1
|
Pongpom M, Khamto N, Sukantamala P, Kalawil T, Wangsanut T. Identification of Homeobox Transcription Factors in a Dimorphic Fungus Talaromyces marneffei and Protein-Protein Interaction Prediction of RfeB. J Fungi (Basel) 2024; 10:687. [PMID: 39452639 PMCID: PMC11508405 DOI: 10.3390/jof10100687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/11/2024] [Accepted: 09/26/2024] [Indexed: 10/26/2024] Open
Abstract
Talaromyces marneffei is a thermally dimorphic fungus that can cause life-threatening systemic mycoses, particularly in immunocompromised individuals. Fungal homeobox transcription factors control various developmental processes, including the regulation of sexual reproduction, morphology, metabolism, and virulence. However, the function of homeobox proteins in T. marneffei has not been fully explored. Here, we searched the T. marneffei genome for the total homeobox transcription factors and predicted their biological relevance by performing gene expression analysis in different cell types, including conidia, mycelia, yeasts, and during phase transition. RfeB is selected for further computational analysis since (i) its transcripts were differentially expressed in different phases of T. marneffei, and (ii) this protein contains the highly conserved protein-protein interaction region (IR), which could be important for pathobiology and have therapeutic application. To assess the structure-function of the IR region, in silico alanine substitutions were performed at three-conserved IR residues (Asp276, Glu279, and Gln282) of RfeB, generating a triple RfeB mutated protein. Using 3D modeling and molecular dynamics simulations, we compared the protein complex formation of wild-type and mutated RfeB proteins with the putative partner candidate TmSwi5. Our results demonstrated that the mutated RfeB protein exhibited increased free binding energy, elevated protein compactness, and a reduced number of atomic contacts, suggesting disrupted protein stability and interaction. Notably, our model revealed that the IR residues primarily stabilized the RfeB binding sites located in the central region (CR). This computational approach for protein mutagenesis could provide a foundation for future experimental studies on the functional characterization of RfeB and other homeodomain-containing proteins in T. marneffei.
Collapse
Affiliation(s)
- Monsicha Pongpom
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (M.P.)
| | - Nopawit Khamto
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | | | - Thitisuda Kalawil
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (M.P.)
| | - Tanaporn Wangsanut
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (M.P.)
| |
Collapse
|
2
|
Chen J, Qu R, Chen Q, Zhang Z, Wu S, Bao M, Wang X, Liu L, Lyu S, Tian J, Lyu L, Yu C, Yuan S, Liu Z. Characterization of linoleate dioxygenases in basidiomycetes and the functional role of CcLdo1 in regulating fruiting body development in Coprinopsis cinerea. Fungal Genet Biol 2024; 173:103911. [PMID: 38960372 DOI: 10.1016/j.fgb.2024.103911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/12/2024] [Accepted: 06/26/2024] [Indexed: 07/05/2024]
Abstract
Coprinopsis cinerea, a model fungus, is utilized for investigating the developmental mechanisms of basidiomycetes. The development of basidiomycetes is a highly organized process that requires coordination among genetic, environmental, and physiological factors. Oxylipins, a class of widely distributed signaling molecules, play crucial roles in fungal biology. Among oxylipins, the sexual pheromone-inducing factors (psi factors) have been identified as key regulators of the balance between asexual and sexual spore development in Ascomycetes. Linoleate dioxygenases are enzymes involved in the biosynthesis of psi factors, yet their specific physiological functions in basidiomycete development remain unclear. In this study, linoleate dioxygenases in basidiomycetes were identified and characterized. Phylogenetic analysis revealed that linoleate dioxygenases from Basidiomycota formed a distinct clade, with linoleate dioxygenases from Agaricomycetes segregating into three groups and those from Ustilaginomycetes forming a separate group. Both basidiomycete and ascomycete linoleate dioxygenases shared two characteristic domains: the N-terminal of linoleate dioxygenase domain and the C-terminal of cytochrome P450 domain. While the linoleate dioxygenase domains exhibited similarity between basidiomycetes and ascomycetes, the cytochrome P450 domains displayed high diversity in key sites. Furthermore, the gene encoding the linoleate dioxygenase Ccldo1 in C. cinerea was knocked out, resulting in a significant increase in fruiting body formation without affecting asexual conidia production. This observation suggests that secondary metabolites synthesized by CcLdo1 negatively regulate the sexual reproduction process in C. cinerea while not influencing the asexual reproductive process. This study represents the first identification of a gene involved in secondary metabolite synthesis that regulates basidiocarp development in a basidiomycete.
Collapse
Affiliation(s)
- Jing Chen
- Jiangsu Key Laboratory for Pathogens and Ecosystems, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, China
| | - Rong Qu
- Jiangsu Key Laboratory for Pathogens and Ecosystems, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, China
| | - Qiurong Chen
- Jiangsu Key Laboratory for Pathogens and Ecosystems, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, China
| | - Ziyu Zhang
- Jiangsu Key Laboratory for Pathogens and Ecosystems, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, China
| | - Siting Wu
- Jiangsu Key Laboratory for Pathogens and Ecosystems, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, China
| | - Mengyu Bao
- Jiangsu Key Laboratory for Pathogens and Ecosystems, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, China
| | - Xinyue Wang
- Jiangsu Key Laboratory for Pathogens and Ecosystems, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, China
| | - Lei Liu
- Jiangsu Key Laboratory for Pathogens and Ecosystems, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, China
| | - Siqi Lyu
- Jiangsu Key Laboratory for Pathogens and Ecosystems, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, China
| | - Jialu Tian
- Jiangsu Key Laboratory for Pathogens and Ecosystems, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, China
| | - Linna Lyu
- Jiangsu Key Laboratory for Pathogens and Ecosystems, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, China
| | - Cigang Yu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China.
| | - Sheng Yuan
- Jiangsu Key Laboratory for Pathogens and Ecosystems, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, China
| | - Zhonghua Liu
- Jiangsu Key Laboratory for Pathogens and Ecosystems, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
3
|
Kobukata T, Nakazawa T, Yamasaki F, Sugano J, Oh M, Kawauchi M, Sakamoto M, Honda Y. Identification of two genes essential for basidiospore formation during the postmeiotic stages in Pleurotus ostreatus. Fungal Genet Biol 2024; 172:103890. [PMID: 38503389 DOI: 10.1016/j.fgb.2024.103890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/14/2024] [Accepted: 03/16/2024] [Indexed: 03/21/2024]
Abstract
A sporeless strain is an important breeding target in the mushroom industry. However, basidiospore production in the oyster mushroom Pleurotus ostreatus has been shown to be impaired by single-gene mutations in only two meiosis-related genes, mer3 and msh4. This study proposed a strategy for identifying the genes essential for basidiospore formation after meiotic division to determine new targets for molecular breeding. RNA-seq analysis was performed to identify P. ostreatus genes that are specifically expressed in the gill tissue of fruiting bodies, where basidiospore formation occurs. Transcriptome data during fruiting development of Coprinopsis cinerea, in which the meiotic steps progress synchronously, were then used to identify genes that are active in the postmeiotic stages. Based on these comparative analyses, five P. ostreatus genes were identified. Plasmids containing expression cassettes for hygromycin B-resistance screening, Cas9, and single-guide RNA targeting each gene were introduced into the protoplasts of dikaryotic strain, PC9×#64, to generate dikaryotic gene disruptants. Among the obtained transformants, three dikaryotic pcl1 disruptants and two cro6c disruptants did not produce basidiospores. Microscopic analyses indicated that spore formation was arrested at particular stages in these gene disruptants. These results indicate that these two genes are essential for mature spore formation in this fungus.
Collapse
Affiliation(s)
- Takeshi Kobukata
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Takehito Nakazawa
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Fuga Yamasaki
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Junko Sugano
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Minji Oh
- Mushroom Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Bisan-ro, Eumseong-gun, Chungcheongbuk-do 22709, Republic of Korea
| | - Moriyuki Kawauchi
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Masahiro Sakamoto
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Yoichi Honda
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.
| |
Collapse
|
4
|
Sakamoto Y, Sato S, Yoshida H, Takahashi M, Osakabe K, Muraguchi H. The exp2 gene, which encodes a protein with two zinc finger domains, regulates cap expansion and autolysis in Coprinopsis cinerea. Microbiol Res 2024; 283:127695. [PMID: 38554651 DOI: 10.1016/j.micres.2024.127695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 04/02/2024]
Abstract
Cap expansion in agaricoid mushroom species is an important event for sexual reproduction because meiosis occurs in basidia under the cap, and basidiospores can be released by opening the cap. However, molecular mechanisms underlying cap expansion in basidiomycetes remain poorly understood. We aimed to elucidate the molecular mechanisms of cap expansion in basidiomycetes by analyzing the unique cap-expansionless UV mutant #13 (exp2-1) in Coprinopsis cinerea. Linkage analysis and consequent genome sequence analysis revealed that the gene responsible for the mutant phenotypes encodes a putative transcription factor with two C2H2 zinc finger motifs. The mutant that was genome-edited to lack exp2 exhibited an expansionless phenotype. Some of the genes encoding cell wall degradation-related enzymes showed decreased expression during cap expansion and autolysis in the exp2 UV and genome-edited mutant. The exp2 gene is widely conserved in Agaricomycetes, suggesting that Exp2 homologs regulate fruiting body maturation in Agaricomycetes, especially cap expansion in Agaricoid-type mushroom-forming fungi. Therefore, exp2 homologs could be a target for mushroom breeding to maintain shape after harvest for some cultivating mushrooms, presenting a promising avenue for further research in breeding techniques.
Collapse
Affiliation(s)
- Yuichi Sakamoto
- Department of Bioresource Sciences, Iwate Biotechnology Research Center, 22-174-4 Narita, Kitakami-shi, Iwate 024-0003, Japan.
| | - Shiho Sato
- Department of Bioresource Sciences, Iwate Biotechnology Research Center, 22-174-4 Narita, Kitakami-shi, Iwate 024-0003, Japan
| | - Hiroshi Yoshida
- Department of Bioresource Sciences, Iwate Biotechnology Research Center, 22-174-4 Narita, Kitakami-shi, Iwate 024-0003, Japan
| | - Machiko Takahashi
- Department of Bioresource Sciences, Iwate Biotechnology Research Center, 22-174-4 Narita, Kitakami-shi, Iwate 024-0003, Japan
| | - Keishi Osakabe
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima 770-8503, Japan
| | - Hajime Muraguchi
- Department of Biotechnology, Faculty of Bioresource Sciences, Akita Prefectural University, 241-438 Kaidobata-Nishi Nakano Shimoshinjo, Akita 010-0195, Japan
| |
Collapse
|
5
|
Földi C, Merényi Z, Balázs B, Csernetics Á, Miklovics N, Wu H, Hegedüs B, Virágh M, Hou Z, Liu XB, Galgóczy L, Nagy LG. Snowball: a novel gene family required for developmental patterning of fruiting bodies of mushroom-forming fungi (Agaricomycetes). mSystems 2024; 9:e0120823. [PMID: 38334416 PMCID: PMC10949477 DOI: 10.1128/msystems.01208-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/10/2024] [Indexed: 02/10/2024] Open
Abstract
The morphogenesis of sexual fruiting bodies of fungi is a complex process determined by a genetically encoded program. Fruiting bodies reached the highest complexity levels in the Agaricomycetes; yet, the underlying genetics is currently poorly known. In this work, we functionally characterized a highly conserved gene termed snb1, whose expression level increases rapidly during fruiting body initiation. According to phylogenetic analyses, orthologs of snb1 are present in almost all agaricomycetes and may represent a novel conserved gene family that plays a substantial role in fruiting body development. We disrupted snb1 using CRISPR/Cas9 in the agaricomycete model organism Coprinopsis cinerea. snb1 deletion mutants formed unique, snowball-shaped, rudimentary fruiting bodies that could not differentiate caps, stipes, and lamellae. We took advantage of this phenotype to study fruiting body differentiation using RNA-Seq analyses. This revealed differentially regulated genes and gene families that, based on wild-type RNA-Seq data, were upregulated early during development and showed tissue-specific expression, suggesting a potential role in differentiation. Taken together, the novel gene family of snb1 and the differentially expressed genes in the snb1 mutants provide valuable insights into the complex mechanisms underlying developmental patterning in the Agaricomycetes. IMPORTANCE Fruiting bodies of mushroom-forming fungi (Agaricomycetes) are complex multicellular structures, with a spatially and temporally integrated developmental program that is, however, currently poorly known. In this study, we present a novel, conserved gene family, Snowball (snb), termed after the unique, differentiation-less fruiting body morphology of snb1 knockout strains in the model mushroom Coprinopsis cinerea. snb is a gene of unknown function that is highly conserved among agaricomycetes and encodes a protein of unknown function. A comparative transcriptomic analysis of the early developmental stages of differentiated wild-type and non-differentiated mutant fruiting bodies revealed conserved differentially expressed genes which may be related to tissue differentiation and developmental patterning fruiting body development.
Collapse
Affiliation(s)
- Csenge Földi
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Center, Szeged, Hungary
- Doctoral School of Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Zsolt Merényi
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Center, Szeged, Hungary
| | - Bálint Balázs
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Center, Szeged, Hungary
| | - Árpád Csernetics
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Center, Szeged, Hungary
| | - Nikolett Miklovics
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Center, Szeged, Hungary
| | - Hongli Wu
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Center, Szeged, Hungary
| | - Botond Hegedüs
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Center, Szeged, Hungary
| | - Máté Virágh
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Center, Szeged, Hungary
| | - Zhihao Hou
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Center, Szeged, Hungary
| | - Xiao-Bin Liu
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Center, Szeged, Hungary
| | - László Galgóczy
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Center, Szeged, Hungary
- Department of Biotechnology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - László G. Nagy
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Center, Szeged, Hungary
| |
Collapse
|
6
|
Nakazawa T, Kawauchi M, Otsuka Y, Han J, Koshi D, Schiphof K, Ramírez L, Pisabarro AG, Honda Y. Pleurotus ostreatus as a model mushroom in genetics, cell biology, and material sciences. Appl Microbiol Biotechnol 2024; 108:217. [PMID: 38372792 PMCID: PMC10876731 DOI: 10.1007/s00253-024-13034-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/11/2024] [Accepted: 01/25/2024] [Indexed: 02/20/2024]
Abstract
Pleurotus ostreatus, also known as the oyster mushroom, is a popular edible mushroom cultivated worldwide. This review aims to survey recent progress in the molecular genetics of this fungus and demonstrate its potential as a model mushroom for future research. The development of modern molecular genetic techniques and genome sequencing technologies has resulted in breakthroughs in mushroom science. With efficient transformation protocols and multiple selection markers, a powerful toolbox, including techniques such as gene knockout and genome editing, has been developed, and numerous new findings are accumulating in P. ostreatus. These include molecular mechanisms of wood component degradation, sexual development, protein secretion systems, and cell wall structure. Furthermore, these techniques enable the identification of new horizons in enzymology, biochemistry, cell biology, and material science through protein engineering, fluorescence microscopy, and molecular breeding. KEY POINTS: • Various genetic techniques are available in Pleurotus ostreatus. • P. ostreatus can be used as an alternative model mushroom in genetic analyses. • New frontiers in mushroom science are being developed using the fungus.
Collapse
Affiliation(s)
- Takehito Nakazawa
- Graduate School of Agriculture, Kyoto University, Oiwake-Cho, Kitashirakawa, Sakyo-Ku, Kyoto, 606-8502, Japan
| | - Moriyuki Kawauchi
- Graduate School of Agriculture, Kyoto University, Oiwake-Cho, Kitashirakawa, Sakyo-Ku, Kyoto, 606-8502, Japan
| | - Yuitsu Otsuka
- Graduate School of Agriculture, Kyoto University, Oiwake-Cho, Kitashirakawa, Sakyo-Ku, Kyoto, 606-8502, Japan
| | - Junxian Han
- Graduate School of Agriculture, Kyoto University, Oiwake-Cho, Kitashirakawa, Sakyo-Ku, Kyoto, 606-8502, Japan
| | - Daishiro Koshi
- Graduate School of Agriculture, Kyoto University, Oiwake-Cho, Kitashirakawa, Sakyo-Ku, Kyoto, 606-8502, Japan
| | - Kim Schiphof
- Graduate School of Agriculture, Kyoto University, Oiwake-Cho, Kitashirakawa, Sakyo-Ku, Kyoto, 606-8502, Japan
| | - Lucía Ramírez
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Public University of Navarra (UPNA), 31006, Pamplona, Spain
| | - Antonio G Pisabarro
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Public University of Navarra (UPNA), 31006, Pamplona, Spain
| | - Yoichi Honda
- Graduate School of Agriculture, Kyoto University, Oiwake-Cho, Kitashirakawa, Sakyo-Ku, Kyoto, 606-8502, Japan.
| |
Collapse
|
7
|
Chan PL, Kwan HS, Xie Y, Wong KH, Chang J. Transcriptome Analysis Reveals Mycelial and Fruiting Responses to Lithium Chloride in Coprinopsis cinerea. J Fungi (Basel) 2024; 10:140. [PMID: 38392812 PMCID: PMC10890143 DOI: 10.3390/jof10020140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/02/2024] [Accepted: 02/07/2024] [Indexed: 02/24/2024] Open
Abstract
Lithium chloride (LiCl) has been used in signalling and molecular studies of animals, plants, and yeast. However, information on its roles in basidiomycetous fungi is still limited. In this study, we used RNA-Seq to study the effects of LiCl on Coprinopsis cinerea. LiCl enhanced mycelial growth and inhibited fruiting body formation in C. cinerea. RNA-Seq of the LiCl-treated C. cinerea resulted in a total of 14,128 genes. There were 1199 differentially expressed genes (DEGs) between the LiCl-treated samples and control samples in the mycelium stage (the first time point), and 1391 DEGs were detected when the control samples were forming hyphal knots while the treated samples were still in the mycelium (the second time point). Pathway enrichment analysis of the DEGs revealed a significant association between enhanced mycelium growth in the LiCl-treated C. cinerea and metabolic pathways. In addition, the DEGs involved in cellular process pathways, including "cell cycle-yeast" and "meiosis-yeast", were identified in suppressed C. cinerea fruiting body formation by LiCl under favourable environmental conditions. As LiCl can predominantly inhibit the activity of glycogen synthase kinase3 (GSK3), our findings suggest that LiCl affects the expression of genes involved in fruiting body initiation and cellular processes by inhibiting GSK3 activity which is essential for fruiting body formation.
Collapse
Affiliation(s)
- Po-Lam Chan
- Research Institute for Future Food, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Hoi-Shan Kwan
- Food Research Centre, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Yichun Xie
- Food Research Centre, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Ka-Hing Wong
- Research Institute for Future Food, The Hong Kong Polytechnic University, Hong Kong SAR, China
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Jinhui Chang
- Research Institute for Future Food, The Hong Kong Polytechnic University, Hong Kong SAR, China
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong SAR, China
| |
Collapse
|
8
|
Ke S, Ding L, Niu X, Shan H, Song L, Xi Y, Feng J, Wei S, Liang Q. Comparative transcriptome analysis on candidate genes associated with fruiting body growth and development in Lyophyllum decastes. PeerJ 2023; 11:e16288. [PMID: 37904843 PMCID: PMC10613438 DOI: 10.7717/peerj.16288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/22/2023] [Indexed: 11/01/2023] Open
Abstract
Lyophyllum decastes is a mushroom that is highly regarded for its culinary and medicinal properties. Its delectable taste and texture make it a popular choice for consumption. To gain a deeper understanding of the molecular mechanisms involved in the development of the fruiting body of L. decastes, we used RNA sequencing to conduct a comparative transcriptome analysis. The analysis encompassed various developmental stages, including the vegetative mycelium, primordial initiation, young fruiting body, medium-size fruiting body, and mature fruiting body stages. A range of 40.1 to 60.6 million clean reads were obtained, and de novo assembly generated 15,451 unigenes with an average length of 1,462.68 bp. Functional annotation of transcriptomes matched 76.84% of the unigenes to known proteins available in at least one database. The gene expression analysis revealed a significant number of differentially expressed genes (DEGs) between each stage. These genes were annotated and subjected to Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses. Highly differentially expressed unigenes were also identified, including those that encode extracellular enzymes, transcription factors, and signaling pathways. The accuracy of the RNA-Seq and DEG analyses was validated using quantitative PCR. Enzyme activity analysis experiments demonstrated that the extracellular enzymes exhibited significant differences across different developmental stages. This study provides valuable insights into the molecular mechanisms that underlie the development of the fruiting body in L. decastes.
Collapse
Affiliation(s)
- Shanwen Ke
- Gansu Engineering Laboratory of Applied Mycology, Hexi University, Zhangye, Gansu, China
- Gansu Key Laboratory of Genetics and Breeding of Edible Fungi, Hexi University, Zhangye, Gansu, China
| | - LingQiang Ding
- Gansu Engineering Laboratory of Applied Mycology, Hexi University, Zhangye, Gansu, China
- Gansu Key Laboratory of Genetics and Breeding of Edible Fungi, Hexi University, Zhangye, Gansu, China
| | - Xin Niu
- Gansu Engineering Laboratory of Applied Mycology, Hexi University, Zhangye, Gansu, China
- Gansu Key Laboratory of Genetics and Breeding of Edible Fungi, Hexi University, Zhangye, Gansu, China
| | - Huajia Shan
- Gansu Engineering Laboratory of Applied Mycology, Hexi University, Zhangye, Gansu, China
- Gansu Key Laboratory of Genetics and Breeding of Edible Fungi, Hexi University, Zhangye, Gansu, China
| | - Liru Song
- Gansu Engineering Laboratory of Applied Mycology, Hexi University, Zhangye, Gansu, China
- Gansu Key Laboratory of Genetics and Breeding of Edible Fungi, Hexi University, Zhangye, Gansu, China
| | - Yali Xi
- Gansu Engineering Laboratory of Applied Mycology, Hexi University, Zhangye, Gansu, China
- Gansu Key Laboratory of Genetics and Breeding of Edible Fungi, Hexi University, Zhangye, Gansu, China
| | - Jiuhai Feng
- Gansu Engineering Laboratory of Applied Mycology, Hexi University, Zhangye, Gansu, China
- Gansu Key Laboratory of Genetics and Breeding of Edible Fungi, Hexi University, Zhangye, Gansu, China
| | - Shenglong Wei
- Gansu Engineering Laboratory of Applied Mycology, Hexi University, Zhangye, Gansu, China
- Gansu Key Laboratory of Genetics and Breeding of Edible Fungi, Hexi University, Zhangye, Gansu, China
| | - Qianqian Liang
- Gansu Engineering Laboratory of Applied Mycology, Hexi University, Zhangye, Gansu, China
- Gansu Key Laboratory of Genetics and Breeding of Edible Fungi, Hexi University, Zhangye, Gansu, China
| |
Collapse
|
9
|
Sun X, Liu D, Zhao X. Transcription factors: switches for regulating growth and development in macrofungi. Appl Microbiol Biotechnol 2023; 107:6179-6191. [PMID: 37624406 DOI: 10.1007/s00253-023-12726-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/31/2023] [Accepted: 08/09/2023] [Indexed: 08/26/2023]
Abstract
Macrofungi (or mushrooms) act as an extraordinarily important part to human health due to their nutritional and/or medicinal value, but the detailed researches in growth and development mechanisms have yet to be explored further. Transcription factors (TFs) play indispensable roles in signal transduction and affect growth, development, and metabolism of macrofungi. In recent years, increasing research effort has been employed to probe the relationship between the development of macrofungi and TFs. Herein, the present review comprehensively summarized the functional TFs researched in macrofungi, including modulating mycelial growth, fructification, sclerotial formation, sexual reproduction, spore formation, and secondary metabolism. Meanwhile, the possible effect mechanisms of TFs on the growth and development of some macrofungi were also revealed. Specific examples of functional characterizations of TFs in macrofungi (such as Schizophyllum commune and Coprinopsis cinerea) were described to a better comprehension of regulatory effect. Future research prospects in the field of TFs of macrofungi are discussed. We illustrated the functional versatility of the TFs in macrofungi based on specific examples. A systematical realization of the interaction and possible mechanisms between TFs and macrofungi can supply possible solutions to regulate genetic characteristics, which supply novel insights into the regulation of growth, development and metabolism of macrofungi. KEY POINTS: • The functional TFs researched in macrofungi were summarized. • The possible effect mechanisms of TFs in macrofungal were described. • The multiple physiological functions of TFs in macrofungi were discussed.
Collapse
Affiliation(s)
- Xueyan Sun
- Research Center for Environmental Ecology and Engineering, Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemistry Technology, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Dongmei Liu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Xihong Zhao
- Research Center for Environmental Ecology and Engineering, Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemistry Technology, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China.
| |
Collapse
|
10
|
Xie Y, Chan PL, Kwan HS, Chang J. The Genome-Wide Characterization of Alternative Splicing and RNA Editing in the Development of Coprinopsis cinerea. J Fungi (Basel) 2023; 9:915. [PMID: 37755023 PMCID: PMC10532568 DOI: 10.3390/jof9090915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/17/2023] [Accepted: 09/07/2023] [Indexed: 09/28/2023] Open
Abstract
Coprinopsis cinerea is one of the model species used in fungal developmental studies. This mushroom-forming Basidiomycetes fungus has several developmental destinies in response to changing environments, with dynamic developmental regulations of the organism. Although the gene expression in C. cinerea development has already been profiled broadly, previous studies have only focused on a specific stage or process of fungal development. A comprehensive perspective across different developmental paths is lacking, and a global view on the dynamic transcriptional regulations in the life cycle and the developmental paths is far from complete. In addition, knowledge on co- and post-transcriptional modifications in this fungus remains rare. In this study, we investigated the transcriptional changes and modifications in C. cinerea during the processes of spore germination, vegetative growth, oidiation, sclerotia formation, and fruiting body formation by inducing different developmental paths of the organism and profiling the transcriptomes using the high-throughput sequencing method. Transition in the identity and abundance of expressed genes drive the physiological and morphological alterations of the organism, including metabolism and multicellularity construction. Moreover, stage- and tissue-specific alternative splicing and RNA editing took place and functioned in C. cinerea. These modifications were negatively correlated to the conservation features of genes and could provide extra plasticity to the transcriptome during fungal development. We suggest that C. cinerea applies different molecular strategies in its developmental regulation, including shifts in expressed gene sets, diversifications of genetic information, and reversible diversifications of RNA molecules. Such features would increase the fungal adaptability in the rapidly changing environment, especially in the transition of developmental programs and the maintenance and balance of genetic and transcriptomic divergence. The multi-layer regulatory network of gene expression serves as the molecular basis of the functioning of developmental regulation.
Collapse
Affiliation(s)
- Yichun Xie
- State Key Laboratory of Agrobiotechnology, Food Research Center, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China;
| | - Po-Lam Chan
- Food Research Center, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Hoi-Shan Kwan
- Food Research Center, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Jinhui Chang
- Department of Food Science and Nutrition, and Research Institute for Future Food, The Hong Kong Polytechnic University, Hong Kong SAR, China
| |
Collapse
|
11
|
Tuveng TR, Østby H, Tamburrini KC, Bissaro B, Hegnar OA, Stepnov AA, Várnai A, Berrin JG, Eijsink VGH. Revisiting the AA14 family of lytic polysaccharide monooxygenases and their catalytic activity. FEBS Lett 2023; 597:2086-2102. [PMID: 37418595 DOI: 10.1002/1873-3468.14694] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/08/2023] [Accepted: 06/26/2023] [Indexed: 07/09/2023]
Abstract
Lytic polysaccharide monooxygenases (LPMOs) belonging to the AA14 family are believed to contribute to the enzymatic degradation of lignocellulosic biomass by specifically acting on xylan in recalcitrant cellulose-xylan complexes. Functional characterization of an AA14 LPMO from Trichoderma reesei, TrAA14A, and a re-evaluation of the properties of the previously described AA14 from Pycnoporus coccineus, PcoAA14A, showed that these proteins have oxidase and peroxidase activities that are common for LPMOs. However, we were not able to detect activity on cellulose-associated xylan or any other tested polysaccharide substrate, meaning that the substrate of these enzymes remains unknown. Next to raising questions regarding the true nature of AA14 LPMOs, the present data illustrate possible pitfalls in the functional characterization of these intriguing enzymes.
Collapse
Affiliation(s)
- Tina R Tuveng
- Faculty of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Heidi Østby
- Faculty of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Ketty C Tamburrini
- INRAE, Aix Marseille Univ, UMR1163 Biodiversité et Biotechnologie Fongiques, Marseille, France
| | - Bastien Bissaro
- INRAE, Aix Marseille Univ, UMR1163 Biodiversité et Biotechnologie Fongiques, Marseille, France
| | - Olav A Hegnar
- Faculty of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Anton A Stepnov
- Faculty of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Anikó Várnai
- Faculty of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Jean-Guy Berrin
- INRAE, Aix Marseille Univ, UMR1163 Biodiversité et Biotechnologie Fongiques, Marseille, France
| | - Vincent G H Eijsink
- Faculty of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| |
Collapse
|
12
|
Nagy L, Vonk P, Künzler M, Földi C, Virágh M, Ohm R, Hennicke F, Bálint B, Csernetics Á, Hegedüs B, Hou Z, Liu X, Nan S, Pareek M, Sahu N, Szathmári B, Varga T, Wu H, Yang X, Merényi Z. Lessons on fruiting body morphogenesis from genomes and transcriptomes of Agaricomycetes. Stud Mycol 2023; 104:1-85. [PMID: 37351542 PMCID: PMC10282164 DOI: 10.3114/sim.2022.104.01] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 12/02/2022] [Indexed: 01/09/2024] Open
Abstract
Fruiting bodies (sporocarps, sporophores or basidiomata) of mushroom-forming fungi (Agaricomycetes) are among the most complex structures produced by fungi. Unlike vegetative hyphae, fruiting bodies grow determinately and follow a genetically encoded developmental program that orchestrates their growth, tissue differentiation and sexual sporulation. In spite of more than a century of research, our understanding of the molecular details of fruiting body morphogenesis is still limited and a general synthesis on the genetics of this complex process is lacking. In this paper, we aim at a comprehensive identification of conserved genes related to fruiting body morphogenesis and distil novel functional hypotheses for functionally poorly characterised ones. As a result of this analysis, we report 921 conserved developmentally expressed gene families, only a few dozens of which have previously been reported to be involved in fruiting body development. Based on literature data, conserved expression patterns and functional annotations, we provide hypotheses on the potential role of these gene families in fruiting body development, yielding the most complete description of molecular processes in fruiting body morphogenesis to date. We discuss genes related to the initiation of fruiting, differentiation, growth, cell surface and cell wall, defence, transcriptional regulation as well as signal transduction. Based on these data we derive a general model of fruiting body development, which includes an early, proliferative phase that is mostly concerned with laying out the mushroom body plan (via cell division and differentiation), and a second phase of growth via cell expansion as well as meiotic events and sporulation. Altogether, our discussions cover 1 480 genes of Coprinopsis cinerea, and their orthologs in Agaricus bisporus, Cyclocybe aegerita, Armillaria ostoyae, Auriculariopsis ampla, Laccaria bicolor, Lentinula edodes, Lentinus tigrinus, Mycena kentingensis, Phanerochaete chrysosporium, Pleurotus ostreatus, and Schizophyllum commune, providing functional hypotheses for ~10 % of genes in the genomes of these species. Although experimental evidence for the role of these genes will need to be established in the future, our data provide a roadmap for guiding functional analyses of fruiting related genes in the Agaricomycetes. We anticipate that the gene compendium presented here, combined with developments in functional genomics approaches will contribute to uncovering the genetic bases of one of the most spectacular multicellular developmental processes in fungi. Citation: Nagy LG, Vonk PJ, Künzler M, Földi C, Virágh M, Ohm RA, Hennicke F, Bálint B, Csernetics Á, Hegedüs B, Hou Z, Liu XB, Nan S, M. Pareek M, Sahu N, Szathmári B, Varga T, Wu W, Yang X, Merényi Z (2023). Lessons on fruiting body morphogenesis from genomes and transcriptomes of Agaricomycetes. Studies in Mycology 104: 1-85. doi: 10.3114/sim.2022.104.01.
Collapse
Affiliation(s)
- L.G. Nagy
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - P.J. Vonk
- Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands;
| | - M. Künzler
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule (ETH) Zürich, Zürich, Switzerland;
| | - C. Földi
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - M. Virágh
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - R.A. Ohm
- Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands;
| | - F. Hennicke
- Project Group Genetics and Genomics of Fungi, Chair Evolution of Plants and Fungi, Ruhr-University Bochum, 44780, Bochum, North Rhine-Westphalia, Germany;
| | - B. Bálint
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - Á. Csernetics
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - B. Hegedüs
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - Z. Hou
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - X.B. Liu
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - S. Nan
- Institute of Applied Mycology, Huazhong Agricultural University, 430070 Hubei Province, PR China
| | - M. Pareek
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - N. Sahu
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - B. Szathmári
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - T. Varga
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - H. Wu
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - X. Yang
- Institute of Applied Mycology, Huazhong Agricultural University, 430070 Hubei Province, PR China
| | - Z. Merényi
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| |
Collapse
|
13
|
Kakizaki T, Abe H, Kotouge Y, Matsubuchi M, Sugou M, Honma C, Tsukuta K, Satoh S, Shioya T, Nakamura H, Cannon KS, Woods BL, Gladfelter A, Takeshita N, Muraguchi H. Live-cell imaging of septins and cell polarity proteins in the growing dikaryotic vegetative hypha of the model mushroom Coprinopsis cinerea. Sci Rep 2023; 13:10132. [PMID: 37349479 PMCID: PMC10287680 DOI: 10.1038/s41598-023-37115-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 06/15/2023] [Indexed: 06/24/2023] Open
Abstract
The developmental biology underlying the morphogenesis of mushrooms remains poorly understood despite the essential role of fungi in the terrestrial environment and global carbon cycle. The mushroom Coprinopsis cinerea is a leading model system for the molecular and cellular basis of fungal morphogenesis. The dikaryotic vegetative hyphae of this fungus grow by tip growth with clamp cell formation, conjugate nuclear division, septation, subapical peg formation, and fusion of the clamp cell to the peg. Studying these processes provides many opportunities to gain insights into fungal cell morphogenesis. Here, we report the dynamics of five septins, as well as the regulators CcCla4, CcSpa2, and F-actin, visualized by tagging with fluorescent proteins, EGFP, PA-GFP or mCherry, in the growing dikaryotic vegetative hyphae. We also observed the nuclei using tagged Sumo proteins and histone H1. The five septins colocalized at the hyphal tip in the shape of a dome with a hole (DwH). CcSpa2-EGFP signals were observed in the hole, while CcCla4 signals were observed as the fluctuating dome at the hyphal tip. Before septation, CcCla4-EGFP was also occasionally recruited transiently around the future septum site. Fluorescent protein-tagged septins and F-actin together formed a contractile ring at the septum site. These distinct specialized growth machineries at different sites of dikaryotic vegetative hyphae provide a foundation to explore the differentiation program of various types of cells required for fruiting body formation.
Collapse
Affiliation(s)
- Tetsuya Kakizaki
- Department of Biotechnology, Faculty of Bioresource Sciences, Akita Prefectural University, Shimoshinjo-nakano, Akita, 010-0195, Japan
| | - Haruki Abe
- Department of Biotechnology, Faculty of Bioresource Sciences, Akita Prefectural University, Shimoshinjo-nakano, Akita, 010-0195, Japan
| | - Yuuka Kotouge
- Department of Biotechnology, Faculty of Bioresource Sciences, Akita Prefectural University, Shimoshinjo-nakano, Akita, 010-0195, Japan
| | - Mitsuki Matsubuchi
- Department of Biotechnology, Faculty of Bioresource Sciences, Akita Prefectural University, Shimoshinjo-nakano, Akita, 010-0195, Japan
| | - Mayu Sugou
- Department of Biotechnology, Faculty of Bioresource Sciences, Akita Prefectural University, Shimoshinjo-nakano, Akita, 010-0195, Japan
| | - Chiharu Honma
- Department of Biotechnology, Faculty of Bioresource Sciences, Akita Prefectural University, Shimoshinjo-nakano, Akita, 010-0195, Japan
| | - Kouki Tsukuta
- Department of Biotechnology, Faculty of Bioresource Sciences, Akita Prefectural University, Shimoshinjo-nakano, Akita, 010-0195, Japan
| | - Souichi Satoh
- Department of Biotechnology, Faculty of Bioresource Sciences, Akita Prefectural University, Shimoshinjo-nakano, Akita, 010-0195, Japan
| | - Tatsuhiro Shioya
- Department of Biotechnology, Faculty of Bioresource Sciences, Akita Prefectural University, Shimoshinjo-nakano, Akita, 010-0195, Japan
| | - Hiroe Nakamura
- Department of Biotechnology, Faculty of Bioresource Sciences, Akita Prefectural University, Shimoshinjo-nakano, Akita, 010-0195, Japan
| | - Kevin S Cannon
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Benjamin L Woods
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Amy Gladfelter
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Cell Biology, Duke University, Durham, USA
| | - Norio Takeshita
- Microbiology Research Center for Sustainability (MiCS), Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, 305-8572, Japan
| | - Hajime Muraguchi
- Department of Biotechnology, Faculty of Bioresource Sciences, Akita Prefectural University, Shimoshinjo-nakano, Akita, 010-0195, Japan.
| |
Collapse
|
14
|
Transcriptome Profiling Reveals Candidate Genes Related to Stipe Gradient Elongation of Flammulina filiformis. J Fungi (Basel) 2022; 9:jof9010064. [PMID: 36675885 PMCID: PMC9862757 DOI: 10.3390/jof9010064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/28/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
Stipe gradient elongation is an important and remarkable feature in the development of most mushroom fruiting bodies. However, its molecular mechanism has rarely been described. Here, the decreasing trend of stipe elongation and increasing trend of cell length in a gradient from the top to the base of the stipe were determined in a model basidiomycete mushroom: Flammulina filiformis. According to RNA-seq results, 1409 differentially expressed genes (DEGs) were identified among elongation region (ER), transition region (TR), and stable region (SR) samples, including 26 transcription factors (TFs). Based on Short Time-series Expression Miner (STEM) clustering of DEGs, clusters 1 and 3, with obvious expression trends that were consistent with or in contrast to the elongation rate, were screened. The cluster 1 DEGs were mainly involved in the GO cellular component category and KEGG genetic information processing class; however, the cluster 3 DEGs were mainly involved in metabolic processes. Furthermore, qRT-PCR confirmed that key genes of the long-chain fatty acid synthesis pathway were involved in stipe gradient elongation and regulated by NADPH oxidase-derived ROS signaling molecules. These findings provide an essential basis for understanding the molecular mechanism of stipe gradient elongation.
Collapse
|
15
|
Vogt E, Sonderegger L, Chen YY, Segessemann T, Künzler M. Structural and Functional Analysis of Peptides Derived from KEX2-Processed Repeat Proteins in Agaricomycetes Using Reverse Genetics and Peptidomics. Microbiol Spectr 2022; 10:e0202122. [PMID: 36314921 PMCID: PMC9769878 DOI: 10.1128/spectrum.02021-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 10/06/2022] [Indexed: 12/24/2022] Open
Abstract
Bioactivities of fungal peptides are of interest for basic research and therapeutic drug development. Some of these peptides are derived from "KEX2-processed repeat proteins" (KEPs), a recently defined class of precursor proteins that contain multiple peptide cores flanked by KEX2 protease cleavage sites. Genome mining has revealed that KEPs are widespread in the fungal kingdom. Their functions are largely unknown. Here, we present the first in-depth structural and functional analysis of KEPs in a basidiomycete. We bioinformatically identified KEP-encoding genes in the genome of the model agaricomycete Coprinopsis cinerea and established a detection protocol for the derived peptides by overexpressing the C. cinerea KEPs in the yeast Pichia pastoris. Using this protocol, which includes peptide extraction and mass spectrometry with data analysis using the search engine Mascot, we confirmed the presence of several KEP-derived peptides in C. cinerea, as well as in the edible mushrooms Lentinula edodes, Pleurotus ostreatus, and Pleurotus eryngii. While CRISPR-mediated knockout of C. cinerea kep genes did not result in any detectable phenotype, knockout of kex genes caused defects in mycelial growth and fruiting body formation. These results suggest that KEP-derived peptides may play a role in the interaction of C. cinerea with the biotic environment and that the KEP-processing KEX proteases target a variety of substrates in agaricomycetes, including some important for mycelial growth and differentiation. IMPORTANCE Two recent bioinformatics studies have demonstrated that KEX2-processed repeat proteins are widespread in the fungal kingdom. However, despite the prevalence of KEPs in fungal genomes, only few KEP-derived peptides have been detected and studied so far. Here, we present a protocol for the extraction and structural characterization of KEP-derived peptides from fungal culture supernatants and tissues. The protocol was successfully used to detect several linear and minimally modified KEP-derived peptides in the agaricomycetes C. cinerea, L. edodes, P. ostreatus, and P. eryngii. Our study establishes a new protocol for the targeted search of KEP-derived peptides in fungi, which will hopefully lead to the discovery of more of these interesting fungal peptides and allow a further characterization of KEPs.
Collapse
Affiliation(s)
- Eva Vogt
- ETH Zürich, Department of Biology, Institute of Microbiology, Zürich, Switzerland
| | - Lukas Sonderegger
- ETH Zürich, Department of Biology, Institute of Microbiology, Zürich, Switzerland
| | - Ying-Yu Chen
- ETH Zürich, Department of Biology, Institute of Microbiology, Zürich, Switzerland
| | - Tina Segessemann
- ETH Zürich, Department of Biology, Institute of Microbiology, Zürich, Switzerland
| | - Markus Künzler
- ETH Zürich, Department of Biology, Institute of Microbiology, Zürich, Switzerland
| |
Collapse
|
16
|
Pareek M, Hegedüs B, Hou Z, Csernetics Á, Wu H, Virágh M, Sahu N, Liu XB, Nagy L. Preassembled Cas9 Ribonucleoprotein-Mediated Gene Deletion Identifies the Carbon Catabolite Repressor and Its Target Genes in Coprinopsis cinerea. Appl Environ Microbiol 2022; 88:e0094022. [PMID: 36374019 PMCID: PMC9746306 DOI: 10.1128/aem.00940-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 10/11/2022] [Indexed: 11/16/2022] Open
Abstract
Cre1 is an important transcription factor that regulates carbon catabolite repression (CCR) and is widely conserved across fungi. The cre1 gene has been extensively studied in several Ascomycota species, whereas its role in gene expression regulation in the Basidiomycota species remains poorly understood. Here, we identified and investigated the role of cre1 in Coprinopsis cinerea, a basidiomycete model mushroom that can efficiently degrade lignocellulosic plant wastes. We used a rapid and efficient gene deletion approach based on PCR-amplified split-marker DNA cassettes together with in vitro assembled Cas9-guide RNA ribonucleoproteins (Cas9 RNPs) to generate C. cinerea cre1 gene deletion strains. Gene expression profiling of two independent C. cinerea cre1 mutants showed significant deregulation of carbohydrate metabolism, plant cell wall degrading enzymes (PCWDEs), plasma membrane transporter-related and several transcription factor-encoding genes, among others. Our results support the notion that, like reports in the ascomycetes, Cre1 of C. cinerea orchestrates CCR through a combined regulation of diverse genes, including PCWDEs, transcription factors that positively regulate PCWDEs, and membrane transporters which could import simple sugars that can induce the expression of PWCDEs. Somewhat paradoxically, though in accordance with other Agaricomycetes, genes related to lignin degradation were mostly downregulated in cre1 mutants, indicating they fall under different regulation than other PCWDEs. The gene deletion approach and the data presented here will expand our knowledge of CCR in the Basidiomycota and provide functional hypotheses on genes related to plant biomass degradation. IMPORTANCE Mushroom-forming fungi include some of the most efficient lignocellulosic plant biomass degraders. They degrade dead plant materials by a battery of lignin-, cellulose-, hemicellulose-, and pectin-degrading enzymes, the encoding genes of which are under tight transcriptional control. One of the highest-level regulations of these metabolic enzymes is known as carbon catabolite repression, which is orchestrated by the transcription factor Cre1, and ensures that costly lignocellulose-degrading enzyme genes are expressed only when simple carbon sources (e.g., glucose) are not available. Here, we identified the Cre1 ortholog in a litter decomposer Agaricomycete, Coprinopsis cinerea, knocked it out, and characterized transcriptional changes in the mutants. We identified several dozen lignocellulolytic enzyme genes as well as membrane transporters and other transcription factors as putative target genes of C. cinerea cre1. These results extend knowledge on carbon catabolite repression to litter decomposer Basidiomycota.
Collapse
Affiliation(s)
- Manish Pareek
- Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - Botond Hegedüs
- Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - Zhihao Hou
- Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - Árpád Csernetics
- Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - Hongli Wu
- Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - Máté Virágh
- Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - Neha Sahu
- Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - Xiao-Bin Liu
- Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - László Nagy
- Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| |
Collapse
|
17
|
Barh A, Sharma K, Bhatt P, Annepu SK, Nath M, Shirur M, Kumari B, Kaundal K, Kamal S, Sharma VP, Gupta S, Sharma A, Gupta M, Dutta U. Identification of Key Regulatory Pathways of Basidiocarp Formation in Pleurotus spp. Using Modeling, Simulation and System Biology Studies. J Fungi (Basel) 2022; 8:jof8101073. [PMID: 36294638 PMCID: PMC9604897 DOI: 10.3390/jof8101073] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/03/2022] [Accepted: 10/07/2022] [Indexed: 11/21/2022] Open
Abstract
Pleurotus (Oyster mushroom) is an important cultivated edible mushroom across the world. It has several therapeutic effects as it contains various useful bio-molecules. The cultivation and crop management of these basidiomycete fungi depends on many extrinsic and intrinsic factors such as substrate composition, growing environment, enzymatic properties, and the genetic makeup, etc. Moreover, for efficient crop production, a comprehensive understanding of the fundamental properties viz. intrinsic–extrinsic factors and genotype-environment interaction analysis is required. The present study explores the basidiocarp formation biology in Pleurotus mushroom using an in silico response to the environmental factors and involvement of the major regulatory genes. The predictive model developed in this study indicates involvement of the key regulatory pathways in the pinhead to fruit body development process. Notably, the major regulatory pathways involved in the conversion of mycelium aggregation to pinhead formation and White Collar protein (PoWC1) binding flavin-chromophore (FAD) to activate respiratory enzymes. Overall, cell differentiation and higher expression of respiratory enzymes are the two important steps for basidiocarp formation. PoWC1 and pofst genes were participate in the structural changes process. Besides this, the PoWC1 gene is also involved in the respiratory requirement, while the OLYA6 gene is the triggering point of fruiting. The findings of the present study could be utilized to understand the detailed mechanism associated with the basidiocarp formation and to cultivate mushrooms at a sustainable level.
Collapse
Affiliation(s)
- Anupam Barh
- ICAR-Directorate of Mushroom Research, Solan 173 213, India
- Correspondence: (A.B.); (S.K.A.)
| | - Kanika Sharma
- ICAR-Directorate of Mushroom Research, Solan 173 213, India
| | - Pankaj Bhatt
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, IN 47906, USA
| | - Sudheer Kumar Annepu
- ICAR-Indian Institute of Soil and Water Conservation, Research Center, Udhagamandalam 643 006, India
- Correspondence: (A.B.); (S.K.A.)
| | - Manoj Nath
- ICAR-Directorate of Mushroom Research, Solan 173 213, India
| | - Mahantesh Shirur
- National Institute of Agricultural Extension Management (MANAGE), Hyderabad 500 030, India
| | - Babita Kumari
- ICAR-Directorate of Mushroom Research, Solan 173 213, India
| | - Kirti Kaundal
- ICAR-Directorate of Mushroom Research, Solan 173 213, India
| | - Shwet Kamal
- ICAR-Directorate of Mushroom Research, Solan 173 213, India
| | | | - Sachin Gupta
- Division of Plant Pathology, Faculty of Agriculture, Sher-e-Kashmir University of Agricultural Sciences & Technology of Jammu, Jammu 180 009, India
| | - Annu Sharma
- Department of Plant Pathology, College of Horticulture, Dr. Yashwant Singh Parmar University of Horticulture and Forestry, Nauni, Solan 173 230, India
| | - Moni Gupta
- Division of Plant Pathology, Faculty of Agriculture, Sher-e-Kashmir University of Agricultural Sciences & Technology of Jammu, Jammu 180 009, India
| | - Upma Dutta
- Division of Plant Pathology, Faculty of Agriculture, Sher-e-Kashmir University of Agricultural Sciences & Technology of Jammu, Jammu 180 009, India
| |
Collapse
|
18
|
Shu L, Wang M, Xu H, Qiu Z, Li T. De novo transcriptome assembly and comprehensive assessment provide insight into fruiting body formation of Sparassis latifolia. Sci Rep 2022; 12:11075. [PMID: 35773379 PMCID: PMC9247108 DOI: 10.1038/s41598-022-15382-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/23/2022] [Indexed: 11/11/2022] Open
Abstract
The genes associated with fruiting body formation of Sparasis latifolia are valuable for improving mushroom breeding. To investigate this process, 4.8 × 108 RNA-Seq reads were acquired from three stages: hyphal knot (SM), primordium (SP), and primordium differentiation (SPD). The de novo assembly generated a total of 48,549 unigenes, of which 71.53% (34,728) unigenes could be annotated by at least one of the KEGG (Kyoto Encyclopedia of Genes and Genomes), GO (Gene Ontology), and KOG (Eukaryotic Orthologous Group) databases. KEGG and KOG analyses respectively mapped 32,765 unigenes to 202 pathways and 19,408 unigenes to 25 categories. KEGG pathway enrichment analysis of DEGs (differentially expressed genes) indicated primordium initiation was significantly related to 66 pathways, such as "Ribosome", "metabolism of xenobiotics by cytochrome P450", and "glutathione metabolism" (among others). The MAPK and mTOR signal transduction pathways underwent significant adjustments during the SM to SP transition. Further, our research revealed the PI3K-Akt signaling pathway related to cell proliferation could play crucial functions during the development of SP and SPD. These findings provide crucial candidate genes and pathways related to primordium differentiation and development in S. latifolia, and advances our knowledge about mushroom morphogenesis.
Collapse
Affiliation(s)
- Lili Shu
- School of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| | - Miaoyue Wang
- School of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| | - Hui Xu
- School of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| | - Zhiheng Qiu
- School of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Tianlai Li
- School of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
19
|
Hao H, Zhang J, Wang Q, Huang J, Juan J, Kuai B, Feng Z, Chen H. Transcriptome and Differentially Expressed Gene Profiles in Mycelium, Primordium and Fruiting Body Development in Stropharia rugosoannulata. Genes (Basel) 2022; 13:genes13061080. [PMID: 35741841 PMCID: PMC9222559 DOI: 10.3390/genes13061080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/07/2022] [Accepted: 06/14/2022] [Indexed: 11/16/2022] Open
Abstract
Stropharia rugosoannulata uses straw as a growth substrate during artificial cultivation and has been widely promoted in China. However, its fruiting body formation and development processes have not been elucidated. In this study, the developmental transcriptomes were analyzed at three stages: the mycelium (G-S), primordium (P-S) and fruiting body (M-F) stages. A total of 9690 differentially expressed genes (DEGs) were identified in the different developmental stages. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses showed that these DEGs were involved mainly in hydrolase activity, structural molecule activity and oxidoreductase activity as well as xenobiotic biodegradation and metabolism and energy metabolism pathways. We further found that the higher expression of most carbohydrate enzyme (i.e., GH, CE, CBM, AA and PL) genes in the hyphal (i.e., G-S) stage was related mainly to substrate degradation, while the upregulation of glycosyltransferase (GT) gene expression in the P-S and M-F stages may be related to cell wall synthesis. In addition, we found that CO2-sensing-related genes (i.e., CA-2, CA-3, PKA-1 and PKA-2) were upregulated in the P-S and M-F stages, heat shock protein genes (HSP60 and HSP90) were significantly downregulated in the P-S stage and upregulated in the M-F stage and the transcription factors (i.e., steA, MYB, nosA, HAP1, and GATA-4/5/6) involved in growth and development were significantly upregulated in the P-S stage. These results suggest that environmental factors (i.e., CO2 and temperature) and transcription factors may play a key role in primordium formation. In short, this study provides new insights into the study of stimulating primordia formation affecting the development of fruiting bodies of S. rugosoannulata.
Collapse
Affiliation(s)
- Haibo Hao
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (H.H.); (Q.W.); (J.H.); (J.J.); (Z.F.)
- State Key Laboratory of Genetic Engineering and Fudan Center for Genetic Diversity and Designing Agriculture, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China;
| | - Jinjing Zhang
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (H.H.); (Q.W.); (J.H.); (J.J.); (Z.F.)
- College of Life Science, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence: (J.Z.); (H.C.)
| | - Qian Wang
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (H.H.); (Q.W.); (J.H.); (J.J.); (Z.F.)
| | - Jianchun Huang
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (H.H.); (Q.W.); (J.H.); (J.J.); (Z.F.)
| | - Jiaxiang Juan
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (H.H.); (Q.W.); (J.H.); (J.J.); (Z.F.)
| | - Benke Kuai
- State Key Laboratory of Genetic Engineering and Fudan Center for Genetic Diversity and Designing Agriculture, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China;
| | - Zhiyong Feng
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (H.H.); (Q.W.); (J.H.); (J.J.); (Z.F.)
- College of Life Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Hui Chen
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (H.H.); (Q.W.); (J.H.); (J.J.); (Z.F.)
- Correspondence: (J.Z.); (H.C.)
| |
Collapse
|
20
|
Bleuler-Martinez S, Varrot A, Olieric V, Schubert M, Vogt E, Fetz C, Wohlschlager T, Plaza DF, Wälti M, Duport Y, Capitani G, Aebi M, Künzler M. Structure-function relationship of a novel fucoside-binding fruiting body lectin from Coprinopsis cinerea exhibiting nematotoxic activity. Glycobiology 2022; 32:600-615. [PMID: 35323921 PMCID: PMC9191617 DOI: 10.1093/glycob/cwac020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/11/2022] [Accepted: 02/11/2022] [Indexed: 11/14/2022] Open
Abstract
Lectins are non-immunoglobulin-type proteins that bind to specific carbohydrate epitopes and play important roles in intra- and inter-organismic interactions. Here, we describe a novel fucose-specific lectin, termed CML1, which we identified from fruiting body extracts of Coprinopsis cinerea. For further characterization, the coding sequence for CML1 was cloned and heterologously expressed in Escherichia coli. Feeding of CML1-producing bacteria inhibited larval development of the bacterivorous nematode Caenorhabditis tropicalis, but not of C. elegans. The crystal structure of the recombinant protein in its apo-form and in complex with H type I or Lewis A blood group antigens was determined by X-ray crystallography. The protein folds as a sandwich of 2 antiparallel β-sheets and forms hexamers resulting from a trimer of dimers. The hexameric arrangement was confirmed by small-angle X-ray scattering (SAXS). One carbohydrate-binding site per protomer was found at the dimer interface with both protomers contributing to ligand binding, resulting in a hexavalent lectin. In terms of lectin activity of recombinant CML1, substitution of the carbohydrate-interacting residues His54, Asn55, Trp94, and Arg114 by Ala abolished carbohydrate-binding and nematotoxicity. Although no similarities to any characterized lectin were found, sequence alignments identified many non-characterized agaricomycete proteins. These results suggest that CML1 is the founding member of a novel family of fucoside-binding lectins involved in the defense of agaricomycete fruiting bodies against predation by fungivorous nematodes.
Collapse
Affiliation(s)
- Silvia Bleuler-Martinez
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule (ETH) Zürich, 8093, Zürich, Switzerland
| | | | - Vincent Olieric
- Swiss Light Source (SLS), Paul Scherrer Institute (PSI), 5232, Villigen, Switzerland
| | - Mario Schubert
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zürich, 8093, Zürich, Switzerland
- Department of Biosciences, University of Salzburg, 5020, Salzburg, Austria
| | - Eva Vogt
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule (ETH) Zürich, 8093, Zürich, Switzerland
| | - Céline Fetz
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule (ETH) Zürich, 8093, Zürich, Switzerland
| | - Therese Wohlschlager
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule (ETH) Zürich, 8093, Zürich, Switzerland
| | - David Fernando Plaza
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule (ETH) Zürich, 8093, Zürich, Switzerland
- Division of Infectious Diseases, Karolinska University Hospital, 171 64, Solna, Sweden
| | - Martin Wälti
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule (ETH) Zürich, 8093, Zürich, Switzerland
| | - Yannick Duport
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule (ETH) Zürich, 8093, Zürich, Switzerland
| | - Guido Capitani
- Swiss Light Source (SLS), Paul Scherrer Institute (PSI), 5232, Villigen, Switzerland
| | - Markus Aebi
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule (ETH) Zürich, 8093, Zürich, Switzerland
| | - Markus Künzler
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule (ETH) Zürich, 8093, Zürich, Switzerland
| |
Collapse
|
21
|
Renko M, Zupan T, Plaza DF, Schmieder SS, Perišić Nanut M, Kos J, Turk D, Künzler M, Sabotič J. Cocaprins, β-Trefoil Fold Inhibitors of Cysteine and Aspartic Proteases from Coprinopsis cinerea. Int J Mol Sci 2022; 23:4916. [PMID: 35563308 PMCID: PMC9104457 DOI: 10.3390/ijms23094916] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 11/16/2022] Open
Abstract
We introduce a new family of fungal protease inhibitors with β-trefoil fold from the mushroom Coprinopsis cinerea, named cocaprins, which inhibit both cysteine and aspartic proteases. Two cocaprin-encoding genes are differentially expressed in fungal tissues. One is highly transcribed in vegetative mycelium and the other in the stipes of mature fruiting bodies. Cocaprins are small proteins (15 kDa) with acidic isoelectric points that form dimers. The three-dimensional structure of cocaprin 1 showed similarity to fungal β-trefoil lectins. Cocaprins inhibit plant C1 family cysteine proteases with Ki in the micromolar range, but do not inhibit the C13 family protease legumain, which distinguishes them from mycocypins. Cocaprins also inhibit the aspartic protease pepsin with Ki in the low micromolar range. Mutagenesis revealed that the β2-β3 loop is involved in the inhibition of cysteine proteases and that the inhibitory reactive sites for aspartic and cysteine proteases are located at different positions on the protein. Their biological function is thought to be the regulation of endogenous proteolytic activities or in defense against fungal antagonists. Cocaprins are the first characterized aspartic protease inhibitors with β-trefoil fold from fungi, and demonstrate the incredible plasticity of loop functionalization in fungal proteins with β-trefoil fold.
Collapse
Affiliation(s)
- Miha Renko
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, 1000 Ljubljana, Slovenia; (M.R.); (D.T.)
| | - Tanja Zupan
- Department of Biotechnology, Jožef Stefan Institute, 1000 Ljubljana, Slovenia; (T.Z.); (M.P.N.); (J.K.)
| | - David F. Plaza
- Department of Biology, Institute of Microbiology, ETH Zürich, 8093 Zürich, Switzerland; (D.F.P.); (S.S.S.); (M.K.)
| | - Stefanie S. Schmieder
- Department of Biology, Institute of Microbiology, ETH Zürich, 8093 Zürich, Switzerland; (D.F.P.); (S.S.S.); (M.K.)
| | - Milica Perišić Nanut
- Department of Biotechnology, Jožef Stefan Institute, 1000 Ljubljana, Slovenia; (T.Z.); (M.P.N.); (J.K.)
| | - Janko Kos
- Department of Biotechnology, Jožef Stefan Institute, 1000 Ljubljana, Slovenia; (T.Z.); (M.P.N.); (J.K.)
- Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Dušan Turk
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, 1000 Ljubljana, Slovenia; (M.R.); (D.T.)
| | - Markus Künzler
- Department of Biology, Institute of Microbiology, ETH Zürich, 8093 Zürich, Switzerland; (D.F.P.); (S.S.S.); (M.K.)
| | - Jerica Sabotič
- Department of Biotechnology, Jožef Stefan Institute, 1000 Ljubljana, Slovenia; (T.Z.); (M.P.N.); (J.K.)
| |
Collapse
|
22
|
Merényi Z, Virágh M, Gluck-Thaler E, Slot JC, Kiss B, Varga T, Geösel A, Hegedüs B, Bálint B, Nagy LG. Gene age shapes the transcriptional landscape of sexual morphogenesis in mushroom forming fungi (Agaricomycetes). eLife 2022; 11:71348. [PMID: 35156613 PMCID: PMC8893723 DOI: 10.7554/elife.71348] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 02/11/2022] [Indexed: 11/13/2022] Open
Abstract
Multicellularity has been one of the most important innovations in the history of life. The role of gene regulatory changes in driving transitions to multicellularity is being increasingly recognized; however, factors influencing gene expression patterns are poorly known in many clades. Here, we compared the developmental transcriptomes of complex multicellular fruiting bodies of eight Agaricomycetes and Cryptococcus neoformans, a closely related human pathogen with a simple morphology. In-depth analysis in Pleurotus ostreatus revealed that allele-specific expression, natural antisense transcripts, and developmental gene expression, but not RNA editing or a ‘developmental hourglass,’ act in concert to shape its transcriptome during fruiting body development. We found that transcriptional patterns of genes strongly depend on their evolutionary ages. Young genes showed more developmental and allele-specific expression variation, possibly because of weaker evolutionary constraint, suggestive of nonadaptive expression variance in fruiting bodies. These results prompted us to define a set of conserved genes specifically regulated only during complex morphogenesis by excluding young genes and accounting for deeply conserved ones shared with species showing simple sexual development. Analysis of the resulting gene set revealed evolutionary and functional associations with complex multicellularity, which allowed us to speculate they are involved in complex multicellular morphogenesis of mushroom fruiting bodies.
Collapse
Affiliation(s)
- Zsolt Merényi
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, Hungary
| | - Máté Virágh
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, Hungary
| | - Emile Gluck-Thaler
- Department of Biology, University of Pennsylvania, Philadelphia, United States
| | - Jason C Slot
- Department of Plant Pathology, Ohio State University, Columbus, United States
| | - Brigitta Kiss
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, Hungary
| | - Torda Varga
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, Hungary
| | - András Geösel
- Department of Vegetable and Mushroom Growing, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
| | - Botond Hegedüs
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, Hungary
| | - Balázs Bálint
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, Hungary
| | - László G Nagy
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, Hungary
| |
Collapse
|
23
|
Min B, Wu B, Gaskell J, Zhang J, Toapanta C, Ahrendt S, Blanchette RA, Master E, Cullen D, Hibbett DS, Grigoriev IV. RNA-editing in Basidiomycota, revisited. ISME COMMUNICATIONS 2021; 1:70. [PMID: 37938697 PMCID: PMC9723688 DOI: 10.1038/s43705-021-00037-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/08/2021] [Accepted: 07/29/2021] [Indexed: 06/13/2023]
Affiliation(s)
- Byoungnam Min
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Baojun Wu
- Biology Department, Clark University, Worcester, MA, USA
- Statistics and Bioinformatics Group, School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Jill Gaskell
- USDA Forest Products Laboratory, Madison, WI, USA
| | - Jiwei Zhang
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul, MN, USA
| | - Christina Toapanta
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, USA
| | - Steven Ahrendt
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | | - Emma Master
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
| | | | | | - Igor V Grigoriev
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA.
| |
Collapse
|
24
|
Guo X, Wang S. Pan-genome Analyses of 3 Strains of Inonotus obliquus and Prediction of Polysaccharide and Terpenoid Genes. Nat Prod Commun 2021. [DOI: 10.1177/1934578x211060922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Inonotus obliquus is a rare, edible and medicinal fungus that is widely used as a remedy for various diseases. Its main bioactive substances are polysaccharides and terpenoids. In this study, we characterized and investigated the pan-genome of three strains of I. obliquus. The genome sizes of JL01, HE, and NBRC8681 were 32.04, 29.04, and 31.78 Mb, respectively. There were 6 543 core gene families and 6 197 accessory gene families among the three strains, with 14 polysaccharide-related core gene families and seven accessory gene families. For terpenoids, there were 13 core gene families and 17 accessory gene families. Pan-genome sequencing of I. obliquus has improved our understanding of biological characteristics related to the biosynthesis of polysaccharides and terpenoids at the molecular level, which in turn will enable us to increase the production of polysaccharides and terpenoids by this mushroom.
Collapse
Affiliation(s)
- Xiaofan Guo
- School of Life Science and Technology, Hubei Engineering University, Xiaogan, China
- Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, Xiaogan, China
| | - Shouming Wang
- School of Life Science and Technology, Hubei Engineering University, Xiaogan, China
- Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, Xiaogan, China
| |
Collapse
|
25
|
Evolutionary Morphogenesis of Sexual Fruiting Bodies in Basidiomycota: Toward a New Evo-Devo Synthesis. Microbiol Mol Biol Rev 2021; 86:e0001921. [PMID: 34817241 DOI: 10.1128/mmbr.00019-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The development of sexual fruiting bodies is one of the most complex morphogenetic processes in fungi. Mycologists have long been fascinated by the morphological and developmental diversity of fruiting bodies; however, evolutionary developmental biology of fungi still lags significantly behind that of animals or plants. Here, we summarize the current state of knowledge on fruiting bodies of mushroom-forming Basidiomycota, focusing on phylogenetic and developmental biology. Phylogenetic approaches have revealed a complex history of morphological transformations and convergence in fruiting body morphologies. Frequent transformations and convergence is characteristic of fruiting bodies in contrast to animals or plants, where main body plans are highly conserved. At the same time, insights into the genetic bases of fruiting body development have been achieved using forward and reverse genetic approaches in selected model systems. Phylogenetic and developmental studies of fruiting bodies have each yielded major advances, but they have produced largely disjunct bodies of knowledge. An integrative approach, combining phylogenetic, developmental, and functional biology, is needed to achieve a true fungal evolutionary developmental biology (evo-devo) synthesis for fungal fruiting bodies.
Collapse
|
26
|
Yang LY, Gong Q, Guo JQ, Li GL. Microbes as a production host to produce natural activecompounds from mushrooms: biosynthetic pathway elucidationand metabolic engineering. Chin J Nat Med 2021; 19:580-590. [PMID: 34419258 DOI: 10.1016/s1875-5364(21)60058-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Indexed: 11/29/2022]
Abstract
Mushrooms are abundant in bioactive natural compounds. Due to strict growth conditions and long fermentation-time, microbe as a production host is an alternative and sustainable approach for the production of natural compounds. This review focuses on the biosynthetic pathways of mushroom originated natural compounds and microbes as the production host for the production of the above natural compounds.
Collapse
Affiliation(s)
- Li-Yang Yang
- School of Basic Medical Sciences, Shanxi University of Chinese Medicine, Jinzhong 030619, China
| | - Qiang Gong
- School of Basic Medical Sciences, Shanxi University of Chinese Medicine, Jinzhong 030619, China
| | - Jian-Quan Guo
- School of Public Health, Shanxi Medical University, Taiyuan 030001, China.
| | - Gui-Lan Li
- School of Basic Medical Sciences, Shanxi University of Chinese Medicine, Jinzhong 030619, China.
| |
Collapse
|
27
|
Yan D, Gao Q, Rong C, Liu Y, Song S, Yu Q, Zhou K, Liao Y. Comparative transcriptome analysis of abnormal cap and healthy fruiting bodies of the edible mushroom Lentinula edodes. Fungal Genet Biol 2021; 156:103614. [PMID: 34400332 DOI: 10.1016/j.fgb.2021.103614] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 07/22/2021] [Accepted: 08/08/2021] [Indexed: 11/29/2022]
Abstract
Lentinula edodes, a commercially important mushroom, is cultivated worldwide. Artificially cultivated L. edodes often present with abnormal symptoms in the fruiting body, which affect their commercial value and reduce production efficiency. In this study, we carried out a comparative transcriptome analysis of normal fruiting body pileus (LeNP), normal margin in abnormal fruiting body pileus (LeAPNM), and abnormal margin in abnormal fruiting body pileus (LeAPAM). Metabolic pathways such as those involved in transmembrane transport, ribosome production, tryptophan metabolism, arginine and proline metabolism, and the metabolism of other amino acids were significantly enriched in LeAPAM. F-box, short-chain dehydrogenases/reductases, the major facilitator superfamily, and the FMN_red superfamily are related to malformation in L. edodes. Genes encoding heat shock proteins, G protein, and β-1,3-glucanase in the GH5 family showed different expression patterns, suggesting that these genes are involved in the development of L. edodes fruiting bodies. In particular, CAZymes, which are involved in the development of cell walls in L. edodes, were highly expressed in LeAPAM. According to TEM observation, the cell wall of LeAPAM samples showed significant thickening compared to the other samples. These results suggested that cell wall anabolism in LeAPAM samples was more active than that in normal fruiting bodies, enhancing the environmental adaptability of the fungus. This study provides preliminary data for future research aimed at solving the phenomenon of abnormal fruiting bodies of L. edodes.
Collapse
Affiliation(s)
- Dong Yan
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing Engineering Research Center for Edible Mushroom, 9 Shuguang Garden Zhonglu, Haidian District, Beijing 100097, China
| | - Qi Gao
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing Engineering Research Center for Edible Mushroom, 9 Shuguang Garden Zhonglu, Haidian District, Beijing 100097, China.
| | - Chengbo Rong
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing Engineering Research Center for Edible Mushroom, 9 Shuguang Garden Zhonglu, Haidian District, Beijing 100097, China
| | - Yu Liu
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing Engineering Research Center for Edible Mushroom, 9 Shuguang Garden Zhonglu, Haidian District, Beijing 100097, China
| | - Shuang Song
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing Engineering Research Center for Edible Mushroom, 9 Shuguang Garden Zhonglu, Haidian District, Beijing 100097, China
| | - Qiuyu Yu
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing Engineering Research Center for Edible Mushroom, 9 Shuguang Garden Zhonglu, Haidian District, Beijing 100097, China
| | - Kaixin Zhou
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing Engineering Research Center for Edible Mushroom, 9 Shuguang Garden Zhonglu, Haidian District, Beijing 100097, China; College of Agriculture and Food Engineering, Baise University, 21 Zhongshan Second Street, Youjiang District, Guangxi 533000, China
| | - Yanling Liao
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing Engineering Research Center for Edible Mushroom, 9 Shuguang Garden Zhonglu, Haidian District, Beijing 100097, China; College of Agriculture and Food Engineering, Baise University, 21 Zhongshan Second Street, Youjiang District, Guangxi 533000, China
| |
Collapse
|
28
|
Hage H, Rosso MN, Tarrago L. Distribution of methionine sulfoxide reductases in fungi and conservation of the free-methionine-R-sulfoxide reductase in multicellular eukaryotes. Free Radic Biol Med 2021; 169:187-215. [PMID: 33865960 DOI: 10.1016/j.freeradbiomed.2021.04.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/06/2021] [Accepted: 04/09/2021] [Indexed: 12/17/2022]
Abstract
Methionine, either as a free amino acid or included in proteins, can be oxidized into methionine sulfoxide (MetO), which exists as R and S diastereomers. Almost all characterized organisms possess thiol-oxidoreductases named methionine sulfoxide reductase (Msr) enzymes to reduce MetO back to Met. MsrA and MsrB reduce the S and R diastereomers of MetO, respectively, with strict stereospecificity and are found in almost all organisms. Another type of thiol-oxidoreductase, the free-methionine-R-sulfoxide reductase (fRMsr), identified so far in prokaryotes and a few unicellular eukaryotes, reduces the R MetO diastereomer of the free amino acid. Moreover, some bacteria possess molybdenum-containing enzymes that reduce MetO, either in the free or protein-bound forms. All these Msrs play important roles in the protection of organisms against oxidative stress. Fungi are heterotrophic eukaryotes that colonize all niches on Earth and play fundamental functions, in organic matter recycling, as symbionts, or as pathogens of numerous organisms. However, our knowledge on fungal Msrs is still limited. Here, we performed a survey of msr genes in almost 700 genomes across the fungal kingdom. We show that most fungi possess one gene coding for each type of methionine sulfoxide reductase: MsrA, MsrB, and fRMsr. However, several fungi living in anaerobic environments or as obligate intracellular parasites were devoid of msr genes. Sequence inspection and phylogenetic analyses allowed us to identify non-canonical sequences with potentially novel enzymatic properties. Finaly, we identified several ocurences of msr horizontal gene transfer from bacteria to fungi.
Collapse
Affiliation(s)
- Hayat Hage
- Biodiversité et Biotechnologie Fongiques, UMR1163, INRAE, Aix Marseille Université, Marseille, France
| | - Marie-Noëlle Rosso
- Biodiversité et Biotechnologie Fongiques, UMR1163, INRAE, Aix Marseille Université, Marseille, France
| | - Lionel Tarrago
- Biodiversité et Biotechnologie Fongiques, UMR1163, INRAE, Aix Marseille Université, Marseille, France.
| |
Collapse
|
29
|
Zhong C, Zhou R, Jin J, Liu H, Xie J, Zhen L, Xiao S, Zhang S. Cloning and analysis of the photoreceptor genes Oxwc-1 and Oxwc-2 from ethnopharmacological fungus Ophiocordyceps xuefengensis. MYCOSCIENCE 2021; 62:189-197. [PMID: 37091324 PMCID: PMC9157750 DOI: 10.47371/mycosci.2021.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 11/16/2022]
Abstract
Ophiocordyceps xuefengensis is an ethnopharmacological fungus with broad pharmacological properties. Light is a critical environmental factor for the stromata formation and development of many fungi. In this study, photomorphogenesis and blue light receptor genes were studied using a strain of O. xuefengensis. Light represses vegetative growth, but conidia linked to stromata can be observed under both light and dark conditions. Light and dark conditions had little effect on the accumulation of polysaccharides and adenosine. The genes Oxwc-1 and Oxwc-2 encoding photoreceptors of O. xuefengensis were cloned and predicted to possess polypeptides of 937 and 525 amino acids, respectively. A phylogenetic analysis based on fungal WC-1/2 supported OxWC-1 and OxWC-2 were photoreceptor. The expression of both the Oxwc-1 and Oxwc-2 genes reached a maximum after receiving light stimulation for 15 min, which might relate to the inhibition of stromata growth.
Collapse
Affiliation(s)
- Can Zhong
- College of Horticulture, Hunan Agricultural University
- Institute of Chinese Materia Medica, Hunan Academy of Chinese Medicine
- These authors contributed equally to this work
| | - Rongrong Zhou
- Changchun University of Chinese Medicine
- These authors contributed equally to this work
| | - Jian Jin
- Institute of Chinese Materia Medica, Hunan Academy of Chinese Medicine
| | - Hao Liu
- Institute of Chinese Materia Medica, Hunan Academy of Chinese Medicine
| | - Jing Xie
- Institute of Chinese Materia Medica, Hunan Academy of Chinese Medicine
| | - Lanping Zhen
- Institute of Chinese Materia Medica, Hunan Academy of Chinese Medicine
| | - Shengen Xiao
- College of Horticulture, Hunan Agricultural University
| | - Shuihan Zhang
- College of Horticulture, Hunan Agricultural University
- Institute of Chinese Materia Medica, Hunan Academy of Chinese Medicine
| |
Collapse
|
30
|
Orban A, Weber A, Herzog R, Hennicke F, Rühl M. Transcriptome of different fruiting stages in the cultivated mushroom Cyclocybe aegerita suggests a complex regulation of fruiting and reveals enzymes putatively involved in fungal oxylipin biosynthesis. BMC Genomics 2021; 22:324. [PMID: 33947322 PMCID: PMC8097960 DOI: 10.1186/s12864-021-07648-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 04/19/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Cyclocybe aegerita (syn. Agrocybe aegerita) is a commercially cultivated mushroom. Its archetypal agaric morphology and its ability to undergo its whole life cycle under laboratory conditions makes this fungus a well-suited model for studying fruiting body (basidiome, basidiocarp) development. To elucidate the so far barely understood biosynthesis of fungal volatiles, alterations in the transcriptome during different developmental stages of C. aegerita were analyzed and combined with changes in the volatile profile during its different fruiting stages. RESULTS A transcriptomic study at seven points in time during fruiting body development of C. aegerita with seven mycelial and five fruiting body stages was conducted. Differential gene expression was observed for genes involved in fungal fruiting body formation showing interesting transcriptional patterns and correlations of these fruiting-related genes with the developmental stages. Combining transcriptome and volatilome data, enzymes putatively involved in the biosynthesis of C8 oxylipins in C. aegerita including lipoxygenases (LOXs), dioxygenases (DOXs), hydroperoxide lyases (HPLs), alcohol dehydrogenases (ADHs) and ene-reductases could be identified. Furthermore, we were able to localize the mycelium as the main source for sesquiterpenes predominant during sporulation in the headspace of C. aegerita cultures. In contrast, changes in the C8 profile detected in late stages of development are probably due to the activity of enzymes located in the fruiting bodies. CONCLUSIONS In this study, the combination of volatilome and transcriptome data of C. aegerita revealed interesting candidates both for functional genetics-based analysis of fruiting-related genes and for prospective enzyme characterization studies to further elucidate the so far barely understood biosynthesis of fungal C8 oxylipins.
Collapse
Affiliation(s)
- Axel Orban
- Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen, 35392, Giessen, Hesse, Germany
| | - Annsophie Weber
- Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen, 35392, Giessen, Hesse, Germany
| | - Robert Herzog
- International Institute Zittau, Technical University Dresden, 02763, Zittau, Saxony, Germany
| | - Florian Hennicke
- Project Group Genetics and Genomics of Fungi, Ruhr-University Bochum, Chair Evolution of Plants and Fungi, 44780, Bochum, North Rhine-Westphalia, Germany.
| | - Martin Rühl
- Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen, 35392, Giessen, Hesse, Germany. .,Fraunhofer Institute for Molecular Biology and Applied Ecology IME Branch for Bioresources, 35392, Giessen, Hesse, Germany.
| |
Collapse
|
31
|
H3K4me2 ChIP-Seq reveals the epigenetic landscape during mushroom formation and novel developmental regulators of Schizophyllum commune. Sci Rep 2021; 11:8178. [PMID: 33854169 PMCID: PMC8046757 DOI: 10.1038/s41598-021-87635-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 03/24/2021] [Indexed: 11/23/2022] Open
Abstract
Mushroom formation represents the most complex multicellular development in fungi. In the model mushroom Schizophyllum commune, comparative genomics and transcriptomics have previously resulted in a regulatory model of mushroom development. However, little is known about the role of epigenetic regulation. We used chromatin immunoprecipitation sequencing (ChIP-Seq) to determine the distribution of dimethylation of lysine 4 on histone H3 (H3K4me2), a mark for transcriptionally active genes, during monokaryotic and dikaryotic development. We identified a total of 6032 and 5889 sites during monokaryotic and dikaryotic development, respectively. The sites were strongly enriched near translation initiation sites of genes. Although the overall epigenetic landscape was similar between both conditions, we identified 837 sites of differential enrichment during monokaryotic or dikaryotic development, associated with 965 genes. Six transcription factor genes were enriched in H3K4me2 during dikaryotic development, indicating that these are epigenetically regulated during development. Deletion of two of these genes (fst1 and zfc7) resulted in arrested development of fruiting bodies, resulting in immature mushrooms. Together these results indicate that H3K4me2 ChIP-Seq is a powerful new tool to map the restructuring of the epigenetic landscape during mushroom development. Moreover, it can be used to identify novel developmental regulators.
Collapse
|
32
|
Selection and Evaluation of Potential Reference Genes for Quantitative Real-Time PCR in Agaricus blazei Based on Transcriptome Sequencing Data. BIOMED RESEARCH INTERNATIONAL 2021. [DOI: 10.1155/2021/6661842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Quantitative real-time PCR (qRT-PCR) is widely used to detect gene expression due to its high sensitivity, high throughput, and convenience. The accurate choice of reference genes is required for normalization of gene expression in qRT-PCR analysis. In order to identify the optimal candidates for gene expression analysis using qRT-PCR in Agaricus blazei, we studied the potential reference genes in this economically important edible fungus. In this study, transcriptome datasets were used as source for identification of candidate reference genes. And 27 potential reference genes including 21 newly stable genes, three classical housekeeping genes, and homologous genes of three ideal reference genes in Volvariella volvacea, were screened based on transcriptome datasets of A. blazei and previous studies. The expression stability of these genes was investigated by qRT-PCR analysis and further evaluated by four software packages, geNorm, NormFinder, BestKeeper, and RefFinder. Among these candidates, α-TUB (Tubulin alpha) and Cox5a (COX5A subunit VA of cytochrome c oxidase) were revealed as the most stable in fruit body, and suitable for 5 different developmental stages. α-TUB and ATP3 (ATP3 gamma subunit of the F1 sector of mitochondrial F1F0 ATP synthase) showed the most stable expression in stipe tissues and, Uqcrc (core subunit of the ubiquinol-cytochrome c reductase complex) and PUP3 (20S proteasome subunit beta 3) performed well in pileus tissues during the process of A. blazei development, while GAPDH (glyceraldehyde-3-phosphate dehydrogenase) was among the least stable genes in all sample sets. Finally, the Ableln3 (homology of eln3 gene of Coprinus cinereus) was adopted to validate the reliability of these stable and unstable reference genes, indicating that the use of unsuitable reference genes as internal controls could change the target gene’s expression pattern. This study can provide guidance for choosing reference genes for analyzing the expression pattern of target genes and facilitate the functional genomic investigation on fruit body formation and development, as well as stipe elongation and pileus expansion in A. blazei.
Collapse
|
33
|
Molecular Mechanism by Which the GATA Transcription Factor CcNsdD2 Regulates the Developmental Fate of Coprinopsis cinerea under Dark or Light Conditions. mBio 2021; 13:e0362621. [PMID: 35100879 PMCID: PMC8805025 DOI: 10.1128/mbio.03626-21] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Coprinopsis cinerea has seven homologs of the Aspergillus nidulans transcription factor NsdD. Of these, CcNsdD1 and CcNsdD2 from C. cinerea show the best identities of 62 and 50% to A. nidulans NsdD, respectively. After 4 days of constant darkness cultivation, CcnsdD2, but not CcnsdD1, was upregulated on the first day of light/dark cultivation to induce fruiting bodies, and overexpression of CcnsdD2, but not CcnsdD1, produced more fruiting bodies under a light/dark rhythm. Although single knockdown of CcnsdD2 did not affect fruiting body production due to upregulation of its homolog CcnsdD1, the double-knockdown CcNsdD1/NsdD2-RNAi transformant showed defects in fruiting body formation under a light/dark rhythm. Knockdown of CcnsdD1/nsdD2 led to the differentiation of primary hyphal knots into sclerotia rather than secondary hyphal knots under a light/dark rhythm, similar to the differentiation of primary hyphal knots into sclerotia of the wild-type strain under darkness. The CcNsdD2-overexpressing transformant produced more primary hyphal knots, secondary hyphal knots, and fruiting bodies under a light/dark rhythm but only more primary hyphal knots and sclerotia under darkness. RNA-seq revealed that some genes reported previously to be involved in formation of hyphal knots and primordia, cyclopropane-fatty-acyl-phospholipid synthases cfs1-3, galectins cgl1-3, and hydrophobins hyd1-3 were downregulated in the CcNsdD1/NsdD2-RNAi transformant compared to the mock transformant. ChIP-seq and electrophoretic mobility shift assay demonstrated that CcNsdD2 bound to promoter regulatory sequences containing a GATC motif in cfs1, cfs2, cgl1, and hyd1. A molecular mechanism by which CcNsdD2 regulates the developmental fate of C. cinerea under dark or light conditions is proposed. IMPORTANCE The model mushroom Coprinopsis cinerea exhibits remarkable photomorphogenesis during fruiting body development. This study reports that the C. cinerea transcription factor CcNsdD2 promotes primary hyphal knot formation by upregulating cfs1, cfs2, cgl1, and hyd1. Although the induction of CcnsdD2 is not under direct control of light and photoreceptors, the CcNsdD2-mediated developmental fates of the primary hyphal knots depend on the following light/dark rhythm cultivation or dark cultivation after full growth of mycelia in the constant dark cultivation. This study provides new insight into the molecular mechanism by which CcNsdD2 regulates the developmental fate of C. cinerea under dark or light conditions. In addition, the result that overexpression of CcnsdD2 induced more secondary hyphal knots, primordia, and fruiting bodies under light/dark rhythm cultivation conditions has potential applied value in the edible mushroom industry.
Collapse
|
34
|
Xu D, Wang Y, Keerio AA, Ma A. Identification of hydrophobin genes and their physiological functions related to growth and development in Pleurotus ostreatus. Microbiol Res 2021; 247:126723. [PMID: 33636611 DOI: 10.1016/j.micres.2021.126723] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 11/28/2020] [Accepted: 02/08/2021] [Indexed: 01/18/2023]
Abstract
Hydrophobins are small secreted proteins with important physiological functions and potential applications. Here, Pleurotus ostreatus hydrophobin genes were systematically analyzed: they were characterized, classified, and their expression profiles and gene functions were explored. In total, 40 P. ostreatus hydrophobin genes were found and showed genetic diversity, of which 15 were newly identified. The hydrophobin protein sequences were diverse but all contained eight cysteine residues with a conserved spacing pattern, and 33 of them were class I hydrophobins. The expression profile analyses showed that Vmh3 and Hydph20 were abundant in monokaryotic and dikaryotic mycelia, whereas Hydph17, Po.hyd16, Hydph8 were specifically expressed in monokaryotic mycelia and Po.hyd10 were specific in dikaryotic mycelia. Furthermore, Vmh3, Hydph20, Po.hyd7, and Po.hyd10 were abundant when dikaryotic mycelia cultivated on PDA, which are different from on substrate (Vmh2, Vmh3, Hydph7, Po.hyd3, Po.hyd7, Po.hyd9); Hydph12, POH1, and Po.hyd4 can be induced by natural light and cold stimulation during development from mycelia to primordia; Vmh3, FBH1, Hydph12, Po.hyd1-Po.hyd5, and Po.hyd8 were highly expressed in primordia and young fruiting bodies; Hydph12, Po.hyd1, Po.hyd4, and Po.hyd5 were specifically expressed in pilei. In addition, RNAi transformants of FBH1 exhibited slower growth rates and had fewer primordia and fruiting bodies, which suggests FBH1 affects the growth rate and primordia formation of P. ostreatus. Therefore, P. ostreatus hydrophobin genes belong to a large family and are temporally and spatially expressed to meet the developmental needs of mushroom.
Collapse
Affiliation(s)
- Danyun Xu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yuanyuan Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Aafaque Ahmed Keerio
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Aimin Ma
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Agro-Microbial Resources and Utilization, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
35
|
Duan M, Bao H, Bau T. Analyses of transcriptomes and the first complete genome of Leucocalocybe mongolica provide new insights into phylogenetic relationships and conservation. Sci Rep 2021; 11:2930. [PMID: 33536487 PMCID: PMC7858605 DOI: 10.1038/s41598-021-81784-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 01/12/2021] [Indexed: 01/30/2023] Open
Abstract
In this study, we report a de novo assembly of the first high-quality genome for a wild mushroom species Leucocalocybe mongolica (LM). We performed high-throughput transcriptome sequencing to analyze the genetic basis for the life history of LM. Our results show that the genome size of LM is 46.0 Mb, including 26 contigs with a contig N50 size of 3.6 Mb. In total, we predicted 11,599 protein-coding genes, of which 65.7% (7630) could be aligned with high confidence to annotated homologous genes in other species. We performed phylogenetic analyses using genes form 3269 single-copy gene families and showed support for distinguishing LM from the genus Tricholoma (L.) P.Kumm., in which it is sometimes circumscribed. We believe that one reason for limited wild occurrences of LM may be the loss of key metabolic genes, especially carbohydrate-active enzymes (CAZymes), based on comparisons with other closely related species. The results of our transcriptome analyses between vegetative (mycelia) and reproductive (fruiting bodies) organs indicated that changes in gene expression among some key CAZyme genes may help to determine the switch from asexual to sexual reproduction. Taken together, our genomic and transcriptome data for LM comprise a valuable resource for both understanding the evolutionary and life history of this species.
Collapse
Affiliation(s)
- Mingzheng Duan
- grid.464353.30000 0000 9888 756XKey Laboratory of Edible Fungi Resources and Utilization (North), Ministry of Agriculture and Rural Affairs, Jilin Agricultural University, Changchun, 130118 Jilin China
| | - Haiying Bao
- grid.464353.30000 0000 9888 756XKey Laboratory of Edible Fungi Resources and Utilization (North), Ministry of Agriculture and Rural Affairs, Jilin Agricultural University, Changchun, 130118 Jilin China
| | - Tolgor Bau
- grid.464353.30000 0000 9888 756XKey Laboratory of Edible Fungi Resources and Utilization (North), Ministry of Agriculture and Rural Affairs, Jilin Agricultural University, Changchun, 130118 Jilin China
| |
Collapse
|
36
|
Xie Y, Zhong Y, Chang J, Kwan HS. Chromosome-level de novo assembly of Coprinopsis cinerea A43mut B43mut pab1-1 #326 and genetic variant identification of mutants using Nanopore MinION sequencing. Fungal Genet Biol 2020; 146:103485. [PMID: 33253902 DOI: 10.1016/j.fgb.2020.103485] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/22/2020] [Accepted: 11/13/2020] [Indexed: 11/26/2022]
Abstract
The homokaryotic Coprinopsis cinerea strain A43mut B43mut pab1-1 #326 is a widely used experimental model for developmental studies in mushroom-forming fungi. It can grow on defined artificial media and complete the whole lifecycle within two weeks. The mutations in mating type factors A and B result in the special feature of clamp formation and fruiting without mating. This feature allows investigations and manipulations with a homokaryotic genetic background. Current genome assembly of strain #326 was based on short-read sequencing data and was highly fragmented, leading to the bias in gene annotation and downstream analyses. Here, we report a chromosome-level genome assembly of strain #326. Oxford Nanopore Technology (ONT) MinION sequencing was used to get long reads. Illumina short reads was used to polish the sequences. A combined assembly yield 13 chromosomes and a mitochondrial genome as individual scaffolds. The assembly has 15,250 annotated genes with a high synteny with the C. cinerea strain Okayama-7 #130. This assembly has great improvement on contiguity and annotations. It is a suitable reference for further genomic studies, especially for the genetic, genomic and transcriptomic analyses in ONT long reads. Single nucleotide variants and structural variants in six mutagenized and cisplatin-screened mutants could be identified and validated. A 66 bp deletion in Ras GTPase-activating protein (RasGAP) was found in all mutants. To make a better use of ONT sequencing platform, we modified a high-molecular-weight genomic DNA isolation protocol based on magnetic beads for filamentous fungi. This study showed the use of MinION to construct a fungal reference genome and to perform downstream studies in an individual laboratory. An experimental workflow was proposed, from DNA isolation and whole genome sequencing, to genome assembly and variant calling. Our results provided solutions and parameters for fungal genomic analysis on MinION sequencing platform.
Collapse
Affiliation(s)
- Yichun Xie
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region
| | - Yiyi Zhong
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region
| | - Jinhui Chang
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region; The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
| | - Hoi Shan Kwan
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region.
| |
Collapse
|
37
|
Steindorff AS, Carver A, Calhoun S, Stillman K, Liu H, Lipzen A, He G, Yan M, Pangilinan J, LaButti K, Ng V, Bruns TD, Grigoriev IV. Comparative genomics of pyrophilous fungi reveals a link between fire events and developmental genes. Environ Microbiol 2020; 23:99-109. [PMID: 33034064 DOI: 10.1111/1462-2920.15273] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 10/06/2020] [Indexed: 01/14/2023]
Abstract
Forest fires generate a large amount of carbon that remains resident on the site as dead and partially 'pyrolysed' (i.e. burnt) material that has long residency times and constitutes a significant pool in fire-prone ecosystems. In addition, fire-induced hydrophobic soil layers, caused by condensation of pyrolysed waxes and lipids, increase post-fire erosion and can lead to long-term productivity losses. A small set of pyrophilous fungi dominate post-fire soils and are likely to be involved with the degradation of all these compounds, yet almost nothing is currently known about what these fungi do or the metabolic processes they employ. In this study, we sequenced and analysed genomes from fungi isolated after Rim fire near Yosemite National Park in 2013 and showed the enrichment/expansion of CAZymes and families known to be involved in fruiting body initiation when compared to other basidiomycete fungi. We found gene families potentially involved in the degradation of the hydrophobic layer and pyrolysed organic matter, such as hydrophobic surface binding proteins, laccases (AA1_1), xylanases (GH10, GH11), fatty acid desaturases and tannases. Thus, pyrophilous fungi are important actors to restate the soil's functional capabilities.
Collapse
Affiliation(s)
- Andrei S Steindorff
- United States Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, 94720, California, USA.,Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, 94720, California, USA
| | - Akiko Carver
- United States Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, 94720, California, USA.,Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, 94720, California, USA
| | - Sara Calhoun
- United States Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, 94720, California, USA
| | - Kyra Stillman
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, 94720, California, USA
| | - Haowen Liu
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, 94720, California, USA
| | - Anna Lipzen
- United States Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, 94720, California, USA
| | - Guifen He
- United States Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, 94720, California, USA
| | - Mi Yan
- United States Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, 94720, California, USA
| | - Jasmyn Pangilinan
- United States Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, 94720, California, USA
| | - Kurt LaButti
- United States Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, 94720, California, USA
| | - Vivian Ng
- United States Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, 94720, California, USA
| | - Thomas D Bruns
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, 94720, California, USA
| | - Igor V Grigoriev
- United States Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, 94720, California, USA.,Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, 94720, California, USA.,Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, 94720, California, USA
| |
Collapse
|
38
|
Liu XB, Xia EH, Li M, Cui YY, Wang PM, Zhang JX, Xie BG, Xu JP, Yan JJ, Li J, Nagy LG, Yang ZL. Transcriptome data reveal conserved patterns of fruiting body development and response to heat stress in the mushroom-forming fungus Flammulina filiformis. PLoS One 2020; 15:e0239890. [PMID: 33064719 PMCID: PMC7567395 DOI: 10.1371/journal.pone.0239890] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 09/15/2020] [Indexed: 02/06/2023] Open
Abstract
Mushroom-forming fungi are complex multicellular organisms that form the basis of a large industry, yet, our understanding of the mechanisms of mushroom development and its responses to various stresses remains limited. The winter mushroom (Flammulina filiformis) is cultivated at a large commercial scale in East Asia and is a species with a preference for low temperatures. This study investigated fruiting body development in F. filiformis by comparing transcriptomes of 4 developmental stages, and compared the developmental genes to a 200-genome dataset to identify conserved genes involved in fruiting body development, and examined the response of heat sensitive and -resistant strains to heat stress. Our data revealed widely conserved genes involved in primordium development of F. filiformis, many of which originated before the emergence of the Agaricomycetes, indicating co-option for complex multicellularity during evolution. We also revealed several notable fruiting-specific genes, including the genes with conserved stipe-specific expression patterns and the others which related to sexual development, water absorption, basidium formation and sporulation, among others. Comparative analysis revealed that heat stress induced more genes in the heat resistant strain (M1) than in the heat sensitive one (XR). Of particular importance are the hsp70, hsp90 and fes1 genes, which may facilitate the adjustment to heat stress in the early stages of fruiting body development. These data highlighted novel genes involved in complex multicellular development in fungi and aid further studies on gene function and efforts to improve the productivity and heat tolerance in mushroom-forming fungi.
Collapse
Affiliation(s)
- Xiao-Bin Liu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming, Yunnan, China
| | - En-Hua Xia
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, China
| | - Meng Li
- Yunnan Tobacco Science Research Institute, Kunming, China
| | - Yang-Yang Cui
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming, Yunnan, China
| | - Pan-Meng Wang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming, Yunnan, China
| | - Jin-Xia Zhang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Microbial Resources, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Bao-Gui Xie
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jian-Ping Xu
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Jun-Jie Yan
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jing Li
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming, Yunnan, China
- Key Laboratory of Conservation and Utilization for Bioresources and Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education, Yunnan University, Kunming, Yunnan, China
| | - László G. Nagy
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged, Szeged, Hungary
| | - Zhu L. Yang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming, Yunnan, China
- * E-mail:
| |
Collapse
|
39
|
Dörnte B, Peng C, Fang Z, Kamran A, Yulvizar C, Kües U. Selection markers for transformation of the sequenced reference monokaryon Okayama 7/#130 and homokaryon AmutBmut of Coprinopsis cinerea. Fungal Biol Biotechnol 2020; 7:15. [PMID: 33062286 PMCID: PMC7552465 DOI: 10.1186/s40694-020-00105-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 09/30/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Two reference strains have been sequenced from the mushroom Coprinopsis cinerea, monokaryon Okayama 7/#130 (OK130) and the self-compatible homokaryon AmutBmut. An adenine-auxotrophy in OK130 (ade8-1) and a para-aminobenzoic acid (PABA)-auxotrophy in AmutBmut (pab1-1) offer selection markers for transformations. Of these two strains, homokaryon AmutBmut had been transformed before to PABA-prototrophy and with the bacterial hygromycin resistance marker hph, respectively. RESULTS Gene ade8 encodes a bifunctional enzyme with an N-terminal glycinamide ribonucleotide synthase (GARS) and a C-terminal aminoimidazole ribonucleotide synthase (AIRS) domain required for steps 2 and 5 in the de novo biosynthesis of purines, respectively. In OK130, a missense mutation in ade8-1 rendered residue N231 for ribose recognition by the A loop of the GARS domain into D231. The new ade8 + vector pCcAde8 complements the auxotrophy of OK130 in transformations. Transformation rates with pCcAde8 in single-vector and co-transformations with ade8 +-selection were similarly high, unlike for trp1 + plasmids which exhibit suicidal feedback-effects in single-vector transformations with complementation of tryptophan synthase defects. As various other plasmids, unselected pCcAde8 helped in co-transformations of trp1 strains with a trp1 +-selection vector to overcome suicidal effects by transferred trp1 +. Co-transformation rates of pCcAde8 in OK130 under adenine selection with nuclear integration of unselected DNA were as high as 80% of clones. Co-transformation rates of expressed genes reached 26-42% for various laccase genes and up to 67% with lcc9 silencing vectors. The bacterial gene hph can also be used as another, albeit less efficient, selection marker for OK130 transformants, but with similarly high co-transformation rates. We further show that the pab1-1 defect in AmutBmut is due to a missense mutation which changed the conserved PIKGT motif for chorismate binding in the C-terminal PabB domain to PIEGT in the mutated 4-amino-4-deoxychorismate synthase. CONCLUSIONS ade8-1 and pab1-1 auxotrophic defects in C. cinerea reference strains OK130 and AmutBmut for complementation in transformation are described. pCcAde8 is a new transformation vector useful for selection in single and co-transformations of the sequenced monokaryon OK130 which was transformed for the first time. The bacterial gene hph can also be used as an additional selection marker in OK130, making in combination with ade8 + successive rounds of transformation possible.
Collapse
Affiliation(s)
- Bastian Dörnte
- Molecular Wood Biotechnology and Technical Mycology, Büsgen-Institute, University of Goettingen, Büsgenweg 2, 37077 Goettingen, Germany
| | - Can Peng
- School of Life Sciences, Anhui University, Hefei, 230601 China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, 230601 China
| | - Zemin Fang
- School of Life Sciences, Anhui University, Hefei, 230601 China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, 230601 China
| | - Aysha Kamran
- Molecular Wood Biotechnology and Technical Mycology, Büsgen-Institute, University of Goettingen, Büsgenweg 2, 37077 Goettingen, Germany
- Present Address: Institute for Microbiology and Genetics, University of Goettingen, 37077 Goettingen, Germany
| | - Cut Yulvizar
- Molecular Wood Biotechnology and Technical Mycology, Büsgen-Institute, University of Goettingen, Büsgenweg 2, 37077 Goettingen, Germany
| | - Ursula Kües
- Molecular Wood Biotechnology and Technical Mycology, Büsgen-Institute, University of Goettingen, Büsgenweg 2, 37077 Goettingen, Germany
- Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Goettingen, Germany
| |
Collapse
|
40
|
Asai S, Tsunematsu Y, Masuya T, Otaka J, Osada H, Watanabe K. Uncovering hidden sesquiterpene biosynthetic pathway through expression boost area-mediated productivity enhancement in basidiomycete. J Antibiot (Tokyo) 2020; 73:721-728. [DOI: 10.1038/s41429-020-0355-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/13/2020] [Accepted: 07/13/2020] [Indexed: 11/09/2022]
|
41
|
Merényi Z, Prasanna AN, Wang Z, Kovács K, Hegedüs B, Bálint B, Papp B, Townsend JP, Nagy LG. Unmatched Level of Molecular Convergence among Deeply Divergent Complex Multicellular Fungi. Mol Biol Evol 2020; 37:2228-2240. [PMID: 32191325 PMCID: PMC7403615 DOI: 10.1093/molbev/msaa077] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Convergent evolution is pervasive in nature, but it is poorly understood how various constraints and natural selection limit the diversity of evolvable phenotypes. Here, we analyze the transcriptome across fruiting body development to understand the independent evolution of complex multicellularity in the two largest clades of fungi-the Agarico- and Pezizomycotina. Despite >650 My of divergence between these clades, we find that very similar sets of genes have convergently been co-opted for complex multicellularity, followed by expansions of their gene families by duplications. Over 82% of shared multicellularity-related gene families were expanding in both clades, indicating a high prevalence of convergence also at the gene family level. This convergence is coupled with a rich inferred repertoire of multicellularity-related genes in the most recent common ancestor of the Agarico- and Pezizomycotina, consistent with the hypothesis that the coding capacity of ancestral fungal genomes might have promoted the repeated evolution of complex multicellularity. We interpret this repertoire as an indication of evolutionary predisposition of fungal ancestors for evolving complex multicellular fruiting bodies. Our work suggests that evolutionary convergence may happen not only when organisms are closely related or are under similar selection pressures, but also when ancestral genomic repertoires render certain evolutionary trajectories more likely than others, even across large phylogenetic distances.
Collapse
Affiliation(s)
- Zsolt Merényi
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Center, Szeged, Hungary
| | - Arun N Prasanna
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Center, Szeged, Hungary
| | - Zheng Wang
- Department of Biostatistics, Yale University, New Haven, CT
| | - Károly Kovács
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Center, Szeged, Hungary
- Hungarian Centre of Excellence for Molecular Medicine, Metabolic Systems Biology Lab, Szeged, Hungary
| | - Botond Hegedüs
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Center, Szeged, Hungary
| | - Balázs Bálint
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Center, Szeged, Hungary
| | - Balázs Papp
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Center, Szeged, Hungary
- Hungarian Centre of Excellence for Molecular Medicine, Metabolic Systems Biology Lab, Szeged, Hungary
| | - Jeffrey P Townsend
- Department of Biostatistics, Yale University, New Haven, CT
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT
| | - László G Nagy
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Center, Szeged, Hungary
| |
Collapse
|
42
|
Xie Y, Chang J, Kwan HS. Carbon metabolism and transcriptome in developmental paths differentiation of a homokaryotic Coprinopsis cinerea strain. Fungal Genet Biol 2020; 143:103432. [PMID: 32681999 DOI: 10.1016/j.fgb.2020.103432] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/01/2020] [Accepted: 07/06/2020] [Indexed: 02/07/2023]
Abstract
The balance and interplay between sexual and asexual reproduction is one of the most intriguing mysteries in the study of fungi. The choice of developmental strategy reflects the ability of fungi to adapt to the changing environment. However, the evolution of developmental paths and the metabolic regulation during differentiation and morphogenesis are poorly understood. Here, an analysis was performed of carbohydrate metabolism and gene expression regulation during the early differentiation process from the vegetative mycelium, to the differentiated structures, fruiting body, oidia and sclerotia, of a homokaryotic fruiting Coprinopsis cinerea strain A43mutB43mut pab1-1 #326. Changes during morphogenesis and the evolution of developmental strategies were followed. Conversion between glucose and glycogen and between glucose and beta-glucan were the main carbon flows in the differentiation processes. Genes related to carbohydrate transport and metabolism were significantly differentially expressed among paths. Sclerotia displayed a set of specifically up-regulated genes that were enriched in the carbon metabolism and energy production and conversion processes. Evolutionary transcriptomic analysis of four developmental paths showed that all transcriptomes were under the purifying selection, and the more stressful the environment, the younger the transcriptome age. Oidiation has the lowest value of transcriptome age index (TAI) and transcriptome divergence index (TDI), while the fruiting process has the highest of both indexes. These findings provide new insights into the regulations of carbon metabolism and gene expressions during the early stages of fungal developmental paths differentiation, and improve our understanding of the evolutionary process of life history and reproductive strategy in fungi.
Collapse
Affiliation(s)
- Yichun Xie
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region
| | - Jinhui Chang
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region
| | - Hoi Shan Kwan
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region.
| |
Collapse
|
43
|
Olariaga I, Huhtinen S, Læssøe T, Petersen JH, Hansen K. Phylogenetic origins and family classification of typhuloid fungi, with emphasis on Ceratellopsis, Macrotyphula and Typhula ( Basidiomycota). Stud Mycol 2020; 96:155-184. [PMID: 32774511 PMCID: PMC7388190 DOI: 10.1016/j.simyco.2020.05.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Typhuloid fungi are a very poorly known group of tiny clavarioid homobasidiomycetes. The phylogenetic position and family classification of the genera targeted here, Ceratellopsis, Macrotyphula, Pterula sensu lato and Typhula, are controversial and based on unresolved phylogenies. Our six-gene phylogeny with an expanded taxon sampling shows that typhuloid fungi evolved at least twice in the Agaricales (Pleurotineae, Clavariineae) and once in the Hymenochaetales. Macrotyphula, Pterulicium and Typhula are nested within the Pleurotineae. The type of Typhula (1818) and Sclerotium (1790), T. phacorrhiza and S. complanatum (synonym T. phacorrhiza), are encompassed in the Macrotyphula clade that is distantly related to a monophyletic group formed by species usually assigned to Typhula. Thus, the correct name for Macrotyphula (1972) and Typhula is Sclerotium and all Typhula species but those in the T. phacorrhiza group need to be transferred to Pistillaria (1821). To avoid undesirable nomenclatural changes, we suggest to conserve Typhula with T. incarnata as type. Clavariaceae is supported as a separate, early diverging lineage within Agaricales, with Hygrophoraceae as a successive sister taxon to the rest of the Agaricales. Ceratellopsis s. auct. is polyphyletic because C. acuminata nests in Clavariaceae and C. sagittiformis in the Hymenochaetales. Ceratellopsis is found to be an earlier name for Pterulicium, because the type, C. queletii, represents Pterulicium gracile (synonym Pterula gracilis), deeply nested in the Pterulicium clade. To avoid re-combining a large number of names in Ceratellopsis we suggest to conserve it with C. acuminata as type. The new genus Bryopistillaria is created to include C. sagittiformis. The families Sarcomyxaceae and Phyllotopsidaceae, and the suborder Clavariineae, are described as new. Six new combinations are proposed and 15 names typified.
Collapse
Key Words
- Agaricomycetes
- Bryopistillaria Olariaga, Huhtinen, Læssøe, J.H. Petersen & K. Hansen
- Bryopistillaria sagittiformis (Pat.) Olariaga, Huhtinen, Læssøe, J.H. Petersen & K. Hansen
- Ceratella ferryi Quél. & Fautrey
- Clavaria aculina Quél.
- Clavaria microscopica Malbr. & Sacc.
- Clavariaceae
- Clavariineae Olariaga, Huhtinen, Læssøe, J.H. Petersen & K. Hansen
- Macrotyphula megasperma (Berthier) Olariaga, Huhtinen, Læssøe, J.H. Petersen & K. Hansen
- Macrotyphula phacorrhiza (Reichard: Fr.) Olariaga, Huhtinen, Læssøe, J.H. Petersen & K. Hansen
- Phyllotopsidaceae Locquin ex Olariaga, Huhtinen, Læssøe, J.H. Petersen & K. Hansen
- Pistillaria aciculata Durieu & Lév. ex Sacc.
- Pistillaria aculeata Pat.
- Pistillaria acuminata Fuckel
- Pistillaria attenuata Syd. & P. Syd.
- Pistillaria carestiae Ces. in Bres. & Sacc.
- Pistillaria equiseticola Boud.
- Pistillaria helenae Pat.
- Pistillaria juncicola Bourdot & Galzin
- Pistillaria queletii Pat.
- Pistillaria sagittiformis Pat.
- Pleurotineae
- Sarcomyxaceae Olariaga, Huhtinen, Læssøe, J.H. Petersen & K. Hansen
- Sclerotium
- Sclerotium complanatum Tode
- Typhula brunaudii Quél.
- Typhula podocarpi (Crous) Olariaga, Huhtinen, Læssøe, J.H. Petersen & K. Hansen
- Typhulaceae
- basidioma evolution
- clavarioid fungi
Collapse
Affiliation(s)
- I Olariaga
- Department of Botany, Swedish Museum of Natural History, P.O. Box 50007, SE-10405, Stockholm, Sweden.,Biology and Geology, Physics and Inorganic Chemistry department, Rey Juan Carlos University, C/ Tulipán s/n, Móstoles, 28933, Madrid, Spain
| | - S Huhtinen
- Biodiversity Unit, Herbarium, University of Turku, FI-20014, Turku, Finland
| | - T Læssøe
- Department of Biology/Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, 2100, København Ø, Denmark
| | - J H Petersen
- MycoKey, Nøruplundvej 2, 8400, Ebeltoft, Denmark
| | - K Hansen
- Department of Botany, Swedish Museum of Natural History, P.O. Box 50007, SE-10405, Stockholm, Sweden
| |
Collapse
|
44
|
Lau AYT, Xie Y, Cheung MK, Cheung PCK, Kwan HS. Genome-wide mRNA and miRNA analysis in the early stages of germ tube outgrowth in Coprinopsis cinerea. Fungal Genet Biol 2020; 142:103416. [PMID: 32522620 DOI: 10.1016/j.fgb.2020.103416] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 05/28/2020] [Accepted: 06/01/2020] [Indexed: 01/28/2023]
Abstract
Coprinopsis cinerea is a model mushroom-forming basidiomycete which produces basidiospores during sexual reproduction. This fungus is widely used to study fruiting body formation and development. Molecular mechanisms controlling its growth from vegetative mycelium to multicellular mature fruiting body have been studied extensively. However, little is known about the underlying biological processes during germ tube outgrowth or the transition from basidiospores to multinucleate hyphae. To better understand sexual spore germination in fungi, here we examined the time-dependent cellular events at resting, germinating and fully germinated basidiospores of C. cinerea by genome-wide transcriptional and post-transcriptional analyses and by carbohydrate composition analysis. Our results revealed a high demand of protein degradation, and biosynthesis of various compounds at the early stage of basidiospore gemination and dynamic changes of carbohydrate metabolism throughout the germination process. Seven microRNA-like RNAs (milRNAs) were identified in the resting basidiospores of C. cinerea, six of which were basidiospore-specific. Glycogen and trehalose were shown to be the carbon sources supporting the initiation of germ tube outgrowth. One basidiospore-specific milRNA, cci-milR-37, was found to be a potential regulator of glycogen metabolic pathways related to vegetative hyphal growth. Our results demonstrated the mRNA and miRNA-mediated regulation on energy production, protein and carbohydrate metabolisms at the early developmental stages of germ tube to form totipotent hyphae. To our knowledge, this is the first study to show the roles of miRNAs in mushroom basidiospore germination and out-growth.
Collapse
Affiliation(s)
- Amy Yuet Ting Lau
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Yichun Xie
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Man Kit Cheung
- Department of Surgery, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Peter Chi Keung Cheung
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong; CUHK Shenzhen Research Institute, Shenzhen, China
| | - Hoi Shan Kwan
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong; HSK GeneTech Limited, Science Park, Shatin, New Territories, Hong Kong; Probiolife Limited, Science Park, Shatin, New Territories, Hong Kong; Mushroom-X Limited, Cheung Sha Wan Plaza, Lai Chi Kok, Kowloon, Hong Kong.
| |
Collapse
|
45
|
A putative transcription factor LFC1 negatively regulates development and yield of winter mushroom. Appl Microbiol Biotechnol 2020; 104:5827-5844. [PMID: 32356196 DOI: 10.1007/s00253-020-10642-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 04/08/2020] [Accepted: 04/21/2020] [Indexed: 10/24/2022]
Abstract
Basidioma is the fruiting body of mushroom species. The deep understanding on the mechanism of basidioma development is valuable for mushroom breeding and cultivation. From winter mushroom (Flammulina velutipes), one of the top five industrially cultivated mushrooms, a novel putative Zn(II)2Cys6 transcription factor LFC1 with negative regulatory function in basidioma development was identified. The transcript level of lfc1 was dramatically decreased during basidioma development. Neither overexpression nor knockdown of lfc1 affected hyphal vegetative growth. However, knockdown of lfc1 could promote basidioma development and shorten cultivation time by 2 days, while overexpression of lfc1 delayed the optimal harvest time by 3 days. In the lfc1 knockdown strain, in which the lfc1 expression was reduced by 72%, mushroom yield and biological efficiency could be increased at least by 24%. Knockdown of lfc1 did not affect the shape of caps but significantly increased basidioma length and number, while its overexpression did not affect basidioma length but dramatically reduced basidioma number. In addition, rather than producing basidiomata with round caps as in wild type, the caps of basidiomata in the lfc1 overexpression mutants were significantly larger and the cap edge was wrinkled. RNA-seq analysis revealed that 455 genes had opposite transcriptional responses to lfc1 overexpression and knockdown. Some of them were previously reported as genes involved in basidioma development, including 3 hydrophobin encoding genes, 2 lectin encoding genes, FVFD16, an Eln2 ortholog encoding gene, and 3 genes encoding membrane components. As LFC1 homologs are widely present in mushroom species, lfc1 can be useful in mushroom breeding.Key Points• A novel transcription factor LFC1 negatively regulates fruiting in winter mushroom• LFC1 regulated transcription of more than 400 genes.• Reduction of LFC1 expression could shorten cultivation time and increase yield.• lfc1 could be a potentially useful reference gene for mushroom breeding.
Collapse
|
46
|
Almási É, Sahu N, Krizsán K, Bálint B, Kovács GM, Kiss B, Cseklye J, Drula E, Henrissat B, Nagy I, Chovatia M, Adam C, LaButti K, Lipzen A, Riley R, Grigoriev IV, Nagy LG. Comparative genomics reveals unique wood-decay strategies and fruiting body development in the Schizophyllaceae. THE NEW PHYTOLOGIST 2019; 224:902-915. [PMID: 31257601 DOI: 10.1111/nph.16032] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 06/24/2019] [Indexed: 06/09/2023]
Abstract
Agaricomycetes are fruiting body-forming fungi that produce some of the most efficient enzyme systems to degrade wood. Despite decades-long interest in their biology, the evolution and functional diversity of both wood-decay and fruiting body formation are incompletely known. We performed comparative genomic and transcriptomic analyses of wood-decay and fruiting body development in Auriculariopsis ampla and Schizophyllum commune (Schizophyllaceae), species with secondarily simplified morphologies, an enigmatic wood-decay strategy and weak pathogenicity to woody plants. The plant cell wall-degrading enzyme repertoires of Schizophyllaceae are transitional between those of white rot species and less efficient wood-degraders such as brown rot or mycorrhizal fungi. Rich repertoires of suberinase and tannase genes were found in both species, with tannases restricted to Agaricomycetes that preferentially colonize bark-covered wood, suggesting potential complementation of their weaker wood-decaying abilities and adaptations to wood colonization through the bark. Fruiting body transcriptomes revealed a high rate of divergence in developmental gene expression, but also several genes with conserved expression patterns, including novel transcription factors and small-secreted proteins, some of the latter which might represent fruiting body effectors. Taken together, our analyses highlighted novel aspects of wood-decay and fruiting body development in an important family of mushroom-forming fungi.
Collapse
Affiliation(s)
- Éva Almási
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Center, HAS, Szeged, 6726, Hungary
| | - Neha Sahu
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Center, HAS, Szeged, 6726, Hungary
| | - Krisztina Krizsán
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Center, HAS, Szeged, 6726, Hungary
| | - Balázs Bálint
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Center, HAS, Szeged, 6726, Hungary
| | - Gábor M Kovács
- Department of Plant Anatomy, Institute of Biology, Eötvös Loránd University, Budapest, 1117, Hungary
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, 1022, Hungary
| | - Brigitta Kiss
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Center, HAS, Szeged, 6726, Hungary
| | | | - Elodie Drula
- Architecture et Fonction des Macromolécules Biologiques (AFMB), CNRS, Université Aix-Marseille, 163 Avenue de Luminy, 13288, Marseille, France
- INRA, USC 1408 AFMB, 13288, Marseille, France
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques (AFMB), CNRS, Université Aix-Marseille, 163 Avenue de Luminy, 13288, Marseille, France
- INRA, USC 1408 AFMB, 13288, Marseille, France
- Department of Biological Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - István Nagy
- Seqomics Ltd. Mórahalom, Mórahalom, 6782, Hungary
| | - Mansi Chovatia
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA, 94598, USA
| | - Catherine Adam
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA, 94598, USA
| | - Kurt LaButti
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA, 94598, USA
| | - Anna Lipzen
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA, 94598, USA
| | - Robert Riley
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA, 94598, USA
| | - Igor V Grigoriev
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA, 94598, USA
| | - László G Nagy
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Center, HAS, Szeged, 6726, Hungary
| |
Collapse
|
47
|
Tsunematsu Y, Takanishi J, Asai S, Masuya T, Nakazawa T, Watanabe K. Genomic Mushroom Hunting Decrypts Coprinoferrin, A Siderophore Secondary Metabolite Vital to Fungal Cell Development. Org Lett 2019; 21:7582-7586. [PMID: 31496254 DOI: 10.1021/acs.orglett.9b02861] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
LaeA is a positive global regulator of secondary metabolism in Ascomycetes, but its role in Basidiomycetes, including medicinal mushrooms, remains uncharacterized. Here, knockout of laeA in the model mushroom Coprinopsis cinerea unexpectedly upregulated the biosynthesis of a novel siderophore, coprinoferrin. Furthermore, knockout of the nonribosomal peptide synthetase-encoding cpf1 responsible for coprinoferrin biosynthesis resulted in growth defect and loss of fruiting body formation, indicating the complex role that this natural product plays in fungal cell development.
Collapse
Affiliation(s)
- Yuta Tsunematsu
- Department of Pharmaceutical Sciences , University of Shizuoka , Shizuoka 422-8526 , Japan
| | - Jun Takanishi
- Department of Pharmaceutical Sciences , University of Shizuoka , Shizuoka 422-8526 , Japan
| | - Shihori Asai
- Department of Pharmaceutical Sciences , University of Shizuoka , Shizuoka 422-8526 , Japan
| | - Takahiro Masuya
- Department of Pharmaceutical Sciences , University of Shizuoka , Shizuoka 422-8526 , Japan
| | - Takehito Nakazawa
- Graduate School of Agriculture , Kyoto University , Kyoto 606-8502 , Japan
| | - Kenji Watanabe
- Department of Pharmaceutical Sciences , University of Shizuoka , Shizuoka 422-8526 , Japan
| |
Collapse
|
48
|
Transcriptome Changes during Major Developmental Transitions Accompanied with Little Alteration of DNA Methylome in Two Pleurotus Species. Genes (Basel) 2019; 10:genes10060465. [PMID: 31212970 PMCID: PMC6627472 DOI: 10.3390/genes10060465] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 06/08/2019] [Accepted: 06/12/2019] [Indexed: 12/13/2022] Open
Abstract
Pleurotus tuoliensis (Pt) and P. eryngii var. eryngii (Pe) are important edible mushrooms. The epigenetic and gene expression signatures characterizing major developmental transitions in these two mushrooms remain largely unknown. Here, we report global analyses of DNA methylation and gene expression in both mushrooms across three major developmental transitions, from mycelium to primordium and to fruit body, by whole-genome bisulfite sequencing (WGBS) and RNA-seq-based transcriptome profiling. Our results revealed that in both Pt and Pe the landscapes of methylome are largely stable irrespective of genomic features, e.g., in both protein-coding genes and transposable elements (TEs), across the developmental transitions. The repressive impact of DNA methylation on expression of a small subset of genes is likely due to TE-associated effects rather than their own developmental dynamics. Global expression of gene orthologs was also broadly conserved between Pt and Pe, but discernible interspecific differences exist especially at the fruit body formation stage, and which are primarily due to differences in trans-acting factors. The methylome and transcriptome repertories we established for the two mushroom species may facilitate further studies of the epigenetic and transcriptional regulatory mechanisms underpinning gene during development in Pleurotus and related genera.
Collapse
|
49
|
Chang J, Chan PL, Xie Y, Ma KL, Cheung MK, Kwan HS. Modified recipe to inhibit fruiting body formation for living fungal biomaterial manufacture. PLoS One 2019; 14:e0209812. [PMID: 31083677 PMCID: PMC6513072 DOI: 10.1371/journal.pone.0209812] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 04/29/2019] [Indexed: 11/30/2022] Open
Abstract
Living fungal mycelium with abolished ability to form fruiting bodies is a self-healing substance, which is particularly valuable for further engineering and development as materials sensing environmental changes and secreting signals. Suppression of fruiting body formation is also a useful tool for maintaining the stability of a mycelium-based material with ease and lower cost. The objective of this study was to provide a biochemical solution to regulate the fruiting body formation, which may replace heat killing of mycelium in practice. The concentrations of glycogen synthase kinase-3 (GSK-3) inhibitors, such as lithium chloride or CHIR99021 trihydrochloride, were found to directly correlate with the development of fruiting bodies in the mushroom forming fungi such as Coprinopsis cinerea and Pleurotus djamor. Sensitive windows to these inhibitors throughout the fungal life cycle were also identified. We suggest the inclusion of GSK-3 inhibitors in the cultivation recipes for inhibiting fruiting body formation and regulating mycelium growth. This is the first report of using a GSK-3 inhibitor to suppress fruiting body formation in living fungal mycelium-based materials. It provides an innovative strategy for easy, reliable, and low cost maintenance of materials containing living fungal mycelium.
Collapse
Affiliation(s)
- Jinhui Chang
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Po Lam Chan
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Yichun Xie
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Ka Lee Ma
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Man Kit Cheung
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Hoi Shan Kwan
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| |
Collapse
|
50
|
Tayyrov A, Stanley CE, Azevedo S, Künzler M. Combining microfluidics and RNA-sequencing to assess the inducible defensome of a mushroom against nematodes. BMC Genomics 2019; 20:243. [PMID: 30909884 PMCID: PMC6434838 DOI: 10.1186/s12864-019-5607-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 03/14/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Fungi are an attractive source of nutrients for predators. As part of their defense, some fungi are able to induce the production of anti-predator protein toxins in response to predation. A previous study on the interaction of the model mushroom Coprinopsis cinerea by the fungivorous nematode Aphelenchus avenae on agar plates has shown that the this fungal defense response is most pronounced in the part of the mycelium that is in direct contact with the nematode. Hence, we hypothesized that, for a comprehensive characterization of this defense response, an experimental setup that maximizes the zone of direct interaction between the fungal mycelium and the nematode, was needed. RESULTS In this study, we conducted a transcriptome analysis of C. cinerea vegetative mycelium upon challenge with A. avenae using a tailor-made microfluidic device. The device was designed such that the interaction between the fungus and the nematode was confined to a specific area and that the mycelium could be retrieved from this area for analysis. We took samples from the confrontation area after different time periods and extracted and sequenced the poly(A)+ RNA thereof. The identification of 1229 differentially expressed genes (DEGs) shows that this setup profoundly improved sensitivity over co-cultivation on agar plates where only 37 DEGs had been identified. The product of one of the most highly upregulated genes shows structural homology to bacterial pore-forming toxins, and revealed strong toxicity to various bacterivorous nematodes. In addition, bacteria associated with the fungivorous nematode A. avenae were profiled with 16S rRNA deep sequencing. Similar to the bacterivorous and plant-feeding nematodes, Proteobacteria and Bacteroidetes were the most dominant phyla in A. avenae. CONCLUSIONS The use of a novel experimental setup for the investigation of the defense response of a fungal mycelium to predation by fungivorous nematodes resulted in the identification of a comprehensive set of DEGs and the discovery of a novel type of fungal defense protein against nematodes. The bacteria found to be associated with the fungivorous nematode are a possible explanation for the induction of some antibacterial defense proteins upon nematode challenge.
Collapse
Affiliation(s)
- Annageldi Tayyrov
- Institute of Microbiology, Department of Biology, ETH Zürich, Vladimir-Prelog-Weg 4, CH-8093 Zürich, Switzerland
| | - Claire E. Stanley
- Agroecology and Environment Research Division, Agroscope, Reckenholzstrasse 191, CH-8046 Zürich, Switzerland
| | - Sophie Azevedo
- Institute of Microbiology, Department of Biology, ETH Zürich, Vladimir-Prelog-Weg 4, CH-8093 Zürich, Switzerland
| | - Markus Künzler
- Institute of Microbiology, Department of Biology, ETH Zürich, Vladimir-Prelog-Weg 4, CH-8093 Zürich, Switzerland
| |
Collapse
|