1
|
Sanfeliu-Redondo D, Gibert-Ramos A, Gracia-Sancho J. Cell senescence in liver diseases: pathological mechanism and theranostic opportunity. Nat Rev Gastroenterol Hepatol 2024; 21:477-492. [PMID: 38485755 DOI: 10.1038/s41575-024-00913-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/12/2024] [Indexed: 06/30/2024]
Abstract
The liver is not oblivious to the passage of time, as ageing is a major risk factor for the development of acute and chronic liver diseases. Ageing produces alterations in all hepatic cells, affecting their phenotype and function and worsening the prognosis of liver disease. The ageing process also implies the accumulation of a cellular state characterized by a persistent proliferation arrest and a specific secretory phenotype named cellular senescence. Indeed, senescent cells have key roles in many physiological processes; however, their accumulation owing to ageing or pathological conditions contributes to the damage occurring in chronic diseases. The aim of this Review is to provide an updated description of the pathophysiological events in which hepatic senescent cells are involved and their role in liver disease progression. Finally, we discuss novel geroscience therapies that could be applied to prevent or improve liver diseases and age-mediated hepatic deregulations.
Collapse
Affiliation(s)
- David Sanfeliu-Redondo
- Liver Vascular Biology Laboratory, IDIBAPS Biomedical Research Institute - Hospital Clínic de Barcelona & CIBEREHD, Barcelona, Spain
| | - Albert Gibert-Ramos
- Liver Vascular Biology Laboratory, IDIBAPS Biomedical Research Institute - Hospital Clínic de Barcelona & CIBEREHD, Barcelona, Spain
| | - Jordi Gracia-Sancho
- Liver Vascular Biology Laboratory, IDIBAPS Biomedical Research Institute - Hospital Clínic de Barcelona & CIBEREHD, Barcelona, Spain.
- Department of Visceral Surgery and Medicine, Inselspital - University of Bern, Bern, Switzerland.
| |
Collapse
|
2
|
Kaminski TW, Katoch O, Li Z, Hanway CB, Dubey RK, Alagbe A, Brzoska T, Zhang H, Sundd P, Kato GJ, Novelli EM, Pradhan-Sundd T. Impaired hemoglobin clearance by sinusoidal endothelium promotes vaso-occlusion and liver injury in sickle cell disease. Haematologica 2024; 109:1535-1550. [PMID: 37941440 PMCID: PMC11063870 DOI: 10.3324/haematol.2023.283792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 11/02/2023] [Indexed: 11/10/2023] Open
Abstract
Sickle cell disease (SCD) is a monogenic disorder that affects 100,000 African-Americans and millions of people worldwide. Intra-erythrocytic polymerization of sickle hemoglobin (HbS) promotes erythrocyte sickling, impaired rheology, ischemia and hemolysis, leading to the development of progressive liver injury in SCD. Liver-resident macrophages and monocytes are known to enable the clearance of HbS; however, the role of liver sinusoidal endothelial cells (LSEC) in HbS clearance and liver injury in SCD remains unknown. Using real-time intravital (in vivo) imaging in mice liver as well as flow cytometric analysis and confocal imaging of primary human LSEC, we show for the first time that liver injury in SCD is associated with accumulation of HbS and iron in the LSEC, leading to senescence of these cells. Hemoglobin uptake by LSEC was mediated by micropinocytosis. Hepatic monocytes were observed to attenuate LSEC senescence by accelerating HbS clearance in the liver of SCD mice; however, this protection was impaired in P-selectin-deficient SCD mice secondary to reduced monocyte recruitment in the liver. These findings are the first to suggest that LSEC contribute to HbS clearance and HbS-induced LSEC senescence promotes progressive liver injury in SCD mice. Our results provide a novel insight into the pathogenesis of hemolysis-induced chronic liver injury in SCD caused by LSEC senescence. Identifying the regulators of LSEC-mediated HbS clearance may lead to new therapies to prevent the progression of liver injury in SCD.
Collapse
Affiliation(s)
- Tomasz W Kaminski
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Omika Katoch
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Ziming Li
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Corrine B Hanway
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Rikesh K Dubey
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Adekunle Alagbe
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Tomasz Brzoska
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | | | - Prithu Sundd
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Division of Pulmonary Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | | | - Enrico M Novelli
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Division of Hematology/Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Tirthadipa Pradhan-Sundd
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Division of Hematology/Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA.
| |
Collapse
|
3
|
Sharma M, Hunter KD, Fonseca FP, Radhakrishnan R. Emerging role of cellular senescence in the pathogenesis of oral submucous fibrosis and its malignant transformation. Head Neck 2021; 43:3153-3164. [PMID: 34227702 DOI: 10.1002/hed.26805] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 05/09/2021] [Accepted: 06/28/2021] [Indexed: 12/19/2022] Open
Abstract
Senescence is a common denominator in wound healing, fibrosis, and cancer. Although, senescence is transiently antifibrotic, when prolonged, promotes fibrosis and malignant transformation. Eligible studies indexed in MEDLINE, Embase and Web of Science were searched to understand the role of cellular senescence in the pathogenesis of oral submucous fibrosis (OSF) and its malignant transformation. The senescence-associated secretory phenotype (SASP) components like IL-1, IL-6, and GRO-α induce double-strand DNA breaks in keratinocytes and drive genetic instability. SASP derived from myofibroblasts induces epithelial-mesenchymal transition in OSF and facilitates cancer progression. The use of senolytics has been shown to eliminate senescent cells from the areas of fibrosis, thereby preventing malignancy. Naturally occurring agents such as apigenin and kaempferol inhibit SASP. Mechanistic insight into the emerging role of senescence in the pathogenesis of OSF and modalities to inhibit senescence-associated antiapoptotic pathways as a supplementary therapy to prevent malignant transformation of OSF is underlined.
Collapse
Affiliation(s)
- Mohit Sharma
- Department of Oral Pathology, Sudha Rustagi College of Dental Sciences and Research, Faridabad, India
| | - Keith D Hunter
- Academic Unit of Oral and Maxillofacial Medicine and Pathology, School of Clinical Dentistry, University of Sheffield, UK
| | - Felipe Paiva Fonseca
- Department of Oral Pathology and Surgery, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Raghu Radhakrishnan
- Department of Oral Pathology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
4
|
Ferreira-Gonzalez S, Rodrigo-Torres D, Gadd VL, Forbes SJ. Cellular Senescence in Liver Disease and Regeneration. Semin Liver Dis 2021; 41:50-66. [PMID: 33764485 DOI: 10.1055/s-0040-1722262] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Cellular senescence is an irreversible cell cycle arrest implemented by the cell as a result of stressful insults. Characterized by phenotypic alterations, including secretome changes and genomic instability, senescence is capable of exerting both detrimental and beneficial processes. Accumulating evidence has shown that cellular senescence plays a relevant role in the occurrence and development of liver disease, as a mechanism to contain damage and promote regeneration, but also characterizing the onset and correlating with the extent of damage. The evidence of senescent mechanisms acting on the cell populations of the liver will be described including the role of markers to detect cellular senescence. Overall, this review intends to summarize the role of senescence in liver homeostasis, injury, disease, and regeneration.
Collapse
Affiliation(s)
| | - Daniel Rodrigo-Torres
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Victoria L Gadd
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Stuart J Forbes
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
5
|
Wilkinson AL, Qurashi M, Shetty S. The Role of Sinusoidal Endothelial Cells in the Axis of Inflammation and Cancer Within the Liver. Front Physiol 2020; 11:990. [PMID: 32982772 PMCID: PMC7485256 DOI: 10.3389/fphys.2020.00990] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 07/20/2020] [Indexed: 12/12/2022] Open
Abstract
Liver sinusoidal endothelial cells (LSEC) form a unique barrier between the liver sinusoids and the underlying parenchyma, and thus play a crucial role in maintaining metabolic and immune homeostasis, as well as actively contributing to disease pathophysiology. Whilst their endocytic and scavenging function is integral for nutrient exchange and clearance of waste products, their capillarisation and dysfunction precedes fibrogenesis. Furthermore, their ability to promote immune tolerance and recruit distinct immunosuppressive leukocyte subsets can allow persistence of chronic viral infections and facilitate tumour development. In this review, we present the immunological and barrier functions of LSEC, along with their role in orchestrating fibrotic processes which precede tumourigenesis. We also summarise the role of LSEC in modulating the tumour microenvironment, and promoting development of a pre-metastatic niche, which can drive formation of secondary liver tumours. Finally, we summarise closely inter-linked disease pathways which collectively perpetuate pathogenesis, highlighting LSEC as novel targets for therapeutic intervention.
Collapse
Affiliation(s)
| | | | - Shishir Shetty
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
6
|
Sun X, Harris EN. New aspects of hepatic endothelial cells in physiology and nonalcoholic fatty liver disease. Am J Physiol Cell Physiol 2020; 318:C1200-C1213. [PMID: 32374676 DOI: 10.1152/ajpcell.00062.2020] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The liver is the central metabolic hub for carbohydrate, lipid, and protein metabolism. It is composed of four major types of cells, including hepatocytes, endothelial cells (ECs), Kupffer cells, and stellate cells. Hepatic ECs are highly heterogeneous in both mice and humans, representing the second largest population of cells in liver. The majority of them line hepatic sinusoids known as liver sinusoidal ECs (LSECs). The structure and biology of LSECs and their roles in physiology and liver disease were reviewed recently. Here, we do not give a comprehensive review of LSEC structure, function, or pathophysiology. Instead, we focus on the recent progress in LSEC research and other hepatic ECs in physiology and nonalcoholic fatty liver disease and other hepatic fibrosis-related conditions. We discuss several current areas of interest, including capillarization, scavenger function, autophagy, cellular senescence, paracrine effects, and mechanotransduction. In addition, we summarize the strengths and weaknesses of evidence for the potential role of endothelial-to-mesenchymal transition in liver fibrosis.
Collapse
Affiliation(s)
- Xinghui Sun
- Department of Biochemistry, University of Nebraska-Lincoln, Beadle Center, Lincoln, Nebraska.,Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, Nebraska.,Nebraska Center for the Prevention of Obesity Diseases through Dietary Molecules, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - Edward N Harris
- Department of Biochemistry, University of Nebraska-Lincoln, Beadle Center, Lincoln, Nebraska.,Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, Nebraska.,Fred & Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
7
|
Proteomic Technology "Lens" for Epithelial-Mesenchymal Transition Process Identification in Oncology. Anal Cell Pathol (Amst) 2019; 2019:3565970. [PMID: 31781477 PMCID: PMC6855076 DOI: 10.1155/2019/3565970] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 08/20/2019] [Accepted: 09/10/2019] [Indexed: 02/08/2023] Open
Abstract
The epithelial-mesenchymal transition (EMT) is a complex transformation process that induces local and distant progression of many malignant tumours. Due to its complex array of proteins that are dynamically over-/underexpressed during this process, proteomic technologies gained their place in the EMT research in the last years. Proteomics has identified new molecular pathways of this process and brought important insights to develop new therapy targets. Various proteomic tools and multiple combinations were developed in this area. Out of the proteomic technology armentarium, mass spectrometry and array technologies are the most used approaches. The main characteristics of the proteomic technology used in this domain are high throughput and detection of minute concentration in small samples. We present herein, using various proteomic technologies, the identification in cancer cell lines and in tumour tissue EMT-related proteins, proteins that are involved in the activation of different cellular pathways. Proteomics has brought besides standard EMT markers (e.g., cell-cell adhesion proteins and transcription factors) other future potential markers for improving diagnosis, monitoring evolution, and developing new therapy targets. Future will increase the proteomic role in clinical investigation and validation of EMT-related biomarkers.
Collapse
|
8
|
Baze A, Parmentier C, Hendriks DFG, Hurrell T, Heyd B, Bachellier P, Schuster C, Ingelman-Sundberg M, Richert L. Three-Dimensional Spheroid Primary Human Hepatocytes in Monoculture and Coculture with Nonparenchymal Cells. Tissue Eng Part C Methods 2019; 24:534-545. [PMID: 30101670 DOI: 10.1089/ten.tec.2018.0134] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Recent advances in the development of various culture platforms are promising for achieving more physiologically relevant in vitro hepatic models using primary human hepatocytes (PHHs). Previous studies have shown the value of PHHs three-dimensional (3D) spheroid models, cultured in low cell number (1330-2000 cells/3D spheroid), to study long-term liver function as well as pharmacological drug effects and toxicity. In this study, we report that only plateable PHHs aggregate and form compact 3D spheroids with a success rate of 79%, and 96% reproducibility. Out of 3D spheroid forming PHH lots, 65% were considered stable (<50% ATP decrease) over the subsequent 14 days of culture, with reproducibility of a given PHH lot being 82%. We also report successful coculturing of PHHs with human liver nonparenchymal cells (NPCs). Crude P1c-NPC fractions were obtained by low centrifugation of the PHH supernatant fraction followed by a few days of culture before harvesting and cryopreservation. At aggregation of PHHs/P1c-NPCs (2:1 ratio 3D spheroids), liver sinusoidal endothelial cells, Kupffer cells, and hepatic stellate cells were successfully integrated and remained present throughout the subsequent 14-day culture period as revealed by mRNA expression markers and immunostaining. Increased mRNA expression of albumin (ALB), apolipoprotein B (APOB), cytochrome P450 3A4 (CYP3A4), and increased albumin secretion compared to PHH 3D spheroid monocultures highlighted that in a 3D spheroid coculture, configuration with NPCs, PHH functionality is increased. We thus achieved the development of a more integrated coculture model system requiring low cell numbers, of particular interest due to the scarcity of human liver NPCs.
Collapse
Affiliation(s)
- Audrey Baze
- 1 KaLy-Cell, Plobsheim , France .,2 Université de Strasbourg , Strasbourg, France
| | | | - Delilah F G Hendriks
- 3 Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet , Stockholm, Sweden
| | - Tracey Hurrell
- 3 Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet , Stockholm, Sweden
| | - Bruno Heyd
- 4 Hôpital Jean Minjoz , Besançon, France .,5 Université de Bourgogne Franche-Comté , Besançon, France
| | - Philippe Bachellier
- 2 Université de Strasbourg , Strasbourg, France .,6 Hôpital de Hautepierre , Strasbourg, France
| | - Catherine Schuster
- 2 Université de Strasbourg , Strasbourg, France .,7 INSERM, UMR_S1110, Institut de Recherche sur les Maladies Virales et Hépatiques , Strasbourg, France
| | - Magnus Ingelman-Sundberg
- 3 Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet , Stockholm, Sweden
| | - Lysiane Richert
- 1 KaLy-Cell, Plobsheim , France .,5 Université de Bourgogne Franche-Comté , Besançon, France
| |
Collapse
|
9
|
Falero-Perez J, Song YS, Zhao Y, Teixeira L, Sorenson CM, Sheibani N. Cyp1b1 expression impacts the angiogenic and inflammatory properties of liver sinusoidal endothelial cells. PLoS One 2018; 13:e0206756. [PMID: 30372497 PMCID: PMC6205649 DOI: 10.1371/journal.pone.0206756] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 10/18/2018] [Indexed: 12/30/2022] Open
Abstract
Cytochrome P450 1B1 (CYP1B1) is a member of the cytochrome p450 family of enzymes that catalyze mono-oxygenase reactions. Although constitutive Cyp1b1 expression is limited in hepatocytes, its expression and function in liver sinusoidal endothelial cells (LSEC) remains unknown. Here we determined the impact of Cyp1b1 expression on LSEC properties prepared from Cyp1b1+/+ and Cyp1b1-/- mice. LSEC expressed PECAM-1, VE-cadherin, and B4 lectin similar to EC from other mouse tissues. Cyp1b1 +/+ LSEC constitutively expressed significant levels of Cyp1b1, while Cyp1b1-/- LSEC lacked Cyp1b1 expression. LSEC also expressed VEGFR3, PROX-1, and LYVE-1, VEGFR1 and VEGFR2, as well as other cell adhesion molecules including ICAM-1, ICAM-2, VCAM-1, and thrombospondin-1 (TSP1) receptors, CD36 and CD47. However, the expression of PV-1 and stabilin (fenestration markers), and endoglin were limited in these cells. The Cyp1b1-/- LSEC showed limited fenestration, and decreased levels of VEGF and BMP6. Cyp1b1-/- LSEC also showed a decrease in the levels of VE-cadherin and ZO-1 impacting adherens and gap junction formation. Cyp1b1-/- LSEC were significantly more apoptotic, proliferated at a faster rate, and were less adherent and more migratory. These changes were attributed, in part, to decreased amounts of TSP1 and increased AKT and ERK activation. The expressions of integrins were also altered by the lack of Cyp1b1, but the ability of these cells to undergo capillary morphogenesis was minimally affected. Furthermore, Cyp1b1-/- LSEC expressed lower levels of inflammatory mediators MCP-1 and TNF-α. Thus, Cyp1b1 expression has a significant impact on LSEC angiogenic and inflammatory functions.
Collapse
Affiliation(s)
- Juliana Falero-Perez
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison WI, United States of America
| | - Yong-Seok Song
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison WI, United States of America
| | - Yun Zhao
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison WI, United States of America
| | - Leandro Teixeira
- Deaprtment of Pathobiological Sciences, University of Wisconsin School of Veterinary Medicine, Madison, WI, United States of America
| | - Christine M. Sorenson
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America
| | - Nader Sheibani
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison WI, United States of America
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America
- Department of Biomedical Engineering, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America
| |
Collapse
|
10
|
Abstract
Liver sinusoidal endothelial cells (LSECs) line the low shear, sinusoidal capillary channels of the liver and are the most abundant non-parenchymal hepatic cell population. LSECs do not simply form a barrier within the hepatic sinusoids but have vital physiological and immunological functions, including filtration, endocytosis, antigen presentation and leukocyte recruitment. Reflecting these multifunctional properties, LSECs display unique structural and phenotypic features that differentiate them from the capillary endothelium present within other organs. It is now clear that LSECs have a critical role in maintaining immune homeostasis within the liver and in mediating the immune response during acute and chronic liver injury. In this Review, we outline how LSECs influence the immune microenvironment within the liver and discuss their contribution to immune-mediated liver diseases and the complications of fibrosis and carcinogenesis.
Collapse
|
11
|
Koudelkova P, Costina V, Weber G, Dooley S, Findeisen P, Winter P, Agarwal R, Schlangen K, Mikulits W. Transforming Growth Factor-β Drives the Transendothelial Migration of Hepatocellular Carcinoma Cells. Int J Mol Sci 2017; 18:ijms18102119. [PMID: 28994702 PMCID: PMC5666801 DOI: 10.3390/ijms18102119] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 09/15/2017] [Accepted: 09/15/2017] [Indexed: 12/12/2022] Open
Abstract
The entry of malignant hepatocytes into blood vessels is a key step in the dissemination and metastasis of hepatocellular carcinoma (HCC). The identification of molecular mechanisms involved in the transmigration of malignant hepatocytes through the endothelial barrier is of high relevance for therapeutic intervention and metastasis prevention. In this study, we employed a model of hepatocellular transmigration that mimics vascular invasion using hepatic sinusoidal endothelial cells and malignant hepatocytes evincing a mesenchymal-like, invasive phenotype by transforming growth factor (TGF)-β. Labelling of respective cell populations with various stable isotopes and subsequent mass spectrometry analyses allowed the “real-time” detection of molecular changes in both transmigrating hepatocytes and endothelial cells. Interestingly, the proteome profiling revealed 36 and 559 regulated proteins in hepatocytes and endothelial cells, respectively, indicating significant changes during active transmigration that mostly depends on cell–cell interaction rather than on TGF-β alone. Importantly, matching these in vitro findings with HCC patient data revealed a panel of common molecular alterations including peroxiredoxin-3, epoxide hydrolase, transgelin-2 and collectin 12 that are clinically relevant for the patient’s survival. We conclude that hepatocellular plasticity induced by TGF-β is crucially involved in blood vessel invasion of HCC cells.
Collapse
Affiliation(s)
- Petra Koudelkova
- Department of Medicine I, Division: Institute of Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria.
| | - Victor Costina
- Institute for Clinical Chemistry, Medical Faculty Mannheim, University of Heidelberg, University Hospital Mannheim, 68167 Mannheim, Germany.
| | - Gerhard Weber
- Department of Medicine I, Division: Institute of Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria.
| | - Steven Dooley
- Molecular Hepatology Section, Department of Medicine II, Medical Faculty Mannheim, University of Heidelberg Mannheim, 68167 Mannheim, Germany.
| | - Peter Findeisen
- Institute for Clinical Chemistry, Medical Faculty Mannheim, University of Heidelberg, University Hospital Mannheim, 68167 Mannheim, Germany.
| | | | | | - Karin Schlangen
- Center for Medical Statistics, Informatics and Intelligent Systems, Medical University of Vienna, 1090 Vienna, Austria.
| | - Wolfgang Mikulits
- Department of Medicine I, Division: Institute of Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria.
| |
Collapse
|
12
|
Plumbagin Alleviates Capillarization of Hepatic Sinusoids In Vitro by Downregulating ET-1, VEGF, LN, and Type IV Collagen. BIOMED RESEARCH INTERNATIONAL 2017; 2017:5603216. [PMID: 28770223 PMCID: PMC5523349 DOI: 10.1155/2017/5603216] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 05/28/2017] [Accepted: 06/05/2017] [Indexed: 12/19/2022]
Abstract
Critical roles for liver sinusoidal endothelial cells (LSECs) in liver fibrosis have been demonstrated, while little is known regarding the underlying molecular mechanisms of drugs delivered to the LSECs. Our previous study revealed that plumbagin plays an antifibrotic role in liver fibrosis. In this study, we investigated whether plumbagin alleviates capillarization of hepatic sinusoids by downregulating endothelin-1 (ET-1), vascular endothelial growth factor (VEGF), laminin (LN), and type IV collagen on leptin-stimulated LSECs. We found that normal LSECs had mostly open fenestrae and no organized basement membrane. Leptin-stimulated LSECs showed the formation of a continuous basement membrane with few open fenestrae, which were the features of capillarization. Expression of ET-1, VEGF, LN, and type IV collagen was enhanced in leptin-stimulated LSECs. Plumbagin was used to treat leptin-stimulated LSECs. The sizes and numbers of open fenestrae were markedly decreased, and no basement membrane production was found after plumbagin administration. Plumbagin decreased the levels of ET-1, VEGF, LN, and type IV collagen in leptin-stimulated LSECs. Plumbagin promoted downregulation of ET-1, VEGF, LN, and type IV collagen mRNA. Altogether, our data reveal that plumbagin reverses capillarization of hepatic sinusoids by downregulation of ET-1, VEGF, LN, and type IV collagen.
Collapse
|
13
|
Liu X, Wang J, Dong F, Li H, Hou Y. Human gingival fibroblasts induced and differentiated into vascular endothelial-like cells. Dev Growth Differ 2016; 58:702-713. [PMID: 27882546 DOI: 10.1111/dgd.12327] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 10/08/2016] [Accepted: 10/10/2016] [Indexed: 12/27/2022]
Abstract
A novel method for repair of vascular disease, mechanical damage, and tissue rebuilding is urgently required. Vascular endothelial cells (VECs) play an essential role in vascular rebuilding and vasotransplantation. In the present study, human gingival fibroblasts (HGFs) were cultured and induced into endothelial-like cells in vitro in order to confirm that HGFs with stem cell properties possessed the potential for differentiation into endothelial-like cells. The epithelium was extracted from normal human gingiva consisting of epithelium and connective tissue, which was isolated from patients. The identification of HGFs and induced endothelial-like cells were confirmed by flow cytometry, reverse transcription polymerase chain reaction (RT-PCR), immunocytochemical stain (ICS), and immunofluorescence stain (ISA). The morphology of human gingival fibroblasts with 8 ng/mL VEGF165 induced for different periods of days were observed by inverted microscope. Before induction, flow cytometry analysis showed that HGFs were positive for vimentin, but negative for CD31. RT-PCR, ICS, and ISA showed vimentin, S100A4, α-SMA, collagen III, and S100A4 were specifically expressed in these fibroblast cells. After induction, ICS showed induced vascular endothelial-like cells were positive for CD34 and CD31; ISA showed cells induced were positive for vWF and E-cadherin; RT-PCR results demonstrated that tie2 was specifically expressed in the cells induced. Flow cytometry analysis of the transformation efficiency from HGFs to endothelial-like cells. In conclusion, we found that HGFs possessed capacity for being induced and differentiated into vessel endothelial-like cells with typical and specific morphological, ultrastructural, and immunological characters of endothelial-like cells by induction with VEGF.
Collapse
Affiliation(s)
- Xuqian Liu
- Department of Oral Pathology, College and Hospital of Stomatology, Hebei Medical University, The Key Laboratory of Stomatology, Hebei Province, China
| | - Jie Wang
- Department of Oral Pathology, College and Hospital of Stomatology, Hebei Medical University, The Key Laboratory of Stomatology, Hebei Province, China
| | - Fusheng Dong
- Department of Oral Pathology, College and Hospital of Stomatology, Hebei Medical University, The Key Laboratory of Stomatology, Hebei Province, China
| | - Hexiang Li
- Department of Oral Pathology, College and Hospital of Stomatology, Hebei Medical University, The Key Laboratory of Stomatology, Hebei Province, China
| | - Yali Hou
- Department of Oral Pathology, College and Hospital of Stomatology, Hebei Medical University, The Key Laboratory of Stomatology, Hebei Province, China
| |
Collapse
|