SL7027 elicited 74.2% trophozoite reduction, but only 28% reduction in cyst shedding compared with PBS buffer control. Oral vaccination with Salmonella-delivered cyst-specific CWP2 DNA produced 89% reduction in cysts shedding in feces of vaccinated mice. Significantly, the mice vaccinated with Salmonella-delivered bivalent α1-giardin and CWP2 DNA vaccines produced significant reduction in both trophozoite (79%) and cyst (93%) in feces of vaccinated mice. This parasite reduction is associated with the strong local mucosal IgA secretion and the IgG2a-dominant systemic immune responses in vaccinated mice. Conclusions The results demonstrate that bivalent vaccines targeting α1-giardin and CWP2 can protect mice against the colonization of Giardia trophozoite and block the transformation of cyst in host at the same time, and can be used to prevent Giardia infection and block the transmission of giardiasis.
Collapse
Affiliation(s)
- Xian-Min Feng
- The Department of Pathogenic Biology, Jilin Medical University, Jilin City, China
- * E-mail:
| | - Wen-Yu Zheng
- The Center Hospital of Jilin City, Jilin City, China
| | - Hong-Mei Zhang
- The Department of Pathogenic Biology, Jilin Medical University, Jilin City, China
| | - Wen-Yan Shi
- The Department of Pathogenic Biology, Jilin Medical University, Jilin City, China
| | - Yao Li
- The Department of Pathogenic Biology, Jilin Medical University, Jilin City, China
| | - Bai-Ji Cui
- The Department of Pathogenic Biology, Jilin Medical University, Jilin City, China
| | - Hui-Yan Wang
- The Department of Pathogenic Biology, Jilin Medical University, Jilin City, China
| |
Collapse
|